
Xoom: A tool for zooming in and out of XML documents

Maya Ramanath
Max-Planck Institute for Informatics

Campus E1 4
Saarbrücken, Germany

ramanath@mpi-inf.mpg.de

Kondreddi Sarath Kumar
Max-Planck Institute for Informatics

Campus E1 4
Saarbrücken, Germany

skondred@mpi-inf.mpg.de

ABSTRACT
Suppose there is a large corpus of XML documents, each of
which describes a movie released in the last 30 years (for
example, extracted from IMDB). A movie enthusiast wants
to make a list of interesting movies based on various crite-
ria, such as, the genre, lead actors, directors, etc. She first
decides to narrow the focus to just thrillers. However, she
then has to look into each document individually, since only
then is it possible for her to tell whether the combination
of actors, directors, etc. interests her. This would be time-
consuming if the documents in question contain hundreds
of tags each. Instead, she could use our tool Xoom (XML-
Zoom) which can extract and present the key information in
every document. This would drastically cut down the time
to go through the documents. She could then use Xoom to
zoom into specific portions of each of the remaining docu-
ments, instead of opening and scanning them from top to
bottom. In this proposal, we describe the construction of
Xoom and outline a demonstration.

1. INTRODUCTION
With the ubiquity of XML as the format of storage and ex-
change of data, we can expect to see ever-growing reposito-
ries of XML documents. Exploration of these collections re-
quires the use of a diverse set of tools ranging from classifiers,
clustering tools, data visualizers to mining software. How-
ever, human-centric exploration often boils down to manu-
ally inspecting a narrowly focused set of documents. Exam-
ples could include complex tasks such as lawyers researching
a class of criminal trials and historians wanting to examine
the economic consequences World War II to simple tasks
such as a movie enthusiast wanting to make a list of interest-
ing movies to watch. The common element in all three cases
is that there are several documents to inspect and all these
documents focus on a specific topic. It would be much easier
to browse through the documents if “bite-sized” summaries
of each document or a specific subset of the document could
be made available. The user could then decide whether to
explore the document in depth or not.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

In this proposal, we describe our tool, coined Xoom (XML-
Zoom), which helps document exploration in two ways. First,
it provides generic summaries of the document which helps
the user zoom out to a desired granularity. Second, it helps
the user zoom in to specific portions of a document to see
the most important information available there.

1.1 Zooming in and out
As a concrete example of the type of functionality we would
like to provide, consider Figure 1 which shows snapshots
from our software. The source (shown on the left) describes
the movie ”Ocean’s Eleven” (derived from IMDB). All the
tags in this document (of which only a very small subset is
shown) have semantics associated with them (they are not
tags for formatting or display), and there are short pieces of
information at the leaf level, such as the title of the movie,
its director, genres, etc. Concise summaries of 5 and 10 tags
(counting only the leaf level tags) are shown in the middle
and right-hand side of the figure. Only the most important
tags and text values have been retained while unimportant
tags (such as alternate_title) have been dropped. The
result is a bird’s eye view of the source document amenable
for a quick glance to filter out unwanted documents.

The key task in zooming (zooming out as well as zooming
in), is the ranking of tags and text values. Zooming in re-
quires a ranking of text values belonging to a specific tag
which is then displayed when the user asks for it. And zoom
out requires a ranking of both tags and text so that the
most important tag-text pairs (or spans) are chosen for in-
clusion in a summary of the desired size. In our system,
tags and text values are ranked separately using different
scoring methods. Our scoring functions makes use of both
the document and the corpus to determine the importance
score. The ranked list of tags and text values are then used
to either summarize the document or to zoom in to specific
portions of it.

Organization. After a brief discussion of related work in
Section 2, we outline the architecture of Xoom and the tech-
niques we use to rank tags and text in Section 3. We con-
clude in Section 4 with a description of the proposed demon-
stration.

2. RELATED WORK
Our techniques have been developed with data-oriented XML
documents in mind. That is XML documents containing
record-like, short pieces of text. As an example, a movie

1112

Figure 1: “Ocean’s Eleven” – Snippet of original document and its 5-element and 10-element summaries. In
both the summary snapshots, the numbers in the parentheses before each tag indicate (<no. of children
displayed>/<total no. of children>) for that tag.

document could contain titles, actor names, director names,
language, etc. Summarization of text documents has a long
history (see [4] for an overview of the challenges). Text sum-
marization can be viewed as a ranking problem – sentences
(or spans) are ranked according to a notion of importance
and then top-ranked sentences are included in the summary.
Carrying over this principle of ranking to XML summariza-
tion is valid, but since XML documents could contain short
pieces of text (such as title, actor names, etc.), it is not pos-
sible to reuse the same techniques. Moreover, the presence
of explicit structure, in the form of tags requires different
techniques of ranking.

