
Efficient Top-K Count Queries over Imprecise Duplicates

Sunita Sarawagi
IIT Bombay

sunita@iitb.ac.in

Vinay S Deshpande
IIT Bombay

vinaysd@cse.iitb.ac.in

Sourabh Kasliwal
IIT Bombay

sourabh@cse.iitb.ac.in

ABSTRACT
We propose efficient techniques for processing various Top-
K count queries on data with noisy duplicates. Our method
differs from existing work on duplicate elimination in two
significant ways: First, we dedup on the fly only the part of
the data needed for the answer — a requirement in massive
and evolving sources where batch deduplication is expen-
sive. The non-local nature of the problem of partitioning
data into duplicate groups, makes it challenging to filter
only those tuples forming the K largest groups. We pro-
pose a novel method of successively collapsing and pruning
records which yield an order of magnitude reduction in run-
ning time compared to deduplicating the entire data first.

Second, we return multiple high scoring answers to handle
situations where it is impossible to resolve if two records are
indeed duplicates of each other. Since finding even the high-
est scoring deduplication is NP-hard, the existing approach
is to deploy one of many variants of score-based clustering
algorithms which do not easily generalize to finding multiple
groupings. We model deduplication as a segmentation of a
linear embedding of records and present a polynomial time
algorithm for finding the R highest scoring answers. This
method closely matches the accuracy of an exact exponen-
tial time algorithm on several datasets.

1. INTRODUCTION
The problem of eliminating duplicates in large record lists
has been actively researched in the database community.
Much work exists on designing efficient join algorithms for
finding duplicate pairs [3, 16, 19, 33, 32, 8, 28, 26], formulat-
ing the criteria for identifying two records as duplicates [18,
31, 11, 9, 6], and clustering pairs to get duplicate groups [13,
4, 10, 7].

However, most existing work assume a batch mode of dedu-
plication, typically performed at the time of data loading.
This approach of deduplicating first and querying later is
not practical over sources that are constantly evolving, or

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

are otherwise too vast or open-ended to be amenable to of-
fline deduplication. In such cases, it is necessary to perform
on-the-fly deduplication of only the relevant data subset.
Another important aspect of dealing with such data sources
is that sometimes it is impossible to resolve if two records
are indeed duplicates of each other. Instead of hiding this in-
trinsic ambiguity under arbitrary policies and a single hard
grouping of records, we propose that queries expose such
ambiguity by returning multiple plausible answers.

In this paper we concentrate on how to answer several vari-
ants of TopK count queries on such sources. The TopK
query returns the set of K largest groups in the data where
each group consists of all duplicate mentions of an entity.
To capture the inherent uncertainty of resolving duplicates,
we associate a score with each possible grouping, and re-
turn the R highest scoring answers. We present example
scenarios where such queries arise:

• Finding prolific inventors on a topic from a patents
database.

• Web query answering where the result of the query is
expected to be a single entity where each entity’s rank
is derived from its frequency of occurrences [22].

• Tracking the most frequently mentioned organization
in an online feed of news articles.

• Compiling the most cited authors in a citation database
created through noisy extraction processes.

All these examples share the following characteristics: the
final answer requires aggregation of counts over several noisy
mentions of entity names, it is not meaningful or feasible to
perform a full resolution in advance, and it is impossible to
claim with certainty if two mentions refer to the same entity.

There are several challenges to solving the above problem
efficiently. First, given the non-local nature of the problem
of partitioning data into duplicate groups, there is no obvi-
ous extension of existing algorithms to retain data relevant
only to the K largest groups. Two records can be called du-
plicates not just based on that pair but also on other related
records in the data. This makes it difficult to predict for a
record, how large a group it might eventually get merged
with. Second, finding even the highest scoring answer is
NP-hard for most reasonable scoring functions. Extending

450

existing approximation methods to finding the R highest
scoring answer is not obvious. Third, finding the score of
a TopK answer is non-trivial because it requires summing
over the score over exponential possible groupings.

1.1 Contributions
We propose a query processing framework on data with du-
plicates that extends the capabilities of existing systems in
two significant ways: First, it requires deduping on the fly
the part of the data actually needed for the answer. Second,
it considers situations where it is impossible to fine tune an
exact deduplication criteria that can precisely resolve when
two records are the same. In this paper we illustrate how
we address these two challenges for the TopK count query
and other related queries.

We propose a novel method of pruning records guaranteed
not to be in the TopK set by using a notion of sufficient
predicates to collapse obvious duplicates and a notion of
necessary predicates to estimating lower bound on the size
of a group in the answer and pruning away irrelevant tu-
ples. Our pruning algorithm is safeguarded against the two
extremes of many mentions of the same entity and many
groups with small number of mentions.

Experiments on three real-life datasets of up to a quarter
million rows shows that for small values of K our algorithm
reduces the data size to 1% of its original size. This leads
to significant reduction in running time because most dedu-
plication algorithms are in the worst case quadratic in the
number of input records.

We propose a linear embedding of the records such that po-
tential duplicates are clustered. Within this embedding, we
provide an exact polynomial time algorithm for finding the
R highest scoring TopK answers. We compared the quality
of the answers we obtained under the embedding to exact
answers on real-life datasets where it was possible to find
the exact answer using existing algorithms. In all cases, the
accuracy of the answer we obtain is 99% of the exact algo-
rithm.

Outline. We review related work in Section 2. In Section 3
we formally define TopK queries on data with duplicate
records and discuss existing deduplication algorithms. We
then present our core algorithm for collapsing and pruning
records in Section 4. In Section 5 we present our algorithm
for finding the R highest scoring TopK answers from the
pruned set of records. In Section 6 we present the results
from our experimental evaluation. In Section 7 we present
extensions of our pruning algorithm to other forms of aggre-
gate count queries on data with duplicates.

2. RELATED WORK
We relate our work to existing work on duplicate elimina-
tion, TopK count queries, and queries over uncertain data
integration steps.

Duplicate elimination. The literature on duplication elim-
ination can be classified under the following categories: join

algorithms for finding duplicate pairs [3, 16, 19, 33, 32, 1],
index structures for approximate string matches [12, 37],
formulating the criteria for identifying two records as du-
plicates [18, 31, 11, 9, 6], designing canopy predicates [8,
28, 26, 15], and clustering pairs to get duplicate groups [13,
4, 10, 7]. While this literature is relevant to solving the fi-
nal deduplication problem on the pruned records, none of
these have considered the problem of selectively deduping
only part of the records relevant to a query answer.

Top-K aggregate queries. The TopK count problem, a
special case of the TopK ranking problem, has been ad-
dressed in various settings. See [20] for a survey. The basic
TopK count query is to return the K most frequently occur-
ring attribute values in a set of records. Our problem differs
in only one way from this — repeated mentions of values
are not guaranteed to look the same, and it is expensive
to establish if two values are indeed noisy variants of each
other. This single difference, however, drastically changes
the computational structure of the problem. For instance,
all the optimizations proposed in [25] about scheduling the
probing of attribute groups and member records, very cru-
cially depend on being able to exactly and easily define the
aggregation groups.

