
An Approach to Detecting Relevant Updates to Cached
Data Using XML and Active Databases

Essam Mansour
International University in Germany
School of Information Technology

Campus 3, D-76646 Bruchsal, Germany
essam.mansour@ieee.org

Hagen Höpfner
International University in Germany
School of Information Technology

Campus 3, D-76646 Bruchsal, Germany
hoepfner@acm.org

ABSTRACT
Client/server information systems use caching techniques to reduce
the volume of transmitted data as well as response time and, espe-
cially in the case of systems with mobile clients, to reduce energy
consumptions. Updating the server database might cause inconsis-
tencies between server data and cached data. Guaranteeing con-
sistency at least demands to invalidate outdated caches. To avoid
invalidation of caches that are not affected by a particular update
one must check the relevancy of each update for each cache. It has
been proven, that this can only be done on a stateful server.

This paper presents the purely database system (DBS) based
DRUPE method for checking the relevance of server side updates
to cached data by analyzing the intersection between modified data
and cached data. A non-empty intersection means that the update
operations are relevant to the cached data. The necessary cache de-
scriptions are stored in form of XML-documents inside the DBS.
The paper introduces the used XML-model XREAL as well as the
relevancy proof-of-concept system UPTIME . The main contribu-
tion of our work is that the system utilizes the DBS utilities to detect
update relevance, notify clients and manage the required repository
of the queries issued by the clients. Hence, no additional middle-
ware is required in order to realize consistency aware client/server
information systems, even if clients are small footprinted mobile
devices.

1. INTRODUCTION
Data caching is an appropriate technique for reducing the vol-

ume of transmitted data and response times in distributed systems
in general and in client/server information systems in particular. If
clients are mobile devices such as mobile phones or embedded de-
vices that use wireless communications, optimizing data transmis-
sions also increases the uptime of the clients by decreasing their
energy consumptions [2, 10]. However, the major drawback of
caching techniques, which per se create redundant data on (mobile)
clients, is the potentiality of inconsistencies. Server side updates
must also update the cached copies or at least invalidate them. Es-
pecially in information systems with many clients, such as mobile
information systems, it is not useful or even impossible to invali-

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

date all caches for each server side update. Hence, it is necessary
to identify only those client caches that are affected by the update.

As proven in [9] checking update relevance in general requires
the usage of a stateful information systems server that stores the
relationships between (mobile) clients and data cached by them.
Clients retrieve the data by issuing database queries. So, the server
can keep this semantic cache information and maintain an index [8]
that represents information about which client caches which part of
the database. As shown in [7, 11] it is then possible to check the rel-
evance of server side updates using the index and to notify only the
affected clients. So far, relevance checks are done within a middle-
ware component on top of the database management systems. This
approach causes unnecessarily complex information systems.

Utilizing DBSs to detect relevant updates to cached data and no-
tify clients by such updates leads to avoiding several applications
layers and reducing the code complexity. The development of an
approach to detecting update relevancy as a DBS built-in function
is the main topic to be investigated in this paper.

This paper presents the DRUPE (DetectingRelevantUpdate
Easily) method for checking the relevance of the manipulation op-
erations insert, delete and update over multi-set semantics of the
relational data model. The main objective of this method is to test
the update relevancy using queries of relational algebra that check
the intersection between the cached data and the modified data. A
manipulation operation is to be irrelevant to the cached data, if the
intersection is empty. Otherwise, this manipulation operation is rel-
evant. We introduces an XML-based model XREAL (XML-Based
Relational Algebra) for storing queries issued by clients and the
manipulation operations executed by the server. It provides XML
representation for the queries and manipulation operations. This
XML representation is to be stored as XML documents in modern
DBSs that must provide XML management support, such as DB2
[12] and Oracle [15]. The paper highlights a proof-of-concept sys-
tem, called UPTIME (Update NotificationMadeEasy) that utilizes
the DRUPE method and the XREAL model to develop an update
notification mechanism as built-in function inside DBSs that pro-
vides XML management support and triggering mechanism.

The remainder of this paper is organized as follows: Section 2
discusses the related work. Section 3 presents an application ex-
ample used through the paper to illustrate our ideas. Section 4
gives an overview of the used query notation. Section 5 describes
the DRUPE method. Section 6 outlines the XREAL model. Sec-
tion 7 introduces the UPTIME system. Section 8 presents first ex-
perimental results and discusses the scalability and performance of
UPTIME . Section 9 concludes the paper and gives an outlook on
future research.

791

2. RELATED WORK
Finding irrelevant updates strongly overlaps with the theory of

incremental view updates [1]. In fact, cached data can be con-
sidered to be a (materialized) view over a global database. Many
algorithms have been developed in order to check the relevance
or irrelevance of modifications to the global DB by comparing the
queries (views) to a query that would result in the updated tuples
on a semantic level. There are two major drawbacks with these
approaches: language limitations and the empty set problem.

The algorithms utilize the query containment problem (QCP) [3].
Therefore, they have similar limitations. In [17] it was shown that
the QCP is undecidable for arbitrary calculus queries, for arbitrary
queries in the relational algebra, and for logical query languages
[16]1. However, [3] gives the proof that QPC is decidable but NP-
complete for conjunctive queries. Also, other subsets of these con-
junctive queries were researched, and there are subsets with better
QCP complexity but these approaches lead to stricter restrictions to
the query language.

The empty set problem [9] results from the fact that QPC is de-
fined on the result sets: a queryQ2 contains a queryQ1 if, for
each database state, the result ofQ1 is a subset of the result ofQ2.
From the set theory we know, that the empty set is a subset of every
set. Therefore, if for example a delete would not delete anything
(e.g. the tuples that should be deleted are not in the relation), then
the result would be an empty set (that is contained anyway). The
system would notify the client about an update that did not change
anything.

Besides these more general researches there exist papers dedi-
cated to the incremental view update problem. [13] consider inserts
and deletes in combination with horizontal database fragments. There-
fore, they do not allow projections. Inserts, deletes and modifica-
tions are considered in [1]. However, the approach is limited to
equal-joins and do not support self-joins. Algorithms that use logi-
cal query languages typically forbid negations [4].

The solution for overcoming the limitation of a purely seman-
tic relevance check is to analyze the database extension and not
only the database intension. In [9] we introduced an approach that
calculates test queries based on the query predicates and the mod-
ification operations. The test queries are executed on the database.
Their result sets show the relevance or irrelevance of the update for
the whole query. By splitting the queries into predicates it is possi-
ble to optimize the relevance check for systems with many partially
overlapping queries by testing them in parallel. However, the tests
in [9] are based on the set semantics (SELECT DISTINCT) of the
relation algebra that is “uncommon” in most application scenarios.
Some ideas on testing update relevance under multiset-semantics
have been published in [7]. Furthermore, [6] show, that the test
query idea can also be used for handling update relevance checks
of context aware queries. However, all these approaches imple-
ment the update relevance test as middle-ware component but do
not utilize the services, functions and build-in features of modern
database management systems.

3. AN APPLICATION EXAMPLE
The cinema database introduced in this section is used as an ap-

plication example to demonstrate the ideas of our work and evalu-
ate the UPTIME system. The cinema database as shown in Figure 1
conceptually consists of four entities,cinema, auditorium, location
andmovie. In this paper, the used queries and manipulation opera-
tions are applied to the tables representing the entitiescinemaand
location. These tables arecinema_taband location_tab. The ta-

1based on [14]

bles in Figure 2 show sample data ofcinema_tabandlocation_tab
respectively. As they show, there are two cinemas belong to Karl-
sruhe and other two belong to Bruchsal.

location

[0,N]

located at

[1,1]
[1,N]

LENGTH

[0,N]

[0,N]
[1,1]

shown in

movie

auditoriumhascinema

RENEWED_ON

RATE

HOTLINE

POSTAL_CODE

STREET

PLACE

LID

MID TITLE FSK

TIME

DATE

NUM_SEATCID

CNAME SOUND

AID

ANAME

Figure 1: The ER diagram of the cinema database.

