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ABSTRACT
With the amount of data in current data warehouse
databases growing steadily, random sampling is continuously
gaining in importance. In particular, interactive analyses
of large datasets can greatly benefit from the significantly
shorter response times of approximate query processing.
Typically, those analytical queries partition the data into
groups and aggregate the values within the groups. Further,
with the commonly used roll-up and drill-down operations
a broad range of group-by queries is posed to the system,
which makes the construction of highly-specialized synopses
difficult.

In this paper, we propose a general-purpose sampling scheme
that is biased in order to answer group-by queries with high
accuracy. While existing techniques focus on the size of
the group when computing its sample size, our technique is
based on its standard deviation. The basic idea is that the
more homogeneous a group is, the less representatives are
required in order to give a good estimate. With an extensive
set of experiments, we show that our approach reduces both
the estimation error and the construction cost compared to
existing techniques.

1. INTRODUCTION
The rapid growth of sensors, e. g. for RFID, as well as the
more and more detailed gathering of customer profiles by
various companies are just two of the many examples that
cause the soaring of the amount of data in current data
warehouse systems. In order to profit from this growth,
previously unkown information that is hidden in the data,
like trends or patterns, has to be extracted. A typically
used technique for this extraction is statistical analyses in
applications like data mining and decision support systems.
However, since those applications require to read large por-
tions of the data, their runtimes significantly increase as well.
Moreover, the desired interactivity for explorative analyses
or preliminary queries is hard to achieve.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

One common solution is the use of small synopses, like his-
tograms [16, 22], wavelets [7, 21] or samples [25], which
reflect the characteristics of the underlying data. These
synopses allow fast approximate query answers. Especially
for explorative analyses and preliminary queries, those esti-
mates of the real values are well accepted.

Among these kinds of synopses, samples have proven to be
a good choice: They are easy to implement, they provide
probabilistic error bounds, and they can be used for a broad
range of applications, like approximate query processing [1,
4, 8, 9, 13, 14, 17, 23], query optimization [5, 6, 10, 12, 15],
data analysis [20, 24] or stream processing [18].

In the scenario described above, group-by queries play an im-
portant role: The data are typically segmented into groups
and aggregated within these groups. Further, the commonly
used roll-up and drill-down operations trigger a multitude of
group-by queries. Acharya et al.[1] and Babcock et al. [4]
have shown that uniform samples of the base data are inap-
propriate for the approximate answering of group-by queries.
The problem is that for uniform samples, the size of a group
is regarded as its utility. However, this does not hold in
practice, where small groups often are at least as impor-
tant as large ones. As a consequence of uniform sampling,
small groups are under-represented (or even missing) in the
sample. The proposed solutions present biased samples for
answering group-by queries with high accuracy. These sam-
pling schemes bias the sample inclusion probability of a tuple
with respect to the size of the group that tuple belongs to.

In this paper, we propose a novel sampling scheme for con-
structing memory-bounded group-aware sample synopses.
As the proposed solutions in [1] and [4], our sampling scheme
is biased in order to provide highly-accurate approximate
answers of group-by queries. Similar to [1], we focus on
general-purpose synopses in order to equally support ar-
bitrary group-by queries and roll-up and drill-down oper-
ations. However, the main difference compared to the ex-
isting techniques is that we bias the sample with respect to
the relative standard deviation (RSD) of the groups. The
basic idea is that groups with low variations of the aggre-
gated values can be represented by just a few tuples, whereas
higher variations require larger samples; or in other words,
the more homogeneous a group is, the fewer representatives
are required in order to give a good estimate.

We start the presentation of our novel approach with a dis-
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cussion about how to generally specify the quality of group-
aware sample synopses (GASS) in Section 2. Based on this,
we introduce RSD-based GASS in Section 3. We first show
a hierarchical approach that is motivated by [1]. As stated
above, the computation of the sample sizes is adapted to
use the variation of the group instead of its size. We fur-
ther propose a flat approach that significantly reduces the
construction cost of the synopsis. We show how our biased
sampling scheme can be used for approximate query answer-
ing in Section 4, and propose an extension of group-aware
sample synopses by using the techniques of the outlier han-
dling of [23] in order to further reduce the estimation error
considerably in Section 5. With an extensive set of experi-
ments, we evaluated the properties of our novel approaches.
The results shown in Section 6 point out our contributions:

• We propose two RSD-based group-aware sampling
schemes. These biased sampling schemes consistently
produce approximate query results with higher accu-
racy compared to existing techniques.

• With the flat approach, we reduce the construction
cost of comparable general-purpose group-aware sam-
ple synopses from exponential in the number of group-
by columns to linear in the number of group-by
columns.

• We propose an extension that further significantly re-
duces the estimation error by an additional outlier han-
dling.

I In summary, we propose a heuristic approach to fastly
compute memory-bounded group-aware sample syn-
opses for approximate query answers with low estima-
tion errors.

In Section 7, we classify RSD-based GASS in the field of
database sampling and compare it with existing techniques.
Finally, we conclude the paper with a summary and an out-
look in Section 8.

2. PRELIMINARIES
In this section, we discuss methods to specify the quality of a
group-aware sample synopsis. We show how the error of an
estimate can be computed and how the estimation errors of
the individual groups can be combined to an overall synopsis
error. We limit our discussion to AVG and SUM aggregates,
which are most commonly used, especially in OLAP settings;
our techniques may apply to other aggregates as well.