Top-K aggregate queries on uncertain data. The TopK
aggregate query problem has recently been extended to un-
certain data [35]. Their algorithm is designed to work with
an arbitrary inference engine for computing uncertainty, so
initially we attempted to find our R highest scoring answers
by treating each potential group as an uncertain tuple in
their framework. We soon realized that the nature of de-
pendencies among the set of groups is too non-local for their
algorithm to be practical. Also, they concentrate on com-
puting general aggregate function after assuming that the set
of groups and the bounds on the cardinality of each group is
known. These assumptions do not hold in our case because
there is no fixed set of groups. In fact, our primary problem
is to compute the cardinality of such floating groups.

Uncertainty in data integration. There is increasing in-
terest to model the outcome of data integration as a prob-
abilistic database [17, 34, 2]. The focus in [17, 34] is on
probabilistically representing the uncertainty in mapping
the schema of two sources and computing the R most prob-
able answers to queries. Our design point is similar: the
scores that we assign to each possible grouping of data can be
normalized to be probabilities and we are therefore return-
ing the R most probable answers. However, the algorithmic
challenges in uncertainty of schema mappings is drastically
different from uncertainty of data grouping. Although [2]
also deals with uncertainty in duplicate data, they assume
that the groups produced by the deduplication algorithm is
certain and the only imprecision is in whether a member ex-
ists at all. An exclusive OR model of assigning a probability
to each member suffices for this setting. This is entirely in
contrast to our setting — we are addressing the more diffi-
cult problem of uncertainty in group membership. The de-
pendency structure of grouping data cannot be represented
by tuple-level probability models and something more in-

451

volved, like our segmentation model, is needed to capture
most of the interesting dependencies while retaining some
computational tractability.

3. PROBLEM FORMULATION AND BACK-
GROUND

Given a dataset D comprising of d records t1, . . . td, the an-
swer to a TopK query on D is a set of K groups C1 . . . CK

that satisfy the following three condition:

1. Each group Ci is the maximal set of tuples such that all
tuples in it are duplicates of each other. The maximal-
ity condition implies that there are no tuples outside
of Ci that is a duplicate of any tuple in Ci.

2. The sizes of groups are non-increasing: size(Ci) ≥
size(Cj) for all i > j,

3. There exists no group in D−TopK of size greater than
size(CK).

A trivial method of finding the top-K largest groups is to
first find all duplicate groups and retain only the K-largest.
We first review the existing algorithms for deduping records
with the view of evaluating how they can be made more
efficient for getting only the TopK largest groups. Almost
all existing approaches follow these three steps:

Fast elimination of obvious non-duplicate pairs. First,
a cheap canopy predicate is used to filter the set of tuple
pairs that are likely to be duplicates. For example [26, 15]
proposes to use TFIDF similarity on entity names to find
likely duplicates. TFIDF similarity can be evaluated ef-
ficiently using an inverted index unlike measures like edit
distance which might have been used for the final matching
criteria. These are also called blocking predicates in [8, 28].

Join to get duplicate pairs. Next, a more expensive cri-
teria P is applied on the filtered pairs. The criteria P
is either user-defined or learned from examples using ma-
chine learning models [31, 11, 6]. It can output either a
binary “duplicate” or “not-duplicate” decision or a real score
where positive values indicate duplicates, negative values
non-duplicates and the magnitude controls the degree of be-
lief in the decision.

Cluster to get entity groups. Finally, since there is no
guarantee that P satisfies triangle inequality, a clustering
step is used to find the best grouping of records while min-
imizing the amount of violations of P . A well-known such
criterion is correlation clustering which attempts to find that
grouping for which the number of non-duplicate edge pairs
within a group and duplicate edge pairs across groups is
minimized [4]. This, and many other such criterion is NP-
hard to optimize and approximate algorithm [10] and heuris-
tics [14] are used to find the best grouping.

There is no obvious way of exploiting the fact that we are
only interested in the K largest clusters to speed up any of

the above three steps. The final groups are materialized only
after the last clustering step whereas the most expensive part
of a deduplication algorithm is the second join step. Since
we are working with independent record pairs, it is not easy
to avoid any part of the join. Likewise, the first step has
no global information of the eventual group sizes to perform
any pruning based on K. As we will see in the next section,
a very different set of ideas have to be brought to bear to
perform early pruning.

4. PRUNING AND COLLAPSING RECORDS
We propose to use a set of cheaper filters that can both prune
irrelevant tuples not in the TopK set, and collapse duplicates
as soon as possible. We define two kinds of binary predicates
for this purpose:

1. Necessary predicates: these have to be true for any
duplicate pair. Thus, a binary predicate N(t1, t2) de-
fined over tuple pair t1, t2 is a necessary predicate if

N(t1, t2) = false =⇒ duplicate(t1, t2) = false

2. Sufficient predicates: these have to be false for any
non-duplicate pair. Thus, a binary predicate S(t1, t2)
defined over tuple pair t1, t2 is a sufficient predicate if

S(t1, t2) = true =⇒ duplicate(t1, t2) = true

Thus, for any duplicate pair it is necessary that N(t1, t2)
be true but N(t1, t2) being true does not imply that t1 is a
duplicate of t2. Conversely, if S(t1, t2) is true then t1 is a
duplicate of t2 but if S(t1, t2) = false then it does not imply
that t1 is not a duplicate of t2.

The necessary and sufficient predicates are assumed to be
much cheaper to evaluate than the exact criteria P . Note
that our necessary predicates correspond to Canopy predi-
cates already in use in existing deduplication algorithms as
discussed in Section 3. In this paper, we assume that such
predicates are provided by the domain expert, along with
the criteria P for pairwise deduplication. Since these are
assumed to be weak bounds of the exact criteria, they are
not too difficult to design. Consider one common class of
predicates used in duplicate elimination that threshold the
amount of overlap between the signature set of each record.
For example, “Jaccard similarity of 3-grams > T” where T
is a fraction between 0 and 1. A trivial sufficient predicate
for such set-overlap predicates is to require the two sets to
match exactly, or with a very high threshold. A trivial neces-
sary predicate is that the sets need to have at least one word
in common. Both these extremes are much easier to evaluate
than the general case of an arbitrary threshold in-between.
In the experiment section we provide more examples of such
predicates.

In general there can be a series of necessary predicates N1 . . . NL

and sufficient predicates S1, . . . SL of increasing cost. Let us
first consider the case of using a single sufficient predicate S
and necessary predicate N . There are three steps to reduc-
ing the size of the data using S and N .

452

Collapse using S:. Use the sufficient predicate S to group
data D where each group is the transitive closure of tuple
pairs that satisfy S. Collapse D by picking a representative
from each of the groups. Let c1 . . . cn denote the groups
generated in decreasing order of size. We elaborate on this
step and prove why this preserves correctness of the rest of
the steps in Section 4.1.

Estimate lower bound M on the size of a group in
TopK:. Use the sizes of the groups c1, . . . , cn and the nec-
essary predicate N to compute a lower bound M on the size
of the smallest group in the answer. We show how to do this
in Section 4.2.

Prune groups using M and N . Use N to obtain for
each group ci an upper bound ui on its largest possible size.
Prune away those groups ci for which ui ≤ M . The output
of this step is a set of groups c1 . . . cn′ where we expect n′

to be much smaller than n. We elaborate on this step in
Section 4.3

4.1 Collapse tuples
Given a database consisting of d tuples t1, . . . td we use the
sufficient predicate S to create groups c1, c2, . . . cn such that
each group consists of the transitive closure of tuple pairs
for which S(ti, tj) is true. This can be computed efficiently
because typically the sufficient predicate is based on strin-
gent conditions, like exact match of names as illustrated in
Section 6. Also, since we need a transitive closure any tu-
ple pair that satisfies the predicate can be collapsed into a
single record immediately. Subsequently, we replace all the
tuples in a group by a single tuple as its representative. The
correctness of the algorithm does not depend on which tu-
ple is picked as a representative. In practice, one can apply
criteria like centroidness to pick such a representative [36].