The cinema table
CID CNAME LID HOTLINE RATE RENEWED_ON
9901 Cineplex 101 111999777 5 1999
9902 Filmpalast 102 111888777 6 2000
9903 City-Kinos 103 111333777 7 1999
9904 ZiZO 101 111555777 2 1999

The location table
LID PLACE STREET POSTAL_CODE
101 Bruchsal Bahnhofstr 76646
102 Karlsruhe Brauerstr 76131
103 Karlsruhe Kaiserstr 76131

Figure 2: Example extensions of some cinema database tables

4. QUERY REPRESENTATION
In mobile information systems, applications generate queries and

send them to the server. Therefore, there is no need to support
descriptive query languages, such as SQL. Queries are to be rep-
resented in a useful way for storage and retrieval. The relational
algebra representation [5] is an efficient way to represent queries
over data stored in relational database.

PP
z }| {

πctab.cname,ltab.street,ctab.hotline(

SP
z }| {

σctab.RATE>4∧ltab.Postal_Code=′76131′ (
ρctab(cinema_tab) ⊲⊳ctab.LID=ltab.LID ρltab(location_tab)
| {z }

JP

))

Figure 3: The relational algebra of QCL

The query notation used in this paper is the notation of the re-
lational algebra operators, such as selection (σ), join (⊲⊳), projec-
tion (π) and rename (ρ). Assume a mobile client issued the query
QCL to know the name, street, and hotline of cinemas in Karlsruhe,
whose postal code is 76131, where the rate of the cinema is greater
than four. Figure 3 shows a relational algebra ofQCL.

A relational algebra query tree might have several equivalent re-
lational algebra trees due to the use of algebraic properties for query
optimization [5]. For example, the relational algebra expression of
the queryQCL, shown in Figure 3, has the following predicates:

• a selection predicate (SP), such thatctab.RATEis one of the
attributes of the previously renamed relationcinema_tab, and
ltab.Postal_Codeis an attributes of the also previously re-
named relationlocation_tab.

• a join predicate (JP), such thatctab.LID is an attribute in
cinema_tabandltab.LID comes fromlocation_tab.

792

• a projection predicate (PP), such thatctab.cnameas well
asctab.hotlineare attributes of the relationcinema_tab, and
ltab.streetis an attribute oflocation_tab.

In relational algebra, selection and projection operators could be
pushed inside a join operation under certain condition [5]. We can
push a selection inside a join, since it involves only attributes of
one relation. Moreover, pushing a projection operation inside a
join requires that the result of the projection contain the attributes
used in the join. Figure 4 shows an equivalent relational algebra
expression for the one shown in Figure 3 according to the algebraic
properties for query optimization.

(πctab.cname,ctab.hotline,ctab.LID(σctab.RATE>4(ρctab(cinema_tab))))
⊲⊳ctab.LID=ltab.LID

(πltab.street,ltab.LID(σltab.Postal_Code=′76131′ (ρltab(location_tab))))

Figure 4: An equivalent relational algebra for the QCL query.

In order to support our method for detecting relevance update,
it is more efficient to store queries in the form of a set of relations
restricted to specific rows and attributes and a set of join predi-
cates. Therefore, it is assumed that queries are to be generated by
an application in such form. Generally, any SQL query could be
mapped into relational algebra expression, such that the selection
and projection operation are pushed inside the join operation. Con-
sequentially, we can easily utilize our method with several mobile
information systems, in which relational data is queried by mobile
clients.

MO1 insert into cinema_tab(cid,cname,lid,hotline,rate,renewed_on)
values(9905, ’Cineplex’,102,’111333888’,7,2004);

MO2 delete fromcinema_tabwhereCID = 9903
MO3 update cinema_tabset hotline = ’0721-2059-333’where cid = 9902
MO4 update cinema_tab set RATE = 7where renewed_on = 1999
MO5 update cinema_tab set LID = 101where renewed_on < 2000

Figure 5: Manipulation operations over cinema_tab

In the example scenario it is assumed that the server is to ex-
ecute several manipulation operations overcinema_tab. The first
operation inserts a new cinema, whose id, name, hotline, rate are
9905, Cineplex, 111333888 and seven, respectively. This cinema
is located in Karlsruhe and was renewed in 2004. The second op-
eration deletes the cinema tuple, whose id is 9903. The third oper-
ation modifies the hotline of the cinema tuples, whose id is 9902,
to 0721-2059-333. The fourth operation updates the rate of the
cinema tuples, which were renewed on 1999, to seven. The fifth
operation relocates the cinemas, which renewed before 2000, to a
location with the id 101. Figure 5 depicts the SQL DDL statements
corresponding to these manipulation operations.

5. DRUpE: A METHOD FOR CHECKING
UPDATE RELEVANCY

The DRUPE 2 detects the relevance of insert, delete and update
operations over multiset semantics of the relational data model.
The main idea is to check the intersection between modified data
and cached data, which is a result of specific queries. A non-empty
intersection means that the update operations are relevant to cached
data. The method retrieves the data of the intersection using a
query/queries constructed from the manipulation operations and the
queries, whose result is cached on at least one client.

2the acronym stands forDetectingRelevantUpdateEasily

5.1 Test the relevance of inserts
We use the SQL insert constructINSERT INTO relation

(column1, [column2, ...]) VALUES (value1,
[value2, ...]) for adding a new tuple into a relation. The
number of columns and values must be the same. If a column is not
specified, the default value for the column is used.

Cached Data
(Query Results) Inserted Data

Data to be cached after insertion (D1)

Figure 6: The effect of an insert operation on cached data.

Figure 6 illustrates the effect of an insert statement on the cached
data. That effect is represented by the intersection (D1) between the
inserted data and the cached data. The data that belongs to the in-
tersectionD1 is data to be considered in the result of queries issued
previously by mobile clients. Therefore, the insertion is a relevant
manipulation operation, if the intersectionD1 is not empty. Con-
sequentially, the mobile clients should be notified to update their
cached data. The intersection is to be not empty if and only if the
new inserted tuple is matching the selection and join predicates of
a query regardless3 the content of the projection predicate.

Assume the insert statement (MO1), shown in Figure 5, is to be
executed on the server. The intersectionD1 could be retrieved using
a relational algebra query constructed from the insert statement,
MO1, and a query whose result is cached on at least one mobile
client. For example, the intersectionD1 of the data inserted by
MO1 and the cached data produced by the queryQCL could be
retrieved by the queryQIns:

σ7>4∧ltab.Postal_Code=′76131′∧102=ltab.LID(ρltab(location_tab))

The selection predicate inQIns is constructed as follows:

• 7 > 4 results from the selection predicate of the queryQCL
by replacing the attributeRATEwith its corresponding value
in the inserted tuple of the operation numberMO1 shown in
Figure 5.

• 102 = ltab.LID is constructed from the join predicate ofQCL
by replacing the attributectab.LID with its corresponding
value in the inserted tuple of the operation numberMO1
shown in Figure 5.

• ltab.Postal_Code=′ 76131′ is the rest of the selection pred-
icate ofQCL and associated with the un-manipulated rela-
tion(s), in this caselocation_tab.

The general algorithm to check whether the relevance of an in-
sertion is as follows: If the modified relationMR was not queried
by at least one client, then this insertion is not relevant to cached
data. Otherwise for each queryCQ retrieving data fromMR do:

1. if the attributes of the selection predicate or the join predicate
do not have a value in the insert statement, then this insertion
is not relevant to cached data.

2. else construct from the selection predicates ofCQ new se-
lection predicatesNSP1by replacing the attributes with their
corresponding value in the insert statement, then map the join
predicates ofCQ into selection predicatesNSP2by replacing
the attributes with their values in the insert statement.

3This only holds for the multiset semantics of the relational alge-
bra.

793

3. construct a query by removingMR from the original query
issued by a mobile client and replacing the selection and join
predicates related toMR with the new selection predicates
NSP1andNSP2to check the intersectionD1.

