A Sampling Approach for XML Query Selectivity
Estimation

Cheng Luo
Department of Mathematics
and Computer Science
Coppin State University
2500 West North Avenue,
Baltimore, MD, 21216, U.S.A.
cluo@coppin.edu

Wen-Chi Hou

Computer Science

Zhewei Jiang
Computer Science
Department
Southern lllinois University
Carbondale

Carbondale, IL 62901, U.S.A.

Feng Yu

Computer Science

Zjiang@cs.siu.edu
Qiang Zhu

Department of Computer and

Department Department Information Science
Southern lllinois University Southern lllinois University University of
Carbondale Carbondale Michigan-Dearborn

Carbondale, IL 62901, U.S.A.
hou@cs.siu.edu

ABSTRACT

As the Extensible Markup Language (XML) rapidly estab-
lishes itself as the de facto standard for presenting, stor-
ing, and exchanging data on the Internet, large volume of
XML data and their supporting facilities start to surface.
A fast and accurate selectivity estimation mechanism is of
practical importance because selectivity estimation plays a
fundamental role in XML query optimization. Recently pro-
posed techniques are all based on some forms of structure
synopses that could be time-consuming to build and not ef-
fective for summarizing complex structure relationships. In
this research, we propose an innovative sampling method
that can capture the tree structures and intricate relation-
ships among nodes in a simple and effective way. The de-
rived sample tree is stored as a synopsis for selectivity esti-
mation. Extensive experimental results show that, in com-
parison with the state-of-the-art structure synopses, specif-
ically the TreeSketch and Xseed synopses, our sample tree
synopsis applies to a broader range of query types, requires
several orders of magnitude less construction time, and gen-
erates estimates with considerably better precision for com-
plex datasets.

1. INTRODUCTION

Recently, the Extensible Markup Language (XML) has
rapidly established itself as the de facto standard for pre-
senting, storing, and exchanging data on the Internet. XML
queries are often expressed as path expressions because of
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the tree-structured nature of XML data. These path ex-
pressions generally consist of linear path expressions that
describe linear paths without branches, and branched path
expressions that describe branched paths. The latter, com-
monly known as twig queries, are a very common and general
form of XML queries.

In recent years, considerable research efforts [2, 4, 13, 15,
17] have been placed on the design of efficient algorithms
for twig query evaluation. Comparatively, much less atten-
tion has been paid to the optimization of XML twig queries,
which, however, is equally important. The primary task
of query optimization is to select efficient query execution
plans. The decision is usually based on the selectivity es-
timation with the rationale that evaluating more selective
portions of the queries first may effectively rule out unqual-
ified data.

Of the research work in estimating selectivity of XML path
expressions, the majority [16, 18, 19, 24] has focused on the
linear path expressions. It is not clear how these approaches
can be extended to XML twig queries. Recently, several
structure synopses, such as Correlated Suffix Trees [5], Sta-
tiX [7], Twig-Xsketch [21], TreeSketch [20], and Xseed [25],
have been proposed for twig query selectivity estimation.
These synopses generally store some forms of compressed
tree structures and simple statistics such as node counts,
child node counts, etc. Due to the compression of informa-
tion, selectivity estimation heavily relies on the statistical
assumptions of independence and uniformity. Consequently,
they can suffer from poor accuracy when these assumptions
are not valid.

Capturing relationships among nodes presents a stern chal-
lenge to structure synopses. Twig-Xsketch associates his-
tograms with nodes to capture the distributions of child
nodes. TreeSketch clusters nodes based on some predefined
similarity measures so that the independence and unifor-
mity assumptions can be reasonably applied. Xseed stores
the uniformities of the datasets in the kernel and records
the irregularities in the HET (Hyper-Edge Table). Xseed
was shown to perform better than TreeSketch [25], which in



term outperformed the Twig-XSketch [20] in construction
speed and estimation accuracy. However, even for the fastest
Xseed, the synopsis construction can still be painfully slow
for complex datasets. For example, our experiments show
that on a computer with 3.4GHz CPU and 1GB RAM, the
construction of the Xseed synopsis for the TreeBank dataset
could not finish in 4 days. In addition, the maintenance
of synopses can also be a concern especially when datasets
undergo substantial changes that invalidate the overall op-
timality of the synopses. A large scale re-clustering may be
then required for structure synopses, such as TreeSketch.

