
Flexible Query Answering on Graph-modeled Data∗

Federica Mandreoli, Riccardo Martoglia,
Giorgio Villani

DII
University of Modena and Reggio Emilia, Italy

{firstname.lastname}@unimore.it

Wilma Penzo
DEIS

University of Bologna, Italy
wilma.penzo@unibo.it

ABSTRACT
The largeness and the heterogeneity of most graph-modeled
datasets in several database application areas make the query
process a real challenge because of the lack of a complete
knowledge of the vocabulary used, as well as of the informa-
tion about the structural relationships between the data.

To overcome these problems, flexible query answering ca-
pabilities are an essential need. In this paper we present a
general model for supporting approximate queries on graph-
modeled data. Approximation is both on the vocabular-
ies and the structure. The model is general in that it is
not bound to a specific graph data model, rather it grace-
fully accommodates labeled directed/undirected data graphs
with labeled/unlabeled edges. The query answering princi-
ples underlying the model are not compelled to a specific
data graph, instead they are founded on properties infer-
able from the data model the data graph conforms to. We
complement the work with a ranking model to deal with
data approximations and with an efficient top-k retrieval al-
gorithm which smartly accesses ad-hoc data structures and
generates the most promising answers in an order correlated
with the ranking measures. Experimental results prove the
good effectiveness and efficiency of our proposal on different
real world datasets.

1. INTRODUCTION
Graph-based data models have recently gained much pop-

ularity as powerful means for data representation in sev-
eral database application areas, e.g., in biological databases
[8], Web-scattered data [12], personal information manage-
ment (PIM) systems [22], dataspaces [5]. In most of these
domains, largeness and heterogeneity are common features
which characterize the datasets. These peculiarities make it
impractical to exactly query the data due to the lack of a
complete knowledge of the vocabulary used, as well as of the
information about how data is organized. One of the most

∗This work is partially supported by the Italian Council co-
funded project NeP4B

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

elusive goals of research is thus establishing flexible query
mechanisms which allow users to easily query graph-based
data and to get useful results.

One way to achieve flexibility in query formulation is to
adopt a keyword-based query model [1, 3, 4, 9, 10, 11, 14,
19]. This solution has the merit of eliminating structures
in the query, thus lightening the user from the burden of
knowing the relationships occurring between the data. Fur-
thermore, it easily applies to heterogeneous scenarios where
multiple schemas coexist.

On the other hand, a keyword-based approach suffers from
an inherently limited capability in the semantics it can ex-
press. We are all familiar with how difficult is to translate
a complex request in a set of keywords and most of all to
get precise answers from this means. For instance, let us
consider the graph-based data in Fig. 1, which represents a
very small portion of the DBLP graph1 in a RDF-like style,
and let us look at Query 1. By following a simple keyword
search query model [9, 14, 16], and assuming for simplicity
to disregard the ‘Sivastava’ misspelling and the condition
on the year of publication, a user would translate Query
1 into the set of terms Q1={title, paper, author, Sri-

vastava}. The main drawback of this kind of approach is
that terms are allowed to occur anywhere in the data. This
means that, for instance, papers having Srivastava as re-
viewer would appear in the result, even if they obviously are
not relevant for the query.

From the above example it is evident the need of support-
ing semantic query capabilities which go beyond keyword-
based search when searching for knowledge [12]. Essentially,
the user should be enabled to include varying degrees of
structure in her queries, so that she can better specify her
own needs according to the partial knowledge of the schema
she may have. Furthermore, it is of fundamental impor-
tance to get meaningful answers, i.e., answers made up of
data related in a significant way.

These new demands pose new challenges as to the defini-
tion of appropriate and effective models for query specifica-
tion and query answering, as well as of efficient algorithms
and data structures to support their applicability.

Only few recent works have dealt with these issues so far
[5, 8, 12, 18, 21]. However, all of them are either tailored to
specific domains or they focus on specific aspects of the prob-
lem. For instance, the papers [5, 8] propose a partial solution
to the lack of expressiveness of the keyword-based approach
by allowing the contextualization of value terms (e.g., Sri-
vastava) into label terms (e.g., author). However, they do

1Available at http://sw.deri.org

216

Document

Article InProceedingsJournal

subClassOf

subClassOf subClassOf

Halevy04b

"The Piazza Peer Data
Management System"

Srivastava92c

type

type

title

2004

year

cite

TKDEjournal

"Pushing Constraint
Selections"

"A. Y.
Halevy"

author

"D. Srivastava"

1992

author

year title

"IEEE Transactions
on Knowledge and
Data Engineering

(TKDE)"

title

type

S
c
h
e
m
a
 l
e
v
e
l

In
s
ta
n
c
e
 l
e
v
e
l

1

2 3 4

5

6

7

8

9

10

11

12

13

14

Query 1: The title of the papers authored by someone
whose name sounds like ‘Sivastava’ published before 2005.
Query 2: The documents related in some way to the ‘Pi-
azza’ paper published in the TKDE journal.

Figure 1: Reference graph and two query samples

not allow the specification of relationships between terms.
Thus, for instance, Query 2 in our reference example can not
be expressed. NAGA [12] and TALE [18], instead, adopt a
graph-based query language which enables the formulation
of queries with additional semantic information, namely the
one expressed through the specification of links (i.e., rela-
tionships) between terms. Their answer model is then based
on approximate graph matching. However, in complex do-
mains, approximation techniques like those adopted in [18]
are not adequate, since they are limited to syntactic con-
siderations on data linkage, completely disregarding the se-
mantics underlying the connections between the data. This
aspect has important implications on the meaningfulness of
answers, since, for instance in biological databases, entities
can be related in several different ways, each one represent-
ing a different biological phenomenon [8]. In this respect,
NAGA [12] presents a more powerful query language, but
it does not delve into details as to the efficiency of the an-
swering process. [21] presents a flexible query model which
is targeted for relational and XML data. Thus, it does not
investigate the problem of handling labeled edges.

Finally, as to the problem of querying heterogeneous data,
up to now most of the efforts have been spent on the problem
of approximating the structure of a query [2, 18, 20], often
giving little attention to support vagueness on the vocabu-
lary used. Rather, it has been proved that label ambiguity
is a very frequent issue, because people hardly choose the
same term for a single well-known object [7]. For this pur-
pose, some works [5, 22] adopt term expansion techniques,
and follow a query relaxation approach. However, they do
not explicitly deal with vague specification on data links.

In this paper we address the problem of approximate query

answering on graph-modeled data, namely finding data sub-
graphs which are similar to a query graph. Our approach
is semantics-driven in that we admit only approximations
which lead to semantically meaningful results.

Our contributions are as follows:

• we present a flexible model for supporting approxi-
mate queries on graph-modeled data. The data model
is general in that it is not bound to a specific graph
data model, rather it gracefully accommodates several

data models from other approaches, namely support-
ing labeled directed/undirected data graphs with la-
beled/unlabeled edges. This results in a general frame-
work which flexibly satisfies a wide variety of application-
specific needs (Section 2);

• we support approximate queries in a two-fold fash-
ion: 1) by considering node/edge label mismatches;
2) through the structural relaxation of relationships
between data. As for the latter point, a key contri-
bution is the introduction of the notion of Semantic

Relatedness relation for nodes in a data graph as a
fundamental benchmark for the application of seman-

tically meaningful relaxations only (Section 3);

• we complement the query answering model with a gen-
eral ranking model which identifies some interesting
properties of scoring functions useful to support ef-
ficiently the evaluation of approximations. Further-
more, the model adopts a distinct-node set semantics
which privileges the most compact answers and avoids
to overwhelm the user with quasi-redundant results
(Section 4);

• we present an instantiation of the Semantic Related-
ness relation for a RDF-like data model. This is gen-
erated by means of a set of rewriting rules on graph
edges which are not compelled to a specific data graph,
rather they rely on properties of the data model the
data graph conforms to (Section 5);

• we provide an efficient top-k retrieval algorithm which
adopts the principles of the Threshold Algorithm (TA)
[6] and smartly accesses ad-hoc data structures to gen-
erate the top-k answers (Section 6);

• we present an extensive experimental evaluation which
proves the effectiveness and the efficiency of our pro-
posal on different real world datasets (Section 7).

Finally, we compare our proposal with the literature and
provide concluding remarks in Section 8.

2. THE DATA MODEL
Graphs provide a natural way to represent a wide range of

data for different applications, from relational information
to XML documents, from biological databases to dataspace
systems, only to mention a few.