4. if the result of the constructed query is non empty result, re-
turn the ID of the client who issues the queryCQ.

5.2 Test the relevance of deletes
We use the SQL delete constructDELETE FROM relation

[WHERE condition] for removing rows from a relation. Any
row that matches the WHERE condition will be removed from the
relation.

Date to be removed after insertion (D1)

Cached Data
(Query Results) Deleted Data

Figure 7: The effect of a delete operation on cached data.

Figure 7 illustrates the effect of a delete statement on the cached
data. That effect is represented by the intersection (D1) between
the deleted data, which matches the WHERE clauseWClauseand
the cached data, which represents queries results. The data that be-
longs to the intersectionD1 is data to be removed from the result
of queries issued previously by mobile clients. Hence, the dele-
tion is a relevance update operation, if the intersectionD1 is not
empty. Consequentially, the mobile clients should be notified to
update their cached data. The intersection is to be not empty if and
only if the deleted rows match the selection (SP) and join (JP) pred-
icates of a query regardless the content of the projection predicate.
The data of this intersection is to be retrieved by a query that picks
rows matching theWClauseof the deletion and the predicateSP
andJPof the query.

Assume the delete statementMO2, shown in Figure 5, is to be
executed on the server. The intersectionD1 could be retrieved us-
ing a relational algebra query constructed from the delete statement
and a query whose result is cached on at least one mobile client. For
example, the intersectionD1 of the data deleted byMO2 and the
cached data produced byQCL could be retrieved by the queryQD:

σctab.CID= 9903
| {z }

P1

∧ ctab.RATE> 4 ∧ ctab.Postal_Code=′ 76131′

| {z }

P2

(ρctab(cinema_tab) ⊲⊳ctab.LID= ltab.LID ρltab(location_tab))

The queryQD consists of the selection predicates:P1) andP2),
and a join predicate1ctab.LID = ltab.LID such that:P1 is the WHERE
clause of the delete statement,P2 and the join predicate are the
selection predicate and join predicate of the queryQCL.

Before deleting the rows matching the WHERE clause, we check
whether the result of the queryQD is empty or not. If the result is
not empty, then the deletion is a relevant manipulation operation,
and the clients issuing the queries, which retrieve data from the
modified relation, should be notified.

The general algorithm to check whether a delete operation is rel-
evant to cached data or not is as follows:

• if the modified relationMR was not queried by at least one
client, then this deletion is not relevant to cached data.

• else if the delete statement does not have a WHERE clause,
then this deletion is a relevant manipulation operation,

• else for each queryCQ retrieving data from the relationMR
do

1. construct a query by adding the WHERE clause of the
delete operation to the selection predicate of the query
CQ to check the intersection.

2. if the result of the constructed query is non empty re-
sult, return the ID of the client who issues the queryCQ
to be notified.

5.3 Test the relevance of updates
A SQL update statement changes data of one or more rows in

a relation. Either all the rows can be updated, or a subset may be
chosen using a condition. The update statement has the following
form: UPDATE relation SET columnName = value [,
columnName = value ...] [WHERE condition].

Cached Data
(Query Results) Updated Data

by the same value (D2)
Data to be modifiedData to be modified

after the update (D1)

Figure 8: The effect of updating a projected attribute.

The update statement might update attributes belonging to se-
lection, join or projection predicates of queries, whose result is
cached on at least one mobile client. If the update statement mod-
ifies the value of attributes belonging to projection predicates only,
that means no new data will be considered as a part of a query re-
sult nor no part of the cached data will be removed. However, part
of the cached data might be modified.

Figure 8 illustrates the effect of the previous case. That effect is
represented by the intersections (D1 andD2) between the updated
data, which matches the WHERE clauseWClause, and the cached
data, which represents queries results. The data belongs to the in-
tersectionD1 is data to be updated by new values, and this data
is part of a result of queries issued previously by mobile clients.
The data belongs to the intersectionD2 is data to be updated by
the same values, and this data is part of a result of queries issued
previously by mobile clients. Therefore, the update operation in
this case is a relevance update operation, if the intersectionD1 is
not empty. Consequentially, the mobile clients should be notified
to update their cached data. The intersectionD1 is to be not empty
if and only if the updated rows:

• match the selection (SP) and join (JP) predicates of a query,
and

• are modified with new values.

The data of the intersectionD1 is to be retrieved by a query that
picks rows matching theWClauseof the update operation and the
selection predicateSP and JP of the query, and the updated at-
tributes are to be modified by new values.

Assume the update statement (MO3), shown in Figure 5, is to
be executed on the server. TheMO3 statement is an update state-
ment that modifies the attribute HOTLINE, which is projected in
the queryQCL shown in Figure 3. The intersectionD1 could be re-
trieved using the relational algebra queryQU constructed from the
update statement and a query whose result is cached on at least one
mobile client. The result of the queryQU is to be checked before
executing the update operation. For example, the intersectionD1
of the data updated byMO3 and the cached data produced by the
queryQCL could be retrieved by the queryQU:

794

σ((ctab.cid=9902∧¬(hotline=′0721−2059−333′))

∧ctab.RATE>4∧(ctab.Postal_Code=′76131′))

(ρctab(cinema_tab) ⊲⊳ctab.LID=ltab.LID ρltab(location_tab))

QU is produced by adding the selection predicates (ctab.cid=
9902 ∧ ¬(hotline =′ 0721 − 2059 − 333′)) to QCL, such that:
ctab.cid = 9902 is the WHERE clause of the update statement,
and¬(hotline=′ 0721− 2059− 333′) means that the value of the
attributeHOTLINE is to be changed to a new value, as the query
QU is to be executed before the update operation.

Cached Data
(Query Results) Updated Data

after the update (D2)after the update (D1) after the update (D3)
Data to be deleted Data to be remained Data to be added

Figure 9: The effect of updating a selection or join attribute.

There are three categories of intersection in the case that the
update statement modifies attributes belonging to selection or join
predicates. Figure 9 shows these categories, which are:

• Category (D1): Data to be deleted after the update , because
changing attributes used in selection or join predicates might
lead to un-matching.

• Category (D2): Data to be remained after the update, al-
though the attributes used in selection or join predicates have
been changed, they are still matching the selection and join
predicates.

• Category (D3): Data to be inserted after the update, the change
leads to matching this data with the selection and join pred-
icates, so this data is to be considered as a part of the query
result.

The update operation should be considered as a relevant manip-
ulation operation if and only if categoriesD1 or D3 have occurred.
In categoryD2, the update should not be considered as a relevant
update, because the data is already cached at the client side, and
there is no need to modify it.

Assume the update statement MO4, shown in Figure 5, is to be
executed on the server. It modifies the attributeRATE, which is
used in a selection predicate of the queryQCL shown in Figure 3.
The intersectionD1 could be retrieved using a relational algebra
query constructed from the update statement and a query whose
result is cached on at least one mobile client. For example, the
intersectionD1 of the data updated byMO4 and the cached data
produced by the queryQCLcould be retrieved by the queryQU2:

σ((ctab.renewed_on=1999)∧(((ctab.RATE > 4)∧¬(7>4))

∨(¬(ctab.RATE>4)∧(7>4)))∧(ctab.RATE>4∧ctab.Postal_Code=′76131′))
(ρctab(cinema_tab) ⊲⊳ctab.LID=ltab.LID ρltab(location_tab))

The queryQU2 is constructed by adding the following selection
predicates toQCL:

• (ctab.renewed_on= 1999) is the WHERE clause of the up-
date statement.

• ((ctab.RATE> 4) ∧ ¬(7 > 4)) means this row will not be
a part of the query result after the update, but it was a part of
the result before the update, categoryD1. The value 7 is the
new value assigned to the attributeRATEby MO4 and

• (¬(ctab.RATE> 4) ∧ (7 > 4)) means this row was not a
part of the query result before the update and will be a part
of the query result after the update, categoryD3,

• the previous two predicates forD1 and D3 are added as a
disjunction composite predicate, (D1 or D3).