While sampling has been applied extensively in relational
databases [3, 8, 9, 10, 11, 12, 14], there is virtually no work
on sampling in XML databases except for the naive method
[24] that randomly draws nodes from individual node sets
(i.e., groups of nodes of the same type). Semi-structured
XML data exhibit distinct characteristics, such as hierarchi-
cal structures and repeating fields, from the relational data,
and thus may require a different perspective on sampling.
In this research, we present an innovative perspective on
sampling XML data. Instead of randomly drawing nodes,
we propose to preserve as much the tree structure of the
nodes as possible in sampling units. We believe such mea-
sure holds the key to the success of an effective sampling
scheme. The derived sample, which is in fact a miniature of
the data tree, is stored as a synopsis for selectivity estima-
tion. The simplicity of the method manifests itself in con-
struction of the synopsis. For example, in marked contrast
to the more than 4 day construction time of both TreeSketch
and Xseed, it takes only about 30 seconds to construct a rep-
resentative sample tree for the TreeBank dataset. Therefore,
when an XML database has undergone substantial changes,
one can simply regenerate the sample tree with little ef-
fort. The sample tree can be evaluated by ordinary query
evaluation algorithms for selectivity estimation, while the
structure synopses generally require specialized estimation
algorithms.

Statistical measures associated with the estimates, such
as the confidence probability and intervals, can be derived
from our sample tree, which are generally not possible for
the structure synopsis approaches. This presents yet an-
other advantage of our method. Extensive experiments have
been conducted to study the performance of different meth-
ods. The experimental results show that in comparison with
the TreeSketch and Xseed methods, our sampling method
applies to a broader range of query types, requires sev-
eral orders of magnitude less construction time, and gen-
erates estimates with considerably better precision for com-
plex datasets.

The rest of the paper is organized as follows. Section
2 briefly reviews related research in selectivity estimation
of XML twig queries. Section 3 discusses how to sample
tree-structured data and deriving selectivity estimation from
sample trees. Section 4 compares our sample tree synopsis
with two modern structure synopses, namely the TreeSketch
and Xseed. Detailed theoretical analyses and experimental
results are presented. Finally, Section 5 concludes this pa-
per.

2. RELATED WORK

In the early studies of XML selectivity estimation, much
research work [18, 19, 24, 16] has focused on containment
joins or linear path expressions. Although technically pos-
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Figure 1: A twig query

sible, it is not clear how these techniques can be effectively
extended to tackle twig queries.

There has also been some work dedicated to twig query
selectivity estimation. In general, these approaches rely on
structure synopses. For instance, Correlated Suffix Trees [5]
use pruned subpath trees to summarize the path structures
of XML data, while StatiX [7] adopts a one-dimensional his-
togram to capture the structural relationships of the ele-
ments in the XML schemas.

These approaches generally have statistical assumptions,
such as independence and uniformity, as their integral parts.
Nevertheless, their synopsis construction algorithms do not
take these statistical assumptions into consideration [21].
Therefore, it is not clear if these assumptions still remain
valid in the constructed synopses.

Polyzotis et al. proposed the Twig-Xsketch [21] and Tree
Sketch [20] structure synopses for XML data. Twig-Xsketch
is based on the Xsketch synopsis [18, 19], augmented with
edge distribution information. It was shown [21] that Twig-
Xsketch yields estimates with significantly smaller errors
than those derived by Correlated Suffix Trees. By checking
a pre-defined similarity measure during clustering so that
the independence and uniformity assumptions can be more
reasonably applied, TreeSketch was shown to be more ac-
curate in estimation [20] than Twig-Xsketch. On the other
hand, clustering with optimality check is computationally
complex and time consuming.