2.1 Notation
We start with a brief summarization of the notation used
in this paper. For a relation R and a given set of group-by
attributes G, let G denote the set of non-empty groups de-
fined by a GROUP BY CUBE command with all of these
attributes. Further, let a be the attribute used for aggrega-
tion; then tia is the value of a for tuple ti ∈ R. Now, for
group g ∈ G,

La(g) =
X
ti∈g

tia

denotes the linear sum of attribute a, and µa(g) = La(g)/|g|
denotes its average value. Together with the quadratic sum

Qa(g) =
X
ti∈g

t2ia

the standard deviation of a in group g can be expressed as

σa(g) =

s
1

|g|
X
ti∈g

(tia − µa(g))2

=

s
Qa(g)

|g| −
„
La(g)

|g|

«2

.

Using La(g) and Qa(g) allows for the incremental computa-
tion of σa(g). This fact will be used to speed up synopsis
computation as explained later. Next, let

RSDa(g) =
σa(g)

|µa(g)|

denote the relative standard deviation of a in group g.1

With Sg being a uniform sample from g,

µ̂a(g) =
1

|Sg|
X
ti∈Sg

tia

is an unbiased estimate of µa(g). Moreover, with |Sg| = ng,
the standard error of this estimate is:

σµ̂a(g, ng) =

s
σ2
a(g)

ng

„
1− ng
|g|

«
= σa(g)

s
1

ng
− 1

|g| .

The standard error of an estimate reflects its precision: It
indicates how much the estimate deviates from the exact
value if sampling were to be performed multiple times. Con-
sequently, minimizing the standard error of an estimate re-
sults in maximizing its quality.

Until now, we have only considered a single aggregation at-
tribute. However, in common data warehouse scenarios, we
have a multitude of aggregation attributes. The computa-
tion of the quality of an estimate can easily be adapted to
handle multiple attributes by making the standard error rel-
ative to the mean:

RSEµ̂a(g, ng) =
σµ̂a(g, ng)

|µa(g)| = RSDa(g)

s
1

ng
− 1

|g| . (1)

By using the relative standard error (RSE), we become inde-
pendent from units of measurement. This allows us to take
the sum of the individual RSEs as the quality measure of
an estimate. Let A = {a1, . . . , ak} be the set of aggregation
attributes. Then

RSE(g, ng) =
X
a∈A

RSEµ̂a(g, ng)

gives the estimation error of group g.

For simplification, the formulas given so far have been re-
stricted to the AVG aggregation function. However, the

1The relative standard deviation is not defined for µa = 0
and may get very large for µa ≈ 0. In our implementation,
we set RSDa(g) = σa(g) whenever µa ∈ [−1, 1].
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estimation error for the SUM aggregation function is very
similar and can be incrementally computed as well.

Finally, in order to measure the quality of a complete group-
aware sample synopsis, we have to combine the individual
RSEs of the groups. Therefore, we consider two error mea-
sures:

EAVG =
1

|G|
X
g∈G

RSE(g, ng) ,

which computes the average relative standard error over all
groups, and

EMAX = max
g∈G

(RSE(g, ng)) ,

which returns the largest relative standard error of all
groups.

Obviously, these quality measures attribute the same utility
to all kinds of groupings.

2.2 Observations
Existing techniques, like [1] or [4], determine the sample
sizes of the individual groups with respect to their cardinal-
ities, that is, two groups with the same cardinality get equal
sample sizes.

Example 1. Consider a relation R with |R| = 10, 000
and the following groups G = {g1, g2}:

Group Cardinality RSD
g1 5, 000 1%
g2 5, 000 49%

For a synopsis Ψ with |Ψ| = 100, cardinality-based tech-
niques assign n1 = n2 = 50, resulting in an average error of
EAVG = (0.14% + 6.89%)/2 = 3.52%; the maximum error is
EMAX = 6.89%.

As can be seen in (1), the quality of an estimate, however,
is also influenced by the relative standard deviation of the
group. Consequently, taking the RSD of a group into ac-
count when computing its sample size promises a positive
impact on the quality of a group-based sample synopsis.

After these preliminary considerations, we next show
how RSD-based group-aware sample synopses can be con-
structed.

3. RSD-BASED GROUP-AWARE SAMPLE
SYNOPSES

In this section, we describe the idea and the computation of
RSD-based group-aware sample synopses in more detail. We
start with a hierarchical approach and subsequently propose
a flat approach that significantly reduces the computational
effort.

The general idea of RSD-based synopses is to take the fact
into account that groups with low variations in the aggre-
gation attributes can be represented by just a few tuples;
groups with high variations, however, require noticeably
more representatives in order to provide approximate query
results with high accuracy.

Example 2. Regard the scenario of example 1. By com-
puting the sample sizes based on the RSDs of the groups, the
sample sizes change to n1 = 2 and n2 = 98. As a conse-
quence, the average error of the synopsis can be reduced to
EAVG = (0.71% + 4.90%)/2 = 2.80%; the maximum error
decreases to EMAX = 4.90%.

3.1 Hierarchical Approach
Inspired by the results shown in Example 2, our group-aware
sample synopses use the relative standard deviations of the
individual groups for the computation of the sample sizes. In
order to provide highly-accurate query answers for arbitrary
group-by queries, the proceeding of synopsis computation of
the hierarchical approach is similar to Congressional Sam-
pling [1]. Let B ⊆ G denote the set of non-empty groups
under the grouping G. The grouping G results in the finest
possible partitioning for group-bys on R. We refer to B as
the base groups. Any group h on any other grouping T ⊂ G
is the union of one or more groups g from B. We denote
each such g to be a subgroup of h.