Regardless the existence of caseD2 the relevancy will not be af-
fected, but it is important to check that data is only in categories
D1 or D3 as it has been detected in the previous selection predi-
cates.

Assume the update statementMO5, shown in Figure 5, is to be
executed on the server. The statement is an update statement that
modifies the attributeLID, which is used in a join predicate. The
intersectionD1 between the data updated byMO5 and the cached
data produced by the queryQ could be retrieved by the queryQU3:

OQ ← σctab.RATE>4∧ctab.Postal_Code=′76131′ (ρctab(cinema_tab)
⊲⊳ctab.LID=ltab.LID ρltab(location_tab))

IDV ← πCID,cinema_tab.LID(OQ)
IDN ← (σrenewed_on<2000(ρctab(cinema_tab))

⊲⊳ctab.CID=IDV.CID (IDV)
VN ← σIDV.LID 6=101(IDV)

D1 ← πIDN.CID,IDN.LID(IDN)
Tall πVN.CID,VN.LID(VN)

OQ is the selection and join predicates of the original query.IDV
is the ids of the cinema picked in the query result and the LID
values participated in the join.IDN contains the rows satisfy the
update where clause and exist in the result of the query. IfVN is
nonempty that means the new value, 101, assigned to the attribute
used in the join predicate is not in the values succeed to join.D1
will contain any updated row, which was considered in the query
result, and because the new value is not one of the values joining
with the rows from other table(s) the row is to be removed from the
query result.

Moreover, the intersectionD3 of the data updated byMO5 and
the cached data produced by the queryQCL could be retrieved by
the queryQU4:

NIN ← πCID,cinema_tab.LID(cinema_tab)− IDV
CRW ← σ(renewed_on<2000)∧(RATE>4)(cinema_tab)
VA ← σIDV.LID=101)(IDV)
WN ← CRW⊲⊳CRW.CID=NIN.CID NIN
D3 ← πWN.CID,WN.LID(WN)

Tall πVA.CID,VA.LID(VA)

NIN contains the rows that were not picked in the query result.
CRWcontains the updated rows that at the sametime satisfy the se-
lection predicates of the query associated to the updated relational.
In this example there is only one selction predicate related tocin-
ema_tab, which is RATE > 4. If VA is nonempty that means the
new value, 101, assigned to the attribute used in the join predicate
is already in the values succeed to join.WN contains the updated
rows that were not in the query result and at the sametime satisfy
the selection predicates of the query over the updated relation.D3
contains the updated rows that are to be considered in the query re-
sult after the update because the new updated value will join these
rows with the rows picked by the rest of the query.

The general algorithm to check whether an update operation is
relevant to cached data or not is as follows:

• if the modified relationMR was not queried by at least one
client, then this update operation is not relevant to cached
data.

• else if the update statement does not contain any attribute
used in a selection, join, or projection predicate of a query,
whose result is cached on at least one mobile client, then this
update is irrelevant update operation.

• else if the update statement contains only attribute(s) used in
a projection predicate, then for each queryKQ:

795

1. construct a query by adding the WHERE clause of the
update operation and the negation of the update SET
clause to the selection predicate ofKQ to check the in-
tersectionD1.

2. if the result of the constructed query is not empty, return
the ID of the client who issuedKQ to be notified.

• if the update statement contains attribute(s) used in a selec-
tion predicates, then for each queryKQ:

1. construct a query, whose selection predicates are the
selection predicates matching categoryD1 or D3.

2. if the result of the constructed query is not empty, return
the ID of the client who issuedKQ to be notified.

• if the update statement contains attribute(s) used in a join
predicates, then for each queryKQ:

1. construct two queries, whose selection and join predi-
cates are matching categoryD1 or D3, respectively .

2. if the result of at least one of the constructed queries
is not empty, return the ID of the client who issued the
queryKQ to be notified.

6. XReAl: AN XML-BASED MODEL FOR
QUERIES AND MANIPULATIONS

XREAL 4 provides an XML-based model for queries issued by
mobile clients and manipulation operations, which are to be exe-
cuted by the server. The XREAL model consists of three main com-
ponents,mobile client, queryandmoperation. The mobile client
component represents a particular mobile client and its contextual
information. The details of themobile clientcomponent is outside
the scope of the paper. Thequerycomponent represents a specific
query issued by a mobile client in the form of relational algebra, as
discussed in Section 4.

The XREAL specifications are to be stored and retrieved using
modern DBSs, which is utilized to manage the data at the server.
That means on the one hand the management of mobile queries and
relevant functions, such as detecting update relevancy, is to be inte-
grated into and supported by the relational DBS. On the other hand,
the mobile query management is moved from the application layer
to the database layer. The XREAL specifications for queries and
manipulation operations assist in developing a mechanism for de-
tecting the update relevancy and notiying mobile clients as a DBS
built-in function. This mechanism generates the test queries for-
malized by the DRUPE method by querying the XREAL specifi-
cations.

6.1 The XReAl Model for Queries
The XREAL model formalizes a relational algebra query as a

queryelement that consists of two attributes,QID andMCID, and
a sequence of elements,relationsand joins. Figure 10 shows the
XML schema of thequerycomponent. TheQID attribute repre-
sents a query identification. TheMCID attribute represents the
identification number of a mobile client that issued the query. A
query might access only one relation. Therefore, aqueryelement
contains at least arelationselement and might has ajoins element.

Therelationselement is composed of a sequence of at least one
relation element. Therelationelement consists of an identification
attribute, calledRID, and a sequence of elements,name, rename,
selectionsandprojection. Thenameelement represents the name

4the acronym stands forXML-BasedRelationalAlgebra

MCIDQID

relation

1

1..n

RID

jpredicate

0

1

selection projection

1..n1

1 0 0 0

1

edge
optinal 0
mandatory

1..nmultiplicity

sequence
attribute
element

relations joins

query

renamename

attributespredicate

Figure 10: The XML Schema of a relational algebra query.

rpredicate junction lpredicate

1 1 1

simplePredicate compositePredicate

attribute

1mandatory

choice
edge

sequence

element

operandoperatorattribute

value

1 1 1

predicateUDT

Figure 11: The XML Schema of the predicateUDT type.

of the relation . Therenameelement denotes the temporally name
used to refer to the relation in the query. Theselectionelement is
composed of a sequence of aspredicateelement of typepredica-
teUDT. Theprojectionelement consists of a sequence of at least
oneattributeelement of typeattributeUDT.

The predicateUDTtype is a complex type composed of one of
the elementssimplePredicateor compositePredicate, as depicted in
Figure 11. ThesimplePredicateelement consists of a sequence of
elements,attribute, operatorandoperand. Theattributeelement is
of typeattributeUDT.

Theoperatorelement is of typelogicalOperatorUDT, which is a
simple type that restricts the token datatype to the values (eq, neq,
lt, lteq, gt,andgteq). Respectively, they refer to equal, not equal,
less than, less than or equal, greater than, and greater than or equal.
Theoperandelement is composed of one of the elementsvalueor
attribute. Thevalueelement is to be used with selection predicates.
Theattributeelement is to be used with join predicates.

The compositePredicateelement consists of a sequence of el-
ements,rpredicate, junctionand lpredicate. The rpredicateand
lpredicateelements are of typepredicateUDT. Consequentially, the
rpredicateandlpredicateelements might consists of simple or com-
posite predicate. Thejunction element is of typejunctionUDT,
which is a simple type that restricts the token datatype to the values
(andandor).

The attributeUDT type is a complex type composed of an at-

796

tribute, calledofRelation, and a sequence of elements,name, isIN-
Resultand rename. The ofRelationattribute represents a relation
ID, to which the attribute belongs. Thenameelement denotes the
name of the attribute. TheisINResultis an optional element that
determines whether the attribute is projected in the final result of
the query or not. Therenameelement represents the new name
assigned to the attribute in the query.

rname set where

1 1 0

aname avalue

rname

1 1

1..n

1

1 1 1

attribute

IStatement DStatement UStatement

DID ReceivedAtReceivedAtIID

attributes rname where

ReceivedAtUID

0

1..n

0
1

multiplicity
mandatory
optinal
edge
choice
sequence

attribute
element

moperation

Figure 12: The XML Schema of the manipulation operations.