Zhang et al. [25] recently proposed the Xseed synop-
sis to summarize the structural information of XML data.
The information is stored in two structures, a kernel, which
summarizes the uniform information, and an HET, which
records the irregular information. By treating the structural
information in a multi-layer manner, the Xseed synopsis is
simpler and more accurate than the TreeSketch synopsis.
Moreover, Xseed supports recursion by recording "recursion
levels” and "recursive path expression” in the synopses. How-
ever, although the construction of Xseed is generally faster
than that of TreeSketch, it is still time-consuming for com-
plex datasets.

Sampling has been applied to relational databases exten-
sively [3, 8, 9, 10, 11, 12, 14]. Despite the success in the re-
lational paradigm, to the best of our knowledge, only Wang
et al.[24] have applied sampling to XML databases for con-
tainment join size estimation. His method is not suitable for
our application because its samples are drawn on the fly for
the specific containment join queries posted, not pre-drawn
as a representative of the entire data tree for all possible
queries.

3. XML TWIG QUERY SIZE ESTIMATION

3.1 Assumptions and Definitions
An XML document is generally represented by an XML



data tree 7. We assume an XML data tree encompasses
all the information of the original XML dataset, with at-
tributes, elements, and text values in the dataset represented
by nodes and their relationships by edges in the tree. Conse-
quently, queries on an XML dataset can be specified against
its XML data tree.

In this research, we consider linear path queries as well as
twig queries. In contrast to linear path queries, twig queries
are concerned with branched paths. We differentiate two
types of twig queries, the regular twig queries and the ex-
istential twig queries, as they exhibit different complexities
in selectivity estimation. A regular twig query can be spec-
ified either pictorially by a twig pattern, or by a declarative
query language, such as XQuery. Figure 1 shows a twig pat-
tern that looks for all 3-tuples (auction, bidder,item) such
that the "auction” node is the parent of the other two nodes,
”bidder” and "item”.

The Xpath language is capable of specifying existential
twig queries, which differ from regular twig queries in that
branches are only treated as existential structural constraints,
while their quantitative occurrences ignored. Take an exis-
tential twig query auction[/bidder]/item, specified in Xpath,
as an example. The branch auction/bidder is treated only as
a structural constraint. The query returns all ”item” nodes
that have an ”“auction” parent node and at least one "bid-
der” sibling node. The number of occurrences of the sibling
”bidder” nodes is immaterial. Consequently, the formulas
for computing query result sizes of a regular twig query and
an existential twig query would be quite different. For in-
stance, if we assume there is only 1 ”auction” node and it has
4 ”bidder” child nodes and 6 ”item” child nodes. Then the
regular twig query would have 4 X 6 = 24 as the answer size
while the above existential twig query would have an answer
size of 6. In general, selectivity estimation for regular twigs
is more difficult than that for existential twigs as the former
requires more accurate information about the correlations
between branches.

To differentiate the nodes in an XML data tree and in a
query pattern, we call the former data nodes and the latter
pattern nodes.

3.2 Construction of Sample Synopses

Drawing a representative sample from an XML data tree
poses an interesting challenge to database researchers. Naive
sampling schemes, such as randomly drawing nodes from a
tree, can yield estimates with large variances, as evidenced
by random sampling of relations for multi-join size estima-
tion in relational databases. This seemingly complicated
problem, however, has a simple solution in XML databases.

The ineffectiveness of random sampling is due to its de-
struction of correlations among elements, which are neatly
captured by the tree structure. We observe that preserving
the tree structure and relationships of nodes, as opposed to
drawing nodes randomly, holds the key to a successful sam-
pling for tree-structured data. With this principle in mind,
we devise a simple, yet effective sampling scheme that pre-
serves the tree structure of the data.