We prove that the above method of collapsing based on tran-
sitive closure and replacing each group by any arbitrary tu-
ple as a representative is correct as far as further pruning is
considered.

Proof. First note that all tuples within a group are guar-
anteed to be duplicates of each other. That is, for all tuple
pairs t, t′ ∈ ci, duplicate(t, t′) is true. This holds because of
the definition of sufficient predicates and the transitivity of
the “duplicate-of” relation.

Next, we claim that for any choice of tuple pairs (t1, t2)
where t1 ∈ c1 and t2 ∈ c2 as representatives for the clusters
where

N(c1, c2) = N(t1, t2) and S(c1, c2) = S(t1, t2)

then, for all t′1 ∈ c1 and t′2 ∈ c2

N(t1, t2) = false =⇒ duplicate(t′1, t
′
2) = false.

S(t1, t2) = true =⇒ duplicate(t′1, t
′
2) = true

The proof easily follows from the fact that duplicate(t1, t
′
1)

and duplicate(t2, t
′
2) are both true because of the first claim

and the transitivity of the “duplicate-of” relation.

Figure 1: An example graph with optimal clique
partition 2

This ensures that the predicates continue to be correctly ap-
plied in subsequent pruning and collapsing phases. Only in
the final step when we need to find all duplicate pairs based
on criteria P , the scores between tuples representing col-
lapsed groups have to be calculated to reflect the aggregate
score over the members on each side.

4.2 Estimate Lower Bound
We are given n collapsed groups c1, . . . cn in decreasing or-
der of size and a necessary predicate N . We show how to
estimate a lower bound M on the size of the smallest group
in the TopK answer. In general, the lower bound will be
smaller than the size of the Kth largest group cK because
any of the groups c1, . . . cK might be duplicates and col-
lapsed in the final answer. Using N we estimate the smallest
subscript m such that K distinct tuples are guaranteed to
be found in c1, . . . cm. Then M = size(cm) is a lower bound
on the size of the K-th group in the TopK answer. We show
how to estimate such an m.

A simple way is to check for each group ci if it can potentially
merge with any of the groups before it based on N . We
apply this check for groups in decreasing size order c1, c2 . . .
until we count k groups that cannot merge with any of the
groups before it, or we reach the last group. However, this
is a rather weak bound of m. Consider the example of five
groups c1, c2, c3, c4, c5 shown in Figure 1 where the edges
connect group pairs for which N is true. Suppose K = 2.
The above algorithm will return m = 5 since each of the five
groups connect to a group before it in the ordering. But the
optimal answer is m = 3 since N(c1, c3) is false and so we
are guaranteed to find K = 2 distinct groups in c1, c2, c3.

We present next a provably better algorithm to estimate
m. Consider a graph G where the vertices denote the n
groups c1, c2, . . . cn and edges connect vertex pair ci, cj when
N(ci, cj) = true. Since N is a necessary condition for two
tuples to be duplicates, any subset of groups that form a
duplicate group in the answer has to be a clique in this
graph. This implies that the minimum number of distinct
groups represented by G is the minimum number of cliques
required to cover all vertices of G. This is known as the
clique partition number of a graph. More formally,

Given a graph G(V, E), its Clique Partition Number (CPN)
r is the smallest size of disjoint decompositions V1, . . . Vr of
V such that the vertices in each Vi form a clique. For the
example graph in Figure 1, the CPN is 2 obtained by de-
composing the vertex set into cliques (c1, c5) and (c2, c3, c4).
Thus, our required m is the smallest index m ≤ n such
that c1, . . . cm has a CPN of K. We next we show how we

453

estimate the clique partition number CPN(G) of a graph.

4.2.1 Clique Partition Number of a graph
The estimation of the clique partition number of a graph is
a well-known NP-hard problem. We obtain a lower bound
using the following two observations.

• The CPN of a graph G′ with a superset of the edges
of G is a lower bound on the CPN of G. That is
CPN(G′ = (V, E′)) ≤ CPN(G = (V, E)) if E′ ⊃ E.

• The exact CPN of a triangulated graph can be found
in polynomial time. A triangulated graph is one where
all cycles of length greater than four have a short cut.

Our starting graph is not guaranteed to be triangulated but
there are many well-known heuristics for adding edges to
a graph to triangulate it. We use the well-known Min-fill
algorithm [23]. Algorithm 1 shows how starting from a graph
G we first triangulate G using the Min-fill algorithm and
then estimate its clique partition number. The first loop
obtains an ordering π of the vertices which for triangulated
graphs has the property that all neighbors of the vertex πi

in the set πi+1, . . . πn are completely connected. For a non-
triangulated graph, we have implicitly added extra edges to
complete them, and also thereby triangulating the graph.
In the second FOR loop, we go over the vertices in the new
order π, and for each uncovered vertex v encountered we get
a new vertex partition out of neighbors of v.

In the example graph in Figure 1, one likely ordering of
vertices is c3, c1, c2, c4, c5. In the second loop, this will first
cover c3 and its neighbors c2, c4, causing CPN to increase to
1. Next we cover the group c1, c5 causing the final CPN to
be 2.

Algorithm 1 Find Clique Partition Number

Input: G = (V, E), V = c1, . . . cn, E = {(ci, cj) :
N(ci, cj) = true}
/* Min-fill algorithm for ordering vertices */
L = φ // set of marked vertices.
for ` = 1 to n do

v = Vertex from V − L whose neighbors in V − L will
require minimum number of extra edges to convert into
a clique.
Connect all neighbors Z of v to form a clique on Z∪{v}.
π` = v
Add v to L

end for
/* Get lower bound on the CPN of G */
Mark all vertices as uncovered.
CPN = 0
for ` = 1 to n do

if π` is uncovered then
Mark π` and all its neighbors as covered
CPN = CPN + 1

end if
end for

We have implemented an incremental version of the above
algorithm so that with every addition of a new node to a

graph, we can reuse work to decide if the CPN of the new
graph has exceeded K. We skip the details here due to lack
of space.

4.2.2 Proof of correctness
Let V = c1, . . . cn be a set of sufficient groups on a dataset D
and V ′ = c1, . . . cm be any subset of V in decreasing order of
size. We prove that if the TopK answer on D is C1, . . . , CK

then size(CK) ≥ M = size(cm) if CPN(V ′, N) ≥ K.

Proof. We provide an outline of the proof based on three
claims. A detailed proof of each claim is deferred to a full
length version of the paper. First, we claim that the CPN
of a graph induced by N on a set of groups c1, . . . cm is a
lower bound on the number of distinct groups in it. Second,
we claim that the CPN of a set of vertices V ′ in a graph
G = (V ′, E) cannot decrease with the addition of new ver-
tices and corresponding edges. Third, if a subset of groups
c1 . . . cm are guaranteed to form K groups based on N , then
the size of each group in the final answer has to be at least
size(cm).