Example 3. For a relation R with three columns A, B
and C, let G = {A,B} be the columns used for grouping
and C be the aggregation attribute. The groups and the
relative standard deviation of attribute C (RSDC) within
these groups (computed from randomly generated data) are
given in Table 1. For this example, the set of base groups is
given by B = {(a1, b1), (a1, b2), (a2, b1), (a2, b2)}, and for the
grouping T = {A}, the set of tuples in the group h = a1 is
the union of the tuples in the subgroups (a1, b2) and (a1, b2).

Synopsis Computation
Let M be the memory bound for the synopsis. With the
hierarchical approach, the construction of our RSD-based
group-aware sample synopses Ψ consists of 4 phases:

Phase 1: Initialization. During a single scan of relation
R, the quantities La(g) and Qa(g) are maintained for
each group g ∈ G. Based on these quantities, the indi-
vidual RSDs of all the groups are computed.

Phase 2: Flat Partitioning. In the second phase, we
proceed for each T ⊆ G as follows: With T as the
set of non-empty groups under grouping T, we parti-
tion the available space M among all groups in T with
respect to their relative standard deviations. Let

SUMRSD(T ) =
X
g∈T

RSDa(g)

be the sum of RSDs of all groups in T .2 Then, the
sample size ng of a group g is determined by 3

ng,T =
RSDa(g)

SUMRSD(T )
M .

2As for the estimation error, for multiple aggregation at-
tributes A = {a1, . . . , ak} we simply use

P
a∈ARSDa(g)

instead of RSDa(g)
3For simplicity we assume throughout this paper that each
group is larger than the sample size. Handling scenarios
when this is not the case is straightforward. Further, for
groups with RSDa(g) ≈ 0, we replace ng,T by a constant c.
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Table 1: Example scenario and the resulting group sample sizes of RSD-based group-aware sample synopses

A B RSDC ng,AB ng,A ng,B (unscaled) Hierarchical Flat

a1 b1 33.19% 28.20 27.54 (of 41.25) 28.35 (of 68.03) (28.35) 28.03 28.20
a1 b2 16.53% 14.04 13.71 (of 41.25) 13.88 (of 31.97) (14.04) 13.88 14.04
a2 b1 46.45% 39.46 40.14 (of 58.75) 39.68 (of 68.03) (40.14) 39.69 39.46
a2 b2 21.54% 18.30 18.61 (of 58.75) 18.09 (of 31.97) (18.61) 18.40 18.30
a1 – 29.38% 41.25 (42.39) 41.91 42.24
a2 – 41.85% 58.75 (58.75) 58.09 57.76
– b1 39.67% 68.03 (68.49) 67.72 67.66
– b2 18.64% 31.97 (32.65) 32.28 32.34
– – 35.29% (101.14) 100.00 100.00

Phase 3: Hierarchical Partitioning. In the next phase,
we recursively consider for each group g the set of
its subgroups. The procedure is similar to that from
the second phase: First, we compute the quantity
SUMRSD over all the subgroups of g, and afterwards,
we partition the sample size ng,T among the subgroups
with respect to their RSDs.

Phase 4: Finalization. In the last phase, each group g is
assigned the maximum of all the sample sizes assigned
to this group during the second and the third phase:
nG = maxT⊆G ng,T . Finally, we scale down the sample
sizes to limit the space used to M , i. e., the sample size
ng is computed by

ng = max
T⊆G

ng,T
MP

j∈BmaxT⊆G nj,T
.

After the computation of the sample sizes, samples of
all groups g ∈ B are drawn, i. e.

Ψ =
[
g∈B

sg .

This recursive approach is adapted from [1]. However, the
main difference is that for [1] the sizes of the subgroups sum
up to the size of the supergroup, which does not hold for the
RSDs. Nevertheless, we have chosen this approach in order
to evaluate the impact of changing the allocation criterion.

Example 4. Consider again the scenario given in Ta-
ble 1 for the construction of a group-aware sample synop-
sis with the hierarchical approach. During the initializa-
tion phase, the RSDs are computed as given in the column
RSDC .

In the second phase, the flat partitioning is executed: For
T = {AB}, we have SUMRSD(T ) = 117.71%. Let M =
100, then for g = (a1, b1), the sample size ng,AB = 33.19%

117.71%
·

100 = 28.20. The computation for the other groups in T
as well as for the groups for T = {A} and T = {B} is
analogous. The resulting sample sizes for T = {AB} are
given in column ng,AB, and for T = {A} and T = {B}
the sample sizes are given in the lower part of the table in
columns ng,A and ng,B, respectively.

In the third phase, the subgroups for T = {A} and T = {B}
are considered. Taking, for example, group g = (a1) from
T = {A}, the RSDs of the subgroups of g sum up to 49.72.

Now, the sample size of g (ng = 41.25) is partitioned among
its subgroups, i. e. for group g1 = (a1, b1) we get ng1,A =
33.19%
49.72%

· 41.25 = 27.54, and for group g2 = (a1, b2) we get

ng2,A = 16.53%
49.72%

· 41.25 = 13.71.

In the last phase, for all groups g ∈ B, the maximum of the
sample sizes is computed as shown in the upper part of col-
umn (unscaled) and scaled down to fit the memory bound
M as shown in the upper part of column Hierarchical of Ta-
ble 1. We also present the resulting sample sizes for group-
ings T ⊂ G in the lower part of the table for illustrative
reasons. Also, we did not round the individual sample sizes
to integers to emphasize the impact of the single steps and
to show the differences between the two proposed algorithms.

