
Evaluating Very Large Datalog Queries on Social Networks

Royi Ronen and Oded Shmueli
∗

Technion - Israel Institute of Technology
{ronenr,oshmu}@cs.technion.ac.il

ABSTRACT
We consider a near future scenario in which users of a Web
2.0 application, such as a social network, contribute to the
application not only data, but also rules which automatically
query, utilize and create the data. For example, a user of a
social network can define rules that automatically manage
the user’s friends list, the sending of various announcements,
filtering of messages and more.

We examine the probable case of automated addition of con-
nections by a participant. The connections to be added are
defined using a query, associated to each participant. For
this, we introduce and study the Query Network model, a
graph-based model in which every node models a network
participant and is associated with a Datalog rule. The union
of all these individual user rules constitutes a very large, re-
cursive, Datalog program whose size is of the order of magni-
tude of the size of the data being queried (data whose size in
a social network can easily exceed 1TB). This greatly differs
from the traditional assumption that queries are small and
data are large. In particular, traditional optimizers will be
hard pressed to handle such queries. This is the case even if
queries are ’translated’ to SQL (using views) and their union
is transformed to a very large SQL query.

We have designed, built and experimented with evaluation
algorithms for such query networks. Experiments with both
synthetic and real datasets demonstrate the usefulness and
high effectiveness of our methods. Extensions to the model
are proposed, their implementation and testing are the sub-
ject of on-going work.

1. INTRODUCTION
Web 2.0 is a general term for internet applications which in-
terconnect their end users either by providing a connectivity
platform or by enabling users to share contents with each
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other (or both). Some examples for Web 2.0 applications
are blog-hosting sites, wikis, video-sharing sites, dating sites,
instant messaging applications and social networks. For ex-
ample, Wikipedia [30] is an encyclopedia whose entries are
authored, edited and maintained by the users, as opposed
to, e.g., the Britannica online encyclopedia [6] which simply
provides users with contents.

A highly successful type of Web 2.0 application is the So-
cial Network. Some examples of social networks are Face-
book [15], MySpace [23] and LinkedIn [20]. Social network-
ing applications also exist within corporations, universities
and other organizations. Typically, a participant in a so-
cial network is associated with some information (such as
name, photograph, interests), and with a list of connections
to other participants.

Beside being a useful platform for social interactions, social
networks are increasingly being used as a tool for business
development and management. LinkedIn [20], for exam-
ple, is a social network dedicated to professional networking.
The usefulness and popularity of social networks results in
increasing amounts of data that are available to their users.
Such amounts of data are hard and expensive to manage
manually. Indeed, in Facebook, users can take advantage
of a simple query language [16] in order to process, mostly,
their own and their immediate friends’ data. However, the
main social networking feature of managing connections be-
tween participants is still managed manually.

In addition to being tools to manage increasing volumes of
data using queries, we believe that automatic data manage-
ment features for social networks will be required in order to
(conceptually) provide interaction between users even when
they are not online. Ultimately, these features will evolve
to become agents which represent, and act on behalf of, the
participants in the network.

In this paper, we consider a near future scenario in which
participants of a social network manage their data automat-
ically. In particular, we examine the probable case in which
participants define, in a form of a query, with whom they
would like to be connected.

1.1 Motivational Example
Consider the social network illustrated in Figure 1. Seven
participants are shown with their current connections in the
network (the connections are represented by directed edges,
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Figure 1: The network for the example in Section
1.1.

an issue discussed in Section 1.2). The participants specify
policies which define which connections they would like to
add to themselves. Lisa would like to connect to every par-
ticipant who is a friend of two distinct friends of hers. Bart,
on the other hand, would like to connect to every partici-
pant who is connected to him through two distinct paths,
such that one path is of length 2 edges and the other - of
length 3. These two definition of policies are formally given
later on as queries qa (Lisa) and qb (Bart) in Section 2, and
are illustrated graphically in Figure 4. However, the for-
mal definitions are not needed in the context of this general
example. The rest of the participants are associated with
queries as shown in Figure 1.

Lisa is not connected to Marge. However, Lisa is connected
to Homer and to Pluto, who are both connected to Marge.
According to Lisa’s query, we add the edge (Lisa, Marge)
to the network. In Figure 2, this edge is marked by 1.
Based on this added edge, Maggie became a participant to
whom Bart is connected through two paths. A two-edge
path through Mickey, and a three-edge path through Lisa
and Marge. We therefore add the edge (Bart, Maggie) to
the network (marked 2 in Figure 2). Note that the addition
of edge 2 is done based on edge 1 and on original network
edges. The addition of edge 2 renders Maggie, who is not
connected to Lisa, as a participant who is connected to two
distinct friends of Lisa. The edge (Lisa, Maggie), marked 3
in Figure 2 is therefore added. Note that edge 3 is added
based on original edges and edge 2.

The addition of edges in this example demonstrates the re-
cursive nature of adding edges to the network. Lisa’s query
was evaluated and edge 1 was added. Based on this addi-
tion (but not based on it only), another evaluation of Lisa’s
query resulted in the addition of edge 3. As we will shortly
see, we model this recursion using the Datalog formalism.