6.2 The XReAl Model for Manipulations
The XREAL model formalizes manipulation operations with re-

spect to the manipulation operations in the SQL language. A ma-
nipulation operation might be an insert, delete or update operation.
Figure 12 shows the XML schema of themoperationcomponent,
which might consists of oneIStatement, DStatement, or UState-
ment. The IStatementelement consists of attributes,IID andRe-
ceiveAt, and a sequence of elements,rnameand attributes. The
rnameelement represents the name of the manipulated relation.
The attributeselement represents the attributes of the inserted tu-
ple and the corresponding value for each attribute. TheDStatement
element consists of attributes,DID andReceiveAt, and a sequence
of elements,rnameandwhere. Thewhereelement is of typepred-
icateUDT. TheUStatementelement consists of attributes,UID and
ReceiveAt, and a sequence of elements,rname, setandwhere. The
whereelement is of typepredicateUDT. Thesetelement is of type
simplePredicateand restricted to use an equal operator only. It is
assumed that the update statement is to modify only one attribute
at a time.

6.3 An Example
It is assumed that a mobile client, whose ID isMC101, issued the

queryQCL shown in Figure 4. Figure 13 illustrates an overview
of the XREAL specification for the queryQCL. This specification
consists of aqueryelement. The query ID isQID1. There are two
relations (cinema_taband location_tab), whoseRIDs are RID01
and RID02 respectively. These relations are joined together using
one join predicate, which is RID01.LID = RID02.LID.

Figure 14 illustrates the XREAL specification for the relation,
whose ID isRID01. This specification consists of arelation el-
ement. The name of the relation iscinema_tab, and its rename
is ctab. There is a selection operation over the relation, which is
RATE > 4. There is also a projection operation that picks the at-
tributesCNAME, HOTLINE and LID. The order of the elements
indicates the order of the operations. In the relation whose ID is
RID01, the selection operation precedes the projection operation.

<query QID="QID1" MCID="MC101">
<relations>

+<relation RID="RID01">
+<relation RID="RID02">

</relations>
<join>

<jpredicate>
<simplePredicate>

<attribute ofRelation="RID01">
<name>LID</name>

</attribute>

<operator>eq</operator>
<operand>

<attribute
ofRelation="RID02">

<name>LID</name>
</attribute>

</operand>

</simplePredicate>
</jpredicate>
</join>

</query>

Figure 13: The XREAL specification of theQCL query.

<relation RID="RID01">
<name>cinema_tab</name>
<rename>ctab</rename>
<selection>

<spredicate>
<simplePredicate>

<attribute>
<name>RATE</name>

</attribute>
<operator>gt</operator>
<operand>

<value>4</value>
</operand>

</simplePredicate>
</spredicate>

</selection>

<projection>

<attribute>
<name>CNAME</name>

</attribute>
<attribute>

<name>HOTLINE</name>
</attribute>
<attribute>

<name>LID</name>
</attribute>

</projection>
</relation>

Figure 14: The XREAL specification of the relation RID01.

The operations over the relations, whose IDs areRID01andRID02,
precede the join operation.

Figure 15 illustrates the XREAL specification for the insert oper-
ation shown in Figure 5.IStatementof the insert operation consists
of attributes,IID whose value isI3001 and receivedAtthat deter-
mines the receipt time. There are six elements of typeattributethat
specify the name and value of an attribute, such asCID and9905
for the first attribute of the insert statement.

Figure 16 illustrates the XREAL specification for the delete op-
eration shown in Figure 5.DStatementof the delete operation
consists of attributes,DID whose value isD5001 and receivedAt
that determines the receipt time. There is awhereelement under
DStatementthat formalizes the where clause of the delete state-
ment, which isCID = 9903.

Figure 17 illustrates the XREAL specification for the update op-
eration shown in Figure 5.UStatementof the update operation
consists of attributes,UID whose value isU7001 and receivedAt
that determines the receipt time. Theset element formalizes the
set clause of the update statement, which isRATE = 7. Thewhere
element ofUStatementformalizes the where clause of the update
operation, which isRENEWED_ON = 1999.

7. UptiME: A MANAGEMENT SYSTEM
FOR QUERIES AND CACHES

This section presents a proof-of-concept system, called UPTIME
(Update NotificationMadeEasy), that utilizes DBSs as a base for
managing queries and caches in mobile information systems. New
sub-systems must be introduced to DBSs to support the manage-
ment of mobile databases. Detecting update relevancy and notify-
ing clients by such updates are examples of the new required sub-
systems. UPTIME utilizes the DRUPE method and the XREAL

model to develop an update notification mechanism as a built-in
function inside DBSs that provides XML management support and

797

<IStatement IID="I3001"
receivedAt="2008-09-12T11:34:27">

<rname>cinema_tab</rname>
<attributes>

<attribute>
<aname>CID</aname>
<avalue>9905</avalue>

</attribute>
<attribute>

<aname>CNAME</aname>
<avalue>Cineplex</avalue>

</attribute>
<attribute>

<aname>LID</aname>
<avalue>102</avalue>

</attribute>

<attribute>
<aname>HOTLINE</aname>
<avalue>111333888</avalue>

</attribute>
<attribute>

<aname>RATE</aname>
<avalue>7</avalue>

</attribute>
<attribute>

<aname>
RENEWED_ON</aname>
<avalue>2004</avalue>

</attribute>
</attributes>
</IStatement>

Figure 15: The XREAL specification of the operationMO1.

<DStatement DID="D5001" receivedAt="2008-09-12T11:34:27">

<rname>cinema_tab</rname>
<where>

<spredicate>
<simplePredicate>

<attribute>
<name>CID</name>

</attribute>
<operator>eq</operator>
<operand>

<value>9903</value>
</operand>

</simplePredicate>
</spredicate>

</where>
</DStatement>

Figure 16: The XREAL specification of the operationMO2.

triggering mechanism. The following sections discusses the con-
ceptual architecture of the UPTIME system and the use of the DBSs
utilities for supporting the repository of the XREAL specifications
and an update notification mechanism.

7.1 A Conceptual Architecture
The UPTIME system provides management support for the con-

textual information concerning clients, queries issued by these clients
and manipulation operations that are to be executed by the server.
Moreover, update notification is one of the main functionality of
UPTIME in order to preserve the consistency of the database. Fig-
ure 18 depicts the conceptual architecture of UPTIME that consists
of two main layers, theApplication LayerandDBS Layer.

The main functionality of theApplication Layeris to communi-
cate with external entities, such as mobile clients, and to prepare
the contextual information, queries and manipulations to be man-
aged by theDBS Layer. The functionality of theApplication Layer
are provided through three sub-systems,Mobile Client Manager,
Query ManagerandManipulation Manager.

Mobile Client Manageris responsible for registering, unregis-
tering a client and formalizing the contextual information of the
client using the XREAL model. The main duties ofQuery Man-
ager include receiving queries from the registered clients, formal-
izing the query using the XREAL model, registering it, reply to
client queries, and unregistering queries. There is a need to register
a query if the client is going to cache the query result. As soon
as a client decides to delete cached data extracted from specific
queries,Query Managershould be informed to unregister these
queries from the system.Manipulation Managertakes the respon-
sibilities for formalizing and registering manipulation operations.

<UStatement UID="U7001" receivedAt="2008-09-12T11:34:27">

<rname>cinema_tab</rname>
<set>

<spredicate>
<simplePredicate>

<attribute>
<name>RATE</name>

</attribute>
<operator>eq</operator>
<operand>

<value>7</value>
</operand>

</simplePredicate>
</spredicate>

</set>
<where>

<spredicate>
<simplePredicate>

<attribute>
<name>RENEWED_ON</name>

</attribute>
<operator>eq</operator>
<operand>

<value>1999</value>
</operand>

</simplePredicate>
</spredicate>

</where>
</UStatement>

Figure 17: The XREAL specification of the operationMO4.