To the best of our knowledge, ours is the first summarization
work to propose techniques for summarizing data-oriented
XML documents where both structure and content are equally
important. However, the use of XML markup in text doc-
uments to improve summarization quality has been previ-
ously studied [1]. These recent techniques still deal with
document-oriented XML – text documents augmented with
XML markup – and not data-oriented XML where markup
is used as additional input to the document summarization
process. Hence, no techniques are developed for summariz-
ing short text values which are required for data-oriented
XML.

XML structure summarization has been studied in [7, 2].
But, neither of these proposals take into account the text
values. Generating snippets of XML query results is close to
our work [5], but our setting is different in that we consider
stand-alone XML documents and rank elements without any
query bias. Finally, statistical summaries for XML have
also been proposed (see for example, [3]), but our zoom-
out functionality aims to generate user-readable, semantic
summaries.

Our own previous work [6] presented ideas for generic XML
document summarization and a user study illustrating its

Figure 2: Xoom Architecture

effectiveness. Our recent work has focused on constructing
a formal model for summarization. The demo will show this
model in action.

3. ZOOMING TECHNIQUES
The architecture of Xoom is shown in Figure 2. The XML
document is taken as input into a Information Unit Gen-
erator module. This module generates two types of infor-
mation units – tag information units and text information
units. Following text summarization techniques, these sets
of information units are ranked according to importance by
the Ranker module which also takes the corpus statistics as
input to its scoring functions. The Zoom module takes as in-
put the ranked lists of tag and text information units. Based
on the desired functionality, that is, zoom-in or zoom-out, it
produces a ranked list of text values for a given set of tags,
or a generic summary of the desired size.

3.1 Information Unit Generator
The function of the info unit generator module is to sepa-
rate out tags and text. Tags and text play different roles
in a document. Tags provide the structure of documents
in a corpus, and the allowable usage may be compactly de-
scribed by a DTD or XML Schema. On the other hand,
text values “instantiate” a document. And so, because of

1113

their different roles, we need to rank them separately with
different scoring functions. In addition to separating tags
and text values, it is also important to separate text values
from each other by grouping text values occurring under the
same tag. For example, it makes more sense to compare one
actor to another actor to determine which of them is more
important, than it is to compare an actor to a production
location. Hence the information unit generator generates
tag units (basically, the set of unique tags, separate from
the text associated with them) and text units (text values
grouped according to tag).

3.2 Ranker
3.2.1 Ranking tags

The module for ranking tags takes the tag information units
as input and ranks them according to their importance. The
most important tags are those which are salient in the cor-
pus. For example, in our movie corpus, the tag title is the
most salient tag since it occurs in all documents of the cor-
pus – the title sets the context for the remaining portions of
the document. Hence title is scored the highest. However,
while the salient tags tell us a lot about the corpus, we also
need to determine tags which may be special to the docu-
ment. For example, if a movie is an oscar winner, that tag
should be ranked high as well, even though it is not salient
in the corpus. The tag-ranker produces a score by taking
both the salience and the specialty of the tag into account.
The advanced user can set a parameter to indicate how to
balance the salience score and the specialty score of a tag.

3.2.2 Ranking text
The text ranker scores text values which occur under a given
tag (that is, all actors and then all production languages,
etc.). First, text values are classified into entities (names,
titles, etc.) and plain text (plots, trivia items, alternate ver-
sions, etc., which are converted into bag of words). In order
to rank entities, we consider their “popularity” (that is, the
frequency of occurrence) in the document and the corpus.
The more frequently an entity occurs, the more important
it is. This holds for many different kinds of entities – for ex-
ample, George Clooney is mentioned no less than 10 times
in the Ocean’s Eleven document, under various tags, such as
trivia_item and goof. Moreover, George Clooney is also
popular in the corpus – he acts in several movies and as
one of the lead actors in a majority of those movies, is also
mentioned frequently in those documents. Hence a combi-
nation of his importance in the current movie as well as in
other movies gives us a combined importance score. Note
that this combination helps to rule out (or rule in) popular
actors who merely play a cameo in the current movie. For
example, in Ocean’s Twelve, Bruce Willis is not frequent in
the document (and hence has low score), but is important
in the corpus (where he gets a high score). The advanced
user can set a parameter to decide how these scores should
be balanced to produce the final score.

In the case of plain text, we make use of the redundancy
in the set of text values itself to determine the importance
score. For example, suppose we need to rank 10 different
trivia items (recall that each trivia item is reduced to a bag
of words in order to help in scoring it). Suppose the trivia
items talk about George Clooney and Brad Pitt. Then the

trivia item which talks about both of them together would
be scored high. In other words, the score of the trivia item
is based on the number of high frequency words it contains
(here, the frequency is computed within the set of trivia
items only).