3.2.1 Subtree Sampling

The simplest but perhaps the most effective way to pre-
serve the tree structures and node relationships is to include
the entire subtrees in a sample. Subtrees from the data tree
form the sampling units of this sampling scheme.

The general idea is to examine the number of data nodes
for each tag name starting from the root level. If the number
of data nodes for a tag is sufficiently large, a desired fraction
of the data nodes are randomly selected using simple random
sampling without replacement and then the entire subtrees
rooted at these selected data nodes are included, as sampling
units, in the sample. Hereafter, we shall call each such set
of subtrees to which random sampling is applied a subtree
group. If a tag has too few data nodes at the level under
study, then all the data nodes for that tag at that level are
kept and we move down the tree to check the next level.
The paths from the root to the selected subtrees are also
included in the sample to preserve the relationships among
the sample subtrees.

The above sampling scheme, called subtree sampling scheme,
ensures that the sizes of the subtrees in the same subtree
group are similar. This is because the root nodes of these
subtrees have the same tag name, i.e., they are nodes of the
same type. Moreover, these root nodes reside in the same
level. Consequently, subtrees in the same subtree group tend
to have similar structures, thus similar sizes.

Based on this observation, the sampling fractions of the
subtree groups f/s, where f; is the sampling fraction of the
i-th subtree group, can be simply set to f;, which is the
sampling fraction of the whole data tree.

Proof: Let s; be the size of the i-th subtree, s, the size of
the nodes that do not belong to any subtree group, s: the
size of the data tree, b the size of the budget. Then

b=> sifi+so (1)

and

St :Zsi+so (2)

We divide Equation 1 by Equation 2

b Y sifi+so

st > s+ So
Since usually > s; > s, and Y sifi > o, therefore

87_ Zsi

if we assume all f;’s are equal, then

bLEsh_fEs_,
St > s > s ‘

finally

2of=s
St
If the number of nodes n for a tag satisfies the minimum
requirement n X f; > 1, we consider it "sufficiently large”
because one can draw at least one sample subtree for this
tag. If the tag population is not sufficiently large, all of its
nodes are kept, otherwise, simple random sampling without
replacement is applied to this subtree group. The follow-
ing examples illustrate this sampling scheme, called subtree
sampling.
Example. Suppose we apply subtree sampling to the
DBLP data tree shown in Figure 2. In the second level (i.e.,
the level below the root) of the tree, there are 10,000 "book”
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Figure 2: Subtree Sampling Example 1
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Figure 3: Subtree Sampling Example 2

nodes and 20, 000 "article” nodes. Assume the sampling frac-
tion is 1%. Since both tags have sufficiently large numbers
of nodes, i.e., 10,000 x 1% > 1 and 20,000 x 1% > 1, we
randomly select 100 "book” nodes and 200 "article” nodes
from the second level and include their subtrees as the sam-
ple. Note that we also include the paths from the root to
the subtrees to preserve the hierarchy.

Example. A more complex scenario arises when we apply
subtree sampling to the Xmark data tree shown in Figure 3.
Assume the sampling fraction is 0.4%. In the second level of
the data tree, there are only 100 "Open_auctions” nodes and
200 "Closed_auctions” nodes. Since the numbers of nodes
for both tags at the second level are not sufficiently large,
i.e., 100 x 0.4% < 1 and 200 x 0.4% < 1, we move down to
examine the third level. In the third level, there are 30,000
”Open_auction” nodes and 30,000 ”Closed_auction” nodes.
We randomly select 120 nodes for each type and include
their subtrees as the sample. Again, the paths from the
root to the subtrees are also included in the sample.

Figure 4 describes the Subtree Sampling method in pseudo
code. The method takes two parameters, a data tree and its
sampling fraction.