In this paper we deal with the problem of flexible query
answering on graph-modeled data. To this end, we do not
want to limit the generality of the approach to a specific data
model. Instead, the data model we adopt is a general model
where data is represented as a connected graph allowing par-
allel edges (also known as multigraphs) and node and edge
labels. In this way, we are able to cover most graph-based
data models like the widely adopted standard RDF and in-
teresting proposals recently introduced in the literature for
various purposes (e.g. [5, 8, 12, 14]).

A data graph essentially represents a portion of the real
world through entities, values, and relationships between
them. In the following, we denote as L the set of all possi-
ble labels partitioned in literal values LL (e.g. 2004, "A. Y.

Halevy") and concept labels LC (e.g. year, author, cite).
Moreover, LC also includes the empty label ǫ which is as-
signed to unlabeled nodes and edges.

Definition 1 (Data Graph). Data is represented as

a connected directed labeled multi-graph G = (N, E, LN , LE)

217

where N is a set of nodes, E ⊆ N × N is a multiset of

directed edges, LN ⊆ L and LE ⊆ LC are sets of node and

edge labels, respectively. Each node n ∈ N is assigned a

label λ(n) ∈ LN and each edge e ∈ E is assigned a label

λ(e) ∈ LE. Nodes having labels in LL are called value nodes

whereas nodes with labels in LC are called entity nodes.

It is worth noting that the support to parallel edges, which
not all models include (e.g. [18]), is instead fundamental in
many contexts such as RDF and OWL based data as well
as dataspaces, where the edge semantics depends not only
from the involved nodes but also from the edge properties.

The graph which will be used as reference example in the
following is shown in Fig. 1, and it describes the relation-
ship between two publications2. The graph conforms to a
data model which most of the RDF-like data can be trans-
lated into. The model distinguishes between the instance
level and the schema level. More precisely, it specializes the
data graph model introduced in Def. 1 in the following way:
an entity node, depicted as a rounded rectangle, is an RDF
class, a class instance or any other resource, while a value
node, depicted as a rectangle, is an RDF literal. For simplic-
ity, in Fig. 1 we show only a small portion of a potentially
large and heterogeneous data graph which, as discussed in
the Introduction, in most domains represents the collection
of several different data sources. Thus, for instance, scien-
tific papers are possibly described by concepts such as Paper,
Article, Publication, InProceedings, aso.

Given a data graph G, we introduce the notion of path
which will be used in the following. A path is a sequence of
consecutive edges in a graph and the length is the number of
edges traversed. A sample of path of length 3 in the graph
depicted in Fig. 1 is (n6, n2) − (n2, n1) − (n1, n3). Notice
that the involved edges are not necessarily required to have
the same direction.

3. THE QUERY MODEL
Our main aim is to go beyond the keyword-based ap-

proach without necessarily requiring to precisely use the
graph vocabulary and structure in query formulation. To
this end, we propose a query model which allows users to
specify query graphs exploiting whatever partial knowledge
they have. This is particularly useful not only when the
user does not know the structure but also for querying het-
erogeneous data sources. As far as the queried graphs can
be partially unknown to the user, queries can also contain
imprecise specifications both about the node and edge labels
they are searching for, and in the relationships among nodes.
Our matching mechanism will respect whatever query con-
straints are given by dealing with the possibly contained
label and structure ambiguities.

3.1 Query Specification
A query is a multigraph connecting entity nodes and pred-

icates on values.
The query specification mechanism we propose allows the

formulation of graphs expressing as much topology and an-
notation as the user can, including none at all. To this end,
users can annotate any node or edge with the wildcard “any
label”, ‘#’, when they do not know the label at all. Indeed,

2For ease of reference, nodes are univocally identified by the
integer numbers i shown on the left upper corner and will
be referenced as ni.

Paper

#

type

zx ~
"Sivastava"

$y < 2005

author

date

title

1

2

3

4

5

Document
Journal

#

$x ∋ "Piazza"

#

type

title

#

#journal

$z ∋ "TKDE"

#

type

type

1
2

3

4

5

6 7

Figure 2: Query 1 (left) and Query 2 (right)

the symbol ‘#’ may be substituted by any of the labels in L.
Moreover, users are allowed to specify general connections
between nodes by means of undirected edges.

Definition 2 (Query Graph). A query is a tuple q =
(N, E, LN , LE , V, C) where E = Ed ∪ Eu, (N, Ed) is a di-

rected multi-graph, (N, Eu) is an undirected multi-graph, (N,
E, LN , LE) is a connected labeled multi-graph, V is a set of

variables, and C is a set of conditions on V .

LE ⊆ LC and each e ∈ E is assigned a label λ(e) ∈ LE ∪
{#}. LN ⊆ LC and each n ∈ N is assigned a label λ(n) ∈
LN ∪ {#} ∪ V . Nodes having labels in LN ∪ {#} are called

entity nodes while nodes having labels in V are called variable

nodes. Each condition in C has the form var〈op〉v where

var ∈ V , 〈op〉 is an operator, and v ∈ LL is a value. Possible

operators are the relational ones, i.e., =, <,≤, >,≥, and the

two operators ∋ and ∼. The semantics of the ∋ operator is

the usual term containment in a text, whereas the ∼ operator

expresses similarity between literals.

Fig. 2 depicts the graphs of two queries specified in Fig. 1.
Notice that they both make use of the symbol ‘#’ to denote
the user’s absence of knowledge about which entity nodes the
specified terms are related to in the data (e.g., Paper and
author in Query 1), and which relationships occur between
such entity nodes (e.g., between the two document instances
in Query 2). None of them finds an exact match on the
reference graph because of node/edge label and structural
mismatches: e.g. Paper and date in Query 1, the connection
between n1 and n3 in Query 2. In the following, we propose a
query answering semantics which effectively deals with such
ambiguities.

3.2 The Query Answering Semantics
Our query answering model relies on approximate sub-

graph matching. In particular, approximation on data is
performed in a two-fold fashion. As we allow label ambi-
guities, where the exact label names are unknown, the first
kind of approximation we consider are node/edge label mis-
matches. Moreover, as users are not required to know the
graph topology, we also support structural approximations.

Label Approximation
The degree of mismatch between concept labels is quantified
by means of a distance function

dL : LC ∪ {#} × LC ∪ {#} → [0, 1]

For any pair of labels, dL is a symmetric function which
returns a value ranging from exact match (0) to total mis-
match (1). Obviously, for all labels l ∈ LC , dL(#, l) = 0,
dL(l, l) = 0 and dL(ǫ, l) = 1. As far as its definition is
concerned, we let the users customize the label matching

218

method that best suits the application needs. In our opin-
ion, dL should follow the principle of inter-substitutivity:
the more li can be substituted by lj in the same context
and vice-versa the smaller dL(li, lj) should be. For instance
dL(Paper, Article) should be lower than dL(Paper, Journal).
Possible alternatives range from purely syntactic approaches,
such as the well known edit distance and its variants, to se-
mantic approaches. To this extent, one possible solution is to
correlate labels through knowledge-based distances, which
take advantage of linguistic information extracted from ex-
ternal knowledge sources such as the WordNet (WN) the-
saurus3. Here, we propose an adaptation of the Leacock-
Chodorow [13] distance, which compares the WN hyper-
nymy hierarchies of two given disambiguated labels li and
lj :

dL(li, lj) =

(

nlinks(li,lj)

2·H
if ∃ LCA(li, lj)

1 otherwise
(1)

where nlinks(li, lj) is the number of links connecting li and
lj in the hypernymy hierarchy, LCA(li, lj) is the Least Com-
mon Ancestor (LCA) between li and lj , and H is the height
of the hierarchy (16 in WordNet).

Structural Approximation
Exact graph matching maps each node adjacency specified in
the query graph to exactly one data graph edge. A possible
solution to support structural approximation is the purely
topological approach which relaxes adjacency constraints by
allowing node/edge insertions in the data graph.

But, since in a connected data graph all nodes are pair-
wise connected by at least one path, in order to cope with
the possibly large amount of approximations, some syntactic
properties on the involved labels and/or on the missed exact
matches should be checked. This is the approach adopted,
for instance, in [12, 18].

However, it should be noted that the fact that nodes
are topologically connected, does not necessarily imply that
they are meaningfully related. Rather, sometimes such an
assumption would lead to useless results. For instance, no-
tice that 2004 is not the year of publication of the paper
Srivastava92c in Fig. 1 and thus the node pair (n9, n13)
should not be considered when approximating Query 1. On
the other hand, Srivastava92c is an instance of the Doc-

ument class and the node pair (n13, n1) is thus useful for
Query 2.