1.2 Model
We use a graph-based formalism to model the network. Nodes
model the network participants, and edges represent the
links between participants. Most social networks today al-
low only reciprocal friends (a situation where if a lists b as a
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Figure 2: The network after adding connections.

friend, then b also lists a). Nevertheless, we model connec-
tions with directed edges since directed edges are capable
of modeling both networks with reciprocal friends and net-
works with non-reciprocal friends. In addition, the directed
graph makes the definition of queries and their semantics
more succinct.

Also, we believe that the fast development of social net-
works and their proliferation to business and organizational
cultures will result in new types of connections whose mod-
eling may require directed edges. For example, connections
between fans and a rock star or between pupils and their
teacher.

Every node, say n, has a query associated with it. This
query defines the nodes that the participant corresponding
to n would like to add to her friends’ list. As in most social
interactions, the query will make use of existing connections
in order to create new ones.

Conjunctive Queries. Our query formalization is that of
a Conjunctive Query (CQ) [29]. A CQ has a body, built
of atoms, which are predicates with parameters [29]. A pa-
rameter can be either a variable or a constant. Each CQ
has a head which is an atom. The predicates are relation
names. Intuitively, a CQ adds to the relation corresponding
to its head atom all tuples that correspond to a satisfying
substitution of the query variables. We only allow the use
of CQs that are safe and without negation. Refer to [29] for
formal definitions of safety and CQs semantics.

The choice of the CQ model is motivated by the following
considerations. The CQ is a formalization that has been
successfully used in analyzing many query languages (for
both structured and unstructured data) such as SQL [10],
XPath [32] (and therefore XQuery [33]), XSLT [17], SQL4X
[11], Elog [8] and XPathL [26], [27]. CQs are also used to
abstract SPARQL queries for Semantic Web data (RDF) [9]
and XPath-inspired queries on DAGs [25]. The CQ formal-
ization is extensively studied and well understood. Both
theoretical and practical issues, such as optimization meth-
ods, have been addressed [29], [1], [24], [7].
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In addition, experience shows that the CQ formalism can
be successfully extended to handle data types other than
relational (e.g., [11], [26], [27], [9]), a crucial characteristic
in the dynamic, heterogeneous web environment.

Query Network and Datalog. A Datalog query is a gen-
eralization of a CQ [29], [1]. A Datalog query (also called
a program) is a set of rules, each of which is essentially a
CQ. The result of one rule can be used by another rule in
order to produce a new result and so on. A Datalog pro-
gram can be recursive, which means that a predicate can
be defined in terms of itself, either within the same rule or
indirectly. The initial relations constitute the EDB (for Ex-
tensional Database) and the derived relations form the IDB
(for Intensional Database).

In the query network model, we look at the large collection
of CQs associated with the network nodes as a Datalog pro-
gram. We employ a least-fixpoint bottom-up semantics [29]
for the Datalog program composed of all the CQs in the
network (Section 2 provides formal definitions).

Recently, many Datalog-based languages have been devel-
oped for a variety of systems in the fields of networking and
distributed systems, computer games, machine learning and
robotics, compilers, security protocols and information ex-
traction, as reported in the Claremont report on Database
Research [3]. According to this report, the use of declarative
languages in these applications has been successful in pro-
viding an order-of-magnitude reduction in the size of code,
in comparison with other solutions. The report also regards
declarative languages as an important step in a suggested
prospective development of data management, from a stor-
age service to a programming paradigm.

We believe that this development, combined with the enor-
mous amounts of data and data types currently available
to Web 2.0 users (and in other scenarios as well) will in-
evitably result in a growing need to process large queries.
This greatly differs from the prevailing assumption in query
processing - that queries are small and data are large. Tra-
ditional compilers, optimizers and evaluation techniques are
not designed to handle a query whose size is in the or-
der of magnitude of the data being queried. In particular,
rewriting techniques which may increase the query size ex-
ponentially (e.g., the Magic Sets optimization for Datalog
programs [5]) or add many rules to the program (e.g., the
Counting Method [24]) are not applicable in this case.

Motivated by the automated Social Network scenario, we
present in this paper algorithms for evaluating large Datalog
queries on Social Networks.

1.3 Contributions
The main contributions of this paper are the following.

Model and Algorithms. The query network model and
its motivation are introduced. Three algorithms for evalu-
ating very large Datalog queries over a query network are
presented. The Basic evaluation algorithm is a simple evalu-
ation algorithm, it is used as a baseline for comparison. The
Backward-Radius Triggering algorithm reduces the number
of query evaluations by triggering only the evaluation of

queries whose results may have been affected by edges added
to the network. The Divide and Conquer evaluation algo-
rithm partitions the network, evaluates each partition sep-
arately and merges the results. It has a large potential for
parallelism.

Implementation and Experimentation. Implementa-
tion of the algorithms is presented. Experimentation with
synthetically generated datasets, as well as datasets derived
from the DBLP [12] database are presented. DBLP was
chosen in order to capture patterns of social activity as re-
flected in the collaboration between authors of publications
recorded in DBLP. The results show that the Backward-
Radius Triggering and the Divide and Conquer evaluation
algorithms perform significantly better than the Basic eval-
uation algorithm. Among the two, our results clearly show
that the benefit of using DAC is correlative to the ratio be-
tween the sizes of the IDB and the EDB.