Although, the construction algorithm was explicitly shown
for RSD-based synopses above, our implementation is kept
far more abstract.

Algorithmic Framework
The algorithmic framework that underlies the proposed ap-
proaches allows the computation of arbitrary hierarchical
group-aware sampling schemes, hence, it supports Congres-
sional Sampling [1] as well. For the construction of a synop-
sis, one only has to specify the weight function, e. g., the rela-
tive standard deviation for RSD-based synopses or the Con-
gressional procedure (consisting of House- and Senate-like
allocations) for Congressional samples. As a consequence,
in the four steps given above, the abstract weight function
is always used: The sum of weights is computed and the par-
titioning is based on the ratio of the weights. This allows to
easily plug in new allocation strategies.

3.2 Flat Approach
Albeit the hierarchical approach seems promising, there are
two facts that induced us to consider the flat approach:

• First, the construction cost using the hierarchical pro-
ceeding is exponential in the number of group-by
columns. Obviously, the large number of group-by
columns in current data warehouse databases imply
prohibitively high system loads for synopses construc-
tion.

• Second, due to the fact that the RSDs of the subgroups
do not sum up to the RSD of the supergroup, we put
the recursive approach into question.
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Table 2: Example scenario showing the shortcoming of the flat approach

A B RSDC ng,AB ng,A ng,B (unscaled) Hierarchical Flat

a1 b1 1.57% 1.94 10.12 (of 55.68) 1.88 (of 88.34) (10.12) 6.98 1.94
a1 b2 7.07% 8.76 45.56 (of 55.68) 11.66 (of 11.66) (45.56) 31.43 8.76
a2 b1 72.11% 89.30 44.42 (of 44.42) 86.46 (of 88.34) (89.30) 61.59 89.30
a1 – 90.59% 55.68 (55.68) 38.41 10.70
a2 – 72.11% 44.42 (89.30) 61.59 89.30
– b1 53.55% 88.34 (99.42) 68.57 91.24
– b2 7.07% 11.66 (45.56) 31.43 8.76
– – 90.14% (144.98) 100.00 100.00

Resulting from these considerations, the construction of a
group-aware sample synopsis Ψ with the flat approach looks
as follows:

Phase 1: Initialization. The initialization phase is not
changed. Thus, the individual RSDs of all the groups
are computed.

Phase 2: Flat Partitioning. In the second phase, we re-
strict the computation of the sample sizes to the base
groups B. The general procedure of the sample size
computation remains unchanged. However, since we
only consider base groups, there are no subgroups
available for the hierarchical partitioning. Hence,
phase 3 from the hierarchical approach can be omitted.

Phase 3: Finalization. The finalization phase is simpli-
fied and now only includes the drawing of the samples
of all groups g ∈ B and the composition of the synopsis

Ψ =
[
g∈B

sg .

Example 5. For the scenario given in Table 1, the flat
approach proceeds as follows: The first phase is unchanged,
that is, we compute the RSDs as given in column RSDC .
Now, in the second phase, we only compute the (flat) par-
titioning for T = {AB}, and draw the samples in the fi-
nal phase. The resulting sample sizes are given in the last
column, named Flat. As can be seen easily, these results
equal the intermediate results of the hierarchical approach
for T = {AB} given in column ng,AB. Further, the results
of the hierarchical and the flat approach are very similar,
while the construction cost of the flat approach is signifi-
cantly smaller.

Obviously, this proceeding simplifies the construction al-
gorithm of the hierarchical group-aware sample synopses:
It reduces the complexity from exponential in the number
of group-by columns to linear in the number of group-by
columns. However, this simplification has its price: If there
is a group g with two homogeneous subgroups, the sample
size of g will be small. If, however, the union of the tuples
of both subgroups has a large variation, the estimation error
for group g will be large as well.

Example 6. Consider the scenario shown in Table 2.
Now, the underlying data are generated carefully: Group

(a1, b1) consists of values of about 100, the values of group
(a1, b2) are about 5, and group (a2, b1) consists of values
equally distributed between 1 and 100. The point is that both
(a1, b1) and (a1, b2) have low RSDs, while the RSD of (a1)
is large. In the second phase (flat partitioning) of both ap-
proaches, both (a1, b1) and (a1, b2) get small sample sizes. As
a consequence, after the second phase, the sample size of (a1)
is small as well, which does not reflect its RSD. This problem
cannot be captured by the flat approach, hence, group (a1) is
under-represented in the resulting synopsis. The hierarchical
approach, however, is insensitive to those data formations,
as can be seen in the table.

The last example shows the weakness of the flat approach.
However, those pathological data formations will not be
common in real-world datasets. In general, the difference
between the RSDs of two groups and their union will not
be that large, and further, the effect usually is even smaller
when the respective group has a larger number of subgroups.
In particular, in all our experiments this effect was not vis-
ible.

After the presentation of the idea and the algorithm of our
RSD-based group-aware sample synopses, we will show how
to answer queries from biased samples in the next section.

4. APPROXIMATE QUERY ANSWERING
WITH BIASED SAMPLES

In this section, we show how group-aware sample synopses
can be used for approximate query answering. Using a bi-
ased sampling scheme as proposed in this paper requires
some more sophisticated estimation techniques than in the
uniform case. In the uniform sampling case, each tuple
has the same probability of being selected and estimation
is mostly simple. For the SUM operator, for example, the
estimate is computed by simply multiplying the sum of the
values in the sample by the inverse of the sampling fraction.
Applying this procedure to biased samples would lead to
biased estimates.

