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ABSTRACT
Constructing Haar wavelet synopses under a given approximation
error has many real world applications. In this paper, we take
a novel approach towards constructing unrestricted Haar wavelet
synopses under an error bound on uniform norm (L∞). We pro-
vide two approximation algorithms which both have linear time
complexity and a (log N)-approximation ratio. The space com-
plexities of these two algorithms are O(log N) and O(N) respec-
tively. These two algorithms have the advantage of being both sim-
ple in structure and naturally adaptable for stream data processing.
Unlike traditional approaches for synopses construction that rely
heavily on examining wavelet coefficients and their summations,
the proposed construction methods solely depend on examining
the original data and are extendable to other findings. Extensive
experiments indicate that these techniques are highly practical and
surpass related ones in both efficiency and effectiveness.

1. INTRODUCTION
Widely used in signal and image processing, the wavelet tech-

nique has been considered very promising for data compression
and query approximation in database domains [11, 16]. Recent re-
search has applied wavelet synopses to summarize data streams for
approximate queries [6, 9]. The basic idea of constructing a wavelet
synopsis of a data vector, with size N , is to first transform the data
vector into a representation with respect to a wavelet basis. Then
the data vector is approximated by retaining M coefficients as the
wavelet synopsis and setting those remaining to 0 implicitly.

A conventional approach is to find M coefficients to minimize
the overall mean squared error (L2) [15]. This can be solved grace-
fully by applying the Parseval’s theorem [2]. However, the main
drawback of this approach is that users cannot control the approxi-
mation error of individual elements in the data vector. This severely
impedes further applications of the wavelet approximation. To al-
leviate this, researchers have made efforts to construct wavelet syn-
opses with guaranteed maximum error in approximation under L∞
metric [2]. Two approaches for constructing wavelet synopses un-
der uniform norm L∞ have been taken: one is to construct bucket
bound (size bound) synopses which would minimize the maximum
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approximation error of single data elements [3] whilst the other is
to construct the smallest size of synopses such that the maximum
approximation error does not exceed a given error bound on L∞
metric [12, 14]. The details are explained below.

Bucket bound synopses: The goal is to construct a synopsis of at
most B Haar wavelet coefficients to minimize the approximation
error under L∞ metric. The bucket bound (size-bound) synopses
have been studied intensively [2, 3, 4, 8, 9, 10]. The construc-
tion of synopses has O(N2) time/space complexity [3]. Several
methods have been proposed to improve the performance [4, 6, 9].
Guha et al [5, 6] indicate that the restriction to Haar wavelet co-
efficients for the elements of a synopsis is not a good strategy in
approximation and extend to the construction of synopses not re-
stricted to Haar wavelet coefficients. Let ∆ be an approximation
error bound on L∞ metric. They tackle the problem of building un-
restricted bucket bound synopses in time O((∆

δ
)2N log N log2B)

through using rounding techniques and resolution parameter δ on
error bound ∆. Karras et al [10] improve the above result close to
O((∆

δ
)2N log N).

Nevertheless, many real applications suggest the construction of
error bound (∆-bound) synopses as stated below.

Restricted error-bound synopses: Given an error bound ∆ on
uniform norm L∞, the goal is to find Mop, a Haar wavelet synop-
sis with the smallest set of coefficients among all possible solutions,
that would satisfy the ∆ bound on L∞ (i.e., L∞<∆) in approxi-
mation. Mop is called R-optimal as each element in the synopsis is
restricted to be a Haar coefficient.

The error bound synopses have been studied by Muthukrishnan
and Guha [4, 12]. Their approaches for this problem are basically
similar to those for bucket bound synopses. The construction of the
optimal synopsis Mop has O(N2) time complexity. Furthermore,
the construction of “unrestricted” error-bound synopses are yet to
be fully studied.

Unrestricted error-bound synopses: Given error bound ∆, the
goal is to find Sop, a synopsis with the smallest set of unrestricted
coefficients among all possible solutions, that would satisfy the ∆
bound on L∞. Sop is called U-optimal as each element in the syn-
opsis is not restricted to be a Haar coefficient.

Fortunately, extended from the idea of [5, 6] on unrestricted
bucket bound synopses, Karras et al propose an efficient algorithm1

for the U-optimal problem under two parameters δ and ∆. This
most recent result (KSM algorithm) uses the dynamic-programming
framework and has O((∆

δ
)2N) time complexity. Theoretically,

their algorithm can obtain an U-optimal solution through (itera-
tively) using smaller δ values. The execution time of their algo-

1The MinHaarSpace algorithm of [10]. It is termed as KSM algo-
rithm in this paper.
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rithm greatly depends on the value of δ and ∆: It derives a smaller
sized synopsis under a smaller δ value but requires a greater length
of time2.

Given a data vector and an error bound ∆, the objective of this
paper is to provide efficient algorithms for constructing an unre-
stricted synopsis S such that the maximum approximation error of
each single data element is bounded by ∆ and S is quite close to
Sop in size.

Motivations: The unrestricted error-bound synopses are preferred
in many applications where the size-bound synopses can be nat-
urally unadaptable. For example, the correlation analysis on the
surgery patients requires the physiological data collected during
operations to be stored in the database in sampling manner for the
storage and query concerns. The size-bound synopses would not
be suitable for this scenario due to the variations in the durations of
surgery operations and may generate unqualified samplings. Fur-
thermore, the major issues in this application are time efficiency
and compression quality: The restriction of Haar wavelet coeffi-
cients samples has little effect.

Examples of physiological data include electrocardiogram, arte-
rial blood pressure, central venous pressure and respiration etc.

Contributions: We provide two linear-time algorithms on con-
structing the unrestricted error bound synopses: Fixed-value Shift
(F-Shift) algorithm and Sliding-value Shift (S-Shift) algorithm. F-
Shift is an approximation algorithm for the unrestricted absolute
error-bound problem while S-Shift can be viewed as an optimal
version of the former. That is, S-Shift always generates smaller (or
equal) sized synopses than that of F-Shift. Compared with conven-
tional approaches, our contributions in this paper can be summa-
rized as follows:

(1) We provide two computationally efficient and effective approx-
imation algorithms to construct unrestricted error-bound synopses
under L∞ metric. Let N be the size of the data vector. Our two al-
gorithms, F-Shift and S-Shift, both have linear time complexity. F-
Shift has O(log N) space complexity and S-Shift has O(N) space
complexity. They are (log N)-approximation algorithms. Let SF

and SS represent the synopses constructed by our F-Shift and S-
Shift algorithms respectively. Then |SS | ≤ |SF | ≤ |Sop| log N
holds for the optimal synopsis Sop. Furthermore, we show that this
property does not hold for R-optimal synopsis Mop. We indicate
the size of Mop can be very large even if Sop is very small (Exam-
ple 4.6). This result suggests that unrestricted synopses such as SF

or SS can be preferable to restricted synopses in real applications.

(2) Our approach in constructing unrestricted synopses is novel.
The traditional methods usually work on the decomposed data (co-
efficients) and find the retained coefficients either by checking the
combinatorial path summations [4, 6, 10, 12] or by retaining the
most “significant” coefficients [9]. Instead, we construct synopses
by “shifting” (shrinking) the adjacent data ranges, which will be
explained later in detail.

(3) The shift algorithms are directed by and based on the three novel
concepts along with their relevant properties proposed in the paper:
shift transformation, data scope and shift range. These properties
lead to the correctness of the Shift algorithms and the above-listed
features. The same methodology can be extended to other findings
besides the construction of synopses on relative errors [13].

(4) The efficiencies and effectiveness of Shift algorithms have been

2As stated in [10]: Smaller (δ) values burdened the running time
without significant quality increase; larger (δ) values were under-
mining the quality of the synopses.