Extensions. Extensions to the model are proposed.

2. PRELIMINARIES
We shall make use of the following definitions.

A Query Network. A Query Network is a directed graph
(N, F 0) where N (for Nodes) is a set of participants. F 0 (for
Friends) is a set of directed edges between pairs of distinct
elements of N . F 0 ⊆ (N × N) \ {(n0, n0) s.t. n0 ∈ N}.
Every node n ∈ N has a query associated with it. The
query defines edges of the form (n, ·), which are edges such
that n would like to add to the initial set of edges, F 0, as
defined next.

A Query. A query associated with a network node n, q(n),
is a Datalog rule of the following form. The rule’s head is
F+(n, X), where X is a variable. F+ is an IDB relation
which will contain the additions to F 0, which is an EDB re-
lation. We define another relation, F , as F = F+∪F 0. The
body of the rule is composed of predicates corresponding to
the relation F and the inequality predicate. We require that
one of the predicates be of the form F (n, Y ), and that X,
the variable in the rule head, appear in one of the F body
predicates. The latter requirement is added for safety (see
[29]). Further requirements follow the example.

Example. The following query adds to F tuples of the form
(n, X) where X is a friend of two distinct friends of n:

F+(n,X)←F(n,Y),F(Y,X),F(n,Z),F(Z,X),Y6=Z,

X6=n,Y6=n,Z6=n.

We, however, henceforth assume that unless otherwise spec-
ified, each two distinct variables imply an inequality pred-
icate between them. We further assume that none of the
variables is equal to n. Therefore, the query is abbreviated
to: F+(n,X)←F(n,Y),F(Y,X),F(n,Z),F(Z,X). �

For a query q(n) we also require that n is the only constant
in the query (that is, all the other arguments are variables).

Query Graph. Let the Query Graph of a query q(n) be
the graph whose nodes are the variables and n, the single
constant in the query q(n), and in which a directed edge ex-
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Figure 3: The query graph corresponding to the
query F (n, X)← F (n, Y ), F (Y, X), F (n, Z), F (Z, X).

ists between two variables X and Y (respectively, a constant
n and an argument Z) if a predicate F (X, Y ) (respectively,
F (n, Z)) occurs in the query body. In the graphical repre-
sentation of the graph, the variable in the head of the rule
appears in a double circle.

Example. The query graph corresponding to the query in
the previous example is shown in Figure 3 �.

Consider the predicate of the form F (n, Y ) which we require
in every query body. This predicate contributes to the query
graph a node which represents n. We require that every
query in the query network be such that the nodes in its
query graph are all reachable from the node representing n.

Radius. The Radius of a query q is the number of edges
in the longest path, that never traverses a node more than
once, in the query graph corresponding to q. Naturally, we
assume that the radius of any query is very small relative to
the size of the network.

Backward Radius (bradius). Intuitively, the Backward
Radius, or bradius, of a node n is the maximal distance from
another node m such that the query q(m) can ’sense’ the
edges whose source is n. Formally, we define, B(n, k) =
{m ∈ N | there exists a path of length k from m to n},
and L(n, k) = {b | b ∈ B(n, k) and the radius of q(b) is at
least k}. The bradius of node n is the maximal k such that
L(n, k) 6= ∅. Note that the bradius of any node is bounded
by the maximal radius in the network.

Example. Figure 4 shows a small example of a query net-
work. Each node has an id (a number) and is associated
with one query, either qa, qb or qc, whose query graphs also
appear in Figure 4. We assume that the head of the query
is always F (n, X). The radius of node 2 is 3. The radius of
node 4 is 2. The bradius of node 8 is 3. The bradius of node
2 is 1. �

Single Evaluation of a Node. Consider node 4 in the
network illustrated in Figure 4. Evaluating once the query
associated with this node, qb, inserts the edge (4, 8) to F .
We call the process of evaluating a node’s query on a given
network and subsequently adding a (possibly empty) set of
nodes to F , an evaluation of a node.

Exhaustive Evaluation of a Node. Consider node 2
in the network after the edge (4, 8) has been added to the
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Figure 4: Query Network Example.
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Figure 5: The network, after the additions.

original network. After a single evaluation of this node, (2, 6)
is in F . Since (2, 6) is in F , another single evaluation of node
2 will result in the addition of (2, 8) to F . Note that this
is different than a single evaluation which adds two edges
to F , since the addition of (2, 8) is done based on the edge
(2,6) that is added in the first evaluation.

The process of evaluating a single query, and this query only,
repeatedly and until no edges can be added to F , is called
an exhaustive evaluation of a node. The network after eval-
uation is presented in Figure 5. The new edges are dashed.

Round of Network Evaluation. A round of network eval-
uation is the process of considering all the nodes of a query
network in a certain order, and evaluating each node once,
in that order. The significance of the order is that edges
added previous to, say, the i-th single node evaluation, are
already in F when the i-th evaluation is performed. If evalu-
ations are exhaustive, then the round is an exhaustive round
of network evaluation.

A Fully Evaluated Network. If a network is such that
a round of evaluation applied to it will not add any edge to
F , then we say that the network is fully evaluated.