Fortunately, there is a seamless solution: As biased sam-
ples can be regarded as a union of uniform random samples
with different sampling fractions, they also can be treated
as stratified samples. Hence, using standard techniques for
estimators based on stratified sampling schemes, we can gen-
erate unbiased answers with the help of all the tuples in the
biased sample [11]. With this technique, each stratum has
the inverse of its sampling fraction as an associated scal-
ing factor. In order to estimate a SUM operator, the sum of
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each stratum is scaled up by the associated scaling factor,
and these sums are added up to the final estimate. An es-
timate for the COUNT operator is computed by summing up
the individual scaling factors of each tuple relevant for the
current query. Finally, for an estimate of an AVG operator,
we compute the scaled SUM divided by the scaled COUNT.

As mentioned in [1], the key issue in scaling is the possi-
bility to be able to efficiently associate each tuple with its
corresponding scaling factor. The authors mention two ap-
proaches: a) store the scaling factor for each tuple within the
sample, i. e., augment the sample with an additional column
for the scaling factor, and b) use a separate table to store
grouping identifiers together with the scaling factors. For
details, advantages, and drawbacks see [1]. While these ap-
proaches take the AQUA system [2] as a basis, we focus on
the Derby/S [19] system. The key differences of these two
systems are the following:

• While the AQUA system is a middleware software tool
sitting on top of a DBMS, Derby/S itself is a full-
fledged DBMS with samples integrated as first-class
citizens. In more detail, Derby/S is an extension of
the open-source database system Derby4 for approxi-
mate query processing.

• In the AQUA system, all queries to the base tables
are automatically rewritten in order to use the avail-
able synopses structures. In contrast, with Derby/S,
users can specify whether they want to get an approx-
imate or an exact result by using SQL/S, an extension
of SQL, for approximate query answering [19]. Exact
queries are executed on the base tables while approx-
imate queries are automatically rewritten in order to
use the synopses instead.

Derby/S supports several sampling designs, including strat-
ified samples, associated with appropriate rewrite strategies
and estimation operators. A sample of our proposed sam-
pling scheme is split into several tables, one for each group.
The scaling factors are stored in the respective system cata-
log tables. Incoming approximate queries are automatically
rewritten and aggregation operators are substituted by esti-
mation operators. The group-wise intermediate results are
scaled and merged as described above.

Example 7. Consider a group-aware sample synopsis
for the lineitem table of the TPC-D schema with G =
{l_returnflag}. Since the l_returnflag attribute has
three different values, the resulting synopsis consists of three
sample tables named lineitem_smpl_1, lineitem_smpl_2,
and lineitem_smpl_3. An approximate group-by query with
l_returnflag as the group-by attribute is executed as shown
in the execution plan given in Figure 1. The nodes in this ex-
ecution plan show the individual operations together with the
query costs so far. First, the sample tables are scanned. Af-
terwards, the group-wise estimates are computed within the
GROUPBY nodes and subsequently merged by the UNION
nodes. The proximate GROUPBY node is only needed for
queries where the group-by attributes are not identical with

4http://db.apache.org/derby/

Figure 1: Query execution plan for an approximate group-by
query on a group-aware sample synopsis using Derby/S

the set G of the group-aware sample synopsis. As can be
seen, no costs are caused by this operator for the current
query. Finally, unnecessary attributes are eliminated by the
PROJECTION node and the approximate query result is re-
turned.

After this sketch of approximate query answering with bi-
ased samples in Derby/S, we will use the next section to
show how the algorithms can be extended.

5. EXTENSION
This section describes an extension of group-aware sample
synopses that further allows for large reductions of the rela-
tive standard errors of the samples, and hence, of the overall
synopsis error.

When estimating an aggregate from a sample, outliers in the
data may lead to large estimation errors [8, 23]. With out-
liers, we denote values that are significantly different from
the rest of the data, but that are important for the result
of the aggregation function. Take, for example, a hypothet-
ical company with a revenue in 2008 of $1 billion and a
single purchase order of $100 million. This order is repre-
sented as a single tuple in the database, but it constitutes
10% of the total revenue. When random sampling is applied
prior to aggregation, outliers in the data typically lead to
underestimation (if they are not present in the sample) or
overestimation (if present). Thus, outliers should be well
represented by a synopsis of the underlying dataset.

Chaudhuri et al. proposed a sampling scheme called outlier
indexing [8], which significantly reduces the estimation error
by storing outliers separately and sampling from the remain-
ing part of the data set. In [23], we extended this approach to
handle multiple aggregation attributes by introducing three
measures for the efficient identification of outliers for multi-
ple attributes. Among these measures, the MAVG measure
turned out to be the most promising. With this measure,
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outliers are identified by their impact on the average relative
standard error of the aggregation attributes, i. e., the larger
the reduction of the RSE of the data without the current
tuple compared to the RSE of the data with the current tu-
ple, the more likely this tuple is an outlier; for more details
see [23]. With an additionally proposed heuristic approach,
the outlier handling runs in O(|R| logM) worst-case time
and requires O(M) space. Thus, it has only low impact on
the performance of the synopsis computation.

As mentioned above, our proposed biased sampling schemes
can also be regarded as stratified sampling schemes, where
the stratum boundaries are given by the base groups B. In
such a stratified sampling scheme, the individual samples
are independent from each other. Hence, we can simply
apply the multi-column outlier index (MCOI) from [23] to
each stratum. The synopsis design changes in the way that
now, the sample of a group may consist of separately stored
outliers and a sample from the remaining part of the data
of that group. The extension is plugged in the finalization
phase, i. e., the construction algorithm is only slightly al-
tered. With the extension, the finalization phase changes as
follows: After scaling down the sample sizes, MCOI is ap-
plied in each group; a modification of MCOI is not required.
Since MCOI computes both the outliers and the samples, the
terminal draw of the samples of the unextended approaches
can be omitted.