Essentially, we are concerned with graph-modeled data
where graph nodes represent entities in the real world. There-
fore, we can leverage on the graph topology semantics to de-
cide whether any pair of nodes is meaningfully related and,
in case, to annotate such a linkage. This leads to the notion
of Semantic Relatedness on a data graph G as that relation
that only contains node pairs in G which are meaningfully re-
lated. To our knowledge, the requirement that the elements
satisfying a query must be meaningfully related has been
first introduced in [4] for labeled keyword search over XML
documents. In that context, meaningfully related nodes are
used for conjunctive query answering. In our context, in-
stead, they represent the extremes to be taken into account
when approximating node adjacency.

Definition 3 (Semantic Relatedness (SR)). Given

a data graph G, the Semantic Relatedness relation SR is a

3http://wordnet.princeton.edu

InProceedings

Srivastava92c

type

"Pushing
Constraint
Selections"

"D.
Srivastava"

1992

author
year

title

4 = f(1)

11 = f(3)

12 = f(4)

13 = f(2)

14 = f(5)

Document

Article
InProceedingsJournal

subClassOf
subClassOf

Halevy04b

"The Piazza Peer
Data Management

System"

Srivastava92c

type

type
title

cite

TKDEjournal

"IEEE Transactions
on Knowledge and
Data Engineering

(TKDE)"

title

type

1 = f(1)

2
3 = f(2) 4

6 = f(3)

7 = f(5)

8 = f(7)

10 = f(6)
13 = f(4)

Figure 3: Embeddings for Query 1 (left) and for
Query 2 (right)

binary relation on the nodes in G. It is a multiset of node

pairs such that (n, n′) ∈ N × N belongs to SR iff n and n′

are meaningfully related. Each e = (n, n′) ∈ SR is assigned

a label λ(e) ∈ LC , a path p(e) in G connecting n with n′,

and an approximation cost c(e) ≥ 0.

In other words, each instance e ∈ SR is a “virtual” edge
which p(e) approximates in G, and c(e) expresses the cost
to approximate e with p(e). It follows that E ⊆ SR and,
since no structural approximation is required for each edge
e ∈ E, for each of them the approximation cost is c(e) = 0.

While the above SR definition abstracts from specific data
models, Section 5 shows an example of how this relation
can be customized for the RDF-like data model previously
introduced.

Query Answers
Definition 4 (Query answer). Let G be a data graph,

SR ⊆ N×N be an SR relation over G, and q = (Nq, Eq, Lq
N ,

Lq
E , V q, Cq) be a query. An SR-answer to q is an approxi-

mate embedding ESR = (f, g) where f is an injective node-
assignment function f : Nq → N such that

• for every entity node n, f(n) is an entity node and

dL(λ(n), λ(f(n))) < 1;

• for every variable node n, f(n) is a value node;

• for every condition c = λ(n)〈op〉v in C, λ(f(n))〈op〉v
holds with a certain grade s(c) which is called the score
of c. In particular, relational operators have a Boolean

semantics and thus s(c) must be 1 whereas operators

∋ and ∼ return values s(c) ∈ [0, 1] and it must be

s(c) > 0;

and g is an injective edge-assignment function g : Eq → SR
such that for every e = (n, n′) ∈ Eq

• dL(λ(e), λ(g(e))) < 1;

• if e is a directed edge, i.e. e ∈ Eq

d, then g(e) =
(f(n), f(n′)), otherwise

• g(e) = (f(n), f(n′)) or g(e) = (f(n′), f(n)).

The two kinds of approximation are used to deal with node
mismatches and adjacency misses in query answers. In par-
ticular, f allows node label approximations while g allows
both edge label approximations and adjacency approxima-
tions. To this end, notice that any exact embedding is an
approximate embedding. Each embedding ESR of a query
graph q defines a subgraph of G which consists of the set of

219

nodes in f(Nq) connected through the paths in g(Eq). The
subgraphs depicted in Fig. 3 are defined by one plausible
approximate embedding for each of the two query samples.
The data nodes in the range of f are depicted in bold line
and the query node image is shown on the left upper corner
of each data node rectangle. For instance, 4 = f(1) means
that data node n4 is assigned to query node n1.

For ease of presentation, the subgraph shown for Query
1 only contains label approximations: Paper is mapped to
inProceedings and date to year. Dually, the embedding
shown for Query 2 only deals with structural approxima-
tions: the data path (n6, n2) − (n2, n1) approximates the
query edge (n3, n1) whereas (n13, n4)−(n4, n1) is for (n4, n1).
Recall that, by definition of g, it is assumed that the data
pairs (n6, n1) and (n13, n1) are in SR and that their la-
bels (approximately) match. Indeed, Halevy04b as well as
Srivastava92c are certainly documents. Also, it is worth
noting that the subgraph makes explicit the relationship be-
tween f(n3) and f(n4): Halevy04b cites Srivastava92c.

Finally, since our primary focus is on approximate graph
matching, the above definition does not delve into the spe-
cific functions s(·) used to evaluate conditions containing the
IR-style operators ∋ and ∼. Our approach is general and
completely application-independent, and those measures that
best fit the nature of the data and the specific application
needs can be easily integrated (e.g.,IR-style TF/IDF scores,
edit distance).

4. THE RANKING MODEL
In a very frequent scenario where a large number of ap-

proximate embeddings are returned for a given query, we
are concerned with finding the top-ranked answers. To this
end, we introduce a ranking model which measures answer
goodness by applying a scoring function S to each embed-
ding ESR. In this section, we first argue about the use of
SR in the ranking process. Then, we introduce a general
ranking scheme which defines the fundamental properties of
S. Finally, we instantiate S to a specific scoring function
which satisfies additional interesting properties.

4.1 ReducingSR for ranking purposes
Given a query graph, any set of data nodes matching the

query nodes can be involved in more embeddings as to the
way they are connected. Some of them could not be seman-
tically different. In other words, SR can contain multiple
occurrences of the same pair of data nodes which share the
same label and only differ in the approximating path. There-
fore, they essentially represent the same relationship. The
ranking model we propose adopts a distinct-node set seman-

tics, that is only one of the above embeddings is considered
for ranking purposes. In particular, the model operates on a
reduced version of SR where only the “less expensive” node
pairs are maintained.

Definition 5 (Reduced SR). Let G be a data graph

and SR ⊆ N × N be a semantic relatedness relation. The

reduced version of SR, denoted as SR, contains each node

pair e = (n, n′) ∈ SR such that for all e′ = (n, n′) ∈ SR
such that dL(λ(e), λ(e′)) = 0 then c(e) ≤ c(e′).

Therefore, given a semantic relatedness relation SR over a
data graph G and a query q, a top-k query returns the k

approximate embeddings ESR with the best scores S(ESR).

We have several reasons for adopting a distinct-node set
semantics. First, the semantics of query answering is pre-
served as the set of answers built over any semantic related-
ness relation is the same as the one obtained from its reduced
version. Moreover, it is an intuitive and clean semantics.
Second, we privilege the less expensive embeddings which,
in some way, correspond to the most compact answers [9, 12].
Indeed, any edge approximation cost can be interpreted as
the weakness of the connection between the involved nodes
and thus it can even translate into the path length as shown
in Section 5. On the other hand, each answer carries very
little additional information from the rest of the answers
overlapping both on the data nodes and on the connection
semantics. Thus, by adopting a distinct-node set semantics
we avoid to overwhelm users with quasi-redundant results.
The last reason is more technical: it reduces the amount of
data required for query answering.

4.2 Scoring functions
The scoring function S applied to an embedding E4 com-

bines the approximations occurring at both data nodes and
data edges, including the approximations on query condi-
tions, and it returns a score in [0, 1] such that the higher
is S(E) the higher is the overall approximation required for
the matching.

Definition 6 (Answer Score). Given a query q =
(N, E, LN , LE , V, C) and an embedding E = (f, g) for q, the

score of E is defined as:

S(E) = σ(Sf (E),Sg(E),Sc(E)) (2)

where Sf , Sg, and Sc are functions which evaluate the ap-

proximations on data nodes, on data edges, and on query

conditions, respectively, and σ is an increasingly monotone

aggregation function having range [0, 1].

The approximations components on data nodes and data
edges Sf (E) and Sg(E), as well as the approximation com-
ponent on query conditions Sc(E), are defined below.

Definition 7 (Approximation Components). Given

a query q = (N, E, LN , LE , V, C) and an embedding E =
(f, g) for q, the scores of the approximations on data nodes,

on data edges, and on conditions C in E are defined as:

Sf (E) = σf ({df (n, f(n))|n ∈ Ne})

Sg(E) = σg({dg(e, g(e))|e ∈ E})

Sc(E) = σc({dc(c)|c ∈ C})

where Ne ⊆ N is the set of entity nodes. The symbols df ,

dg, and dc denote distance functions ranging from 0 to 1 and

quantifying the approximation between each query node and

its corresponding data node, each query edge and its mapped

instance in SR, and each condition and the matching value,

respectively. σf , σg, and σc are increasingly monotone ag-

gregation functions whose range is [0, 1].