Symbol Description
i ∈ {0..N − 1}
D, [d0; ..; dN−1] data vector

WD Haar wavelet transformation on D
T error tree

ci, si coefficient node, shift coefficient node
di, d̂i leaf/data node and its reconstruction

path(u) all ancestors of node u in T
T (c) subtree rooted at c

TL(c)/TR(c) left/right subtree of T (c)
∆ error bound on approximation (> 0)
S set of shift coefficients

SF /SS synopsis obtained by F-Shift/S-Shift
M set of Haar wavelet coefficients

Mop/Sop restricted/unrestricted optimal synopsis
T 〈S〉 error tree after S shift transform on T

Table 1: Notations

demonstrated through extensive experiments on both synthetic data
and real life data. In terms of effectiveness, the Shift algorithms
generate error-bound synopses with good compression quality. Al-
though the approximation ratio on synopses size is log N in theory,
the practical tests indicate that |SS | is often quite close to the size of
optimal synopses. In terms of efficiencies, the Shift algorithms dra-
matically improve the synopses construction time against the KSM
algorithm under a same compression quality goal.

(5) Moreover, due to O(log N) space complexity, the F-Shift al-
gorithm can be used as an online compression algorithm for stream
data: the algorithm processes incoming data progressively and does
not require the Haar wavelet error tree to be pre-computed. In
the process of compressing stream data, algorithms with linear (or
above) space complexity cannot be used directly and require a mech-
anism to segment incoming data into sections (e.g., fixed windows).
In contrast, unlike those existing compression methods including
those on Lp (1 ≤ p < ∞) measure, the F-Shift algorithm can
compress stream data directly in a synchronized way.

The rest of the paper is organized as follows. Section 2 explains
the basic terminologies. Section 3 describes the shift transforma-
tion and defines the data scope and the shift range concepts, in con-
junction with their related properties. Section 4 introduces the F-
Shift algorithm and its properties. Section 5 is about the S-Shift
algorithm. Section 6 reports our experiment results. Section 7 con-
cludes this paper.

2. HAAR WAVELET AND DATA APPROX-
IMATION

Table 1 summarizes the notations used throughout this paper.
Wavelets are a mathematical tool for hierarchically decompos-

ing functions. Generally, the wavelet decomposition of a function
consists of a coarse overall approximation together with detail co-
efficients that influence the function at various scales [15]. It can
generally be computed in linear time.

The Haar wavelet is the simplest wavelet. The Haar wavelet de-
composition of a data vector consists of a coefficient representing
the overall average of the data values followed by detail coefficients
in the order of increasing resolution. Each detail coefficient is the
difference of a pair of averaged values from the lower level.

Suppose we are given data vector D = [19; 17; 12; −4; 7; −1;
−3; −7] containing N =8 data values. The Haar wavelet decom-
position of D can be computed as follows. We first average the
data values, pairwise, to get a new lower-resolution data with val-
ues [18; 4; 3;−5]. That is, the first two values in the original data
(19 and 17) average to 18, and the second two values 12 and −4
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average to 4, and so on. We also store the pairwise differences of
the original values (divided by 2) as detail coefficients: [ 19−17

2
;

12+4
2

; 7+1
2

; −3+7
2

], which is [1; 8; 4; 2]. It is easy to see that the
original values can be recovered from the averages and differences.
By repeating this process recursively on the averages, we get the
Haar wavelet decomposition in Figure 1(i). We define the wavelet
decomposition WD of data vector D to be the coefficient represent-
ing the overall average of the original data, followed by the detail
coefficients in the order of increasing resolution. That is, WD = [5;
6; 7; 4; 1; 8; 4; 2].

The Haar wavelet decomposition can be expressed in an error
tree structure [11]. Depicted in Figure 1(ii), error tree T is a hierar-
chical structure representing the nodes of WD and D, where each
internal node ci represents a wavelet coefficient and each leaf node
di represents an original data item. We use T (u) to denote the sub-
tree rooted at u, TL(u) and TR(u) as the subtrees rooted at the left
and right child of u respectively.

Given a node u (internal or leaf), we define path(u) as the set of
nodes that lie on the path from the root node to u (excluding u). To
reconstruct any leaf node di through the error tree T , we only need
to compute the signed summation of nodes belonging to path(di).
That is,

di =
∑

cj∈path(di)
δijcj , (1)

where δij =+1 if di ∈ TL(cj) and δij =−1 if di ∈ TR(cj). From
this property, we define an error tree to be a binary tree where each
leaf node di equals the signed summation of all the internal nodes
of path(di). That is, each di satisfies Equation (1).

Being reconstructed from WD , data vector D can also be ap-
proximated with a subset of WD . Let d̂i denote the approximated
data value of di on M ⊆ WD . That is, d̂i =

∑
cj∈path(di)∩M

δijcj .
Rather than obtaining the minimum set M ⊆ WD that satisfies
max

0≤i<N
|d̂i − di| < ∆ for a given error bound ∆>0, in this paper,

we will investigate how to find a close-to-minimum-sized S such
that max

0≤i<N
|d̂(S)

i − di|<∆ where

d̂
(S)
i =

∑

cj∈path(di)∧sj∈S

δijsj . (2)

Generally, S is a set of si obtained from a subset of WD by rep-
resenting each cj in the subset with sj . Equation (2) is the signed
summation of S nodes on path(di). Detailed discussion on S and
its graphic meaning will be given in the next section.

EXAMPLE 2.1. In error tree T of Figure 1(ii), T (c5)=TR(c2)
and T (c4)=TL(c2). Data value d2 can be reconstructed through
the nodes of path(d2), i.e., d2 = 5 + 6 + (−7) + 8. Let M =
{c1, c2, c3, c5, c6} and S = {s0, s1, s5} where3 s0 = 5.5, s1 =

5.75 and s5 = 8. Then d̂2 = 6 + (−7) + 8, which is 7, and
d̂
(S)
2 = 5.5 + 5.75 + 8, which is 19.25.

3. CONCEPTS AND PROPERTIES
In this section, three major concepts of this paper: shift transfor-

mations, data scope and shift range are defined. Some properties
for each concept are given. We will firstly show how to use shift
transformations to generate synopses. We then indicate that data
scopes and shift ranges can be used to select shift coefficients and
for assigning shift values. With these results, the general idea of
Shift algorithms is given in Section 3.4.
3We will explain why we chose these particular values for si in
Section 3.3.

3.1 Shift Transformation
Shift transformations supply graphic explanations and meanings

for the unrestricted synopses and their formations. In this subsec-
tion, we first define shift transformations. We then show that a syn-
opsis is a set of shift values generated from shift transformations
that transform the error tree to “∆-bound” (Property 3.3).

Let ci be a coefficient of error tree T and si be a real value. An
si-shift transformation at ci of T transforms T into T ′ = T 〈si〉
through the following steps:

1. Replace coefficient ci with ci − si;

2. When i > 0,

(a) replace each leaf node d of TL(ci) with d− si;
(b) replace each leaf node d of TR(ci) with d + si.

3. When i = 0, replace each leaf node d of T with d− s0.

si is called the shift coefficient (at ci). In general, suppose that
S is a set of shift coefficients on error tree T . T 〈S〉 is the tree
transformed from T through applying the above steps on each si ∈
S iteratively. Clearly, T 〈S〉 is well defined and irrelevant to the
transformation order of the elements in S.

From the error tree definition, it can be proven that T 〈S〉 is the
error tree on the updated data vector.

PROPERTY 3.1. Let T be an error tree and S be a set of shift
coefficients on T . Then T 〈S〉 is also an error tree.

The above property assures that the Shift algorithms introduced in
the paper work on an error tree at each iteration.

EXAMPLE 3.2. (Continued from Example 2.1) Error trees of
T 〈{s5}〉, T 〈{s1, s5}〉 and T 〈{s0, s1, s5}〉 are expressed from Fig-
ure 1(iii) to Figure 1(v) respectively.

A set of shift coefficients S is called a ∆-bound unrestricted syn-
opsis (or simply synopsis) if |diffS(di)| < ∆ holds for each di of
T where diffS(di)=di−d̂

(S)
i .

Generally, a shift coefficient si of S may not have the same value
as ci. A restricted synopsis is a synopsis where each si = ci

in S. In this paper, a restricted synopsis will be denoted by M .
An optimal (restricted/unrestricted) synopsis is a synopsis that has
the smallest size among all possible synopses. By Mop (and Sop)
we denote the optimal restricted (and unrestricted) synopsis respec-
tively. Clearly, |Mop| ≤ |M | and |Sop| ≤ |S| hold.