Obviously, this procedure can be applied to all stratified
sampling schemes; thus, it is also applicable to [1]. After this
introduction of the extension, we evaluate our approaches in
the next section.

6. EXPERIMENTS
We ran a variety of experiments in order to evaluate the ef-
fectiveness and the efficiency of our RSD-based group-aware
sample synopses. We compared the hierarchical approach
(H-GASS) and the flat approach (F-GASS) with Congres-
sional Sampling (CS) [1]; we have chosen CS since this ap-
proach has the same focus of general-purpose group-aware
sample synopses as our approaches. We experimented with
well-defined synthetic datasets in order to discover the im-
pact of certain “data formations” on the quality of the syn-
opsis. Finally, we ran experiments on a large real-world
dataset consisting of retail data.

Note, that the considered algorithms are determinstic with
respect to the resulting sample sizes. Hence, the quantities
that measure the error of a synopsis, that is, EAVG and
EMAX , can analytically be computed.

Summary of Results
• Both approaches of RSD-based group-aware sample

synopses result in lower estimation errors (EAVG as
well as EMAX) than CS does in most cases.

• The flat approach of the RSD-based group-aware sam-
ple synopses (F-GASS) consistently causes lower esti-
mation errors (EAVG as well as EMAX) than CS does.

• The hierarchical approach of RSD-based group-aware
sample synopses (H-GASS) produces synopses with
the lowest maximum estimation error (EMAX)

• The construction of F-GASS is several orders of mag-
nitude faster than that of H-GASS and CS.

• The extension for outlier handling enables significantly
smaller estimation errors.

6.1 Experimental Setup
We implemented the RSD-based GASS approaches on top
of DB2 using Java 1.6. The experiments were conducted on
a Dual Core AMD Opteron (2 GHz) system running Linux
with 9 GB of main memory.

In order to provide comparable results, we conducted our
experiments on generated data as described in [1]: As base
data, we used the lineitem table from TPC-D schema with
a size of 1 million tuples. For the grouping, we considered
the columns l_returnflag, l_linestatus and l_shipdate;
as aggregation attribute, we used l_extendedprice. We fur-
ther introduced skew in the group sizes and in the data of
the aggregation attribute. As in [1], this was done by using
the Zipf distribution with varying values for the z-parameter
ranging from 0 (uniform) to 1.5. (highly skewed). We also
varied the number of groups from 10 to 100, 000. Table 3
summarizes the parameters and their ranges of values. Un-
less stated otherwise, the parameters take the value given
in the last column (Default value); again, these values are
chosen according to [1].

Our real-world dataset consists of market research data and
is made up of 13, 223, 779 tuples. The dataset has four
columns used for grouping and several columns used for ag-
gregation. The group-by columns are project, date, coun-
try, and sales_channel; group sizes of the base groups B
vary between 1 and 6, 081 tuples. The information used for
aggregation is, for example, about sales units or stock units.

6.2 Results for Synthetic Data
After the description of the experimental setup, we now
present our experimental results.

Number of groups. Our first experiment evaluates the im-
pact of the number of groups on the estimation error and on
the number of missing groups. We computed synopses with
CS, H-GASS and F-GASS on datasets with the number of
groups ranging from 10 to 100, 000. For each synopsis, we
computed EAVG as well as the fraction of missing groups.
The results are given in Figure 2. As can be seen, for small
(10) and large (100, 000) numbers of groups, the three ap-
proaches are similar. In the former case, all groups are eas-
ily well represented independent from the approach; in the
latter case, the missing groups dominate the result, i. e. the
small groups are missing, and the large groups are well repre-
sented. However, the difference between the approaches can
be seen in the remaining group sizes: For 1, 000 groups, none
of the approaches misses a group, but F-GASS can produce
the synopsis of the highest quality, followed by H-GASS and
CS. For 10, 000 groups, CS misses only 0.05% of the groups,
whereas F-GASS misses 4.7% and H-GASS misses 6.6% of
all groups. However, the quality of the groups contained
in the approximate query answer is noticeably higher for
F-GASS. So, it is up to the user to decide which result is
better, that of F-GASS or that of CS. Anyway, H-GASS is a
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Table 3: Parameters for the experiments

Parameter Range of values Default value

Skew of group sizes 0− 1.5 0.86
Skew of aggregation column 0− 1.5 0.86
Number of groups 10− 100, 000 1, 000
Number of group-by columns 1− 5 3
Memory bound 1%− 10% 5%
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Figure 2: Impact of the number of groups

bad choice for this setting, since it is worse than F-GASS in
both dimensions. Finally, for 50, 000 groups, H-GASS and
F-GASS are very similar, whereas CS produces approximate
answers with more groups but larger errors.

Number of group-by attributes. A related experiment
considers the number of group-by attributes. For the dataset
with the default parameter values, we computed synopses
with CS, H-GASS and F-GASS for an increasing number
of group-by attributes. The number of group-by attributes
varied from 1 to 5. Note that for a given dataset the increase
of the number of group-by attributes also implies an increase
of the number of groups. In all settings, all three approaches
produce synopses with no missing groups; hence, we can re-
strict the discussion on the estimation error. The results
are shown in Figure 3. First, for all approaches, the esti-
mation error increases with increasing number of group-by
columns. The reason is the simultaneous increase of number
of groups for an increasing the number of group-by columns.
Comparing the approaches, one can see that the RSD-based
synopses consistently produce synopses with smaller EAVG
(average RSE). In detail, using F-GASS results in the syn-
opses with the lowest error, whereas H-GASS lies in between
F-GASS and CS.