3.3 Sample Tree Evaluation Algorithm

It is worth noting that our XML sample trees are just a
portion of the original XML data tree. These sample trees
differ only in magnitude from the original XML data tree.
Therefore, ordinary twig query evaluation methods, such as
TwigStack [2] and TJFast [15], can be applied directly to the
sample trees synopsis to derive approximate answers to ag-
gregation queries as well as queries that return twig matches.
Note that sample trees can be stored in any formats that
conform to the requirements of the underlying query evalu-
ation algorithms. For instance, it would be stored as a set
of streams if TwigStack [2] is used.
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SubtreeSampling(T, f)

Input: XML data tree T, and sampling fraction f

begin
sampleNodes=¢;
tagQueue=a;
tagQueue.Enqueue(root.tag);
while ('tagQueue.empty()) do
nodeTag=tagQueue.Dequeue();
if (the number of nodes of nodeTag x f > 1)
then
randomly sample a portion of nodes by f;
sampleNodes U = the subtrees rooted at the
sampled nodes and their paths to the root;
end
else
sampleNodes U = all the nodes of nodeTag;
tagQueue.Enqueue(all the child tags of
nodeTag);

end
end
end

Figure 4: Algorithm SubtreeSampling

3.4 Selectivity Estimation

The sample tree can be used to derive approximate an-

swers for aggregation queries as well as non-aggregation queries.

However, for simplicity, we shall restrict ourselves to query
cardinality estimation (or selectivity estimation), which is
basically a COUNT query. Discussion on other aggregation
queries, such as SUM and AVERAGE, are similar.

3.4.1 Estimator

Let n be the total number of subtrees in an XML data
tree, and m the number of subtrees sampled. For example,
consider the DBLP data tree shown in Figure 2. There are
10,000 and 20,000 subtrees in the book subtree group and
article subtree group, respectively, so n = 10,0004 20, 000 =
30,000 and m = 100 + 200 = 300. Here, a uniform 1%
sampling fraction is applied to each subtree group.

Subtree Sampling selects subtrees at the highest tree level
possible and thus is likely to keep related information in in-
dividual subtrees. Consequently, it can be expected that a
twig match generally comes from a single sample subtree,
However, it is possible that some of the matches span mul-
tiple sample subtrees. Let B be the maximum number of
subtrees that a query match can span. It can be observed
easily that B is upper-bounded by the number of root-to-leaf
paths in the query.

Let Y be the number of matches in the entire XML data
tree. Let y; be the number of matches that span ¢ sample
subtrees, 1 < ¢ < B, in the sample tree synopsis. Since
there are totally C'(n,i) combinations of i-subtrees in the
data tree and only C(m, i) such combinations are included in
the sample, a reasonable estimate of the number of matches
in the data tree is y; X g((:;?) The twig query cardinality
estimation formula is given by summing up all the i’s:

FEst = Z 72((:{7?) X Yi

1<i<B

®3)

3.4.2 Statistical Properties of the Estimator
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Figure 5: Unbiased Estimator

This section discusses the statistical properties of the es-
timator.

Unbiasedness. A condition regarding the sample size,
m > B, is required to guarantee that all matches (that span
no more than B subtrees) have a chance to be sampled. This
condition is generally satisfied naturally as m is usually large
while B is small.

THEOREM 1. If m > B, Est is an unbiased estimator of
the cardinality of the twig query.

Proof: [sketch]. Let Y; be the number of query matches
in the document that span i subtrees, and Est; = y; X
g((;?) the estimator for Y;. We argue that each FEst; is
an unbiased estimator of Y; as follows. Since sample sub-
trees are picked randomly, all subtrees in the document are
equally likely to be selected. Consequently, all i-subtree
combinations are equally likely to be selected, each with
a probability of 1/C(n,¢). In each sample tree, there are
only C(m,t) such i-subtrees combinations selected. Thus,
E(y;) =Yi x C(m,i)/C(n,i). Therefore, E(FEst;) =Y; and
thus E(Est) = ). Y; = Y, which is the total number of
query matches in the document.