Note, that the groups which finally comprise the TopK an-
swer might not contain any of c1 . . . , cm. The above proof
has only shown that there exists one set of K distinct groups
where each group is of size at least size(cm).

4.3 Prune groups
Finally, we use the lower bound M to prune away all tuples
that are guaranteed not to belong to any TopK group. For
this, we use N to prune any group ci for which an upper
bound ui on the largest possible group that it can belong
to in the final answer is less than M . Clearly any group
with size(ci) ≥ M cannot be pruned. For the remaining,
we get an upper bound by counting the sum of sizes of all
groups cj such that N(ci, cj) is true. This upper bound can
be progressively improved by recursively summing over the
sum of sizes of all those groups cj such that N(ci, cj) is true
and upper bound of cj is greater than M . We implemented
a two pass iterative version of this recursive definition.

4.4 Overall algorithm
Our overall method, which we call PrunedDedup, is summa-
rized in Algorithm 2. In general, a set of L necessary and
sufficient predicate pairs of increasing cost and increasing
tightness is taken as input. For each pair (N`, S`), we apply
the three steps of collapsing groups based on S`, estimat-
ing lower bound M using N`, and pruning groups based on
N` to get a reduced set of groups. If we are left with K
groups, we terminate since we found the exact answer. At
the end we are left with a pruned dataset on which we apply
the final pairwise function P and return the R highest scor-
ing answers using techniques that we describe in the next
section.

The main novelty of the PrunedDedup algorithm lies in the
specific roles of the necessary and sufficient predicates to ex-
ploit small values of K for pruning. Sufficient predicates are
key to ensuring that many obvious duplicates do not lead
to the enumeration of quadratic number of pairs. Even for
small K, the TopK groups might cover a large number of

454

Algorithm 2 PrunedDedup(D, K, S1 . . . SL, N1, . . . , NL, P, R)

1: D1 = D.
2: for ` = 1 to L do
3: c1, . . . cn=collapse(D`, S`)
4: m, M=estimateLowerBound(c1, . . . cn, N`, K)
5: c1, . . . cn′=prune(c1, . . . cn, N`, M)
6: D`+1 = c1, . . . cn′ .
7: if (n′ = K) return D`+1

8: end for
9: Apply criteria P on pairs in DL+1 for which NL is true.

10: Return R highest scoring TopK answers (Section 5.3)

tuples because real-life distributions are skewed. So, just
pruning irrelevant tuples is not enough. The sufficient pred-
icates make sure that large obvious groups get collapsed as
soon as possible. Next, the collapsed groups lead to non-
trivial estimates of the lower bound in conjunction with the
necessary predicate. Neither the necessary nor the suffi-
cient predicate on its own can provide such a lower bound.
Without the sufficient predicate, size(cm) would be 1 and
without the necessary predicate we cannot guarantee which
set of tuples will be in distinct groups. The algorithm avoids
full enumeration of pairs based on the typically weak nec-
essary predicates. The necessary predicates are used only
in two modes: checking if the sizes of groups that a given
group joins with is greater than M , and for a small subset of
the data (typically of the order of K) enumerating the join
edges when estimating the lower bound.

5. FINDING R HIGHEST SCORING ANSWERS
In this section we present how we handle the inherent im-
precision of resolving if two records are the same. Instead
of assuming that predicate P is capable of making precise
boolean decisions, we use a scoring based framework where
each possible grouping of the tuples in D is assigned a score
where a higher score indicates a better grouping. These
scores can be converted to probabilities through appropriate
normalization, for example by constructing a Gibbs distribu-
tion from the scores. Since there is no single correct answer,
we return a ranked list of the R highest scoring answers. We
discuss scoring functions in Section 5.1 and algorithms for
finding the ranked answer list in Sections 5.2 and 5.3.

5.1 Scoring functions
A number of different scoring methods have been proposed [27,
29, 4]. Most of these compose the score of a grouping in
terms of pairwise scoring functions. We denote these as
P (t1, t2) ∈ R where P (t1, t2) denotes the score when t1 and
t2 are duplicates and −P (t1, t2) is the score when they are
non-duplicates. Thus, when P (t1, t2) is negative, the reward
of calling the pair as non-duplicate is higher than calling it a
duplicate. A score close to zero indicates uncertainty in re-
solving if the record pairs are duplicates or not. Such scores
can be obtained through a number of means: hand tuned
weighted combination of the similarity between the record
pairs, log probability of the confidence value of a binary
probabilistic classifier such as a logistic regression, scores
from a binary SVM classifier, and so on.

The score Cscore(C) ∈ R of the partitioning C = c1, . . . cn of
D into duplicate groups can be composed out of the pairwise

scores in a number of ways [4, 27]. A popular method called
Correlation Clustering (CC) [4] defines the score of C as the
sum of the scores of positive edges within a group minus the
sum of the score of the negative edges across groups. That
is,

Cscore(C) =

nX
i=1

X
t∈ci

(
X
t′∈ci

P (t,t′)>0

P (t, t′)−
X
t′ 6∈ci

P (t,t′)<0

P (t, t′)) (1)

This function essentially measures the amount of agreement
of the partition C with the pairwise scores. Finding an exact
solution for this objective is NP-hard and many approxima-
tions have been proposed [4, 10, 14]. We discuss the solu-
tion proposed in [10] because it has the nice property that
in many cases it is possible to detect if the algorithm did
find the optimal answer.

LP-based grouping. In this approach, for each pair (i, j)
of records we associate a binary decision variable xij that
is 1 when the two records belong to the same group and 0
otherwise. In order for the pairwise decisions to correspond
to a disjoint grouping of the data, they have to satisfy the
consistency condition that for every triple of records i, j, k if
any two of the pairs are 1, the third has to be a 1. Subject
to this condition, we need to choose the best values of xijs
so as to maximize the correlation clustering score. This can
be formulated as a relaxed linear program as follows:

maxxijs

P
i,j:P (i,j)>0 P (i, j)xij −

P
i,j:P (i,j)<0 P (i, j)(1− xij)

such that

xij + xjk − xik ≤ 1 ∀i, j, k
0 ≤ xij ≤ 1 ∀i, j

When the above LP returns integral answers, the solution is
guaranteed to be exact. [10] proposes a number of rounding
schemes to obtain an approximate solution when the LP
returns non-integral solutions.

The pairwise scoring function can be combined in other
ways. For example, instead of summing over all positive
pairs within a cluster, we take the score of the least positive
pair. The exact choice of the scoring function is not the focus
of this paper. We concentrate here on designing algorithms
for finding the top-R highest scoring TopK groups for a user-
provided R and scoring function. The only requirement of
our algorithm is that the scoring function decompose over
groups. That is, it should be possible to express the score
of a partition as the sum of scores defined over individual
groups where a group’s score depends only on that group and
the data, and not on how records outside it are grouped.

Cscore(C) =

nX
i=1

Group Score(ci, D − ci) (2)

The CC scoring function in 1 above is decomposable based
on the above definition.

The score of a TopK answer (C1 . . . CK) is the sum of the
score of all groupings where C1 . . . CK are the K largest clus-
ters. Computing the score of a candidate TopK answer is
NP-hard because we need to sum over the score of the ex-
ponentially many possible grouping of the remaining tuples

455

such that no group is of size greater than size(CK).