Skew of group sizes. In the next experiment, we varied
the skew of the group sizes from z = 0 (uniform) to z = 1.5
(highly skewed). Note that the default value of z = 0.86 re-
sults in a 90−10 distribution and is commonly used. Again,
in all settings, all three approaches produce synopses with
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Figure 3: Impact of number of group-by attributes

no missing groups and we can restrict the discussion on the
estimation error. Figure 4 depicts the results of the experi-
ments. As in the previous plots, Figure 4a shows the impact
of the group-size skew on EAVG. Here, for all approaches, the
estimation error decreases with increasing skew of the group
sizes: The larger the skew, the more small groups exist and
as long as no group is missing, the more of these small groups
have a lot of representatives resulting in a small estimation
error. In all cases, F-GASS produces the synopses with the
lowest EAVG; for H-GASS, only the case of z = 0 results in
a slightly larger average error than for CS; otherwise, the
average error is smaller.

In order to demonstrate the impact on EMAX , we also plot-
ted this quantity in Figure 4b. Again, the RSD-based ap-
proaches consistently result in lower errors, which is now
even more significant. Additionally, for EMAX , H-GASS is
better than F-GASS.

Skew in aggregation values. Another experiment ana-
lyzes the impact of the skew of the aggregation column.
Since the skew of the aggregation column influences the
RSDs of the groups, this parameter is expected to have the
largest influence on the RSD-based approaches. As in the
previous experiments, we computed synopses with CS, H-
GASS and F-GASS. We varied the skew of the aggregation
column from z = 0.5 to z = 1.5. Again, we plotted the
results for both EAVG (see Figure 5a) and EMAX (see Fig-
ure 5b). First, unlike in the previous experiments, now the
resulting synopses miss some groups: For z = 1.5, H-GASS
misses 4.2% and F-GASS misses 5.4% of the groups, whereas
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Figure 5: Impact of skew of the aggregation attribute

CS does not miss any group.

For EAVG, the results look similar to the previous experi-
ments: Both H-GASS and F-GASS produce synopses with
lower errors, while the error with F-GASS is even lower than
with H-GASS. More interesting are the results for EMAX :
Although the error increases for all three approaches with
increasing skew, the error of CS increases much faster than
for the RSD-based approaches. This shows the impact of
the variation of a group on the error of the synopsis.

Even though the impact on EMAX is larger than on EAVG
in all our experiments, we further on use EAVG for evalu-
ation since we think that this value is more intuitive and
representative for determining a synopsis’ quality.

Memory bound. We also evaluated the impact of the mem-
ory bound on the synopsis quality. With the default param-
eter values, we computed CS, H-GASS and F-GASS. The

memory bound was varied from 1% to 10% of the size of the
base data. As expected, the error decreases for increasing
memory bounds. Again, the error of F-GASS is consistently
lower compared to H-GASS and CS. For small synopses, the
error of H-GASS and CS is similar; for increasing memory
bounds, the error of H-GASS converges to the error of F-
GASS. The results are plotted in Figure 6.

Computational effort. As stated above, the hierarchical
procedure of H-GASS and CS is very expensive. We com-
pared the hierarchical and the flat approach for a varying
number of levels in the hierarchy of the groups. We used
the dataset from the second experiment, that is, the ex-
periment on the number of group-by attributes. Thus, the
number of levels varied from 1 to 5. In order to be inde-
pendent from object creation overhead or variations of the
measurings, we simply used the number of loops as indica-
tor of the computational effort. In Figure 7, the results are
shown. As expected, the effort for the hierarchical computa-
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tion significantly increases with the number of levels in the
hierarchy. Unlike expected, the effort of F-GASS increases
slightly more than linear in the number of hierarchy lev-
els. The reason, however, is just the simultaneously growing
number of groups. Consequently, the results slightly inter-
mix two parameters: the number of levels in the hierarchy,
and the number of groups. However, the impact of the latter
is of less significance. Summarizing, this experiment shows
that the hierarchical approaches fastly get prohibitively ex-
pensive while the computational effort of the flat approach
increaeses very slowly.

Outlier handling. In a final experiment, we evaluated the
effectiveness of the outlier extension. As in the fourth ex-
periment, we varied the skew of the aggregation attribute
from z = 0.5 to z = 1.5 in order to have different kinds of
extreme values. We computed H-GASS and F-GASS with
and without the MCOI extension5 and compared the aver-
age estimation error. The results, shown in Figure 8, clearly
show that the additional outlier handling is able to signifi-

5For the outlier computation, we used the MAVG measure
proposed in [23]
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Figure 8: Impact of outlier handling

cantly reduce the average estimation error for both H-GASS
and F-GASS.

Summary. With this extensive set of experiments on well-
defined synthetic datasets, we demonstrated that the RSD-
based approach is promising in the field of approximate an-
swering of group-by queries for a broad range of data for-
mations. With consistently lower estimation errors and—if
using F-GASS—significantly lower construction cost, users
of applications based on approximate query processing will
greatly benefit from our proposed techniques.

6.3 Results for Real-World Data
We conducted a variety of experiments on the sales dataset
described above. We evaluated the estimation error for the
average of the column containing the sales units.