3.3 Zoom
The Zoom module takes the ranked list of tags and text
values as input and uses them to either construct a summary
(zoom out) or to provide the user with the desired set of top-
x values (zoom in). The zoom in module works in a simple
manner. The user simply inputs the number of text values
she desires for each tag. The top-ranked text values for the
given tags is then chosen and output by the module.

The zoom out procedure is slightly more involved. At first
glance, zooming out involves choosing the top ranked tag
and text values until the required size of the summary (which
is input by the user) is reached. Choosing text values once
the tags are given is straightforward (as mentioned in the
zoom-in procedure above). However, it is not so straightfor-
ward to automatically choose the top-ranked tags. To see
this, suppose we want to generate a 10 element summary of
the movie Ocean’s Eleven. Suppose the tags are ranked in
decreasing order as follows: title, production_year, ac-

tor, director and colourinfo. It is straightforward to
choose 1 title and 1 production_year and their corre-
sponding text values, since they occur only once in the orig-
inal document. However, when it comes to actor, there
are 68 actors listed in the original document. The entire
summary size can be exhausted by simply choosing 8 more
actors. But this could hardly be considered a good sum-
mary since it does not offer good coverage of the original
document. Instead of simply considering the rank of the
tags – actor is more important than director – we addi-
tionally need to consider how much more important actor

is than director. Are two actors worth 1 director or is
it 3 actors? Our solution considers the magnitude of scores
assigned to each tag and chooses the number of tags in pro-
portion to its score. That is, if actor has twice the score
of director, then the number of actors and directors in
the final summary will be in the ratio 2:1. As can be seen
from the example shown in Figure 1, this results in sum-
maries with good coverage of important elements for the
given space budget.

4. DEMONSTRATION
We have developed Xoom as a Java application. The demon-
stration will use three different corpora – approximately
300,000 movie documents from IMDB1, approximately 200,000
people documents describing actors, directors, etc. also from
IMDB and around 400,000 publication documents from DBLP2.
Corpus statistics required for scoring (such as entity frequen-
cies and tag frequencies) are previously collected and stored.

The user starts by choosing a corpus and a file. A default
zoom-out summary of 10 elements is shown. The user can
then choose to take any of the following actions: i) see the
original document, ii) increase or decrease the summary size,

1http://www.imdb.com
2http://dblp.uni-trier.de

1114

Figure 3: Zooming in: Generating the top-X tags and text values

iii) zoom-in to specific parts of the document or summary
by specifying how many top-x values she would like to see.

Previously in Figure 1, we showed the original source, a
5-element summary of the source and another 10-element
summary of the source. Though not shown in the screenshot,
the user can increase or decrease the size of the summary
by pressing a single button or by opening a dialog to specify
the number of elements he desires. Figure 4 shows how users
can zoom in to specific parts of the document. The dialog on
the right hand side has two parts - one for tags and one for
text. In the first part for top-x tags, users can specify how
many ranked tags she would like to see. The second part for
text shows a table with three columns. The first and second
columns show the paths available in the document (or the
summary, if the user wants to zoom in based on the tags in
the current summary) and the total number of text values
available for each path respectively. In the third column,
users can specify how many text values for each tag should
be shown. The results of choosing to zoom in to the top-10
tags (out of a possible 24) and the top-10 actors (out of a
possible 68) are shown in the right hand side of the figure
(note that these are two independent functions).

5. REFERENCES
[1] M. Amini, A. Tombros, N. Usunier, and M. Lalmas.

Learning-based summarisation of XML documents.
Information Systems, 2007.

[2] M. Consens, F. Rizzolo, and A. Vaisman. AxPRE
summaries: Exploring the (semi-)structure of xml web
collections. In Proc. of ICDE, 2008.

[3] J. Freire, J. Haritsa, M. Ramanath, P. Roy, and
J. Siméon. StatiX: Making XML count. In Proc. of
SIGMOD, 2002.

[4] U. Hahn and I. Mani. The challenges of automatic
summarization. IEEE Computer, 11(33), 2000.

[5] Y. Huang, Z. Liu, and Y. Chen. Query biased snippet
generation in XML search. In Proc. of SIGMOD, 2008.

[6] M. Ramanath and K. Sarath Kumar. A rank-rewrite
framework for summarizing XML documents. In Proc.
of DBRank, 2008.

[7] C. Yu and H.V. Jagadish. Schema summarization. In
Proc. of VLDB, 2006.

1115