Error tree T is ∆-bound if |di| < ∆ holds for each di of T . The
following results can be directly proven from the definition of syn-
opses. It assures the correctness of Shift algorithms and indicates
that a synopsis can be derived from shift transformations.

PROPERTY 3.3. Let T be an error tree.

1. T 〈Sop〉 is ∆-bound.

2. Empty set ∅ is a synopsis iff T is ∆-bound.

3. S is a synopsis of T iff T 〈S〉 is ∆-bound.

4. If T is ∆-bound, then |ci| < ∆ holds for each ci ∈ T .

Property 3.3(4) can be proven by borrowing Property 1 of [14].
Roughly, if each |di| < ∆, then the averages of any data values are
less than ∆. Thus the averages of their differences are less than ∆.
That is, |ci| < ∆ for each ci ∈ T .

EXAMPLE 3.4. (Continued from Example 3.2) Let ∆ = 8. It
can be verified that Mop ={c1, c2, c3, c5, c6} and Sop ={s0, s1, s5}
hold. M = {c0, c1, c2, c3, c5, c7} is a restricted synopsis. Fig-
ure 1(v) is T 〈Sop〉 and Figure 1(vi) is T 〈Mop〉. Clearly, |di|< ∆
holds for each di∈T 〈Sop〉 (or di∈T 〈Mop〉).
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Figure 1: Example (∆ = 8): Mop = {c1, c2, c3, c5, c6} and Sop = {s0, s1, s5}.

3.2 Data Scope
Property 3.3 shows that a synopsis can be obtained through shift

transformations. One of the remaining questions is which coeffi-
cient needs to be shifted or which si should be in a synopsis? In
order to answer this question, we propose the data scope concept.

DEFINITION 3.5. Let T ′ be a subtree of error tree T and S be
a set of shift coefficients. The (data) scope of T ′ on S is defined as

scope(T ′, S) =
1

2
max

di,dj∈T ′
|diffS(di)− diffS(dj)| .

Intuitively, scope(T ′, S) describes the data extents of T ′〈S〉 and
measures maxd′i,d′j∈T ′〈S〉

∣∣d′i − d′j
∣∣. With this concept, we will

explain when a coefficient of a subtree needs to be shifted.
Let S be a set of shift coefficients. For simple expressions, we

denote {si|ci ∈ T (c) ∧ si ∈ S}, the subset of S that locates
in T (c), by T (c) u S. The following property suggests that the
exhaustive combinations on path(di) as in [12, 4] can be alleviated
by checking data scopes.

PROPERTY 3.6. Let S be a set of shift coefficients. Then, for
any coefficient c of T ,

(i) scope(T (c), Mop) < ∆ and scope(T (c), Sop) < ∆ hold;

(ii) scope(T (c), S) = scope(T (c), T (c) u S);

(iii) if scope(T (c), ∅)≥∆, then T (c) ∩Mop 6=∅;

(iv) if scope(T (c), ∅)≥∆, then T (c) u S′ 6= ∅ holds for any syn-
opsis S′.

PROOF. The proof of (i) can be obtained from the definitions of
Mop, Sop and data scope directly.

The proof of (ii): Let di and dj be any two data nodes in T (c).
d̂
(S)
i and d̂

(S)
j , the reconstructed di and dj on S, are built from

the summation of two parts: (a) d̂
(S)
i1 and d̂

(S)
j1 from the nodes of

(T−T (c)) u S where d̂
(S)
i1 = d̂

(S)
j1 and, (b) d̂

(S)
i2 and d̂

(S)
j2 ; where

d̂
(S)
i2 and d̂

(S)
j2 from the nodes of T (c)uS. Since d̂

(S)
h = d̂

(S)
h1 +d̂

(S)
h2

and diffS(dh)=dh−d̂
(S)
h for h= i, j,

diffS(di)− diffS(dj) = (di − d̂
(S)
i )− (dj − d̂

(S)
j )

= (di − d̂
(S)
i1 )− (dj − d̂

(S)
j1 ).

That is, |diffS(di)−diffS(dj)|= |diffT (c)uS(di)−diffT (c)uS(dj)|.
As di and dj are arbitrary data of T (c), (ii) is proven from the
definition of data scope.

As the proofs of (iii) and (iv) are similar, we will only prove (iii)
in the following.

Otherwise, assume that T (c)∩Mop =∅ holds. From (ii), we have
scope(T (c), Mop) = scope(T (c), ∅). Since scope(T (c), ∅) ≥ ∆,
scope(T (c), Mop) ≥ ∆ holds. Therefore, (iii) is proven, as it is
contradictory to (i).

We will call subtree T (c) scope bound (or simply, s-bound) if
scope(T (c), ∅) < ∆, otherwise, it is s-unbound. T (c) is called
s-bound (i.e., maximal s-bound) if it is s-bound and T (c′) is s-
unbound where c′ is the parent node of c in error tree T . Similarly,
denote T (c) to be s-unbound if T (c) is s-unbound but each of its
subtrees is s-bound. Clearly, if T (c) is ∆-bound then it is s-bound.
These concepts will be used in the Shift algorithms and for the size
estimation on obtained synopses.

Property 3.6(ii) says that scope(T (c), S) is unchangeable by shift-
ing any nodes of T − T (c). That is, shifting the coefficients that
locate outside of T (c) will not change the value of scope(T (c), S).
Property 3.6(iii) and (iv) imply that, in order to obtain a synopsis
for the given ∆, some nodes inside T (c) must be shifted whenever
T (c) is s-unbound. This is the basic property for the Shift algo-
rithms.

EXAMPLE 3.7. (Continued from Example 3.4) For error tree T
of Figure 1(ii), T (c4), TL(c5), TR(c5) and T (c3) are s-bound.
T (c4) is also ∆-bound. The number of s-bound subtrees of T
is 4. Alternatively, T (c5) is s-unbound. T (c2) is s-unbound as
scope(T (c2), ∅) = (19 + 4)/2 is greater than ∆. According to
Property 3.6, at least one coefficient of T (c2) and T (c5) need to be
shifted for a synopsis.
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3.3 Shift Range
To obtain a synopsis, Property 3.6 indicates that a shift coeffi-

cient in a s-unbound subtree should be retained or shifted. It is
still not clear which specific coefficient should be chosen and in
what value, considering that the shift coefficient si will usually not
have the same value as coefficient ci. These questions will be an-
swered in this subsection. Explicitly, we will show how to convert
an s-unbound subtree into an s-bound subtree by applying a shift
transformation on its root node. We then give the definition of the
shift range. Generally, the shift range on coefficient ci is a range of
values for si to choose from.

In the following, Property 3.8 actually points out a method of
converting an arbitrary error tree into a ∆-bound tree through shift
transformations. Significantly, it shows that only node ci where
T (ci) is s-unbound and/or node c0 need to be shifted in the process
of generating a synopsis from bottom-up.

PROPERTY 3.8. Let T ′ = T (ci) be a subtree of error tree T
rooted at node ci (i > 0) and ∆ > 0 be a given error bound.

i. If T ′ is s-unbound for ∆, then there exists si such that T ′〈si〉 is
s-bound.

ii. If error tree T is s-bound but not ∆-bound, then there exists s0

such that T 〈s0〉 is ∆-bound.

PROOF. The proof of (i). Let dLg and dLs (or dRg and dRs ) be
the largest and smallest data values of TL(ci) (or TR(ci)) respec-
tively. Since T ′ is s-unbound, the following Equations hold.

{
dLg − dLs < 2∆, dRg − dRs < 2∆,
max{dLg , dRg} −min{dLs , dRs} ≥ 2∆.