Example. The network in Figure 5 is a fully evaluated
network. �

Note that the network is a DAG-network (i.e., a network
whose graph is a directed acyclic graph). We revisit this
example when we discuss a property of DAG-networks in
Section 3.1.
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The Problem. The problem for which we propose algo-
rithms is the following. Given a query network (N, F 0) in
the input, construct the resulting fully evaluated query net-
work (N, F ).

3. NETWORK EVALUATION ALGORITHMS
We propose three algorithms for evaluating query networks.
The Basic evaluation algorithm is a simple evaluation al-
gorithm which performs rounds of network evaluation until
the network is fully evaluated. The Backward-Radius Trig-
gering (BRT) evaluation algorithm significantly reduces the
number of node evaluations. It does not perform network
evaluation rounds. Instead, it identifies nodes whose evalu-
ation is necessary for constructing the fully evaluated net-
work. That is, BRT typically avoids many node evaluations
that do not contribute new edges to the network. The Di-
vide and Conquer (DAC) evaluation algorithm partitions
the network, evaluates each partition separately and merges
the results. The partitions’ evaluation is completely inde-
pendent, which makes DAC an algorithm which can greatly
benefit from parallelism.

3.1 The Basic Algorithm and Related Results
The first algorithm we present is the Basic evaluation Algo-
rithm. This algorithm is a simple algorithm that we use as
a baseline for comparison. Pseudo-code for this algorithm
is presented as Algorithm 1. Next, we discuss the algorithm
and prove two propositions related to the evaluation of query
networks in general.

In each iteration, the algorithm performs a single evaluation
for each of the nodes in the network. If a round is completed
without adding any edge to F , the algorithm stops.

Input: (N, F 0), a query network.
Output: (N, F ), a fully evaluated query network.
Method:
1 : stopF lag ← false;
2 : while stopF lag = false
3 : stopF lag ← true;
4 : for each n in N
5 : evaluate q(n) once, let Q be the (binary) result;
6 : if Q \ F 6= ∅
7 : stopF lag ← false;
8 : F ← F ∪Q;
9 : end if
10: end for each
11: end while

Algorithm 1: Basic Network Evaluation Algorithm

Example. Let us return to the query network presented
in Figure 1. Suppose that this network is evaluated by the
Basic evaluation algorithm. In the first round of evaluation,
evaluating the query associated with Lisa yields a result re-
lation with one tuple, (Lisa, Marge). This tuple is added
to F , and the stopFlag is toggled to indicate that the main
while loop of the algorithm (lines 2 through 11) has to con-
tinue for at least another iteration. In this round, the evalu-
ation of the rest of the nodes results in an empty result set.
In the second round (respectively, third round), the evalu-
ation of Bart’s node (respectively, Lisa’s node) resulted in
the addition of the edge (Bart, Maggie) (respectively, (Lisa,

Maggie)), while the evaluation of the rest of the nodes yields
no new tuples. In the fourth round, none of the node evalua-
tions results in a non-empty result, and the algorithm stops.
�

The Basic Evaluation Algorithm with Exhaustive
Rounds. Note that instead of evaluating each node once,
as stated in line 6 of algorithm 1, we can instead exhaus-
tively evaluate each node. This may result in reducing the
number of rounds necessary for fully evaluate a network, as
discussed in Section 3.1.2.

3.1.1 The Preservation of Cycles Property
Proposition 1. Consider a query network (N, F 0). Let

(N, F ) be the fully evaluated network. Then, if (N, F ) con-
tains a cycle, (N, F 0) also contains a cycle.

Proof. (Sketch) Let c be a set of edges which form a
cycle in (N, F ). If all the edges in c are edges in (N, F 0), then
c is a cycle in (N, F 0) and the proposition is proved. If not,
then there is at least one edge in c which is in (N, F ) but not
in (N, F 0). Let us call such an edge a derived edges. Among
the derived edges in c, consider the last edge that the Basic
evaluation algorithm applied to N would add, say (u, v).
(u, v) was added as a result of evaluating q(u). Therefore,
there is a (directed) path p, from u to v, that does not
contain (u, v). We delete (u, v) from c and add the edges of
p. c remains a cycle.

We repeat this process until no edges can be removed from c.
Every repetition deletes a derived edge from c and replaces
it either with non-derived edges or with derived edges that
were added to F before the deleted edge. A simple induction
shows that eventually, only non-derived edges will remain in
the cycle c.

3.1.2 One-Round Evaluation of DAG Networks
Consider the network used in the example in Section 2, i.e.,
the network in Figure 4, and assume that it is evaluated us-
ing the Basic evaluation algorithm with exhaustive rounds.
Note that the network graph is a DAG. If the nodes are
evaluated in the order of their ids, then in the first round,
the edges (2,6) and (4,8) are added. In the second round,
(2,8) is added and the third and last round does not add
any edge. However, if the order of evaluation is the reverse
of the order of ids, then in the first round, (4,8) is added
first, and the exhaustive evaluation of node 2 yields (2,6)
and (2,8) (in this order). The second and last round does
not add any edge.

Next, we show that a network whose graph is a DAG can
be fully evaluated in a single exhaustive round of evaluation.
Note that knowing that the network is fully evaluated makes
a second round redundant.

Proposition 2. Let (N, F 0) be a query network whose
graph is a DAG. (N, F 0) can be fully evaluated in one round
of exhaustive evaluation.