We need to somehow reduce the space of the set of parti-
tions we consider both when estimating the score of a can-
didate answer and when searching for the R highest scoring
answer. We propose initial arrangements of records that
will allow us to efficiently aggregate over most high-scoring
groupings of the data. We consider two alternatives for such
arrangements for which it is possible to design polynomial
time algorithms.

5.2 Hierarchical grouping
In this case we create a tree-like hierarchy of groups using
any method from the vast literature on hierarchical cluster-
ing. Some example of such methods are: bottom-up agglom-
erative algorithms like single-link clustering and average-link
clustering, top-down algorithms, and hybrids [21, 14] that
first do a top-down division of points and then a bottom-up
agglomeration.

Once we have all records arranged in a hierarchy, we can enu-
merate many possible disjoint groupings of the data by se-
lecting different frontiers of the hierarchy. We designed a dy-
namic programming algorithm to find a ranked list of most
likely groupings using leaf to root propagation algorithms.
We do not present the algorithm because the method that
we present next is for a more general initial arrangement
that subsumes the case of hierarchies.

5.3 Linear ordering + segmentation
In this case we first create a linear arrangement of the records
and define a grouping to be a segmentation of the linear or-
dering. Thus, given n starting records, we first reorder them
as π1, . . . πn. A grouping of the points is allowed to corre-
spond to any valid segmentation of the πs where a group
consists of a segment in the segmentation. The set of group-
ings that this method considers is strictly more than the set
of groupings considered in the earlier method based on hi-
erarchical clustering because we can always start from the
linear ordering imposed by the hierarchy. Instead of restrict-
ing groups to be defined by frontiers of an initial hierarchy,
we allow groupings to be arbitrary segmentation of the or-
dering.

We present algorithms for determining a good linear order-
ing in Section 5.3.1 and finally getting the R highest scoring
TopK groups in Section 5.3.2.

5.3.1 Linear embedding
The goal in creating a linear embedding of the records is
that similar records should be close together in the ordering
so that good clusters are not missed by restricting to only
clusters of contiguous records in the ordering. This goal
qualitatively matches the goals of the well-known linear em-
bedding problem defined as follows:

Let Pij denote the similarity between points i and j. The
linear embedding outputs a permutation π1, . . . πn of the n
points so as to minimize

P
i

P
j |πi−πj |Pij . This objective is

minimized when pairs with large similarity values are placed
close together.

Unfortunately this objective, like most objectives in cluster-
ing, is NP-hard. Many different approximation algorithms
have been proposed including, a greedy algorithm, an iter-
ative median finding algorithm, and a spectral method that
arranges points based on the coordinates of the second Eigen
vector of the similarity matrix [24]. We used the greedy
method that incrementally chooses a next point to add at
the ith position πi so as to maximize distance weighted sim-
ilarity with existing points defined as follows:

πi = argmaxk

i−1X
j=1

P (πj , ck)αi−j−1 (3)

where α is a fraction between 0 and 1 and serves to age the
similarity values of positions far from i.

5.3.2 Finding R TopK segments
We show how to find the R highest scoring TopK answers
by searching and aggregating over groupings corresponding
to segmentations of the linear ordering.

First consider the case where R = 1. Let Ans1(k, i, `) denote
the highest scoring k largest groups obtained by the records
between positions 1 and i where all but the top-k clusters
are restricted to be of length no more than `. We calculate
Ans1(k, i, `) recursively as follows:

Ans1(k, i, `) = max(
X

1≤j≤`

Ans1(k, i− j, `) + S(i− j + 1, i),

max
`<j≤i

Ans1(k − 1, i− j, `) + S(i− j + 1, i))

In the above S(i, j) is the Group Score(c, D − c) of creating
a cluster c over the set of records between positions πi and
πj , that is c = {πk : i ≤ k ≤ j}.

The final answer is simply: max` Ans1(K, n, `) where n is the
total number of records. Although the worst case complexity
of this algorithm is O(Kn3), in practice it can be made faster
by not considering any cluster including too many dissimilar
points.

The above equation can be easily extended to maintain the
top-R scoring answers instead of a single topmost scoring
answer. Let AnsR denote the set of the R highest scoring
answers. Define a new operator maxR that takes as input a
set of values and returns the R highest. The AnsR set can
now be calculated as:

AnsR(k, i, `) = maxR(
X

1≤j≤`

AnsR(k, i− j, `) + S(i− j + 1, i),

maxR`<j≤iAnsR(k − 1, i− j, `) + S(i− j + 1, i))

The inner maxR function takes as input (i−`)∗R candidate
answers and returns R highest scoring of them. The outer
maxR takes as input 2R candidate answers and returns R
highest scoring of them. The final answer is
maxR`{AnsR(K, n, `)}.

6. EXPERIMENTS
In this section we evaluate the effectiveness of our data prun-
ing and collapsing techniques for processing the TopK query

456

on large datasets, and the quality of our algorithm for find-
ing the R highest scoring answers. We first establish the
effectiveness of our pruning algorithm by showing in Sec-
tion 6.2 the fraction of records pruned for different values
of K. Next, we compare the running time of our algorithm
to existing algorithm that do not perform such pruning in
Section 6.3. Finally, in section 6.4 we evaluate our algorithm
for getting the R highest scoring answers.

6.1 Datasets and predicates
Our experiments for evaluating the pruning strategies were
performed on three large real-life datasets. For each dataset
we manually selected necessary and sufficient predicates. We
used hand-labeled dataset to validate that the chosen predi-
cates indeed satisfy their respective conditions of being nec-
essary and sufficient. Unlike the necessary and sufficient
predicates, the final deduplication predicate is difficult to de-
sign manually. Therefore, we used a labeled dataset to train
a classifier that takes as input a pair of records and outputs
their signed score of being duplicates of each other [31].

6.1.1 The Citation dataset
We obtained a database of 150,000 citations from a crawl of
the Citeseer database. The data has already been subjected
to one level of deduplication within Citeseer and each cita-
tion has a count field indicating the number of citations that
it summarizes. However, many duplicates still exist in the
data. We segmented the raw citation records into five fields
namely, author, title, year, page number and rest using a
CRF-based information extraction system [30]. The query
was to return the K most cited authors. We first collapsed
obvious duplicate citations by merging all records with more
than 90% common words. This yielded 81,000 citations out
of a total of 150,000. Next, every author-citation pair is
considered a record, giving rise to roughly 240,000 records
with an average of 3 authors per citation.

We designed two levels of sufficient predicates S1 and S2 and
necessary predicates N1 and N2.

Sufficient Predicate S1 is true when author initials match
and the minimum IDF over two author words is at least 13.
Basically, this predicate requires that for two author fields
to be matched their names needs to be sufficiently rare and
their initials have to match exactly.

Sufficient Predicate S2 is true when initials match ex-
actly, there are at least three common co-author words, and
the last names match.

Necessary Predicate N1 is true when the common 3-
Grams in the author field is more than 60% of the size of
the smaller field.

Necessary Predicate N2 is true when the common 3-
Grams in the author field is more than 60% of the size of
the smaller field and there is at least one common initial.

Similarity function for final predicate. We used a num-
ber of standard similarity functions like Jaccard and Overlap
count on the name and co-authors fields with 3-grams and
initials as signature. On the Author field we also used a

JaroWinkler similarity — an efficient approximation of edit
distance specifically tailored for names [9]. In addition, we
created the following two custom similarity functions:

• A custom similarity function defined on Author field
as follows. Similarity is 1 when full author names (i.e.,
names with no initials) match exactly. Otherwise, it
is the maximum IDF weight of matching words scaled
to take a maximum value of 1.