(3)

In order to convert T ′ into an s-bound one, the shift coefficient
si should satisfy−2∆ < dLg−si−(dRs +si) < 2∆ and−2∆ <
dRg + si − (dLs − si) < 2∆. Since dLg−dRs ≥−(dRg−dLs),
this equation can be simplified into:

(dLg − dRs)/2−∆ < si < −(dRg − dLs)/2 + ∆. (4)

By Equation (3), since

[−(dRg − dLs)/2 + ∆]− [(dLg − dRs)/2−∆]

= 2∆− [(dRg − dRs) + (dLg − dLs)]/2

> 0,

the existence of si is proven.
The proof of (ii). Suppose that dg and ds are the largest and

smallest data values of T (c0) respectively. Let x1 = (dg +ds)/2
and l1 =(dg−ds)/2. To convert T into a ∆-bound one, s0 should
satisfy−∆ < x1− l1− s0 and x1 + l1− s0 < ∆, or equivalently,

|x1 − s0| < ∆− l1. (5)

From the assumption that T is s-bound, ∆− l1 > 0 holds. There-
fore, Equation (5) has solutions and T 〈s0〉 is ∆-bound for each
solution s0 of Equation (5).

It should be noted that T ′〈si〉 is not guaranteed to be s-bound
if we choose si to be ci in Property 3.8(i). Similarly, in Prop-
erty 3.8(ii), T 〈s0〉may not be guaranteed to be ∆-bound by setting
s0 to be c0. That is, ci (or c0) may not satisfy Equation (4) (or
Equation (5)).

The above proof is constructive. The proof also illustrates what
values the shift coefficient needs to be chosen from. For instance,
in the proof of Property 3.8(i), T ′〈si〉 is s-bound for any si that is
in the range of Equation (4).

Furthermore, a special situation of Equation (4) is to minimize
the scope of T ′〈si〉: in addition to being s-bound, shift the two
intervals of (dLs − si, dLg − si) and (dRs + si, dRg + si) en-
closed, i.e., one interval subsumes another. In this situation, it can
be verified that si satisfies the following equation:

{
min{(dLg−dRg )/2, (dLs−dRs)/2} ≤ si

si ≤ max{(dLg−dRg )/2, (dLs−dRs)/2}. (6)

Let lL =(dLg−dLs)/2, lR =(dRg−dRs)/2, xL =(dLg +dLs)/2
and xR =(dRg +dRs)/2. Equation (6) can be rewritten into

|(xL−xR)−2si| ≤|lL−lR|. (7)

The existence of si in Equation (7) can be proven from Equation
(6). We will use Equation (7) to select the values for si when-
ever T (ci) is s-unbound rather than through Equation (4). In Sec-
tion 5.1, we will explain why we do not use Equation (4) in our
approach.

DEFINITION 3.9. Let T ′ = T (ci) be a subtree of error tree T
and ∆ > 0 be a given error bound. The shift range of ci (i.e.,
range(ci)) is defined as follows.

a. if T ′ is s-unbound, then range(ci) = [si, si] where si = [(xL−
xR) − |lL − lR|]/2 and si = [(xL − xR) + |lL − lR|]/2
derived from Equation (7).

b. if T ′ = T (c0) is s-bound but not ∆-bound, range(c0) = (s0, s0)
where s0 = x1− (∆− l1) and s0 = x1 +(∆− l1) derived
from Equation (5).

c. if T ′ is s-bound, then range(ci) = [si, si] where si = si =
(xL + xR)/2.

As we will explain in the latter sections, the S-Shift algorithm
will employ “modified” shift ranges in the process of generating a
synopsis. Clearly, si = (xL−xR)/2, which will be used in the
F-Shift algorithm constantly, is a solution of Equation (6).

EXAMPLE 3.10. In Figure 1(iii), range(c1)=[5.5, 6] from Equa-
tion (7). That is, T 〈{s1}〉 is s-bound for any s1 ∈ range(c1).
The data interval [ds, dg] of T (s1) slides between [−1.5, 13.5] and
[−2, 13] for s1 ∈ range(c1) with the same data scope l2 = 7.5. In
Figure 1(iv), T is s-bound. range(c0) = (5.25, 6.25) by Equation
(5). T 〈{s0}〉 is ∆-bound for any s0 ∈ range(c0). Data interval
(ds, dg) of T 〈{s0}〉 slides between (−7, 8) and (−8, 7). Specifi-
cally, T 〈{s0}〉 for s0 = 5.5 is the error tree of Figure 1(v).

3.4 Idea on Shift Algorithms
The properties of shift transformations, data scopes and shift

ranges will be used to shape the Shift algorithms. Normally, Shift
algorithms work bottom-up from the data vector. It applies a shift
transformation on the root node of a current s-unbound subtree re-
peatedly. Each shift transformation converts the s-unbound subtree
into a s-bound subtree through properly chosen a shift value from
the shift range. When the process comes to node c0, the algorithms
may shift node c0 making the current T (c0) be ∆-bound. Even-
tually, the set of shift coefficients is the synopsis. For instance, let
us consider the error tree T of Figure 1(ii). The F-Shift algorithm
first works on the s-unbound subtree T (c5) and derives T 〈{s5}〉
depicted in Figure 1(iii). It then works on the next s-unbound sub-
tree, which is T (c1) in Figure 1(iii), and derives T 〈{s1, s5}〉 de-
picted in Figure 1(iv). Repeating these steps, the F-Shift algorithm
derives T 〈{s0, s1, s5}〉 ultimately.

The major difference between the F-Shift and the S-Shift is that
they use different strategies on choosing shift values. Unlike the F-
Shift where the shift values are set to be average values (i.e., (xL−
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xR)/2) from bottom up, the S-Shift algorithm generate synopsis
SS from two phases: the bottom-up phase and the top-down phase.
In the bottom-up phase, it computes range(c) from range(cL) on
the left subtree and range(cR) on the right subtree in a “modified”
way by generalized Equation (7) and Definition 3.9. Its objective
is to fuse the maximum overlapped data range on each subtree. In
the top-down phase, it instantiates the values of selected shift coef-
ficients within the ranges to compute synopsis SS from top down.
Details will be given in the next two sections.

4. F-SHIFT ALGORITHM
As depicted in Algorithm 1, the F-Shift (Fixed-value Shift) algo-

rithm employs the data scope and shift technique to obtain a synop-
sis in bottom-up from the data vector. It does not need to construct
WD or T previously. This is because that a shift transformation
on c ∈ T actually only works on data of TL(c) and TR(c) in an
opposite way and can be described by the data “intervals” of TL(c)
and TR(c).

In this section, we first describe the F-Shift algorithm. We then
study the complexity of F-Shift and discuss the upper bound on the
synopses generated from it.

Algorithm 1 : F-Shift(D,∆)
Input:

D, the original data vector; ∆, the specified error bound.
Output:

A synopsis B. That is, the set of shift coefficients that satisfies
∆ bound.

Description:
1: B=∅; F=∅ {Initialize the synopsis and set F}
2: define f = (x, l, n) {x and l describe the current shift range;

n is the number of data in the current subtree}
3: for di ∈ D do
4: f = (di, 0, 1); add f to F
5: while there exist fl = (xl, ll, nl) and fr = (xr, lr, nr) in

F , such that nl = nr do
6: set dg =max{xl+ll, xr+lr} and ds =min{xl−ll, xr−lr}
7: if (dg − ds ≥ 2∆) then
8: set b=(xl−xr)/2, l=max{ll, lr} and x=(xl−b)
9: else

10: set b = 0, l=(dg−ds)/2 and x=(dg+ds)/2
11: end if
12: add f = (x, l, 2nr) to F
13: delete fl and fr from F
14: if b 6= 0, add b to B
15: end while
16: end for
Ensure: there is only one element, f = (x, l, n), in F
17: if |x| ≥ |∆− l|, add x to B
18: return B

4.1 Description of F-Shift
Roughly, the F-Shift algorithm constructs a synopsis from d0 up

to dN−1 gradually onwards (lines 3). This progressive feature is
desirable in on-line processing of stream data.

Line (7 − 11), is the key part of the algorithm. It uses a “fixed”
value to convert an s-unbound subtree into an s-bound one. It con-
structs f = (x, l, 2n) from fL = (xL, lL, n) on the left subtree
and fR = (xR, lR, n) on the right subtree. Suppose that dLg

and dLs are the largest and smallest data values on the left sub-
tree. Each data in the subtree is in the interval of (dLs , dLg ). In
fL = (xL, lL, n, bL), xL =(dLg +dLs)/2 is the mean of dLg and
dLs , lL =(dLg−dLs)/2 is the data scope, n is the number of data
in the subtree.