Proof. (Sketch) First, we evaluate leaves (i.e., nodes
with no outgoing edges). Then, as long as there are nodes
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that have not been evaluated, we pick one whose descendants
are all evaluated, and exhaustively evaluate it. The DAG
structure of the graph ensures that if there is an unevaluated
node in the network, then there is also an unevaluated node
whose descendants are all evaluated.

An induction shows that after all the nodes are exhaustively
evaluated once, the network is fully evaluated.

3.2 The Backward-Radius Triggering Algorithm
Consider, again, the evaluation of the network illustrated in
Figure 1 using the Basic algorithm. Four rounds of evalu-
ation resulted in 28 single node evaluations, whereas only
three of these evaluations actually yield addition of an edge.
The Backward-Radius Triggering (BRT) evaluation algorithm
will reach a fully evaluated network by usually performing
a significantly lower number of single node evaluations.

BRT takes k, the maximal radius in the network, as input.
k is used as a bound on the backward radius of the nodes. In
BRT, when an edge, say (u, v), is added, only nodes whose
queries can ’sense’ the addition are considered for another
evaluation. These nodes are such that there exists a (di-
rected) path, whose length is less than the backward radius,
between them and u.

Note that the important model feature is that k is small
relative to the network. Merely knowing what k is could be
ascertained in the first round of BRT. Therefore, passing k as
a parameter is not essential to the algorithm. For simplicity,
we give k as input to BRT.

Pseudo-code for the BRT evaluation algorithm appears as
Algorithm 2. First, all the nodes are put in the set R, and
a single node evaluation is performed for every node n in
R. This is in fact a round of network evaluation. For every
node n whose evaluation results in the addition of an edge
(or multiple edges) to F , the set {m ∈ B(n, l)|l < k} is
computed (see definition in Section 2) and added to P . P
replaces R and the evaluation continues until R is empty.

Input: (N, F 0), a query network; k, maximal query radius.
Output: (N, F ), a fully evaluated query network.
Method:
1 : R← N
2 : while R 6= ∅
2 : P ← ∅
3 : for each n ∈ R
3 : evaluate q(n), let Q be the (binary) result;
6 : if Q \ F 6= ∅
7 : P ← P ∪ {m ∈ B(n, l)|l < k}
8 : F ← F ∪Q;
9 : end if
10: end for each
11: R← P
12: end while

Algorithm 2: Backward Radius Triggering Algo-
rithm

Example. Consider again the query network presented in
Figure 1. In this network, k = 3. If evaluated with the
BRT algorithm, the first iteration will consider all the nodes

for a single evaluation, and the edge (Lisa, Marge) will be
added. B(Lisa, 1) = {Bart} and B(Lisa, 2) = ∅. Therefore,
P = {Bart}. The evaluation of the single node in P results
in the addition of the edge (Bart, Maggie), and at the end
of this iteration, P = {Lisa}. In the next iteration, the
edge (Bart, Maggie) is added, and P = {Bart}. In the next
iteration, no edge is added. As a result, P = R = ∅ and the
algorithm stops.

Comparing Basic and Backward-Radius Triggering
The total number of single-node evaluations in the latter
example is (broken by iteration) 7 + 1 + 1 + 1 = 10. As
shown above, the Basic algorithm performs, on the same
network, 28 evaluations. The benefit of saving single rule
evaluations come at the price of computing the sets B(n, k).
Also, Basic does not use k.

3.3 The Divide and Conquer Algorithm (DAC)
We would like to be able to process large networks. In
the DAC evaluation algorithm, we take advantage of the
clustered nature of social networks in order to partition the
network into networks of more manageable size. Generally
speaking, social networks have a structure in which partic-
ipants have more links to participants within their commu-
nity than to individuals from other communities [18] (see
more in Section 6). We use existing knowledge and algo-
rithms for graph partitioning in order to partition the graphs
to parts with a relatively small number of edges between
them. This partitioning enables us to fully process small,
dense sub-networks, taking advantage of locality of refer-
ence and minimizing work for a merge step.

A partitioning algorithm for a query network takes a query
network, say (N, F 0), as input and produces a number of
query networks as output. N is partitioned into (non-overlapping)
sets of nodes. Each such set Ni, and the edges in F 0 between
the nodes in Ni form a query network in the output. Cross-
ing edges are edges in F 0 that are in none of the created
networks.

DAC takes a graph-partitioning algorithm and the number
of parts to partition to as input. In addition, like BRT,
DAC takes k, the maximal radius of query in the network,
as input.

Pseudo code for DAC appears as Algorithm 3. DAC oper-
ates as follows. First, the partition algorithm partitions the
network into smaller networks. Every part is evaluated sep-
arately using the BRT evaluation algorithm (Line 2). Then,
a match-making procedure is invoked (Line 4). Two net-
works such that the number of crosiing edges between them
is maximal are matched. Then, the rest of the networks are
considered, and another pair is matched and so on (see pro-
cedure mergePairs). The match making continues until less
than two networks remain unmatched.