In order to ensure an intuitively “coherent” semantics in
this context, some general properties should be guaranteed
by the above functions. σ must satisfy the commutativity
and associativity properties, 0 should be the identity ele-
ment (i.e. σ(d, 0) = d) and 1 should be the annihilating

4In the following we assume that SR has been fixed and use

E in place of ESR.

220

element (i.e. σ(d, 1) = 1). The same applies to σf , σg,
and σc. The last two conditions imply, from one hand, that
the contribution of exact matches is absorbed in the evalu-
ation of the respective score, which is representative of the
actual approximations only, from the other hand, that any
value of total mismatch leads to an overall total mismatch.
The above properties also guarantee that, when E is an ex-
act match, S(E) = 0, which confirms the intuition that no
approximation is required in that case.

The general ranking scheme above can be tailored to the
model presented so far by instantiating Eq. 2 to one specific
scoring function as follows:

S(E) =
α

ne

ne
X

i=1

dL(λ(ni), λ(f(ni))) +

β

2m

m
X

j=1

(dL(λ(ej), λ(g(ej))) +
c(g(ej))

MC
) +

γ

nc

nc
X

i=1

(1 − s(ci)) (3)

where α+β+γ=1 and MC is a normalizing constant corre-
sponding to the maximum cost in SR. The function defines
the score of an embedding E to a given query q by summing
up the contribution of the ne entity nodes, of the m edges,
and of the nc conditions in q. In particular, df uses the
distance function dL between node labels; dg depends both
on dL for edge labels and on the approximation costs in SR
to evaluate adjacency mismatches; dc is instantiated to the
inverse of the function s(·) used for condition evaluation.

It should be noted that the scoring function S(E) instan-
tiated above satisfies two interesting properties:

Cost-based graph-distance semantics. Recall that
S is applied on embeddings which refer to SR. This means
that the computation of the latter factor of the edge approx-
imation component in Eq. 3 can be reduced to the shortest-
path problem, since the cost associated to the approximation
of a given edge e is the lowest one among all possible costs
associated to alternative approximations for e.

Match-distributive semantics. The overall score of an
embedding E can be computed in a distributive way. This
means that all matching paths contribute independently to
the score computation, even if they may share some com-
mon edges. This is different from other approaches which
consider the single contribution of each edge only once (e.g.,
[3]). As already evidenced in [9], this property has important
implications on the complexity of the score computation. As
a matter of fact, in our model this semantics allows for the
precomputation of the approximation costs in SR, and these
can be combined as independent parts, thus disregarding the
repeated contribution of possible overlapping paths.

We take advantage of these properties to efficiently sup-
port query answering and ranking in our model, as shown
in Section 6.

5. A RDF-LIKE INSTANTIATION OF SR
In this section, we show a possible instantiation of SR for

the RDF-like data model introduced in Section 2.
Such an instantiation relies on the notion of type. More

precisely, data edges are grouped together on the basis of the
kind of relationship they represent. We assume the existence
of five edge types: property, type, isA, isPartOf, and dom-

Rel. The type property is assigned to each edge between
an instance node and a value node. A sample of property

edge is the edge (n6, n5) in the data graph in Fig. 1. isA

is an acyclic transitive relation which expresses a hierarchi-
cal relationship between two classes while a type relation is
used to link one entity node to a class it belongs to. All
the edges in Fig. 1 labeled subClassOf and type are of type
isA and type, respectively. isPartOf concerns the member-
ship of an instance to another instance and, finally, domRel

denotes any relationship which can be established between
instances. The data graph in Fig. 1 contains two domRel

edges: (n6, n7) and (n6, n13). In the following, we adopt the
notation τ(e) to denote the type of the edge e.

The construction of SR on any data graph G =
(N, E, LN , LE) conforming to the RDF-like data model is
performed in an incremental fashion through a set of rewrit-
ing rules founded the type semantics and the graph topol-
ogy. Similarly to [17] but for different purposes, the rewrit-
ing system starts from a set of axiomatic rules for edges in
E, and recursively adds new node pairs by exploiting a set
of extension rules. Each rule has a left-hand part which
states preconditions and a right-hand part which specifies
the properties of the node pair added to SR. The following
axiomatic rule initializes SR with the set of edges in E5:

e ∈ E → {e|c(e) = 0, τSR(e) = τG(e), p(e) = e}

while the following rules are used to associate a label to each
edge:

τG(e) = isA → λSR(e) = isA

τG(e) = isPartOf → λSR(e) = isPartOf

τG(e) = type → λSR(e) = type

τG(e) = property → λSR(e) = λG(e)

τG(e) = domRel → λSR(e) = λG(e)

Notice that whenever the node semantics is carried by the
type, the node is assigned a default label. Then, SR is
extended by means of the following rules:

For all e = (x, y), e′ = (y, z) ∈ SR:
(r1) τ(e) = τ(e′) = isA OR τ(e) = type, τ(e′) = isA

OR τ(e) = τ(e′) = isPartOf →
{e′′ = (x, z)|τ(e′′) = τ(e), λ(e′′) = λ(e),
p(e′′) = p(e) − p(e′), c(e′′) = c(e) + c(e′) + 1}

For all p1, p2 properties, e = (x, y) ∈ SR:
(r2) τ((p1, p2)) = isA, λ(e) = pd(p1).λ →

{e′ = (x, y)|τ(e′) = pd(p2).τ, λ(e′) = pd(p2).λ,
p(e′) = p(e), c(e′) = c(e) + 1}

For all p properties, e = (x, y), e′ = (y, z) ∈ SR:
(r3) τ((p, aTrans)) = type, λ(e) = pd(p).λ, λ(e′) = pd(p).λ →

{e′′ = (x, z)|τ(e′′) = pd(p).τ, λ(e′′) = pd(p).λ,
p(e′′) = p(e) − p(e′), c(e′′) = c(e) + c(e′) + 1}

For all p properties, cl classes, e = (x, y), (p, cl) ∈ SR:
(r4) τ((p, cl)) = domain, λ(e) = pd(p).λ →

{e′ = (x, cl)|τ(e′) = type, λ(e′) = type,
p(e′) = p(e), c(e′) = c(e) + 1}

(r5) τ((p, cl)) = range, λ(e) = pd(p).λ →
{e′ = (y, cl)|τ(e′) = type, λ(e′) = type,
p(e′) = p(e), c(e′) = c(e) + 1}

5We use subscripts G and SR to distinguish the properties
in the graph and in the semantic relatedness relationship,
respectively.

221

In particular, in rule (r1) the path associated to the newly
added edge is the concatenation of the two involved paths
and the cost actually represents the difference between the
length of p(e′′) and the length of a direct connection between
x and z, i.e. 1.

The above rules applied to the very small data graph
shown in Fig. 1 add three edges to SR:

e τ(e) λ(e) p(e) c(e)
(n6, n1) type type (n6, n2) − (n2, n1) 1
(n7, n1) type type (n7, n3) − (n3, n1) 1
(n13, n1) type type (n13, n4) − (n4, n1) 1

The approach we adopted in introducing the above rules is
conservative as it is exclusively based on types and does not
make any assumption on the involved labels. On the other
hand, to adopt a “näıve” approach for the SR expansion
could bring to misleading results. For instance, the author
of a paper which cites another paper is not the author of the
cited paper. Thus, we prefer to not overwhelm users with
wrong results while accepting few false negatives. One way
to overcome this problem is to adopt a fine grain semantic
analysis of the chain of node and edge labels in order to
state whether the starting node and the ending node are
semantically related or not. This study is out of the scope
of this paper and will be dealt with in our future work.