Number of group-by attributes / Number of groups.
First, we considered the number of group-by attributes. As
stated above, in this experiment, the simultaneously varying
number of groups influences the results as well. For clari-
fication, we show the number of groups for the respective
number of group-by columns in Table 4.

Again, we computed group-aware sample synopses with CS,
H-GASS, and F-GASS and measured the overall synopsis
error using EAVG. The results for a memory bound of 5% of
the data size can be seen in Figure 9. As for the synthetic
dataset, for a small number of groups, the three approaches
produce almost equal results: EAVG = 3.85% for CS, and
EAVG = 3.82% for the RSD-based approaches, respectively.
For a larger number of groups (or group-by attributes), how-
ever, the differences get clearer. For all settings, both H-
GASS and F-GASS cause smaller estimation errors than CS;
moreover, the average estimation error of F-GASS is even
lower than for H-GASS.

The fraction of missing groups was at most 7% for CS, 11%
for H-GASS and 12% for F-GASS, which is considerably
small for the large number of groups.
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Table 4: Number of groups in the real-world dataset for
different numbers of group-by columns

Group-by columns Groups

1 77
2 1, 994
3 16, 627
4 79, 597
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Figure 9: Impact of number of group-by attributes

Memory bound. As for the synthetic dataset, we evaluated
the impact of the memory bound on the synopsis quality for
the real-world dataset. We computed synopses with CS, H-
GASS and F-GASS for memory bounds between 1% and
10%. The results for the EAVG measure are shown in Fig-
ure 10. The general result is as in the previous experiments.
One difference compared to the synthetic dataset (see Fig-
ure 6) is that the difference in the average RSE increases for
decreasing sample sizes.

We also conducted experiments with the outlier extension.
However, for this real-world dataset, the outlier extension
was not able to reduce the overall estimation error. In order
to find the reason, we have to analyze the distribution of the
aggregation attribute values for the individual groups.

Summary. Our experiments on the real-world data set of
a market research company verified the results from the ex-
periments on the synthetic datasets. Again, the RSD-based
techniques allowed low estimation errors for the quickly con-
structible F-GASS synopses.

Summing up, the presented results on both synthetic and
real-world datasets emphasized the benefit of using RSD-
based group-aware sample synopses. For fast construction
times and low average estimation errors, F-GASS is the tech-
nique of choice, whereas systems with sufficient resources for
complex pre-processing of the synopses may benefit from the
low maximum estimation errors of H-GASS.
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7. RELATED WORK
In the field of databases, there are a multitude of sam-
pling techniques for approximate query processing. Espe-
cially, queries typical in OLAP environments are in the
focus of optimization. Relevant query types are aggrega-
tion queries [8, 23], queries with foreign-key joins [3, 14], or
group-by queries.

For group-by queries, Babcock et al. proposed Small Group
Sampling [4]: With Small Group Sampling (SGS), a sim-
ple random sample of the base data is drawn. Addition-
ally, all single-attribute groups that are smaller than a spe-
cific threshold are stored in their entirety (small group ta-
bles). During query execution, the approximate result is dy-
namically combined from these samples to produce highly-
accurate approximate query answers. However, the pro-
posed synopsis design induces high space consumption: It
may build a lot of small group tables. Furthermore, tuples
can be stored multiple times within the synopsis leading to
low space effectiveness and processing overhead. Moreover,
SGS under-represents groups that are slightly larger than
the threshold as well as all small multi-attribute groups
whose single-attribute subgroups are large, e. g. sells of
snowblowers in California. Another solution proposed by
Archarya et al. is Congressional Sampling [1], where the
space assignment is based on the Senate and House of the
American Congress. Congressional Sampling (CS) considers
all groups in the data and, thus, provides general-purpose
synopses. We adopted the idea of CS for the hierarchical
approach of our group-aware sample synopses. Finally, con-
trary to our solution, both techniques, [4] and [1], focus on
the size of the group but not on the variation (i. e. relative
standard deviation) within the group.

In the sampling literature in general, biased sampling, and
thus, stratified sampling, has been studied under many con-
texts [11]. Our propsed techniques can be compared with
stratified sampling or subpopulation sampling, where the
population is segmented into strata or subsets which corre-
spond to the groups in our scenario.
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8. SUMMARY
In this paper, we introduced RSD-based group-aware sample
synopses. The goal was to propose general-purpose memory-
bounded sample synopses that represent all groups of all
possible group-by queries preferably well. The result is a
biased sampling scheme that computes the sample sizes of
the individual groups based on their variations. The hierar-
chical algorithm considers all possible groupings for a given
set of group-by attributes. We further proposed a simplified
(flat) algorithm that significantly reduces the construction
cost. Both approaches can decrease the estimation error
compared to existing techniques; the former has a larger im-
pact on the maximum error over all groups, the latter on the
average error. An additionally proposed extension considers
extreme values (outliers) within the groups and allows for
significantly lower estimation errors by special outlier han-
dling.

Our next steps include the considerations of alternative
weight functions to plug into the algorithmic framework, like
a hybrid approach that considers both the variation and the
size of the group. The goal is to reduce both the estimation
error and the number of missing groups. Additionally, we
want to examine how our approaches can be combined with
Linked Bernoulli Synopses [14] in order to provide schema-
level group-aware sample synopses. And further, we want
to integrate our approaches into Derby/S [19]—a database
system that extends Apache Derby with approximate query
processing techniques—in order to evaluate their effective-
ness in more realistic environments.
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