Each pair is merged into one network (Line 7). The nodes of
the new network are the union of the nodes of the networks
being merged. The edges are the union of the edges of the
networks being merged, as well as the crossing edges between
the merged networks. Due to the addition of crossing edges,
the merged network is not fully evaluated. The merge&eval
procedure evaluates the merged network, first by evaluating
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all the nodes n that are sources of the cross edges and the
nodes within B(n, l), l < k for each such node n, in order
to include all the nodes in their backward radius. Like in
BRT, any such node whose evaluation results in the addition
of new edges triggers the evaluation of the nodes potentially
in their backward radius and so on until a fixpoint is reached.

Input: (F 0, N), a query network; k, maximal query radius;
A, a graph-partitioning algorithm; p, number of partitions.
Output: (F, N), a fully evaluated query network.
Method:
1 : invoke A to partition N into p parts; let R be the set of
- : parts, {(F 0

i , Ni) | 1 ≤ i ≤ p };
2 : invoke BRT evaluation on each r ∈ R;
3 : while ∃(u, v) ∈ F 0 s.t. u and v are in different parts
4 : P ← matchPairs(R); //see procedure below
5 : for each pair (ri, rj) ∈ P
6 : R← R \ {ri, rj};
7 : R← R∪merge&eval(ri, rj);//see procedure below
8 : end for each
9 : end while

Algorithm 3: Divide and Conquer Algorithm.

procedure matchPairs(R) //R is a set of networks
1 : for each crossing edge (u, v) w.r.t. the networks in R
2 : let ru (respectively, rv) be u’s (respectively, v’s)
- : network;
3 : initialize a counter cu,v to 0, if not exists;
4 : cu,v ← cu,v + 1;
5 : end for each
6 : P ← ∅;
7 : while there is more than one network in R
8 : add to P a pair (rv, ru) s.t. cu,v + cv,u is maximal;
9 : delete rv and ru from R;
10: end while
11: return P ;
end procedure

Example. Consider the network sketches in Figure 6. Dark
grey (respectively, light grey) represents a fully evaluated
(respectively, non fully evaluated) network.
In (a), a network partitioned into four parts is presented.
Only crossing edges are presented. In (b), each of the four
parts is fully evaluated, ignoring crossing edges. In (c), the
matchmaking result is illustrated. The parts with maximal
number of crossing edges between them were paired. Note
that the pairs of networks are not yet evaluated. In (d),
the merged and fully evaluated pairs are shown. Another
matchmaking step is (e), and the fully evaluated network is
(f).

Note that as in BRT, k need not be known in advance. Here
also, k can be ascertained for each initial partition (i.e., be-
fore any merge has been done) on the first round and main-
tained for further evaluations as the maximum value of each
merged pair (note however that k for different parts may be
lower than the global k). For simplicity, we give k as input
to DAC.

4. EXTENSIONS
The model presented so far is the minimal model needed
to prove our concept of large queries in a Web 2.0 environ-

procedure merge&eval((N1, F1),(N2, F2))
1 : N ← N1 ∪N2;
2 : F ← F1 ∪ F2;
3 : let C be the set of crossing edges between
- : the two networks;
4 : F ← F ∪ C;
5 : M ← {n1|(n1, n2) ∈ C};//sources of new edges
6 : G← {g|g ∈ B(m, l), 1 < l < k, m ∈M};//nodes
- : possibly affected by the new edges
7 : for each m ∈M
8 : evaluate q(m), let Q be the (binary) result;
9 : F ← F ∪Q;
10: end for each
11: while G 6= ∅
12: P ← ∅;
13: for each g ∈ G
14: evaluate q(g), let Q be the (binary) result;
15: if Q \ F 6= ∅
16: P ← P ∪ {m ∈ B(g, l)|l < k}
17: F ← F ∪Q;
18: end if
19: end for each
20: G← P ;
20: end while
21: return (N, F );
end procedure

3 4

21 1,2

3,4

Not fully evaluatedFully evaluated

3 4

21

1,2

3,4

1,2,3,4 1,2,3,4

(a) (b) (c)

(d) (e) (f)

Figure 6: Divide and Conquer Example.

ment. However, in order to be used in real systems, some
extensions to the model should be considered. Larger-scope
additions, which require thorough definitions are mentioned
in Section 7.

Data integration. The web environment is diverse in data
types. Of particular interest is the interplay between struc-
tured and unstructured data [3]. A natural extension to our
model will be to also process XML data. Every node in the
model, in addition to having a list of friends, will also have
an XML document associated with it. Inspired by [27] and
[26], a query that refers to the XML document and to the
structured data will have the following form:
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F+(n,X)←F(n,Y),F(Y,X),F(n,Z),F(Z,X),

xpath(X,’/data/lanaguage[text()="French"]’)

The xpath predicate will be satisfied by nodes whose associ-
ated XML document satisfies the expression
’/data/lanaguage[text()=”French”]’.
As in SQL/XML [28], the expression is evaluated at the doc-
ument root node. Query languages other than XPath can
be used to query XML data, and other data types with their
query languages may be used in the CQ model.

More than one query. A realistic policy for the additions
of connections to friends’ lists in a social network will most
likely require more than one query. A natural extension of
our model would be to have a set of queries, or even a data-
log program (or programs), associated with each node. This
addition raises interesting evaluation problems. For exam-
ple, how to order the evaluation of queries associated with
the same node so as to minimize the number of evaluation
rounds. Also, the radius and backward radius can not be
defined as they are currently defined.