If the current subtree is s-unbound, a shift transformation is re-
quired (Line 8). Let the shift value b=(xL−xR)/2. Clearly, such
b satisfies Equation (7). Line 17 decides s0, the shift value of c0.
This step is based on Equation (5). If |x1| ≥ ∆ − l then shift c0

into x1 that satisfies Equation (5).
Property 3.1 guarantees that Line (5 − 15) works on an error

tree at each iteration. Property 3.3 assures that the final B of the
F-Shift algorithm is a ∆-bound synopsis. The value of each shift
coefficient is assigned according to the designated shift range.

EXAMPLE 4.1. Considering error tree T of Figure 1(ii), F-shift
algorithm generates s5 = 8, s1 = 5.75 and s0 = 5.75 incremen-
tally and eventually obtains the synopsis SF = {s5, s1, s0}.

4.2 Complexity and Upper Bound
In the F-Shift algorithm, the parameters on a node are derived

from the parameters on the two children nodes with a constant num-
ber of operations. Since there are N number of nodes that need to
be processed at most, the total time required to compute B (i.e.,
SF ) is O(N).

As the algorithm works in bottom up from the data vector, the
space complexity of F-Shift is O(log N). This is because that
each si of SF needs to be derived from the information on nodes
{c2i, c22i+2, c23i+22+2, ...}, one node at each level of T (ci). That
is, log N in number.

To estimate |SF |, let the number of s-bound subtrees of T be
ts. Since the F-Shift algorithm needs to shift the root node of two
adjacent s-bound subtrees to make it s-bound, it needs to shift at
most ts − 1 nodes to make T become s-bound. Again the F-Shift
algorithm may need to adjust c0 node at the last step to make T
∆-bound. Therefore, |SF | ≤ 1 + ts − 1. That is, |SF | ≤ ts. Thus
the following lemma is proven.

LEMMA 4.2. Let the number of s-bound subtrees of T is ts.
Then |SF | ≤ ts.

Moreover, the above bound on SF is ”tight”: it can easily find a
example such that |SF | = ts. However, this bound is not applicable
to restricted-optimal synopsis Mop: It can be either |Mop| ≤ ts or
|Mop| > ts.

EXAMPLE 4.3. In Figure 1(ii), since ts = 4 and |Mop| = 5,
|Mop| > ts hold. In Figure 2(i), since ts = 4 and |Mop| = 2,
|Mop|<ts hold.

Furthermore, we have |SF | ≤ |Sop| log N . This is because, for
each ci that satisfies |T (ci) u SF | = 1, there exist sj such that
sj ∈ Sop u T (ci) (Property 3.6(iv)). Let SJ be the set of all sj .
Then SJ ⊆ Sop. As the number of ancestors of sj is bounded by
log N , |SF | ≤ |SJ | log N ≤ |Sop| log N holds. In summary, we
have proven the following theorem for this section.

THEOREM 4.4. Let D be a data vector with size N and ∆ > 0.
Suppose SF is the set of shift coefficients obtained from F-Shift
algorithm on D and ∆. Then

• SF is a synopsis;

• the time and space complexity of F-Shift algorithm are O(N)
and O(log N) respectively;

• the size of SF is bounded by min{ts, |Sop| log N}.

EXAMPLE 4.5. In Figure 2(i), it can be verified that Mop =
{c4, c7} and SF = {s0, s2, s3} for s0 = 3.5, s2 = 4 and s3 =
−4. From Equation (7), range(c2) = [3, 5] and range(c3) =
[−4.5,−3.5]. It can also show that Sop = {s′2, s′3} for s′2 = 5
and s′3 =−4 in Figure 2(ii).
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Figure 2: Example.

Besides |SF | > |Sop|, the above example also indicates that
choosing proper shift values can reduce the size of SF . This topic
will be discussed in Section 5. In contrast, as indicated in the fol-
lowing example, the size of R-optimal |Mop| can be very large even
if |Sop| is quite small.

EXAMPLE 4.6. As depicted in Figure 2(iii), D is the data vec-
tor that is formed by repeating DL = [19; 17; 4; 4] and DR =
[7;−1;−3;−7] on its left and right subtree respectively. Let ∆ =
8. It can prove that SF = {s0 = 5.75, s1 = 5.75} for each
N = 2n > 8. It can also show that |Mop| = N/4 + 2. For
instance, Mop = {c0, c1, c4, c5, c12, c14} when N = 16.

5. S-SHIFT ALGORITHM
The S-Shift (Sliding-value Shift) algorithm is aimed at construct-

ing a smaller sized synopsis. As indicated in Formula (7) of Sec-
tion 3.3, there exist many shift values other than b = (xL−xR)/2
that used for the F-Shift algorithm. As an extension of the F-Shift
algorithm, S-Shift algorithm employs shift ranges and “late bind-
ing” on shift values to compute a synopsis to diminish the number
of shift coefficients. In particular, the strategy behind S-Shift is
that first find the set of coefficients that need to be shifted along
with their fused shift ranges from bottom-up and then instantiate a
proper shift value for each selected coefficient from its range to ob-
tain a synopsis in top-down. In this way, some shift coefficients in
SF can be evaporated away through fusing the shift ranges on their
subtrees. The detailed descriptions and the correctness proof for the
algorithm, along with a running example, are given in Appendix.

5.1 The property of S-Shift
In the bottom-up phase of the S-Shift algorithm, each f = (c, ),

derived from fL = (cL, ) and fR = (cR, ) with a bounded num-
ber of operations, requires O(1) time. Since there are N number
of nodes that need to be processed, the time required in this phase
is O(N). The space complexity of this phase is also O(N) as each
f = (c, ) is required in the top-down phase. In the top-down
phase, each f = (c, ) is used either to instantiate a value for an

element of B or to narrow down shift ranges. This phase requires
O(N) in both memory and time for processing N number of nodes.
Therefore, the total time/memory requirement of the S-Shift algo-
rithm is O(N).

With regard to the size of SS , the synopsis constructed from
the S-Shift algorithm relates a varied form of U -optimal problem,
which is called U -scope-based-optimal problem that stated as fol-
lows.

DEFINITION 5.1. Given data vector D = [d0; d1; ...; dN−1]
and error bound ∆, the U -scope-shift-optimal (Us-optimal) prob-
lem is to find Sopt, a synopsis with the smallest set of unrestricted
coefficients among all possible solutions, such that

i Sopt is a synopsis on ∆. That is, |di− d̂
(Sopt)
i | < ∆ holds for

0 ≤ i ≤ N − 1;

ii Ti〈Si〉 is s-unbound for each si ∈ Sopt where Si = Sopt−{si}
and Ti = T (ci) and i > 0.

Roughly, the difference between U -optimal problem and Us-
optimal problem is that si can be chosen from a s-bound subtree
in U -optimal problem but cannot be so in Us-optimal problem.

As mentioned early, Phase A minimizes the scope of each sub-
tree and uses Equation (7) rather than Equation (4) to compute
ranges. One issue of concern is that this approach of minimization
may result in the lose of generality (i.e., a smaller sized synopsis
may exist if uses Equation (4)). The concern is clarified in Prop-
erty 5.2.

PROPERTY 5.2. Let TiL = TL(ci) and TiR = TR(ci) be the
left and right substree of Ti = T (ci).

1. If si ∈ Sopt and si does not lead to the minimal scope of
Ti〈Sopt〉 from TiL〈Sopt〉 and TiR〈Sopt〉. Then there exists
s′i that can minimize the scope of Ti〈Sopt〉 such that (Sopt−
{si}) ∪ {s′i} is a synopsis.

2. Suppose coefficient ci is not shifted (i.e., si 6∈ Sopt). Let S =
T (ci)uSopt, SL = TL(ci)uSopt and SR = TR(ci)uSopt.
We use ds and dg (d′Ls

and d′Lg
, d′Rs

and d′Rg
, respectively)

to denote the smallest and largest data of Ti〈S〉 (TL〈S′L〉,
TR〈S′R〉, respectively) where S′L (or S′R) is obtained from
SL (or SR) by assigning different values to some of its ele-
ments. If ds ≤ min{d′Ls

, d′Rs
} and max{d′Lg

, d′Rg
} ≤ dg ,

then (Sopt−SL)∪S′L, (Sopt−SR)∪S′R and (Sopt−SL∪
SR) ∪ S′L ∪ S′R are synopses.