• A custom similarity function defined on co-author field
as follows: The similarity is the same as the above
custom author similarity function when it takes either
of the two extremes of 0 or 1. Otherwise, it returns
the percentage of matching co-author words.

6.1.2 The Students Dataset
This dataset is collected from an education service that con-
ducts exams for primary school children. Each record is a
student’s exam paper consisting of fields like the student’s
name, birth date, class, school code, paper code, and score
obtained. There are roughly 170,000 records. The query
is to identify the TopK highest scoring students requiring
aggregating scores obtained in various papers of each stu-
dent. Here, disambiguation is needed because the student
names and birth date fields as entered by primary school
students often contain errors. A common mistake in name
fields is missing space between different parts of the name.
A common mistake in entering the birth date is filling in
the current date instead of the birth date. Other fields like
the school code and class code are believed to be correct.
The scores were not available to us due to privacy concerns.
We therefore synthetically assigned scores by first grouping
students based on the sufficient predicates. Then, a Gaus-
sian random number with mean 0 and variance 1 is used to
assign a proficiency score to each group. The members of
the group are then assigned marks based on the proficiency.

We designed two levels of sufficient predicates S1 and S2 and
necessary predicates N1 and N2.

Sufficient Predicates S1 is true when student name, class,
school code, and birth date all match exactly.

Sufficient Predicates Ss is similar to S1 except that in-
stead of exact name match it requires at least 90% overlap
in the 3-grams of the name field.

Necessary Predicates N1 is true when there is at least
one common initial in the name and the class and school
code match.

Necessary Predicates N2 is true when there are at least
50% common 3grams between the names field and the school
and class code match exactly.

Similarity function for final predicate. For this dataset,
we did not have sufficient labeled training data, we therefore
perform only the pruning experiments and skip the final
clustering step based on a learned scoring function.

6.1.3 The Address dataset

457

This dataset consists of names and addresses obtained from
various utilities and government offices of the city of Pune in
India. The data had three attributes: “name, Address and
Pin” and a total of 250,000 records of total size 40 MB.
This dataset is a union of addresses from multiple asset
providers (such as vehicles, houses, etc) collected for pur-
poses of detecting income tax evaders and as such contains
many duplicates. Each address mention can be associated
with a weight indicating roughly an assessment of the finan-
cial worth of the asset. Such scores were not available to us
due to privacy concerns and we therefore assigned synthetic
scores using a method similar to the school dataset. The
TopK query is to find the addresses with the highest scores.

For this dataset we used a single level of necessary N1 and
sufficient predicate S1 as described next.

Sufficient predicate S1 is true when the initials of names
match exactly, the fraction of common non-stop words in
the name is greater than 0.7 and the fraction of matching
non-stop words in the address is at least 0.6. Our stop words
list consisted of a hand compiled list of words like “street”,
“house” commonly seen in addresses.

Necessary predicate N1 is true when the number of com-
mon non-stop words in the concatenation of the name and
address fields be at least 4.

Similarity function for final predicate. The similarity func-
tions used for the final predicate were Jaccard on the Name
and Address fields with 3-gram and initials as signature,
JaroWinker on the Name field, fraction of common words in
the Address field after removing stop words, match of the
Pincode field, and the custom similarity function defined for
Authors in Section 6.1.1.

6.2 Pruning performance
In this section we report the number of records pruned by
our algorithm for increasing value of K. In Tables 2, 4, and 3
we report for each TopK query on each dataset the following
statistics about algorithm PrunedDedup in Section 4.4.

1. n : The number of records remaining after collapsing
as a percentage of the starting number of records.

2. m : The rank at which K distinct groups are guaran-
teed.

3. M : The minimum weight of group to which a record
should belong in order not to get pruned.

4. n′ : Number of records retained after pruning as a
percentage of the starting number of records.

In each case we notice that the final number of groups af-
ter the collapsing and pruning steps is significantly smaller
than the starting number of records. For the first dataset,
we started with 0.24 million records but were able to reduce
the size to less than 1% for K = 1. Even with K as large
as 1000, the final number of records is just 25% of the start-
ing number. Similar reductions are observed for the other
two datasets. For the Student dataset the percent of data

0

2000

4000

6000

8000

10000

12000

0 200 400 600 800 1000

Ti
m

e
(S

e
co

n
d

s)

K

None

Canopy

Canopy+Collapse

Canopy+Collapse+Prune

Figure 6: Timing comparison with different levels of
optimizations.

remaining ranged from 1–4.7% of the starting number and
for the address dataset the data was reduced to 0.55–4.05%
of the starting size.

The reduction obtained by the first application of sufficient
predicates is independent of K as expected. Even though
the sufficient predicates do not reduce the number of records
by large amounts, they are extremely useful in identifying a
few large groups as evidenced by the huge skew in the values
of M — the weight of group cm obtained by collapsing using
a sufficient predicate.

We also observe that our algorithm in Section 4.2 for esti-
mating the value of m is tight in many cases. In particular
for small values of K, the value of m at which K distinct
groups are guaranteed is very close to K.

For the citations and students data where we applied two
levels of necessary and sufficient predicates, we see a signifi-
cant reduction of data sizes in the second stage over the re-
sults of the first stage. For the citation dataset for K < 100
we observe roughly 8–60 fold reduction in the first stage and
a further 1.4–2 fold reduction in the second stage. For the
students dataset, the second stage was lot more effective
due to a tighter necessary predicate. Although, not shown
in these tables, we observed that as per Section 4.3 recur-
sively estimating the upper bounds via two iterations caused
two-fold more pruning than using a single iteration. Going
beyond two iterations caused very little improvement in the
pruning performance.

6.3 Reduction in running time
In this section we compare the efficacy of our pruning and
collapsing algorithm in reducing the overall running time.
We compare our method against the following approaches:

• Canopy: This corresponds to applying the existing ap-
proaches of duplicate elimination on the entire data as
listed in Section 3 where for the first canopy step we
use the same necessary predicate as in our algorithm.

• Canopy+Collapse: This approach is the same as above
but we also give the advantage of the sufficient pred-
icates to the algorithm for collapsing sure duplicates
before applying the canopy.

458

K Iteration-1 Iteration-2
n m M n′ n m M n′

1 67.22 1 11970 1.70 1.56 1 11970 0.98
5 67.22 5 6896 5.55 4.60 5 6896 3.17

10 67.22 10 6101 6.49 5.33 10 6573 3.54
50 67.22 50 3396 13.67 10.77 51 3860 6.93

100 67.22 100 2674 17.59 13.80 101 2838 10.06
500 67.22 543 1166 31.34 24.69 547 1308 19.39

1000 67.22 1206 720 38.02 30.06 1166 802 25.50

Figure 2: Citation dataset: 240545 records.