Not using a global radius. Currently, the radius is a pa-
rameter of an evaluated network or part of it. As explained
above, the radius is either gathered from the network or
passed as input. However, we use the radius as a bound
on the backward radius of network nodes. A more sophis-
ticated algorithm will efficiently initialize and maintain for
every node its backward radius, and avoid evaluating nodes
that are within the (globally) highest backward radius in the
network when it is unnecessary for the particular node given
its backward radius.

5. EXPERIMENTS
5.1 Implementation
We implemented the presented algorithms in a system. The
system was programmed in Java, using the open-source DBMS
MySQL, version 5.0. The experiments were carried out on
a machine with a Pentium CPU of 1.5GHZ and 1GB of
RAM, running the Windows XP operating system. We ex-
perimented with the algorithms, both on synthetic query
networks as well as on query networks derived from the
DBLP data, which reflect social behavior. The system code,
dataset generation code and the resulting datasets are avail-
able for repeatability testing.

5.2 Synthetic Datasets
Our synthetic datasets are built as follows. Consider the
illustration in Figure 7. The figure shows a number of clus-
ters. Connections may exist between participants in the
same cluster or between participants in neighboring clus-
ters. The probability that participants in the same cluster
are connected is higher than the probability that two partic-
ipants in neighboring clusters are connected. The clusters
form a cycle in which every city has exactly two neighbors,
one to the right and one to the left.

The graphs are synthesized as follows. The number of clus-
ters and the number of nodes in each cluster are given as
input. For every node n1, we pick at random a node n2 s.t.
n1 6= n2 from the same cluster, and add an edge (n1, n2).
Then, every node has probability α to be connected to each

cluster

cluster

cluster

cluster

cluster

Figure 7: Illustration of the Synthetic Datasets
Structure.

of the other nodes in the cluster. At least one node, plus
up to additional β nodes per hundred in a cluster, are con-
nected to a randomly chosen participant in the immediate
neighboring cluster to the left, and a similar number is con-
nected to participants in the immediate neighboring cluster
to the right.

The queries used in our experiments are qa and qb from
the example in Section 2, as well as an unsatisfiable query.
Partitioning for the DAC algorithm is done using the Metis
software package [21]. We also show results for partitioning
the graph to parts such that each part corresponds to a
cluster.

Experiment 1. In this experiment, we create 10 datasets.
The i-th dataset has 5 ∗ i clusters. Each cluster has 160
nodes. α = 1/200, β = 2. Nodes are randomly associated
with either qa or qb (with probability 0.5 for each of the
queries).

Consider Figures 8 and 9. The running time results for each
of the ten datasets appear in Figure 9 as four figures (from
left to right): DAC time using the Metis partitioner (DAC-
Metis), DAC time using the initial, predefined partition to
clusters (DAC-Pre), BRT time, Basic time. The datasets are
ordered according the IDB/EDB ratio, which is the number
of added edges divided by the number of original EDB edges.
The datasets numbers correspond to the table in Figure 8.

Basic evaluation is the slowest, except for the smallest dataset.
As for the remaining two algorithms, the results clearly show
that DAC outperforms BRT when the number of added
edges is high relative to the number of EDB edges. BRT
is better when relatively few edges are added in reaching a
fully evaluated network. Partitioning using Metis or par-
titioning according to the initial clusters does not make a
significant difference for DAC’s performance (partitioning
times are included in the total DAC time). Figure 10 orders
the same results by the number of added edges (namely,
the IDB size). Figure 11 orders the results by the size of
the EDB. The results show a clear correlation between the
IDB/EDB size ratio and the benefit of using DAC rather
than BRT. A similar correlation exists between the IDB size
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Figure 8: Experiment 1 datasets.
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Figure 9: Time results of Experiment 1. Datasets
ordered by IDB/EDB ratio.

and the benefit of using DAC.

Experiment 2. In this experiment, we create 10 datasets.
Again, the i-th dataset has 5 ∗ i clusters. Each cluster has
150 nodes. α = 5/900, β = 2 and qa and qb are indepen-
dently and evenly distributed among the nodes. Figure 12
shows the time results for the three algorithms (partitioning
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Figure 10: Time results of Experiment 1. Datasets
ordered by IDB size.
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Figure 11: Results of Experiment 1. Datasets or-
dered by EDB size.
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Figure 12: Results of Experiment 2. The table
shows IDB/EDB ratio per dataset. Datasets are or-
dered by IDB/EDB ratio.

for DAC is done using Metis). The results are ordered by
the IDB/EDB ratio, which also appears in a table for each
dataset. Here too, we see that Basic is the slowest algorithm,
and that the benefit of using DAC over BRT is correlated
with the IDB/EDB ratio.

Experiment 3. In this experiment, each cluster has 225
nodes, α = 1/200, β = 2 and qa, qb and an unsatisfiable
query are evenly distributed among the nodes. Figure 13
shows the time results of the three algorithms (partitioning
for DAC is done using Metis). The results are ordered by
the values of the IDB/EDB ratio, which also appear in the
table. Here too, we see that the benefit of using DAC over
BRT is correlated with the IDB/EDB ratio.