PROOF. We only prove (1) as (2) can be proven similarly.
Let dg and ds (dLg and dLs , or dRg and dRs ) be the largest and

smallest data values of Ti〈Sopt〉 (TL〈Sopt〉 or TR〈Sopt〉) respec-
tively where Ti = T (ci). Since si is not maximum overlapping the
scopes of TL〈Sopt〉 and TR〈Sopt〉, (dLg−si > dRg +si)∧(dLs−
si > dRs +si) or (dLg −si < dRg +si)∧ (dLs −si < dRs +si)
holds.

If (dLg − si > dRg + si) ∧ (dLs − si > dRs + si), let s′i =
min{dLg − dRg , dLs − dRs}. It can be proven that
{

max{(dLg−s′i), (dRg +s′i)} ≤ max{(dLg−si), (dRg +si)},
min{(dLs−si), (dRs +si)} ≤ min{(dLs−s′i), (dRs +s′i)}.

That is,
{

max{(dLg − s′i), (dRg + s′i)} ≤ dg,
ds ≤ min{(dLs − s′i), (dRs + s′i)}.

Let d′g = max{(dLg − s′i), (dRg + s′i)} and d′s = min{(dLs −
s′i), (dRs + s′i)}. The above formulae imply that (|d′g − γ| <
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∆)∧(|d′s−γ| < ∆) if |dg−γ| < ∆ and |ds−γ| < ∆. Therefore,
(Sopt − {si}) ∪ {s′i} is a synopsis by definition.

Similarly, it can be proven that the result for the situation of
(dLg − si < dRg + si) ∧ (dLs − si < dRs + si).

Intuitively, Property 5.2 means that Sopt can always be con-
structed by minimizing the scopes of subtrees. Since the S-Shift
algorithm checks all possible shift values that lead to the minimized
scopes of subtrees, the following theorem is proven.

THEOREM 5.3. Let D be a data vector with size N and ∆ >
0. Suppose SS is the set of shift coefficients obtained from S-Shift
algorithm on D and ∆. Then

• SS is an optimal synopsis for the Us-optimal problem (i.e.,
|SS | = |Sopt| and |SS | ≤ |SF |);

• the time and space complexity of S-Shift algorithm are O(N);

• the size of SS is bounded by min{ts, |Sop| log N}.

In the above theorem, the bound on |SS | is directly obtained
from Theorem 4.4.
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Figure 3: Distributions of various Data Sets

6. EXPERIMENTAL EVALUATION
In this section, we present some of our experimental results of

the Shift algorithms to illustrate their compression quality and time
efficiency. We compare the results to those achieved with the re-
stricted error bound synopses construction algorithm in [12] and
the KSM algorithm in [10]. We also test the scalability and worka-
bility on the Shift algorithms. All the algorithms are implemented
in GNU C++ and all the experiments are performed on an Intel
Xeon 3.0GHZ Linux box with 2 GB memory.

Experiment Bed4. The experiments are conducted on two syn-
thetic data sets and two real life data sets. The two synthetic data
sets, as depicted in Figure 3 (a) and (b), are Uni and Zipf respec-
tively with their values distributed in [0, 1000]. Uni contains values
following uniform distribution. Zipf contains values following zipf
4We also generate another moderate skew data set with values fol-
lowing normal distribution in our experiments. The test results on
this data set lies between that of Uni and Zipf. Due to space limita-
tion, we will not report the details in this version of this paper.

distribution with a zipf parameter of 2.0, i.e. a highly skewed dis-
tribution. The two real data sets used in this section are acquired
from UCI KDD Archive [1]: TEM and EEG as depicted in Fig-
ure 3 (c) and (d) respectively. TEM is sea surface temperatures
extracted from the El Nino Data set, taken from a series of buoys
positioned throughout the equatorial Pacific. This data set is also
used in [10] for its experiments. EEG includes values, in micro-
volt (mV), acquired from a large study to examine EEG correlates
of genetic predisposition to alcoholism. We implement our two
(log N)-approximate algorithms, the F-Shift algorithm (F) and the
S-Shift algorithm (S). As a reference, we also implement the op-
timal restricted error bound synopses construction algorithm [12],
denoted by R. For the KSM algorithm, we use the source code that
borrowed from the authors of [10].
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Figure 4: Sizes of Synopses on various Data Sets

6.1 Compression Quality
Since the size of synopses reflect the compression quality, we

shall construct error bound synopses for each of the algorithms F,
S, and R and compare these obtained synopses against the opti-
mal one in this subsection. As stated in [10] that a smaller δ in
KSM algorithm leads to a smaller sized synopsis under a sacri-
fice of construction time, we shall use the synopses generated from
KSM algorithm under smaller δ as the substitutes of optimal syn-
opses. With this intention in mind, we tune δ such that the average
construction time on synopses by KSM is between 30 to 80 hours
for each considered data set and assume these generated synopses
are quite close to the optimal in the experiments.

Figure 4 presents the experiment results on the four data sets.
The value of ∆/δ indicates how we set δ for KSM in each data
set. In Figure 4, we choose the displayed range of error bounds
(∆) to be practical in real situations5. For example, on TEM data,
the error bounds are set from 1 to 3.5 due to the small standard
deviation (1.91). Larger error bounds can seriously blur the details
of TEM and are quite undistinguishable.

As indicated in Figure 4, F and S achieve better compression
quality than that of R. S performs quite well since it generates sim-
ilar sized synopses as that of KSM in many cases. S also performs
better than F, which supports our previous theorems that S gener-
ates optimal shift synopses. We conclude that the two shift algo-
rithms, especially S-shift, demonstrate superb compression quality.
5Similar trends are discovered for other ranges
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Uni Zipf TEM EEG
R/KSM 341 - 625 4367
F/KSM 0.12 3× 10−3 5× 10−4 1× 10−3

S/KSM 0.01 1× 10−7 4× 10−4 7× 10−4

Table 2: Synopses construction time comparison
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Figure 5: Time of synopses construction on various Data Sets

6.2 Time Efficiency
Unlike the running time of F, S and R that solely depends on N ,

the running time of KSM is also heavily related to (∆/δ)2: A big δ
results in a quick construction with poor compression quality while
a small δ results in a slow construction with a good compression
quality. In this subsection, we evaluate the synopses construction
time under a fixed error bound (∆) and various δ values on KSM.
From the following discussion, we conclude that the two shift algo-
rithms, especially S-shift one, can be 1 ∼ 7 orders of magnitudes
faster than KSM algorithm when constructing similar sized syn-
opses.

Figure 5 shows the synopses construction time on the four data
sets. KSM demonstrates a trade-off between construction time and
synopses sizes. Table 2 lists the construction time ratios with KSM
upon constructing similar sized synopses. It indicates that R is far
more slower than KSM on constructing a similar quality synopsis.
The shift algorithms, F and S both perform better than KSM under a
smaller δ. That is, when constructing similar sized synopses, F im-
proves the synopses construction time 1 ∼ 4 orders of magnitudes.
S improves the synopses construction time 2 ∼ 7 orders of mag-
nitudes. This can be explained from O((∆

δ
)2N) time complexity

on smaller δ. Besides, termed as TM data set, the TEM data set is
also used in Figure 8(a) of [10]. When constructing synopses for
δ = 0.1 on the TEM data set, Figure 5(c) shows that KSM requires
no more time than that of indicated in Figure 8(a) of [10].

It is also interesting to note that the performances of F and S
are especially well when constructing synopses on data sets with
skewed distribution.

6.3 Scalability
To evaluate the time and compression quality performance trends

of F and S on large data sets, the scalability test is twofold: (A)
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Figure 6: Scalability on synopses construction

evaluating the synopses construction time on various data sizes and
(B) assessing the compression quality (synopses size) on various
data sizes. For the KSM in (B), we set small δ values as we did in
section 6.1 to generate near optimal results. We omit the tests of R
in this part.

Figure 6 presents the results for (A). It shows that the running
time of F and S keeps a straight line and scales well with larger data
sizes. In these tests, both shift algorithms can generate arbitrary
error-bound synopses in less than 1 second, even for very large
data sets with up to 218 values.