* Information of Mobile Clients
* Encoded Mobile Queries
* Encoded Manipulation Operations
* Update Notifications

RepositoryXReAl Database

Relational Data of

A Specific Application

Query
Manager

Manipulation
Manager

Mobile Client
Manager

The DBS Layer

Triggering
Mechanism

Mechanism
Update Notification

The Application Layer

Figure 18: The conceptual architecture of the UptiME System.

The XREAL model is used to encode manipulation operations to
be stored into the XREAL repository.

TheDBS Layermainly supports the management of the XREAL

repository, detecting and notifying clients, whose cached data is af-
fected by manipulation operations. The XREAL repository stores
XREAL specifications, such as contextual information, queries and
manipulations, and notifications that should be sent to specific mo-
bile clients. Furthermore, the database of a specific application do-
main, such as the cinema database, is to be managed within theDBS
Layer. UPTIME extended DBSs, which provide XML data man-
agement and triggering mechanism, to react as a mobile database
system.

7.2 The XReAl Repository
UPTIME utilizes the modern DBSs, which provide XML man-

agement support such as DB2 [12] and Oracle [15], to provide a
repository for storing the XREAL specifications and update notifi-
cations. The XREAL repository is based on a relational database
schema, in which XML type is supported to store well-formed and
validated XML documents.

Figure 19 depicts the database schema of the XREAL repository.
The schema consists of four fundamental relations,mclient, query,
manipulation, and notification. A manipulation operation might
cause notification(s) to be sent to mobile clients issuing queries,
whose cached result intersects with data affected by the manipula-
tion operation.

798

detected_at

issues

received_at
Status

MaID
Type

d

MCID

MCINFO QTree

QID

[0,N]

[1,1][0,N]

[0,N]

[1,1]

[1,1] [1,1]

causes

MClient Query

notifies references

Manipulation

[0,N]

Insert

Delete

UpdateUSTMT

DSTMT

ISTMT

Notification

Figure 19: The ER diagram of the XReAl Repository

The relations,mclient and query, consist of a primary key at-
tribute (MCID andQID) and an attribute of XML type (MCINFO
andQTree). Each manipulation operation has an identification num-
ber and is classified into three types,insert, delete, andupdate. The
attributesMaID andTypestore the identification number and the
type of an operation. The both attributes represent the primary key
of the relation. Manipulation operations are classified also into two
status new (N) or tested (T) operations. TheStatusattribute repre-
sents the status of an operation. The time at which the operation is
received is to be stored into thereceived_atattribute. TheISTMT,
DSTMT andUSTMT attributes are of XML type and store XML
documents representing XREAL specification forinsert, deleteor
updateoperations respectively. The content of the attributes of
XML type is to be validated by the XML schema of the XREAL

model.
Thenotification relation consists of the attributes,MCID, QID,

(MaID, Type) anddetected_atthat represents the time at which the
notification is detected. The tuples of thenotification relation are
to be inserted as a result of testing the intersections between cached
and modified data, as it is discussed in the following sub-section.

7.3 A Trigger-Based Notification Mechanism
UPTIME utilizes the triggering mechanism provided by DBSs

to develop an update notification mechanism as a built-in func-
tion of DBSs. The update notification mechanism of UPTIME de-
tects the relevancy of upadtes (manipulation operations) and noti-
fies clients caching data affected by such updates. Figure 20 depicts
a flowchart diagram of the update notification mechanism of UP-
TIME . This mechanism is based on two triggers created over the
manipulationandnotificationtables.

Generate Insert statements to
the notification table

the insert Execute
statements

execute
operation

tuples into the notification table
called by a trigger after inseting

A Java Stored Procedure

YES

Insert a manipulation
operation

YES

NO

tuples into the manipulation table
called by a trigger after inseting

A Java Stored Procedure

the manipulation

Change the status
to tested ’T’

YES
Is

executed

YES

executed
Is

?

tuples
Has new

YES

in the new tuples
mobile clients citedNotifyrelevant update

Has
statements

Is status
= ’N’ ?

Figure 20: A flowchart of the UPTI ME notification mechanism.

The trigger attached to themanipulation table invokes a Java
stored procedure, calledJSPDetective, after inserting a new tu-
ple representing a manipulation operation.JSPDetectivestarts by
generating for each new manipulation operation a list of SQL in-

sert statements based on the DRUPE method, as discussed in Sub-
section 7.4. The generation process is impleneted using XQuery
[18] queries executed by the DBS. Generating a non-empty list
means that there is a chance of detecting a client, whose cached data
is to be affected by the operation. Then,JSPDetectiveexecutes the
SQL insert statements, which are based onSELECTstatement that
might return a tuple to be inserted into thenotificationtable. After
executing safely the generated SQL insert statements,JSPDetective
executes the manipulation operation, which is to be executed also if
the generated list is empty. Finally,JSPDetectivechanges the sta-
tus of the manipulation operation to be tested (T). All these actions
are processed as a part of the transaction of inserting a manipula-
tion operation into themanipulationtable. JSPDetectivehandles
these actions a one sub-transaction, all or nothing. For simplicity,
the exception handling is ignored in Figure 20.

The trigger attached to thenotificationtable invokes a Java stored
procedure, calledJSPNotifier, after inserting new tuple(s) byJSPDe-
tective. For each new tupleJSPNotifiersends a SMS to the clients,
whose cached data affected by the manipulation operation.

7.4 SQL Templates for the Insert Statements
In case a manipulation operation modifies a specific table, which

is used in several queriesCQi, there is a probability that several
rows are to be added to thenotificationtable. These rows are to be
added if and only if there is an intersection between the result of
CQi and the modified data. This intersection is to be determined
using a SELECT statement, calledTEST, returning the number of
picked rows. ThisTESTstatement is based on the DRUPE method.

Insert into NOTIFICATION
selectMCID?, QID?, MaID?, Type?, current timestamp
from sysibm.sysdummy1
where0 <
(a SQL query that

is generated according to the DRUPE method
and returns the number of picted rows usingcount(*))

Figure 21: A generic SQL template for the insert statements.

01XQUERY
02<ListOFInsertions>
03 {
04 for $MSTMT in
05db2-fn:sqlquery("SELECT IT.ISTMT FROM XREAL_INSERTIONS_TAB
06 AS IT WHERE status = ’N’")//IStatement
07 return
08 <Insertions caused_by_MaID="{$MSTMT//@IID}">
09 {
10 for $query in
11 db2-fn:xmlcolumn(’QUERY.QTREE’)
12 //query[//relation/name="{$MSTMT//rname/text()}"]
13 return
14 <InsertionDDL>
15 Insert into NOTIFICATION
16 select’ {$query/data(@MCID)}’, ’{$query/data(@QID)}’,
17 ’{$MSTMT//data(@IID)}’, ’I’ , current timestamp
18 from sysibm.sysdummy1
19 where 0<

20 (
21
22) </InsertionDDL>
23 } </Insertions>
24 } </ListOFInsertions>

Figure 22: A generic SQL template for the insert statements.

The structure of the generated insert statement consists of two
dynamic parts. The first part is the row that probably will be added

799

if and only if theTEST statement returns a positive result. This
row is added usingSELECTstatement over a dummy table. The
SELECTstatement includes a where clause, which consists of one
predicate. This predicate checks that zero is less than the number of
rows returned from a specificTESTstatement generated dynamicly
according to the relevant DRUPE test. Intuitively, The second part
is theTESTstatement.

<ListOFInsertions>
<Insertions caused_by_MaID="XXXX">

+<InsertionDDL>
+<InsertionDDL>
+<InsertionDDL>

</Insertions>
</ListOFInsertions>

Figure 23: The result of the XQuery.