Discussion. The choice of the best algorithm for evaluating
a given network is greatly affected by the size of the IDB. We
can see that sometimes large EDBs can be evaluated faster
using BRT as long as their IDB is small. On the other hand,
DAC clearly performs better for networks with large IDBs.
This result suggests the need for a cost model for choosing
an algorithm for evaluating query networks.

5.3 DBLP Datasets
We also conducted experiments on data derived from the
DBLP datasets [12]. We use DBLP in order to capture pat-
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Figure 13: Results of Experiment 3. The table
shows IDB/EDB ratio per dataset. Datasets are or-
dered by IDB/EDB ratio.

terns of social behavior that are reflected in the collabora-
tions between authors. We extracted 260360 papers with
their 260801 authors. For each pair of authors we also keep
the number of papers that they published together.

We construct the datasets for the experiments as follows.
We start with one author, and perform a crawling-like pro-
cedure. We retrieve five of the author’s collaborators (if
there are less than five, all are retrieved). Then, we retrieve
five collaborators of each of the five retrieved in the first step,
and so on until the desired number of authors is reached.

The input network is constructed as follows. Each author
is represented by a node. If the number of publications in
common to u and v is at least α of v’s total number of
publications then there is an edge from u to v. That is, if
u participated in a high enough share of v’s publications (α
percent or more), the edge (u, v) is added.

Experiment 4. In this experiment, the graph consists of
1300 nodes, partitioned into 16 parts (using Metis). We cre-
ate the datasets by gradually lowering α from 33% to 14%,
in order to increase the number of edges in the EDB. Figure
14 shows the running time results of the three algorithms
on datasets generated as described above. The IDB/EDB
ratio also appears in the table in Figure 14. Here too, we
see that the advantage of evaluating with DAC is higher as
the IDB/EDB ratio is higher.

Experiment 5. In this experiment, the graph consists of
1400 nodes, partitioned into 16 parts (using Metis). Again,
we create the datasets by gradually lowering α from 33% to
14%. Figure 15 shows the result of this experiment, which
are in line with the results of Experiments 1 through 4. Re-
sults for the Basic algorithm were not included in the figure
and are instead given in the appendix, so as not to overload
the figure with high numeric values.

6. RELATED WORK
The structure and growth patterns of social networks are
topics that have been studied in many contexts, from physics
and biology related systems to transportation, telephony
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Figure 14: Results of Experiment 4. The table
shows IDB/EDB ratio per dataset. Datasets are or-
dered by IDB/EDB ratio.
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Figure 15: Results of Experiment 5. The table
shows IDB/EDB ratio per dataset. Datasets are or-
dered by IDB/EDB ratio.

and internet networks [18]. [18] also reviews several models
for network growth. Many recently published works in the
area of social networks are concerned with analysis of social
networks structure, privacy and security in social networks,
search related issues and many more. In SIGMOD record,
March 2008, as part of the report on the Databases and Web
2.0 Panel at VLDB 2007 [4], it is stated that ”Understand-
ing and analyzing trust, authority, authenticity, and other
quality measures in social networks will pose major research
challenges.” In fact, adding queries, or programs, to nodes
can be an extension for these topics to the actual running of
a technology-assisted social network.

Historically, the evolution of information and structure in
social networks has been a subject of research for more than
a hundred years. See [31] for an overview of the subject.
In particular, the interactive applet at [22] provides an in-
teresting view as to inner workings of such networks. Of
course, the Internet has brought social networks to the fore-
front. Perhaps, the most distinct feature of these networks
is that they are centrally managed by and relatively open to
new participants. It is not clear whether parameters such
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as Dunbar’s number [13, 14], a limit on the number of indi-
viduals with whom a person can consistently interact over
time (believed to be around 150), is still valid in the WWW
context. Conceivably, technology can assist in marinating
more meaningful connections or even many weak but useful
connections.

Related work in the area of Datalog evaluation and optimiza-
tion is thoroughly covered in [29] and [1]. However, these
assume small queries and large data. Processing of Web and
Internet data with datalog-like formalisms is studied in [8],
[2], [26], [19]. We are not aware of work regarding very large
queries or regarding Datalog with a massive number of rules.

7. CONCLUSIONS AND FUTURE WORK
We introduce the Query Network model, inspired by the
development of Web 2.0 applications. The queries in the
network are created by a large number of participants. To-
gether, they form a datalog program whose size is in the
order of magnitude of the size of the data. We implemented
algorithms to evaluate query networks and experimented
with them on synthetic datasets and on datasets derived
from DBLP. The experiments demonstrate the effectiveness
of our methods.

As future work, we plan to study and implement the exten-
sions discussed in Section 5. As additional future work, we
plan to study the following topics: (1) The deletion of nodes
from the network; (2) The parallelization of the suggested
algorithms, and in particular the parallelization of the DAC
algorithm; (3) Introducing a more complex datalog-based
model which captures the process of reaching an agreement
between network participant before adding a network con-
nection and (4) Introducing different types and weights to
the possible connections in the network.
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9. APPENDIX
Results for the Basic algorithm in Experiment 5 are: Dataset
1: 6489 msec, Dataset 2: 30414 msec, Dataset 3: 36833
msec, Dataset 4: 56041 msec, Dataset 5: 190054 msec,
Dataset 6: 2771465 msec.
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