Figure 7 presents the results for (B). It shows that the shift algo-
rithms have good compression quality on various data sizes. The
S performs especially well as we can hardly distinguish it from the
near optimal results generated by KSM in all our experiment re-
sults.
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6.4 Workability
Our last test focuses on the workability of our two shift-based

algorithms. As mentioned early, one application of our techniques
is to compress the time series data acquired through clinical op-
erations. The generated synopses will be used to reconstruct the
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Figure 8: Approximation of the EEG Data set

original data values under some error bounds. We use the syn-
opses generated by S to reconstruct the original data. Specifically,
the synopses reconstruct the EEG data set. Figure 8 shows the re-
constructed approximation data of the EEG data set where the two
synopses have error bounds 5 and 20 respectively. Obviously, the
two reconstructed data set are quite similar to the original data set,
while the synopses size is only 10% to 0.6% of the original data
size.

6.5 Summary
In general, all the experiments indicate that the Shift algorithms

construct small size of synopses for both synthetic and real data
sets. The S-Shift algorithm is especially efficient, in terms of syn-
opses size. Moreover, both Shift algorithms construct synopses in
less than 0.1 second, even when the size of original data reaches
up to 218. This demonstrates that our algorithms are efficient and
practically capable for large data sets.

7. CONCLUSION
In this paper, we have proposed two new algorithms for con-

structing the unrestricted error bound synopses. The algorithms are
highly practical, cheap to run and generate smaller-sized synopses.
Of the two shift algorithms, as we have previously mentioned, the
F-Shift algorithm can compress stream data directly. In conclusion,

However, the paper leaves many attractive open problems to be
answered in the future work. There exist gaps between F-Shift
and S-Shift algorithms: If better compressing outcomes can be
achieved through using other fixed values rather than the ones that
are used in F-Shift? Besides, it is still not clear how to find U-
optimal synopsis Sop more efficiently. Our future work will con-
sider these problems.

It should be noted that Guha et al proposed new results on error-
bound synopses [7] after this work was submitted for publication.
The comparisons with our approaches will be presented in [17].
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APPENDIX
Appendix:

Algorithm 2 S-Shift(D,∆)
Input:

D, the original data set; ∆, the specified error bound; T , the error tree.
Output:

B, the set of shift coefficients that satisfies ∆ bound.
Description:
1: B = ∅ {Initialize the synopsis set}
2: for di ∈ D do
3: fN+i = (cN+i, di, di, 0, 0);
4: end for
5: {Bottom-Up Phase A: Compute B and fi = (ci, xi, xi, li, gi) from f2i and

f2i+1 from bottom-up (Refer to Section .1.1)}
6: {Top-Down Phase B: Compute each value of B, f2i =(c2i, x2i, x2i, l2i, g2i)

and f2i+1 =(c2i+1, x2i+1, x2i+1, l2i+1, g2i+1) from fi =(ci, xi, xi, li,
gi) (Refer to Section .1.2)}

7: return B

.1 Description of S-Shift
Depicted in Algorithm 2, the S-Shift algorithm has two phases

in function: Phase A (bottom-up phase) and Phase B (top-down
phase). In Phase A, it marks the coefficients that need to be shifted
and computes the reduced shift range from the ranges on the left
and right subtrees. In Phase B, it locates a feasible shift value
within the shift range for each marked coefficient generated in Phase
A.
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To obtain a synopsis6, the S-Shift algorithm computes and stores
f = (c, x, x, l, g) in bottom-up for each coefficient c: l is the scope
of the current T (c); g is a flag indicator that specifies c need to
shift if g is assigned to 1. The interval [x, x] indicates that the data
interval [ds, dg] of T (c) can slide from [x− l, x+ l] to [x− l, x+ l]
and can be denoted as [x− l, x + l] for x ∈ [x, x] in general.

The detailed descriptions and proof for the two phases are given
in the next two subsections.

.1.1 Phase A (line 5) description
The central part of this phase is to compute f = (c, x, x, l, g)

from left child fL = (cL, xL, xL, lL, gL) and right child fR =
(cR, xR, xR, lR, gR) based on the following two facts:

(i) lL < ∆ and lR < ∆;
(ii) each data dL of TL(c) is in interval R(xL) = [xL − lL, xL +

lL] and each data dR of TR(c) is in interval R(xR) = [xR −
lR, xR + lR] for xL ∈ [xL, xL] and xR ∈ [xR, xR].

To obtain f = (c, ), the procedure first checks whether coeffi-
cient c need be shifted then computes the parameters accordingly.
Clearly, coefficient c do not need to shift if and only if ∃xL, xR,
where xL ∈ [xL, xL] and xR ∈ [xR, xR], such that7

max
d′∈R(xL)

d′′∈R(xR)

|d′ − d′′| < 2∆. (8)

Roughly, the idea of this phase is as follows:

1. If Formula (8) holds, obtain x such that R(x) is enclosed in
every R(xL)∪R(xR) that will be illustrated in Step (A2) and
Step (A3) in the following.

2. Otherwise, shift coefficient c and obtain x such that R(xL −
x) and R(xR +x) are enclosed that will be illustrated in Step
(A1) in the following.

More specifically, the computation of f = (c, x, x, l, g) from
fL = (cL, xL, xL, lL, gL) and fR = (cR, xR, xR, lR, gR) works
as follows:

A1. Compute parameters when c needs to be shifted. Coefficient c
need to be shifted if

min|xL − xR|+ (lL + lR) ≥ 2∆. (9)

This means that current T (c) is s-unbound no matter what
values of xL ∈ [xL, xL] and xR ∈ [xR, xR] are assigned.
In this situation, coefficient c need to be shifted into s. In
order to minimize the scope of T 〈s〉, s should satisfy Formula
(7). Furthermore, s need to accumulate the shift ranges from
TL(c) and TR(c). Therefore, it need to replace si of Formula
(7) with x = xL − si (or x = xR + si) to acquire the shift
range of x:

(xL + xR)− |lL − lR| ≤ 2x ≤ (xL + xR) + |lL − lR|.
By replacing (xL + xR) with (xL + xR) on the left and with
(xL + xR) on the right in the above formula,

(xL + xR)− |lL − lR| ≤ 2x ≤ (xL + xR) + |lL − lR|.
Based on this formula, set





x = [(xL + xR)− |lL − lR|]/2,
x = [(xL + xR) + |lL − lR|]/2,
l = max{lL, lR} and g=1.

6For easy descriptions, in S-Shift algorithm, we add c in f(c, )
and use [x, x] rather than [s, s] as in Definition 3.9.
7Or, equivalently, |xL−xR|+(lL+lR) < 2∆ as expressed similar
to Formula (9).

A2. Compute parameters when c does not need to shift and

|lL − lR| < min|xL − xR| < 2∆− (lL + lR)

holds. In this situation, although T (c) is s-bound, there exist
a unique maximum overlapped data range (i.e., x = x) and
the minimized scope of T (c) (through adjusting xL and xR)
is large than max{lL, lR}. Set

l=(lL + lR + min|xL − xR|)/2 and g = 2.

Since the upper data interval needs to move downwards and
the lower interval needs to move upwards, two cases exist:

• If xL > xR, set x and x to be (lL +xL +xR−lR)/2 as
x+l= lL+xL and x−l=xR−lR.

• If xL ≤ xR, set x and x to be (lR +xR +xL−lL)/2 as
x+l=xR+lR and x−l=xL−lL.

A3. Compute parameters when c does not need to shift and

min|xL − xR| ≤ |lL − lR|
holds. Under this situation, the maximum overlapped range
can be located in many places (i.e., x < x). Set

l=max{lL, lR} and g = 3.

If lL > lR, move the shorter scope (lR) to be included by
the longer scope (lL). Using x to replace xL in the above
formula,

{ −|lL − lR| ≤ x− xR ≤ |lL − lR|,
xL ≤ x ≤ xL.

This implies,

max{xL, xR−|lL−lR|} ≤ x ≤ min{xL, xR+|lL−lR|}.