A B
select count(*)
fr om the relations of the query

except the modified relation
where
(The selection and join

predicates according to
DRUPE method for testing
an insert operation)

select count(*)
fr om location_tab as LTAB
where
(102 = LTAB.LID and

7 > 4 and
Postal_Code = ’76131’)

Figure 24: A) a SQL template for the insert, B) an example.

Figure 21 depicts the general structure of the insert statement
used to detect clients, whose cached data affected by a manipula-
tion operation. The SELECT statement shown in Figure 21 returns
specific values for the client ID, query ID, manipulation ID and
type, and the time at which this row will be added to the notifica-
tion table. SYSIBM.SYSDUMMY1 is a dummy table provided by
DB2 to be used for SQL statements, in which a table reference is
required but the contents of the table are not important.

Figure 22 shows the query formalized using XQuery to generate
an insert statement for each manipulation operation, whose status
is new (N), and queries, which use the modified table. Lines 15-19
in Figure 22 shows the generation of the first dynamic part of the
insert statement. XREAL_INSERTIONS_TAB is the physical ta-
ble representing the manipulation relation shown in Figure 19 for
the insert operation. The generic result of this XQuery is illus-
trated in Figure 23. The result is an XML document that consists
of a list of insert statements caused by a speific manipulation op-
eration. JSPDetectiveafter executing the XQuery executes these
insert statements.

Figure 24.A depicts a SQL template for an insert operation. The
TESTstatement for the insert operation consists of a SQL selecting
from the tables used by the query except the modified query. The
where clause of theTESTstatement constructed from the selec-
tion and join predicates of the query except that the selection and
join predicate(s) related to the modified table re-constructed using
the actual inserted values. Figure 24.B shows theTESTstatement
for checking the relevancy of the insert operation shown in Figure
15 on the queryQCL shown in Figures 13 and 14. As shwon in
Figure 24.B, the selection predicateRATE > 4and join predicate
CTAB.LID = LTAB.IIDare both re-constructed by replacing the at-
tributes RATE and CTAB.LID respectively by the corresponding
values (7, 102) from the insert statement.

The SQL template of aTESTstatement for the delete operation
is shwon in Figure 25.A. The template consists of a SQL selecting

A B
select count(*)
fr om the relations of the query
where
(

(
the where clause of the delete
)

and
(
the selection and join predicates)

select count(*)
fr om cinema_tab as CTAB,

location_tab as LTAB
where
(

(
CID = 9903
)

and
(
CTAB.LID = LTAB.LID and
Postal_Code = ’76131’ and
RATE > 4))

Figure 25: A) a SQL template for the delete, B) an example.

A B
select count(*)
fr om the relations of the query
where
(

(
the where clause of
the update operation
and
the negation of the set clause
of the update operation
)

and
(

the selection and join
predicates of the query))

select count(*)
fr om the relations of the query
where
(

(
cid = 9902
and
not (hotline = ’0721-2059-333’)
)

and
(

CTAB.LID = LTAB.LID and
Postal_Code = ’76131’ and
RATE > 4))

Figure 26: A) SQL template for an update operation modifying
a projected attribute, B) an example.

from the tables used by th query, and a where clause constructed by
adding conjunctively the where clause of the delete operation to the
selection and join predicates of the query. Figure 25.B shows the
TESTstatement for checking the relevancy of the delete operation
shown in Figure 16 on the queryQCLshown in Figures 13 and 14.
As shwon in Figure 25.B, the where clause (CID = 9903) of the
delete operation is added to the selection and join predicates of the
QCLquery.

The SQL template of aTESTstatement for an update operation
modifying a projected attribute is shwon in Figure 26.A. The tem-
plate consists of a SQL selecting from the tables used by th query,
and a where clause constructed by adding conjunctively the where
clause of the update operation and the negation of the set clause to
the selection and join predicates of the query. Figure 26.B shows
theTESTstatement for checking the relevancy of the update oper-
ation numberMO3shown in Figure 5 on the queryQCL. As shwon
in Figure 26.B, the where clause (CID = 9902) and the negation
of the set clause (not (hotline = ’0721-2059-333’)) of the update
operation are added to the selection and join predicates of theQCL
query.

Figure 26.A depicts a SQL template for an update operation
modifying an attribute used in a selection predicate. TheTEST
statement for the update operation consists of a SQL selecting from
the tables used by the query. The where clause of theTESTstate-
ment consists of the where clause of the update, the join and selec-
tion predicates except the selection predicate(s) over the modified
attributes, and disjunction predicate that test case D1 and case D3.
Figure 26.B shows theTESTstatement for checking the relevancy
of the update operation shown in Figure 17 on the queryQCL. As
shwon in Figure 27.B, the predicate,((RATE > 4) and not((7) > 4)
), checks whether the rate of the cinema was greater than 4 and will

800

A B
select count(*)
fr om the relations of the query
where
(

(
the where clause of
the update operation
)
and
(
join and selection predicates
of the query except the predicates
over updated attribute
)
and
(

(
(the selection predicate for D1)
or
(the selection predicate for D3)
)))

select count(*)
fr om the relations of the query
where

(
(
RENEWED_ON = 1999
)
and
(
CTAB.LID = LTAB.LID and
Postal_Code = ’76131’
)
and
(

(
((RATE > 4) and not((7) > 4))
or
(not(RATE > 4) and ((7) > 4))
)))

Figure 27: A) SQL template for an update operation modifying
a selection attribute and B) an example.

not remain greater than 4 after the update or not,case D1. However
the predicate,not(RATE > 4) and ((7) > 4)checks whether the rate
of the cinema was not greater than 4 and will be greater than 4 after
the update or not,case D3.

A B
select count(*)
fr om the relations of the query
where
(

(the where clause of
the update statement)

and (
(−−Case D1

XC.ID in (IDs of rows
picted by the query)
and
not NewValue in (the
values used in the join
of the query)

)
OR
(−−CASE D3

(the selection predicates
related to the updated relation)
and
not XC.ID in (IDs of rows
picted by the query)
and
NewValue in in (the
values used in the join
of the query)
)))

select count(*)
fr om cinema_tab XC
where
(

(RENEWED_ON < 2000)
and (

(−−Case D1
XC.CID in
(select the IDs ofQCL)
and
not 101 in
(selected values)

) OR
(−−CASE D3

(RATE > 4)
and
not XC.CID in
(select the IDs ofQCL)
and
101 in (selected values)
)))

Figure 28: A) SQL template for an update operation modifying
a join attribute, B) an example.

Figure 28.A depicts a SQL template for an update operation
modifying an attribute used in a join predicate. TheTESTstate-
ment checks that the updated rows are fall in the intersectionD1 or
D3. A row is to be part ofD1 if and only if the row was part of the
query result and the new value is not one of the joining values. A
row is to be part ofD3 if and only if the row satisfying the selection
predicates related the updated table was not part of the query result
and the new value is one of the joining values. Figure 28.B shows
theTESTstatement for checking the relevancy of the update oper-
ation numberMO5shown in Figure 5 onQCL. As shwon in Figure

28.B, forcase D1the XC.CID should be one of the rows picked in
the query result and the value 101 is not one of the joining values
used in the query, and forcase D3, the updated rows satisfying the
selection predicate (RATE > 4), were not part of the query result
and the new value is one of the joining values.

8. EVALUATION
We have utilized DB2 Express-C 9.5 [12] and the Sun Java 1.6

language to implement theDBS Layershown in Figure 18. The
XML Schema of the XREAL model is used to validate the at-
tributes of XML type shown in Figure 19. The shown SQL and
XQuery queries are formalized to be executed using DB2. How-
ever, these queries could be supported by other DBSs, which pro-
vide XML management support and triggering mechanism. The
Application Layerof UPTIME is in-progress. Currently, the devel-
oped functionally of theApplication Layeris restricted to register
mobile clients and queries and to insert manipulation operations.
All test were done on a standard PC running Ubuntu 8.04 Linux
(Intel(R) Core(TM)2 Duo CPU @ 2.20GHz with 2 GB of RAM).
Figure 29 illustrates the time consumption for registering queries
on the server and for checking the relevance of insert, update and
delete operations. We used the example queries and modifications
presented throughout the paper for our experiments.