In the following, we extend the RDF-like model and the re-
lated rewriting system in order to take into account, besides
the subclass hierarchies, other meaningful class properties
which can be defined in OWL and RDFS. In particular, we
focus on the property and domRel edges which have been
excluded in the previous model. For ease of reading, in the
following we will refer to the property and domRel edges
by using the generic term “property”. Properties are meta-
level classes whose domains and ranges are defined through
the newly added edge types domain and range and whose
hierarchies are defined through isA edges. Moreover, when-
ever OWL descriptions are available, we consider the acyclic
transitive property characteristic and allow this characteris-
tic to be stated through the edge type type and the newly
added class aTrans. For instance, the triples (cite, type,
aTrans), (cite, domain, Document), and (cite, range, Doc-
ument) could be used to define the property cite. Given
this extended model, the rewriting system is extended with
rules (r2)-(r5) above. Function pd(·) associates any meta-
level class defining a property with the property it defines
(the label pd(·).λ and the type pd(·).τ). To this end, we
assume that the bound between each property defined at
meta-level and its use at instance level is made through the
involved labels which must be the same. Rule (r2) states
that all node pairs related by one property are also related
by its super-properties, rule (r3) extends rule (r1) to any
transitive property while rule (r4) and (r5) exploit the prop-
erty domain and range to add new class instances. Finally, it
is worth noting that the cost associated to each edge added
through rules (r2), (r4), and (r5) is not related to the path
length but rather to the number of node pairs used to infer
them.

Theorem 1 (convergence). SR is finite and unique.

Proof. First notice that the rewriting system is mono-
tone and finitely terminating. Moreover, it is also locally
confluent. It follows that the rewriting system is globally
confluent. Therefore SR is finite and unique.

L(λSrivastava92c, λInProceedings, λtype)

L(λSrivastava92c, λD.Srivastava, λauthor)

e, n, n', c(e)

e13-4-type, n13, n4, 0 ⊥

e13-11-author, n13, n11, 0 ⊥

L(λ(n), λ(n'), λ(e))

...

...

... SR

IX-SRL (λ(n), λ(n'),

 λ(e))B
+

IX-SRN (λ(n), λ(n'),

 λ(e), n, n')B
+

LABELS
Node Labels Edge Labels

IX-L (label)

B
+

, inverted, metric

Figure 4: An overview of the index structures

Finally, we did not include the two property characteris-
tics, namely inverse and symmetric, due to the termination
problem. Indeed, a repeated application of any rewriting
rule exploiting such characteristics would add new instances
to SR identical to some of the already included instances
in SR, but paths and costs. Thus, the process would never
terminate. However, as we adopt a distinct-node set seman-
tics, we can directly compute SR instead of computing SR
and, then, reducing it. In this case, we can add the above
instances only once, the first time as it can be shown that
the cost of the instances added afterwards would be higher.

6. DATA STRUCTURES AND ALGORITHMS
In this section, we introduce the data structures and the

algorithms implementing the model presented so far.

6.1 Index Structures
Fig. 4 shows a graphical overview of the adopted index

structures. Specifically, we exploit two families of indices:
label (top part of Fig. 4) and SR indices (bottom). Let us
first focus on the latter, as they are particularly crucial to
the algorithm workings.

Indeed, the most expensive operation related with query
processing is to check whether two data nodes are seman-
tically related or not under the label constraints specified
in the query. Our aim is to reduce space and time com-
plexity of search and a common approach to do this is to
perform some offline operations. To this end, we decided to
create SR indices that would store the reduced version of
the semantic relatedness relation. We cluster all the node
pairs e = (n, n′) ∈ SR sharing the same labels λ(n), λ(n′),
and λ(e) together with the related costs c(e). The result is
a collection of lists where each list L(λ(n), λ(n′), λ(e)) is a
sequence of entries (e, n, n′, c(e)) ordered for ascending c(e)
and accessible through the tuple (λ(n), λ(n′), λ(e)).

As to the implementation, instead of designing new
index structures, we preferred to consider existing solu-
tions that can support the SR efficiently. We propose
to rely on the strong bases of existing relational systems:
the SR-RV(Start,End,Edge, LStart,LEnd,LEdge,C) rela-
tion stores each node pair in SR, the starting node iden-
tifier in Start, the ending node identifier in End and the
edge identifier in Edge, together with their labels (LStart,
LEnd, and LEdge), and the cost (C). Then we build a B+-
tree, denoted as IX−SRL in Fig. 4, that clusters first on
(LStart,LEnd,LEdge) and then on C. In this way, we can
take advantage of sequential I/O accesses as tree leaf pages

222

are linked and records in them are ordered on increasing val-
ues of C. Fig. 4 shows the contents of two of the L lists in
SR for our running example. Notice that, as each node n,
each edge e is also referenced in the indices through a unique
numeric identifier; however, in order to make the example
more readable, we employ a start, end and edge label sub-
script. For the same reason, we represent numeric label ids
with λ and the label value as subscript.

Furthermore, we envisage a series of ad-hoc indices which
efficiently support additional searches on SR-RV and on la-
bels. More specifically, random accesses on the node identi-
fiers as required by the following algorithm are implemented
with B+-trees (index IX−SRN in Fig. 4). Differently from
IX−SRL, which is used to determine the relevant lists L and
thus points to the lists’ starting elements, such an index is
accessed also through a starting and ending node identifier
(n and n′, respectively) and directly points to all relevant
entries inside such lists.

Finally, let us consider the structures supporting searches
inside labels (upper part of Fig. 4). Range and containment
search of value labels is supported by B+tree and inverted
indices. Other indices are also available for approximate
searches. For instance, a metric index on the disambiguated
version of the labels in SR-RV allows label distance compu-
tations. All the different types of label indices are uniformly
accessed through the requested label value label and are
denoted in figure as IX−L; they return the identifiers λ of
the data labels matching the one required.

Note that, for sake of generality, the indices described
in this section implement the general data model; however,
they can be straightforwardly extended with the features
which are specific to each particular instantiation of SR,
such as type information.

6.2 An Algorithm for Top-k Querying
In this section we propose a querying algorithm that effi-

ciently generates the top-k answers in an order that is corre-
lated with the ranking measure. The algorithm builds from
the principles of the Threshold Algorithm (TA) proposed in
[6], which has been proven optimal in terms of number of
items visited, assuming the aggregation function is mono-
tone. Before presenting the complete algorithm and dis-
cussing the enhancements it presents over other TA-derived
algorithms, we will first give an intuition of its working, also
by means of an example.

For the sake of simplicity of presentation, we first consider
oriented queries and exact matches for nodes’ and edges’
labels and for conditions, then we will show how to relax
this assumption and deal with approximate and/or unspec-
ified labels as well as with undirected edges. Therefore, ini-

tially S(E) = β

2m

Pm

j=1

c(g(ej))

MC
and each query edge ei =

(nS(i), nE(i)), for i ∈ [1, m], is associated with a sorted list
L(λ(nS(i)), λ(nE(i)), λ(ei)). This is easily done by search-
ing for the requested labels in IX−L, and then by accessing
IX−SRL in order to retrieve the relevant lists. Then, the al-
gorithm basically performs sorted access in parallel to each
of the m sorted lists. As a node pair e = (n, n′) is seen in
some list (object in TA), it does random access to the other
lists to compute answers. For each answer E , the algorithm
computes its score S(E) and if it is one of the k lowest, then it
remembers (E , S(E)). After each answer computation step,
the algorithm computes the score lBound of the set of the
next node pairs under sorted access to the m sorted lists

as they were a solution, and stops the process whenever at
least k answers have been seen whose grade is smaller than
lBound. Indeed, as lists are ordered, lBound represents the
best score of any solution which could be computed in the
following steps.

For instance, going back to our data graph (Fig. 1) and
Query 1 (Fig. 2), we will simplify the query so to avoid
the need for approximate label matching, a feature which
is not essential to understand the algorithm core. Let us
consider only the first three query nodes (n1, n2 and n3)
and modify their labels to InProceedings, Srivastava92c
and D. Srivastava, respectively. The algorithm proceeds
in the following way:

1. the data label ids matching the nodes’ and edges’ labels
are found by means of IX−L;

2. SR is then queried through IX−SRL: the first edge
(query nodes n2-n1) searches for (λ(n) = λSrivastava92c,
λ(n′) = λInProceedings, λ(e) = λtype) and is associated
to the first list shown in figure (L1 for short), while,
in a similar way, the second edge is associated to the
second list (L2 for short);

3. sorted access is performed on L1 and a node pair (n13,n4)
is extracted from the list;

4. all answers involving the extracted pair are efficiently
constructed by performing random accesses in the other
lists; for the second query edge, index IX−SRN is queried
for n = n13 (being this the starting node for the second
edge too);

5. finally, results are generated by combining the matches
for each of the query edges; in our simple case, exactly
one answer E is found, its score S(E) is computed and,
since the lists do not contain additional data, the al-
gorithm stops and returns the required answer.