Similarly, if lL ≤ lR,

max{xR, xL−|lL−lR|} ≤ x ≤ min{xR, xL+|lL−lR|}.
Therefore,

1. if lL > lR, set
{

x=max{xL, xR−|lL−lR|},
x=min{xL, xR+|lL−lR|}.

2. If lL ≤ lR, set
{

x=max{xR, xL−|lL−lR|},
x=min{xR, xL+|lL−lR|}.

.1.2 Phase B (line 6) description
The objective of this phase is to assign a proper shift value8 for

each {ci|fi = (ci, xi, xi, li, gi) ∧ (gi = 1)} and narrow down
the range [xi, xi] into an instance value xi of xi ≤ xi ≤ xi from
top-down starting at c0.

First, it computes s0, the shift coefficient at c0 and an instance
value from [x1, x1] to satisfy the selected s0. By replacing x1 with
x1 (and x1) in Formula (5), it obtains

x1 − (∆− l1) < s0 < x1 + (∆− l1).

If s0’s range includes 0, then c0 does not need to shift and let s0 =
0. Otherwise, set s0 =(x1 + x1)/2. It can prove that |x1 − s0| <
|l1 −∆|. Add s0 into B and set sum(x) = s0.

8There may exist many feasible shift values for ci. Without loss the
generality, we assign a “middle” value in the range in our approach.

742



With the instantiated s0, we need to instantiate data range [x1, x1]
into x to satisfy the selected s0. Such x should satisfy,

{ −(∆− l1) < x < (∆− l1),
x1 − s0 6 x 6 x1 − s0.

In the above two formulas, the first one comes from Formula (5) by
replacing x1−s0 with x while the second means that x1 = x+s0.
Set

x=x=(max{− |l1−∆| , x1−s0}+min{|l1−∆| , x1−s0})/2

Next, update fL = (cL, ), fR = (cR, ) into9,
{

fL = (cL, xL − sum(x), xL − sum(x), lL, gL ),
fR = (cR, xR − sum(x), xR − sum(x), lR, gR ).

Iteration Step: With the obtained f = (c, x, x, l, g) and sum(x),
xL in fL = (cL, ) and xR in fR = (cR, ) will be instantiated
from the following cases.

B1: When f = (c, x, x, l, g) ∧ (g = 1) holds, Since |x′L−x′R| <
|lL− lR|, x′L ∈ [xL−sc, xL−sc] and x′R ∈ [xR +sc, xR +
sc],




−|lL−lR| < x′L−x′R < |lL−lR|,
xL ≤ x′L+sc ≤ xL,
xR ≤ x′R−sc ≤ xR.

(10)

If lL ≥ lR, set x′L = x. First, derive the ranges of (sc, sc)
by Equation (10). Then set sc = (sc + sc)/2. Again from
Equation (10) and sc, derives (x′R, x′R) and set x′R = (x′R +

x′R)/2.
If lL <lR, set x′R =x. Similar to the above, find x′L and sc.

B2: f = (c, x, x, l, g) ∧ (g = 2) holds. Set sc = 0, x′L =xL and
x′R =xR.

B3: f = (c, x, x, l, g) ∧ (g = 3) holds. Set vc = 0. Since |x′L−
x′R| < |lL − lR|, xL =x′L and xR =x′R,




−|lL−lR| < x′L−x′R < |lL−lR|,
xL ≤ x′L≤ xL,
xR ≤ x′R≤ xR.

(11)

Similar to (B1), except that sc = 0 in this case.

Next, process the children nodes after doing the following:




Add sc into B if sc 6=0,
Set sum(xL)=sum(x)+sc and sum(xR)=sum(x)−sc,
Set fL = (cL, x′L, x′L, lL, gL) and fR = (cR, x′R, x′R, lR, gR).

A Running Example: The idea of S-Shift algorithm is illustrated
in the following on the example of Figure 2(i).

In Phase A: For each s-bound subtree T (ci), set fi = (ci, (ds +
dg)/2, (ds + dg)/2, (dg − ds)/2, 0) where dg and ds are the max
and min data in T (ci) respectively. Therefore,

f4 = (c4, 7, 7, 5, 0), f5 = (c5,−1,−1, 3, 0),
f6 = (c6,−2,−2, 3, 0), f7 = (c7, 6, 6, 4, 0).

Next, the algorithm generates fi from f2i and f2i+1. Using f4

and f5 to generate f2 = (c2, x2, x2, l2, g2), a shift coefficient s2

is required as T (c2) is s-unbound. g2 is set to 1 indicating that c2

needs to shift. As indicated in Example 4.5, s2 ∈ range(c2) where
range(c2) = [3, 5]. For s2 ∈ range(c2), the data interval [ds, dg]
of T (s2) slides from [−3, 7] to [−1, 9] with data scope l2 = (dg −
9In fact, this step update f2 and f3.

ds)/2 = 5. [x2, x2] is used to describe the data interval of [−1, 9]∨
[−3, 7] = [−3, 9] and is set to [−3 + l2, 9 − l2] = [2, 4]. As a
result, f2 = (c2, 2, 4, 5, 1). Similarly, f3 = (c3, 1.5, 2.5, 4, 1) can
be derived.

Now, it comes to compute f1 = (c1, x1, x1, l1, g1) from f2 and
f3. Coefficient c1 will not need to be shifted if the data scope l1 <
∆. Furthermore, l1 can described by [x2 − l2, x2 + l2] ∨ [x3 −
l3, x3 + l3] where x2 ∈ [2, 4] and x3 ∈ [1.5, 2.5]. To minimize
[x2 − l2, x2 + l2]∨ [x3 − l3, x3 + l3], l1 is set to max{l2, l3} = 5
as the data scope of T (c1) can not be shorter than max{l2, l3} and
x1 ∈ [x1, x1] satisfies,

{ −|l2 − l3| ≤ x1 − x3 ≤ |l2 − l3|,
x2 ≤ x1 ≤ x2.

Intuitively, the first equation in the above means [x3−l3, x3+l3] ⊆
[x1 − l1, x1 + l1]. The following is then derived:

{
x1 =max{x2, x3−|l2−l3|} = 2,
x1 =min{x2, x3+|l2−l3|} = 3.5.

Up to now, this phase has selected the set of shift coefficients {s2, s3}.
Their specific values will be determined in Phase B.

In Phase B, First, it decides s0, the shift coefficient at c0 and an
instance value from [x1, x1] to satisfy the selected s0.

By replacing x1 with x1 (and x1) in Equation (5), it obtains

2− (7.5− 1) < s0 < 3.5 + (7.5− 1),

which is s0 ∈ (−4.5, 10). Since 0 ∈ (−4.5, 10), it means that c0

does not need to shift. Next, it need to select x ∈ [x1−s0, x1−s0]
from

−|∆− l1| < x < |∆− l1|
to support the selected s0 (Equation (5)). Clearly, an instance of
the above equation is x=x, which is

(max{− |∆−l1|, x1−s0}+ min{|∆−l1|, x1−s0})/2=2.25.

Thus, f1 = (c1, 2.25, 2.25, 5, ).
Similarly, the following equations is used to derive the instances

of x2 in f2 and x3 in f3.



−|l2−l3|<x2−x3 < |l2−l3|,
x2≤x2≤x2,
x3≤ x3≤x3.

⇒



−1<x2−x3 <1,
2≤x2≤4,
1.5≤x3≤2.5.

Set x2 = x1 = 2.25 as l2 > l3 and find one feasible solution is
x3 = (1.5 + 2.5)/2 = 2. Thus, f2 = (c2, 2.25, 2.25, 5, 1) and
f3 = (c3, 2, 2, 4, 1).

To find the value of s2 from f2 = (c2, 2.25, 2.25, 5, 1), f4 =
(c4, 7,7, 5, 0) and f5 = (c5, −1, −1, 3, 0), we have the following
equations:



−|l4−l5|<x4−x5 < |l4−l5|,
x4≤x4+s2≤x4,
x5≤x5−s2≤x5.

⇒



−2<x4−x5 <2,
x4+s2 =7,
x5−s2 =−1.

Set x4 = x2 = 2.25 as l4 > l5 and find one feasible solution for
s2 is 4.75. Similarly, it can derive s3 = 4.
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