 0

 10

 20

 30

 40

 50

 0 2000 4000 6000 8000 10000 12000 14000 16000

S
ec

on
ds

Number of queries

Registering a query
Checking relevance of insert operations

Checking relevance of delete operations
Checking relevance of update operations

Figure 29: Evaluation of time consumption

The method of detecting the intersection(s) between modified
data and cached data demands a registration of queries issued by
mobile clients. These queries are to be stored in the server as
individual entries on the XREAL repository. This method avoids
query indexing as needed in other approaches like those presented
in [8]. The time that is required to register or de-register a query is
the time required to insert or delete an individual query without a
need to re-construct the index of the queries. Registering a 16,384
queries took only approximately 6 seconds5 in our experiments. As
shown in Figure 29, the time for registering queries is linear to the
number of queries. In other approaches that are based on query in-
dexing, such as presented in [8], the registration time exponentially
increases with the growth in the number of queries. Avoiding the
query indexing provides high scalability in handling a great number
of clients and queries.

Beside the scalability, another advantage of the method presented
in this paper is the applicability of the method to be implemented

5The algorithms presented in [8] needed more than 80 seconds for
registering 10,000 queries, some others presented in [9] where even
slower. However, these results base on a 1.6 GHz Athlon machine
with only 512 MB of memory.

801

within the DBS. That leads to reduce the code complexity of the
Application Layer. Consequentially, the maintenance of the UP-
TIME system needs less effort.

The main drawback of this method is the cost of repeating the
check for similar queries. However, Figure 29 illustrates the worst
case where all registered queries are effected by the issued mod-
ification operations. As shown in Figure 29, the time required to
check the relevance of a manipulation operation is linear to the
number of queries, which use the manipulated table and might be
affected by the operation. Our experimental results show that the
maximum required time for checking the relevancy of a manipu-
lation operation to 16,384 related queries is approximately 50 sec-
onds. So, we expect, much better performance for real world appli-
cations. Furthermore, that drawback of multiple checks for similar
queries could be avoided by maintaining a list of similar queries.
These experiments with various query loads are part of future work.

9. CONCLUSION AND OUTLOOK
In this paper, we have presented a method called, DRUPE , for

detecting relevant updates to cached data. The paper has presented
three categories of relevancy test, for insert, delete and update op-
erations respectively. The main idea of these tests is to check the
intersection between the modified data and the cached data, which
is a result of specific queries. For each manipulation operation, the
paper has discussed the effect of the operation on the cached data
and the criteria of the intersection(s) between the cached data and
modified data. A non-empty intersection means that the manipula-
tion operations are relevant to cached data. This method retrieves
the data of the intersection using a query(ies) constructed from a
manipulation operation (insert, delete or update) and the queries,
whose result is cached on at least one client.

This paper has presented XREAL , an XML-based model, for
the queries issued by mobile clients and server-side updates. The
paper furthermore has presented a proof-of-concept system, called
UPTIME that utilizes the DRUPE method and XREAL model to
provide a DBS built-in function for update notifications.

The main advantages of our approach to detecting relevant up-
dates to cached data are: 1) the quick response in detecting the rele-
vant updates as soon as the execution of an manipulation operations
occurs, 2) the ability to check the intersection between the modi-
fied and cached data using SQL queries generated by XQueries,
which are executed by an XQuery engine provided within mod-
ern DBSs, 3) the flexibility in exchanging and sharing the XReAl
specification, such as mobile queries, 4) seamless integration of the
update notification management into relational DBSs, and 5) the
scalability and performance improvement due to avoiding several
intermediate layers that were required to support the management
at the application layer.

This paper has presented a research work that is part of a con-
tinuous research project aiming at developing a framework for ad-
vanced query management in mobile information systems based on
XML and DBS utilities. Currently we are extending the UptiME
system to support context-aware queries and do additional experi-
ments with different workloads and query sets.

10. REFERENCES
[1] J. A. Blakeley, N. Coburn, and P.-Å. Larson. Updating

derived relations: Detecting irrelevant and autonomously
computable updates. In A. Gupta and I. S. Mumick, editors,
Materialized Views, chapter 21, pages 295–322. MIT Press,
London, England, 1998.

[2] C. Bunse and H. Höpfner. Resource substitution with
components — optimizing energy consumption. In

J. Cordeiro, B. Shishkov, A. K. Ranchordas, and M. Helfert,
editors,Proceedings of the 3rd International Conference on
Software and Data Technologie, volume SE/GSDCA/MUSE,
pages 28–35, Setúbal, Portugal, July 2008. INSTICC press.

[3] A. K. Chandra and P. M. Merlin. Optimal implementation of
conjunctive queries in relational data bases. InProc. of the
ninth annual ACM symposium on Theory of computing,
pages 77–90, New York, NY, USA, 1977.

[4] C. Elkan. Independence of logic database queries and update.
In D. J. Rosenkrantz and Y. Sagiv, editors,Proc. of the ninth
ACM symposium on Principles of database systems, pages
154–160, New York, NY, USA, 1990. ACM Press.

[5] R. Elmasri and S. B. Navathe.Fundamentals of Database
Systems. Addison Wesley, 2007.

[6] H. Höpfner. Towards update relevance checks in a context
aware mobile information system. InProc. of the 35th
annual conference of the German Computer Society (GI),
volume P-68 ofLNI, pages 553–557, Bonn, Germany, 2005.
Köllen Druck+Verlag GmbH.

[7] H. Höpfner. Update Relevance under the Multiset Semantics
of RDBMS. InProceedings of the 1. conference on mobility
and mobile information systems, volume P-76 ofLNI, pages
33–44, Bonn, Germany, 2006. Köllen Druck+Verlag GmbH.

[8] H. Höpfner. Query Based Client Indexing in Client/Server
Information Systems.Journal of Computer Science,
3(10):773–779, 2007.

[9] H. Höpfner.Relevanz von Änderungen für Datenbestände
mobiler Clients. VDM Verlag Dr. Müller, Saarbrücken, 2007.
in German.

[10] H. Höpfner and C. Bunse. Ressource substitution for the
realization of mobile information systems. In J. Filipe,
M. Helfert, and B. Shishkov, editors,Proc. of the 2nd
International Conference on Software and Data Technologie,
volume Software Engineering, pages 283–289, Setúbal,
Portugal, July 2007. INSTICC press.

[11] H. Höpfner, S. Schosser, and K.-U. Sattler. An Indexing
Scheme for Update Notification in Large Mobile Information
Systems. InCurrent Trends in Database Technology - EDBT
2004 Workshops, Revised Papers, volume 3268 ofLNCS,
pages 345–354, Berlin, Germany, Nov. 2004.
Springer-Verlag.

[12] IBM Redbooks.DB2 9.5 pureXML Guide, March, 2008.
[13] D. Maier and J. D. Ullman. Fragments of relations. In

M. Stonebraker, editor,Proc. of the 1983 ACM SIGMOD
international conference on Management of data, New York,
NY, USA, 1983. ACM Press.

[14] C. Papadimitriou. A note on the expressive power of prolog.
Bulletin of the EATCS, 26:21–23, June 1985.

[15] M. Scardina, B. Chang, and J. Wang.Oracle Database 10g
XML & SQL: Design, Build, & Manage XML Applications in
Java, C, C++, & PL/SQL. McGraw-Hill Osborne Media,
2004. book.

[16] O. Shmueli. Decidability and expressiveness aspects of logic
queries. In M. Y. Vardi, editor,Proc. of the sixth ACM
symposium on Principles of database systems, pages
237–249, New York, NY, USA, 1987. ACM Press.

[17] M. K. Solomon. Some properties of relational expressions.
In Proc. of the 17th annual Southeast Regional Conference,
pages 111–116, New York, NY, USA, 1979. ACM Press.

[18] P. Walmsley.XQuery. O’Reilly, first edition edition, March
2007.

802