K Iteration-1 Iteration-2
n m M n′ n m M n′

1 39.00 1 2438 36.35 36.22 1 2438 0.99
5 39.00 5 2240 36.63 36.49 5 2240 1.23

10 39.00 10 2147 36.76 36.62 10 2165 1.38
50 39.00 58 1885 37.13 36.99 50 1906 2.25

100 39.00 115 1765 37.30 37.16 100 1795 2.75
500 39.00 760 1426 37.75 37.61 504 1498 4.10

1000 39.00 1628 1313 37.91 37.77 1011 1382 4.69

Figure 3: Student dataset: 169221 records

K Iteration-1
n m M n′

1 54.08 1 48213 0.56
5 54.08 5 32760 0.88

10 54.08 10 29958 0.94
50 54.08 52 19630 1.42

100 54.08 102 15690 1.84
500 54.08 508 9210 3.20

1000 54.08 1020 7418 4.05

Figure 4: Address dataset: 245260
records

Figure 5: Pruning performance for the three datasets. Values of n, M, n′ are as a percentage of the total
records.

In Figure 6 we show the running time for increasing values
of K on a subset of 45,000 author citation records because
the Canopy method took too long on the entire data. For
reference, we also show numbers where we apply no opti-
mizations at all (labeled “None” in Figure 6) — a straight
Cartesian product of the records enumerates pairs on which
we apply the final predicate to filter pairs which are then
clustered. First, observe that necessary predicates when
used as canopies achieve a significant reduction in running
time compared to performing a full Cartesian product. Sec-
ond, the sufficient predicates when used to collapse obvious
duplicates reduce the running time by roughly a factor of
two. Both of these methods cannot exploit any optimiza-
tion specific to K. The biggest benefit is obtained by our
method of estimating M and using that to prune records
that will not participate in the final answer. For small val-
ues of K the running time is a factor of 20 smaller than the
Canopy+Collapse method that uses the necessary and suf-
ficient predicates in the obvious way. Note, neither of the
competing approaches are capable of eliminating tuples al-
together. The bounds on number of distinct clusters is key
to the pruning of tuples. To the best of our knowledge, this
has not been proposed before.

6.4 Finding the R highest scoring answers
It is difficult to comparatively evaluate our algorithm for
finding the R highest scoring answers because finding even
a single highest scoring grouping is NP-hard. Additionally,
each TopK answer requires summing over a possibly expo-
nential number of groupings that support the answer. We
therefore restrict to small datasets where it is feasible to run
the relaxed linear program (LP) of [10] discussed in Sec-
tion 5. The LP can only provide a single highest scoring
grouping, and that too only for cases when the LP variables

Name # Records # Groups in LP
Author 1822 1466
Restaurant 860 734
Address 306 218
Getoor 1716 1172

Table 1: Datasets for comparing with exact algo-
rithms

take integral values. As a partial validation of the goodness
of our algorithm we compare our highest scoring grouping
with the exact solution returned by the LP.

Our choice of dataset was therefore restricted to those where
the LP-based algorithm terminated in reasonable time and
returned integral solutions. For example, on the Cora bench-
mark 2, even though the LP completed within an hour, it
returned non-integral solutions where we had no guarantees
of optimality. We use the following four datasets for these
experiments as summarized in Table 1: the Authors dataset
consists of singleton list of author names collected from the
Citation dataset, the Address dataset is a sample from the
Address dataset described in Section 6.1.3, the Restaurant
dataset is a popular deduplication benchmark 2 consisting
of names and addresses of restaurants, the Getoor dataset
is similar to the Citation dataset described in Section 6.1.1
and is collected by the authors of [5].

For each of the datasets, labeled duplicate groups were also
available. We used 50% of the groups to train a binary
logistic classifier using standard string similarity functions

2http://www.cs.utexas.edu/users/ml/riddle/data.html

459

80

84

88

92

96

100

Address Authors Getoor Restaurant

F1
 A

cc
u

ra
cy

Embedding+Segmentation
TransitiveClosure

Figure 7: Comparing accuracy of highest scoring
grouping with optimal

such as Jaccard and TF-IDF similarity at the level of words
and N-grams. The classifier returns a real-valued score that
is log of the probability that an input pair is a duplicate
pair.

In Figure 7 we compare the accuracy of our algorithm with
the groups identified by an exact LP-based approach. We
measure accuracy as pairwise F1 value which treats as pos-
itive any pair of records that appears in the same cluster in
the LP, and negative otherwise. For reference, we also com-
pare the accuracy obtained by a baseline method that forms
duplicate groups out of a transitive closure of all pairs with
a positive score. We observe that our algorithm achieves a
F1 accuracy of 100% on the Address and Restaurant dataset
and above 99% on all four datasets. In contrast, the tran-
sitive closure algorithm achieves an agreement of only be-
tween 92–96% with the exact method. These results estab-
lishes that our representation of the partitioning space as
a segmentation over a linear embedding preserves at least
the highest scoring partition. We do not know of any other
method of obtaining multiple groupings with which we could
compare our R highest scoring answers.

7. EXTENSIONS TO OTHER QUERY TYPES
In this section we present two other query types that can
exploit similar pruning and collapsing ideas as the TopK
query.

7.1 TopK Rank Query
In the TopK rank query the user is only interested in getting
a ranked order of the K largest group where a group can be
identified by any canonical member in it. In order to answer
this query, there is no need to find the exact size of each
group in the TopK set. Instead, it suffices to find K pairs
of the form (c1, u1) . . . (ck, uk) where

1. Each ci is a set of duplicate records and ui is an upper
bound on the largest duplicate group containing ci.

2. size(ci) ≥ uj , for all groups after it in the ordering,
that is ∀i > j.

3. There exists no group in D−TopK of size greater than
size(ck).

All the pruning and record collapsing ideas of the TopK
count query apply to this query. In addition, we can perform
more extensive pruning than the TopK count query where
we needed to find the exact members of each group in the
answer. The pruning step after removing all groups cj where
uj < M can also prune away additional groups defined as
follows: First we define the notion of a resolved group. A
group cj is said to be resolved when the following condition
is satisfied:

• ∀g where N(cg, cj) = false, either size(cj) ≥ ug or uj ≤
size(cg)

• ∀g where N(cg, cj) = true, ug − size(cj) < M

The resolved group are those which have no ranking conflict
with other groups and none of whose neighbors are capable
of forming a group of size ≥ M on their own without the
resolved group. The neighbors cg of resolved groups can
be pruned away provided they are not neighbors of other
unresolved groups. In other words, we can prune away any
group cg which is disconnected from any unresolved group
ci whose ui ≥ M even after all resolved groups are removed.
This is because such groups have no role in resolving the
rank of any group and by themselves they cannot form a
new group because their size is < M .

7.2 Thresholded Rank query
For this query instead of controlling the number of groups
via K, the user specifies a constant threshold T and the
result is a ranked list of groups of size greater than T . This
query can be processed using a simple modification of the
TopK Rank query above. First, in Algorithm PrunedDedup
instead of Step 4 where we estimated the lower bound, we
set M = T . The pruning condition stays the same as for
the above TopK rank query. The termination condition in
Step 7 gets replaced with, there exists a k such that

• ∀ 1 ≤ i < i′ ≤ k, size(ci) ≥ T, size(ci) ≥ ui′ . This
gives us a k above which all groups are guaranteed to
form distinct groups of size ≥ T in the answer.

• ∀j > k, j ≤ n′ ∃i ≤ k such that N(ci, cj) = true, uj−
size(ci) ≤ M . This test ensures that all groups after k
are redundant given the groups before k.