Algorithm 1 answerQuery(q,k)

1: for all i ∈ [1, m] do // query edges
2: Ci ← newCursor(L(λ(nS(i)), λ(nE(i)), λ(ei))

3: i=0;
4: while (i ← getNextCursor(i)) > 0 do

5: (e, n, n′, c(e)) ← Ci.next()
6: computeAnswers(i, e, n, n′, c(e), 0, ∅, ∅)
7: lBound ←

Pm
j=1 Cj .peekCost()

8: if |Ans| ≥ k and lBound ≥ Ans[k].dist then

9: abort answer computation
10: output Ans

The algorithm will now be presented in detail. The pseu-
docode is shown in Algorithm 1. Given a query q and the
number k of results to be returned, a cursor Ci is used to tra-
verse each list L(λ(nS(i)), λ(nE(i)), λ(ei)) (lines 1-2). In par-
ticular, after line 4 selects cursor Ci by calling algorithm get-
NextCursor() (Algorithm 3), Ci advances through the next()
function which returns the next node pair e = (n, n′), to-
gether with its cost c(e). Then, (some of) the answers orig-
inating from e are computed (Algorithm 2) and the pro-
cess stops as soon as the top k answers have been found
(lines 7-9). An answer is a triple (nList, eList, dist) where
nList[1, . . . , n] is a list of data nodes, one for each query
node ni, which encodes the node-assignment function f ,
eList[1, . . . , m] is a list of node pairs in SR, one for each
query edge ei, which encodes the edge-assignment function
g, and dist is the score S(E) of the approximate embed-
ding E = (f, g). Both list entries are initialized with node

223

placeholders and updated while computing the answer. The
top-k answers are maintained in a list Ans sorted on in-
creasing dist and initialized as an empty list. Algorithm 2
recursively computes each answer originating from the cur-
rent query edge ei.

Algorithm 2 computeAnswers(i, e, n, n′, cost, curD, nList,
eList)

1: nList[S(i)] = n
2: nList[E(i)] = n′

3: update(eList, i, e)
4: curD ← curD + cost
5: ı ← getNextQueryEdge(i)
6: if ı < 0 then // answer completed
7: if Ans[k].dist > curD OR |Ans| < k then

8: Ans.add((nList, eList, curD))
9: return

10: if |Ans| ≥ k ∧ curD + Cı.peekCost()) ≥ Ans[k].dist then

// abort computation of current answer
11: return

12: else // continue answer computation recursively

13: while ((e, n, n′, cost) ← Cı.seek(eList[ı].nS , eList[ı].nE))
6= NULL do

14: computeAnswers(ı, e, n, n′, cost, curD, nList, eList)
15: return

Whenever the current answer computation process is com-
pleted by the newly entering data node pair e = (n, n′), the
answer is added to Ans if Ans contains less than k entries
or if its distance is no greater than the k-th one (lines 1-
9). Otherwise, it can be interrupted for two reasons: the
lower bound of the answers which will be computed in the
following exceeds the pruning threshold Ans[k].dist (lines
10-11) or no matching object in the selected list Cı is found
(lines 13-15). In particular, Cı.seek() usually performs in-
dexed random accesses through the node identifiers available
in eList[ı], where ı is the current query edge selected at line
5. More precisely, each time a new data node pair is added
to the current solution, the update() function does not limit
itself to update eList[i], but it also uses n and n′ to update
the entries corresponding to ei’s adjacent edges. Then, get-
NextQueryEdge() selects at each call the next unvisited query
edge which has been (partially) bounded as an update() side
effect and Cı.seek() uses such a key.

Summing up, the algorithm operates in a more challeng-
ing scenario than other TA-derived algorithms present in the
literature (such as [9]) and thus introduces several enhance-
ments and modifications w.r.t. them:

• each object in one list conceptually joins with more
than one object in each of the others. Therefore, after
an object is seen under sorted access, all answers in-
volving such node pair should be computed and they
can be potentially a large number, differently from
most of the TA-derived algorithms (e.g. [9]) where at
most one answer is returned. For this reason, a pruning
threshold is applied not only to decide if the generated
answers are sufficient, but also during answer compu-
tation to avoid completing the computation of useless
answers;

• the fact that an object has been already seen under
random access does not mean that all the solutions
involving it have been generated. Therefore, the num-
ber of random accesses can be very high. In order to
reduce it, a memory buffer structure Bufi can be inter-
nally associated to each cursor Ci to collect all already

seen objects in Ci. Buffers are organized by n, n′ or
(n, n′). In this way, Ci.seek() would first look in Bufi

and, only when the searched information is not found,
it would search in the corresponding list and update
Bufi with the retrieved objects, in order to speed up
subsequent searches;

• as far as the cursor selection is involved, differently
from [9] where only round-robin accesses (ROUND_ROBIN)
are considered, Algorithm 3 includes additional cursor
selection strategies whose goal is to try to build better
ranked answers as soon as possible. The NEXT_BEST

mode chooses the cursor minimizing the variation of
the pruning threshold. Moreover, as our lists are not
equally sized, we can start building answers from the
most selective edges by prioritizing the cursors whose
size is the smallest one (MAX_SEL).

Algorithm 3 getNextCursor(current)

1: next ← −1
2: if Mode =ROUND ROBIN then

3: next ← pick i from [1, . . . , m] in round robin starting from
current such that Ci.size()> 0

4: else if Mode =NEXT BEST then

5: next ← find i ∈ [1, . . . , m] minimizing (Ci.nextCost()
−Ci.curCost()) such that Ci.size()> 0

6: else if Mode =MAX SEL then

7: next ← find i ∈ [1, . . . , m] minimizing Ci.size() such that
Ci.size()> 0

8: return next

The algorithm can be easily extended to handle the previ-
ously shown complete scoring function. In particular, differ-
ently from other TA-derived algorithms [9] which do not
always satisfy those advanced requirements, the way the
cursors Ci are organized effortlessly provides the flexibil-
ity needed to handle undirected edges, approximate labels’
matching and more complex query predicates. In this case,
each query label is associated with more than one data la-
bel: these are the labels similar to the query label w.r.t.
dL. The same applies to the labels on the query edges.
Similarly, predicates are solved with B+tree and inverted
indices to retrieve the matching labels. In this way, each
query edge is associated to more than one cursor. The same
applies to undirected edges which are associated to at most
two cursors. Therefore, getNextCursor() selects among all
the instantiated cursors. Note that, due to the way lists
are constructed, the objects of each cursor share the same
labels. Thus, fixed a query edge ei = (nS(i), nE(i)), it is suf-

ficient to associate each cursor with three values, DL
S , DL

E

and DL
E , expressing the distance of the starting node, end-

ing node and edge labels, respectively, from the query ones.
As to answer ranking, nList and eList entries are simply
extended with appropriate dL fields in order to compute the
distance of each answer.

Finally, notice that any unspecified label could be dealt
with as a special case of an approximate label, as # matches
with all the data labels. However, the number of data labels
is usually very high and thus the management of all the
instantiated cursors would be impractical. For this reason,
we decided to implement ad-hoc lists which maintain the
node pairs in SR ordered on increasing values of cost and
which are accessible through the specified labels. In this way,
each query edge is associated with one cursor also when it
includes one or more unspecified labels.

224

7. EXPERIMENTAL EVALUATION
We performed a thorough analysis of both the effective-

ness of our query answering model and the efficiency of
the presented algorithms on several RDF-based real world
datasets. In this section we present a selection of the most
significant results we obtained.

7.1 Experimental Setting
Among the several collections we employed to test our ap-

proach, we selected four of them, Russia6, DBLP-S, DBLP-L
and DBLP-XL, for the following discussion, as they allow
us to completely stress the system from all the required
perspectives. Russia describes several information about
the country’s cities and people, while DBLP-S, DBLP-L
and DBLP-XL are extracted from the well known DBLP
scientific bibliography data, enriched in its RDF version
with several interconnections, such as between papers by
the same authors. Russia and DBLP-S are not very big
in size, consisting in 1012 nodes / 1613 edges and 4373
nodes / 7779 edges, respectively, which we employed for
testing the system effectiveness. In particular, the Russia
dataset has a very detailed schema, with over 500 differ-
ent and richly interconnected concepts and properties, while
DBLP is a typical data-centric collection, presenting nearly
100 schema elements and a large number of instances. On
the other hand, we selected the DBLP-L collection with the
aim of stressing the approach from an efficiency point of
view: the collection shares the schema of DBLP-S and con-
sists of 445345 nodes and 763976 edges. Moreover, for addi-
tional efficiency and scalability analyses, we also employed a
DBLP-XL dataset, consisting of 4563896 nodes and 7548976
edges. For both Russia and DBLP, we considered a set of
significant queries, named R1 to R5 (Russia) and Q1 to Q4
(DBLP). The queries are designed to be increasingly more
complex, both in terms of number of nodes and unspecified
labels, and thus to test the system on increasingly more de-
manding cases. See the next section for more details. In
order to apply label similarities, the concept labels are dis-
ambiguated with the STRIDER [15] structural disambigua-
tion system, which in a completely automatic way associates
the most probable meaning to each of the labels; the data
labels having a similarity higher than a specified similarity
threshold are associated to the query labels. The algorithm
and data structures are implemented in Java 1.6, exploit
MySQL 5.0 and Oracle BerkeleyDB 3.2 Java Edition stor-
age engines and indices. All the experiments are executed
on an Intel Core2 Duo 2.4Ghz OSX workstation, equipped
with 2GB RAM and a 160GB SATA disk.