Example. Consider the XML data tree and a twig query
shown in Figure 5. Since the number of root-to-leaf paths in
this twig query is 2, then B < 2. Assume we sample subtrees
rooted at ”"b” nodes at the second level from the XML data
tree, and the sample size is 2, i.e., S = 2.

There are 3 possible outcomes of the sampling. Case 1:
subtrees rooted at the first and the second ”b” nodes are
sampled. The estimate is calculated as 1- ggi; +1- gg;i =
4.5. Case 2: subtrees rooted at the first and the third ”b”
nodes are sampled. The estimate is calculated as 1 - ggi; =
1.5. Case 3: subtrees rooted at the second and the third
”b” nodes are sampled. The estimate in this case is 0. The
expected value of the estimator is then (4.5+1.5+0)/3 = 2,
which is exactly the number of query matches.

Variance. The variance of the estimator Est, denoted as
Var(Est), is computed as

B B

Z Z Cov(Est;, Estj)

i=1 j=1

ZZ V/Var(Est;\Var(Est;)  (4)

i=1 j=1

Var(Est)

IN

Assume all i-subtree combinations in the sample or the
XML data tree are numbered from 1 to C(m, i) or C(n,1),
respectively. Let y; ; be the number of query matches found
in the jth i-subtree combination in the sample or the data
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Let fi = CCV({:Z)) be the sampling fraction of the i-

subtree combinations. Let ¢; be the sample mean of y; ;, i.e.,

tree.

gi = ZJC:(’{”) vi,;/C(m, 1), and Y; the population mean, i.e.,
Y, = ch:(’l”) vi,;/C(n,i). The derivation and property of

the variance estimator are stated in the following Theorems.
For simplicity, only the results are presented here. Interested
readers are referred to the full version of the research paper
[?] for formal and complete proofs.

THEOREM 2. An unbiased estimator of the variance of
Est;, 1 <1 < B, denoted as var(Est;), is

var(Est;) = 76’(7171')252 — fi
where
s ST iy - w)?
T Cma 1 ©

As mentioned earlier, we expect that a twig match gen-
erally comes from a single subtree. For instance, consider
Example 1, where we sample DBLP at the second level,
right under the root. No meaningful twig queries that we
can think of would require ”joining” two subtrees to find a
match. Therefore, for queries that have no matches span
multiple subtrees, the estimation formula can be simplified
to

C(n,1)
C(m,1) (7)

Theorem 2 is then simplified to the following theorem,
which can also be found in [6]:

FEst = Est1 = Xy1:£Xy1
m

THEOREM 3. Assume mo query matches can span multi-

ple sample subtrees. An unbiased estimate of the variance of
2.2

Est, denoted as var(Est), is var(Est) = “2~(1 — f1) where

2
2 jei(yi,i—v1)

S m—1

Confidence Interval. The confidence interval of an es-
timate can be constructed in several ways, for instance, by
the Central Limit Theorem [6] and Chebyshev’s inequality
[22]. If the sample size n is large enough, e.g., > 30, it
is usually assumed by the Central Limit Theorem that the
estimate F'st is normally distributed about the true value,
denoted as Y [6]. For a given confidence probability p, let
zp be the (p 4+ 1)/2th quartile of the cumulative standard
normal distribution @, that is, ®(zp) = (p + 1)/2. For ex-
ample, if the confidence probability p is 95%, then z, = 1.96.
For a given confidence probability p, when the normality as-
sumption holds, the associated confidence interval is FEst+e,
where

var(Est) (8)

Given a desired confidence probability p, the respective
confidence interval is E'st 4 €, where

€=2p

1 2 1/2
=(0b-a)(z—In(——
€= (b=0)(5 (=) 9)
The Chebyshev’s inequality,
Pr{|Est— Y| > ¢} < 2 Est) (10)
€

where Y is the true value of the number of matches, gives
another way to compute a conservative confidence interval.