When this termination condition is satisfied we can return
the groups c1, . . . ck as the answer, otherwise we continue
with exact evaluation.

8. CONCLUSION AND FUTURE WORK
In this paper we presented efficient algorithms for computing
the R highest scoring TopK groups on data where resolving
duplicates is both expensive and uncertain. We proposed
a novel method of exploiting necessary and sufficient pred-
icates to exploit small values of K to significantly prune
data records as evidenced by experiments on three real-life

460

datasets. Since finding both the score of a candidate answer
and finding the highest scoring partitions is NP hard, we
reduced the search space of plausible data partitions as seg-
mentations of a linear embedding of records. In this space
an exact polynomial time algorithm can be used to find the
R highest scoring TopK groups. We showed that our prun-
ing framework is applicable to other form of TopK count
and ranking queries.

Future work includes methods for automatically choosing
the necessary and sufficient predicates, designing a query
optimization framework for selecting the best subset of pred-
icates based on selectivity and running time, extending the
ideas in this paper to more aggregation and ranking queries
on data with noisy duplicates.

9. REFERENCES
[1] R. Ananthakrishna, S. chaudhuri, and V. Ganti.

Eliminating fuzzy duplicates in data warehouses. In VLDB,
2002.

[2] P. Andritsos, A. Fuxman, and R. J. Miller. Clean answers
over dirty databases: A probabilistic approach. In ICDE,
2006.

[3] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact
set-similarity joins. In VLDB, 2006.

[4] N. Bansal, A. Blum, and S. Chawla. Correlation clustering.
In FOCS ’02: Proceedings of the 43rd Symposium on
Foundations of Computer Science, page 238, Washington,
DC, USA, 2002. IEEE Computer Society.

[5] I. Bhattacharya and L. Getoor. Collective entity resolution
in relational data. TKDD, 1(1), 2007.

[6] M. Bilenko. Learnable similarity functions and their
applications to clustering and record linkage. In Proceedings
of the Nineteenth National Conference on Artificial
Intelligence, Sixteenth Conference on Innovative
Applications of Artificial Intelligence, July 25-29, 2004,
San Jose, California, USA, pages 981–982. AAAI Press /
The MIT Press, 2004.

[7] M. Bilenko, S. Basu, and M. Sahami. Adaptive product
normalization: Using online learning for record linkage in
comparison shopping. In ICDM, 2005.

[8] M. Bilenko, B. Kamath, and R. J. Mooney. Adaptive
blocking: Learning to scale up record linkage. In ICDM,
2006.

[9] M. Bilenko, R. Mooney, W. Cohen, P. Ravikumar, and
S. Fienberg. Adaptive name-matching in information
integration. IEEE Intelligent Systems, 2003.

[10] M. Charikar, V. Guruswami, and A. Wirth. Clustering with
qualitative information. J. Comput. Syst. Sci.,
71(3):360–383, 2005.

[11] S. Chaudhuri, B.-C. Chen, V. Ganti, and R. Kaushik.
Example-driven design of efficient record matching queries.
In VLDB, pages 327–338, 2007.

[12] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani.
Robust and efficient fuzzy match for online data cleaning.
In SIGMOD, 2003.

[13] S. Chaudhuri, V. Ganti, and R. Motwani. Robust
identification of fuzzy duplicates. In ICDE, 2005.

[14] D. Cheng, R. Kannan, S. Vempala, and G. Wang. A
divide-and-merge methodology for clustering. ACM Trans.
Database Syst., 31(4):1499–1525, 2006.

[15] W. Cohen and J. Richman. Learning to match and cluster
entity names. In ACM SIGIR’ 01 Workshop on
Mathematical/Formal Methods in Information Retrieval,
2001.

[16] W. W. Cohen. Data integration using similarity joins and a
word-based information representation language. ACM
Transactions on Information Systems, 18(3):288–321, July
2000.

[17] X. Dong, A. Y. Halevy, and C. Yu. Data integration with

uncertainty. In VLDB ’07: Proceedings of the 33rd
international conference on Very large data bases, pages
687–698, 2007.

[18] I. P. Fellegi and A. B. Sunter. A theory for record linkage.
Journal of the American Statistical Society, 64:1183–1210,
1969.

[19] L. Gravano, P. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate string
joins in a database (almost) for free. In Proc. of the 27th
Int’l Conference on Very Large Databases (VLDB),
Rome,Italy, 2001.

[20] I. F. Ilyas, G. Beskales, and M. A. Soliman. Survey of top-k
query processing techniques in relational database systems,.
To Appear in the ACM Computing Surveys, 2008, 2008.

[21] A. K. Jain and R. C. Dubes. Algorithms for Clustering
Data. Prentice Hall, 1988.

[22] J. Ko, T. Mitamura, and E. Nyberg. Language-independent
probabilistic answer ranking for question answering. In
ACL, 2007.

[23] D. Koller and N. Friedman. Structured probabilistic
models. Under preparation, 2007.

[24] Y. Koren and D. Harel. A multi-scale algorithm for the
linear arrangement problem. In WG, 2002.

[25] C. Li, K. C.-C. Chang, and I. F. Ilyas. Supporting ad-hoc
ranking aggregates. In SIGMOD Conference, 2006.

[26] A. McCallum, K. Nigam, and L. H. Ungar. Efficient
clustering of high-dimensional data sets with application to
reference matching. In Knowledge Discovery and Data
Mining, pages 169–178, 2000.

[27] A. McCallum and B. Wellner. Toward conditional models
of identity uncertainty with application to proper noun
coreference. In Proceedings of the IJCAI-2003 Workshop
on Information Integration on the Web, pages 79–86,
Acapulco, Mexico, Aug. 2003.

[28] A. E. Monge and C. P. Elkan. The field matching problem:
Algorithms and applications. In Proceedings of the Second
International Conference on Knowledge Discovery and
Data Mining (KDD-96), 1996.

[29] H. Pasula, B. Marthi, B. Milch, S. Russell, and I. Shpitser.
Identity uncertainty and citation matching. In Advances in
Neural Processing Systems 15, Vancouver, British
Columbia, 2002. MIT Press.

[30] S. Sarawagi. The crf project: a java implementation.
http://crf.sourceforge.net, 2004.

[31] S. Sarawagi and A. Bhamidipaty. Interactive deduplication
using active learning. In Proc. of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining(KDD-2002), Edmonton, Canada, July 2002.

[32] S. Sarawagi and A. Kirpal. Scaling up the alias duplicate
elimination system: A demostration. In Proc. of the 19th
IEEE Int’l Conference on Data Engineering (ICDE),
Bangalore, March 2003.

[33] S. Sarawagi and A. Kirpal. Efficient set joins on similarity
predicates. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, 2004.

[34] A. D. Sarma, X. Dong, and A. Halevy. Bootstrapping
pay-as-you-go data integration systems. In SIGMOD ’08:
Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, 2008.

[35] M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang.
Probabilistic top- and ranking-aggregate queries. ACM
Trans. Database Syst., 33(3), 2008.

[36] M. L. Wick, K. Rohanimanesh, K. Schultz, and
A. McCallum. A unified approach for schema matching,
coreference and canonicalization. In KDD, 2008.

[37] X. Yang, B. Wang, and C. Li. Cost-based
variable-length-gram selection for string collections to
support approximate queries efficiently. In SIGMOD
Conference, pages 353–364, 2008.

461