7.2 Effectiveness Evaluation
Tab. 1 presents a first selection of the effectiveness re-

sults we obtained for Russia (upper part of the table) and
DBLP-S (lower part), along with an overview of the nu-
meric features of the employed queries (number of nodes,
number of edges, number of “any labels” #, number of ex-
pected answers). Queries typically require both structural
and semantic approximations to be correctly solved. The
table shows different measures and comparisons: from left
to right, we compute the number of queries that would be
necessary to obtain all the expected results from an exact
matching approach, the number of queries that would have

6Publicly available at http://www.rdfdata.org

!"#$%&#

'(%&) *" *% *!") *%+, *%+!-. *$%/ 0 "!12% %+!-.

34 ! " # # # $%& # '("'' #

35 ! " #) #! $%& # '(!'* $%&

36 ! " #) +*, $%& # '(!'* $%&

37) ! ") +!- $%& # '(')) $%&

38 .) !)), $%& # '("+- $%&

!"#$%&# ,&%-1#19"

'(%&) *" *% *!") *%+, *%+!-. *$%/ 0 0 0:4;

'4 ! " # #" # ! # '(!.. #

'5 ! " # !+) " # # #

'6 .) ! #' ". $%& # '(*,! #

'7 + +) #)* +))# # '(-.) #

%<(12=<(%&1%# ,&%-1#19"

3(##1!=>!.!#%.

?@A0BC=?!.!#%.

%<(12=<(%&1%# ,&%-1#19"=DE9$FG

Table 1: Effectiveness results - Russia and DBLP-S

to be submitted to specific web search portals (only applica-
ble to DBLP) and the precision (i.e. percentage of relevant
retrieved answers w.r.t. the retrieved ones) of our approach
in different settings. We also compare our precision to the
one of an exact match and of a näıve approach. While the
exact match approach clearly has a very limited flexibility,
a näıve approach (similarly to [4]) is somehow opposed: the
näıve results are the ones that would have been retrieved
by computing all node matches and connecting them in the
data in all possible ways, disregarding our SR information.

Let us examine the results for Russia. Query R1 is the
most simple, “The authors that studied at the University
of Kazan”: the query does not require approximations, thus
both the exact approach and ours return the correct answer,
Lev Tolstoj, with a precision of 1. The näıve approach,
however, builds a larger number of answers, since it con-
nects other authors to the required university through paths
that are not semantically relevant (precision 0.2). The other
queries require different approximations: R2 generically asks
for “People that studied at the University of Kazan”, R3
“People semantically connected (# edge) to University of
Kazan”, R4 “The public spaces semantically connected (#
edge) to Lev Tolstoj”, R5 “The public spaces that lie in the
same city as Vosstaniye Square”. Notice that for all of them
we achieve perfect precision; this is made possible by ex-
ploiting the SR rules outlined in the previous sections and,
for the label similarity computations, a “safely”high similar-
ity threshold setting, nonetheless also allowing us to obtain
perfect recall (i.e. percentage of relevant retrieved answers
w.r.t. existing relevant ones) levels, not shown in table due
to lack of space. Instead, the other approaches are either not
applicable (no retrieved exact matches) or very inaccurate.
Also, an approach which “rewrites” our query to all possible
exact queries would be almost infeasible due to the excessive
growth of the number of equivalent queries.

These positive results are also confirmed by the DBLP
queries, specifically: Q1 “Articles of year 1997”, Q2 “Pa-
pers (generically) of year 1997”, Q3 “Titles of papers of date
1990 and semantically connected (# edge) to STACS con-
ference” and Q4 “Titles of documents created by a person
who has also created a document in 1994”. In this case, we
can also see that retrieving all the relevant answers through
the DBLP search engines on the web would, again, require
a significant work from the user (see the relevant column
table). See also Fig. 5, which gives full details on precision
and recall figures in this setting and compares our results
(“flex” for short) to the näıve and exact ones. Very high
precision and recall levels (typically perfect, while in Q4 re-
call is less than 1 since “person” matches with “author” but

225

!"# !$# !%# !&# !"# !$# !%# !&#

'()# "# "# "# "# "# "# "# *+,&#

-./0(# *+**"1,&# *+*2""$"# *+*****&# *+****"$# "# "# "# "#

().34# "# *# *# *# "# *+$1# *+*&# *+*"#

*#

*+"#

*+$#

*+%#

*+&#

*+1#

*+2#

*+5#

*+6#

*+,#

"#

!"#$%&%'() *#$+,,)

Figure 5: Effectiveness comparison - DBLP-S

not with “editor”, employing the standard semantic thresh-
old) are achieved by us; instead, while the exact approach
is good for query Q1, it is inappropriate for the others, and
the näıve generally has perfect recall but very low precision.

Finally, back to Tab. 1, we present a small but represen-
tative sample of a specific effectiveness evaluation we per-
formed on our ranking model and function. In particular,
we simulated a more rich and “noisy” answer set to DBLP
queries by significantly lowering the semantic approximation
threshold employed for label match (“lowT” section of the
table) and, together with precision P , we computed preci-
sion at recall level 10, P@10. As shown in table, even if P
is globally lower (for instance, “title” is now also similar to
label “note”), the function proves to be effective in discrim-
inating the irrelevant answers and keeping them low in the
ranking, with perfect P@10 levels.

7.3 Efficiency Evaluation
Along with a good effectiveness, a graph query answering

approach also necessarily needs to be very efficient, since the
size of the managed graphs can be very high. In the following
tests, we analyze the performance of our proposal on the
large DBLP-L collection, considering query execution time
and the number of index accesses performed by the different
available cursor selection strategies and access modes. Note
that since we are not focused on the efficiency of the pre-
processing phases, such as index construction, we will not
present an analysis of these performances.

Fig. 6 shows query execution time of queries Q1 to Q4 for
the Round Robin (RR), Next Best (NB) and Max Sel (MS)
cursor selection strategies, for both K=5 and K=10. As we
can see, execution time reflects the query complexity, both
considering the number of edges and the selectivity of the
labels. Further, for all of them, the random accesses per-
formed by seek() exploit indices; the sequential versions of
these strategies proved significantly slower then their index-
based counterparts, thus we present only the best perform-
ing one (“MS(seq)” in figure) as a baseline. Note that we
also tested the performances of a memory buffer for caching
index data accesses, as described in the algorithm discus-
sion, however we do not present them since the achieved
performance gain was not significant. First of all, we can
see that the index-based execution time, even for the most
complex queries, is low, less than 0.7 seconds for this large
dataset (K=10). As to the cursor selection methods, RR
generally proves to be the worse performing strategy and
is particularly outperformed by the others in case of queries
having many edges with different selectivity (such as Q3 and
Q4). MS strategy is the most efficient in all situations (less
than 0.3 seconds); NB performance is close but equally sat-
isfying, also considering that, differently from MS, it does

!"# !$# !%# !&# !"# !$# !%# !&#

'()*+,-# ./.# "012# $%&.# $0&/# "&%2# "2%2# $.2"# $30&#

44# $"&# $"&# &3&# /2.# %0&# %0&# /%.# 0&2#

56# ".3# "23# %20# &$%# $/&# $/3# &$"# &2.#

'(# "0&# "03# $20# $23# $"3# $"&# $3.# %13#

1#

/11#

"111#

"/11#

$111#

$/11#

%111#

!"
#$
%
&
'
(
))&

*
#)
)))
+*

,-
)

./0) ./12)

Figure 6: Query Execution time for DBLP-L

!"#$% && '()* && '()*

!+ !"# $%# &"# '()*)'

!, "+# %+# $'# '*)$)+

!-)(# %# !)# &$)(' '+

!. '# $# ""#)(* +% '"

!"#$% && '()* && '()*

!+ ''((')'"$*)(!&" '$)")'

!, $)((" "%&!* '&!** "))+)"

!-)%'&+!)'*$$) &'%!" !% '& '!

!. $)+)+' '!&!!&)"+(+$!)')*! *$

/$012345066#77#7585912#:5432#/$012345066#77#75857#;5432#

<634=>5017?#$7 /73$@#25066#77#7

Table 2: Details on index accesses for DBLP-L

not require to know the cursors’ size to work, thus possibly
proving more versatile in some specific implementation sce-
narios. The scalability w.r.t. K also proves encouraging for
all queries, with a computation time increase of only 10%
to 30% in going from K=5 to K=10. Even if, due to lack
of space, we are unable to show the complete figures, these
scalability results are also confirmed by the other tests we
performed for K values up to 100, on the queries retrieving
a large number of results (such as Q4).

Tab. 2 completes the picture by comparing the different
strategies, for K=5, in terms of the percentage of completed
answer computations and the number of required disk ac-
cesses, both sorted and random (for random access we show
both sequential and standard indexed modes, for complete-
ness). Notice the high percentage of completed answer com-
putations, specifically for MS, meaning that the time spent
in starting useless answer computations is minimized. Fur-
ther, the MS strategy also provides the lowest number of disk
accesses, thus justifying the previously examined figures.

We close our experimental discussion with a positive note
on the scalability of the approach w.r.t. dataset size: by
considering DBLP-XL (nearly 10 times larger then DBLP-
L), execution time for Q1 to Q4 is less than tripled, thus
proving a satisfying efficiency also from this point of view.

8. RELATED WORK AND CONCLUSIONS
The works which are more related to ours are [12, 21].
As far as we know, NAGA [12] is the first work which

addresses the need of semantic query capabilities which go
beyond keyword-based search as a key issue when searching
for knowledge. Nevertheless, several differences exist with
our work. NAGA relies on the YAGO Web-derived knowl-
edge base [17] which consists of 16 millions facts extracted
from semi-structured Web sources and ontologies. The work
introduces a data model which is similar to ours. However,
query formulation and answering is very different. First of
all, the system does not allow for semantic approximations
on query nodes’ and edges labels. Then, edge approximation

226

is expressed through the use of regular expressions over re-
lationships as query edges’ labels. Labels of matching paths
must satisfy the given regular expression, thus following a
pure syntactic approach. In very complex databases like
those, for instance, in the biological field, finding data which
exactly matches a complex regular expression may be a real
chance. On the other hand, simple regular expressions, i.e.,
made of a single label, are not approximated (except for
the isA relationship). Furthermore, answers to relatedness
queries, i.e., queries containing edges labeled by the special
keyword connect, return nodes which are connected through
any path in the data. As discussed in Section 3.2, topolog-
ical connection does not imply that the data retrieved is
meaningfully related. To overcome these limitations, our
model relies on the Semantic Relatedness relation SR to ex-
clude misleading results. The ranking model proposed in
[12] consists of a really valuable framework. However, it is
orthogonal to ours since it follows a probabilistic approach
which exploits some knowledge of the underlying dataset.
Our ranking model instead relies on scoring functions which
evaluate the approximations occurring at both data nodes
and data edges. Finally, in [12] query processing is discussed
to a limited extent, and only hints are given about the spe-
cific data structures and algorithms used to implement the
system. The work in [21] is the first that exploits schema in-
formation to derive the concept of Meaningful Schema Pat-
tern, with similar objectives as our Semantic Relatedness
relation. However, the proposed solution is targeted for rela-
tional and XML data, and can be considered as an XML-like
instantiation of our general model.

Much research efforts have focused on querying graph
databases. Some works [8, 9, 11, 14, 16] have the main
goal of investigating efficiency issues, and/or they are lim-
ited to keyword-based search. [18, 20] go beyond this query
paradigm and they both support approximate subgraph match-
ing. However, they only make syntactic considerations to
evaluate the degree of structural approximations on query
connections. In all these works the semantic relatedness of
the connected data is not discussed. In [22] query relax-
ations are applied to malleable schemas. Approximations
are achieved by query expansion techniques based on the
discovery of correlations of attributes and relationships in
the data. However, query relaxations are not concerned with
entities’ labels, and thus the user must know the schema to
start the query. Furthermore, approximations on relation-
ships are limited to edge substitution, thus not considering
structural relaxations to paths. A further relevant work is
[5] which emphasizes the need of supporting flexible query
answering over heterogeneous data sources. However, the
expressive power of predicate queries is limited. For in-
stance, Query 2 in our reference example can not be ex-
pressed. Then, the work mainly focuses on indexing aspects,
and approximations on queries are limited to the identifica-
tion of synonyms.

In this paper we presented a model for supporting approx-
imate queries on graph-modeled data. It is general and flex-
ible enough to deal with data of different kinds besides the
one shown in this paper, e.g., multimedia data. This does
not affect the query answering mechanism proposed, rather
it only impacts on the indices used to access the data.

The main strengths of our proposal are: 1) we abstract
from a specific data model, rather our approach is general
in that it gracefully accommodates several data models from

other approaches; 2) we present a query answering frame-
work which supports approximations on the vocabulary as
well as on the structure of a query. Our approach is focused
on a flexible query matching mechanism. This is orthogonal
to approaches like e.g., [2, 22] which adopt a different per-
spective, by focusing on generating query relaxations to be
matched exactly in the data. 3) As to structural approx-
imation, we introduce the notion of Semantic Relatedness
relation, which overcomes the limitations of simple topo-
logical approximations by allowing semantically meaningful

relaxations only.

9. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A

System for Keyword-Based Search over Relational
Databases. In ICDE, 2002.

[2] S. Amer-Yahia, L. Lakshmanan, and S. Pandit. FleXPath:
Flexible Structure and Full-Text Querying for XML. In
SIGMOD, pages 83–94, 2004.

[3] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and
S. Sudarshan. Keyword Searching and Browsing in
Databases using BANKS. In ICDE, 2002.

[4] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSEarch: A
Semantic Search Engine for XML. In VLDB, 2003.

[5] X. Dong and A. Halevy. Indexing dataspaces. In SIGMOD,
2007.

[6] R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation
Algorithms for Middleware. In PODS, 2001.

[7] G. Furnas, T. Landauer, L. Gomez, and S. Dumais. The
vocabulary problem in human-system communication.
Commun. ACM, 30(11):964–971, 1987.

[8] L. Guo, J. Shanmugasundaram, and G. Yona. Topology
Search over Biological Databases. In ICDE, 2007.

[9] H. He, H. Wang, J. Yang, and P. Yu. BLINKS: ranked
keyword searches on graphs. In SIGMOD, 2007.

[10] V. Hristidis, N. Koudas, Y. Papakonstantinou, and
D. Srivastava. Keyword Proximity Search in XML Trees.
IEEE Trans. Knowl. Data Eng., 18(4), 2006.

[11] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan,
R. Desai, and H. Karambelkar. Bidirectional Expansion For
Keyword Search on Graph Databases. In VLDB, 2005.

[12] G. Kasneci, F. Suchanek, G. Ifrim, M. Ramanath, and
G. Weikum. NAGA: Searching and Ranking Knowledge. In
ICDE, 2007.

[13] C. Leacock and M. Chodorow. Combining Local Context
and WordNet Similarity for Word Sense Identification. In
C. Fellbaum, editor, WordNet: An Electronic Lexical
Database, pages 256–283. MIT Press, 1998.

[14] G. Li, B. Ooi, J. Feng, J. Wang, and L. Zhou. EASE: An
Effective 3-in-1 Keyword Search Method for Unstructured,
Semi-structured and Structured Data. In SIGMOD, 2008.

[15] F. Mandreoli, R. Martoglia, and E. Ronchetti. Versatile
Structural Disambiguation for Semantic-Aware
Applications. In CIKM, 2005.

[16] A. Simitsis, G. Koutrika, and Y. Ioannidis. Précis: from
unstructured keywords as queries to structured databases
as answers. VLDB J., 17(1):117–149, 2008.

[17] F. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of
semantic knowledge. In WWW, 2007.

[18] Y. Tian and J. Patel. TALE: A Tool for Approximate
Large Graph Matching. In ICDE, 2008.

[19] Y. Xu and Y. Papakonstantinou. Efficient Keyword Search
for Smallest LCAs in XML Databases. In SIGMOD, 2005.

[20] X. Yan, P. Yu, and J. Han. Substructure Similarity Search
in Graph Databases. In SIGMOD, 2005.

[21] C. Yu and H. Jagadish. Querying Complex Structured
Databases. In VLDB, 2007.

[22] X. Zhou, J. Gaugaz, W.-T. Balke, and W. Nejdl. Query
relaxation using malleable schemas. In SIGMOD, 2007.

227