Table 1: Dataset Statistics

Dataset Size # of Depth | Recursion
(MB) | Elements

DBLP 133 3332130 | 6 free

Xmark 116 1666315 | 12 light

TreeBank | 86 2437666 36 substantial

Table 2: Generality Comparison of the Techniques
Techniques | Parent-Child Only | Ancestor-Descendant

LP. | ET. | RT. LP. [ ET. | RT.

TreeSketch | v/ v v — | — —

Xseed v v — v v —

Sampling v v v v v v

The inequality applies to any distribution. For a given con-
fidence probability p, the corresponding confidence interval
is Est £ €, where

€ — var(Est) (11)

1-p

4. EXPERIMENTAL RESULTS

This section presents the experimental results of our Sub-
tree Sampling method on both synthetic and real-life XML
datasets. We compare its performance with that of TreeSketch
[20] and Xseed [25].

While we elaborate on synopsis construction time and esti-
mation accuracy, some general aspects of the methods, such
as simplicity, generality, and uncertainty of the estimates,
are also discussed. Overall, Subtree Sampling is much sim-
pler, more general, and requires significantly less construc-
tion time than the other approaches. TreeSketch and Xseed
perform better for simple and uniform XML datasets while
Subtree Sampling excels for complex XML datasets.

4.1 Experimental Settings

We have implemented the Subtree Sampling method and
Polyzotis [20] and Zhang [25] kindly provided the implemen-
tation of TreeSketch and Xseed, respectively. Three well-
known XML datasets, DBLP [1], Xmark [23], and TreeBank,
were selected for the experiments. Table 1 summarizes the
major statistics of these datasets. The experiments were
conducted on a dedicated computer with a 3.4GHz CPU
and 1GB RAM.

4.2 General Comparisons of the Techniques

Simplicity. Both TreeSketch and Xseed build their syn-
opses by clustering nodes. For complex XML datasets, the
construction process can be prohibitively costly. In contrast,
our sampling process is simple and straightforward, involv-
ing only randomly selecting subtrees.

Specialized query estimation algorithms need to be de-
signed for both TreeSketch and Xseed. On the other hand,
any XML query evaluation algorithm is directly applicable
to our sample tree synopsis for query selectivity estimation
as it is just a miniature of the original data tree.

Generality. The sample tree synopsis can be used for se-
lectivity estimation for all types of queries, i.e., linear path
(LP), existential twig (ET), and regular twig (RT) queries.
By contrast, TreeSketch is not applicable to queries con-

Table 3: Construction Time
Dataset TreeSketch | Xseed Subtree Sampling
DBLP 20min 25min 30sec
Xmark 681min 1min 14sec
TreeBank >4day >dday | 27sec
4%TreeBank | 1955min 232min | 1.5sec

taining ancestor-descendent relationships, and Xseed does
not support regular twig query estimation.

Table 2 summarizes the queries each technique supports.

While we focus here on selectivity estimation, our sample
tree synopsis can be directly applied to approximate query
answering of aggregation queries as well as non-aggregation
queries (i.e. queries that return matches). As for other syn-
opses, significant modifications may be required, if possible
at all, for general approximate query answering.

Uncertainty of the Estimates. TreeSketch and Xseed
synopses provide only the query size estimates while our
sample tree synopsis furnishes statistical uncertainty mea-
sures, such as confidence probability and intervals, with the
estimates.

4.3 Construction Time

TreeSketch builds its synopsis in two steps. It first creates
an intermediate Count-Stability synopsis that preserves all
the information of the original XML dataset in a compact
format. The Tree-Sketch synopsis is then built on top of the
Count-Stability synopsis by merging similar structures.

The Xseed synopsis consists of two parts, an Xseed kernel
and a hyper-edge table (HET). The construction of HET is
performed by gradually extracting irregular structures out
of the datasets. The HET construction stops when it deter-
mines that no further improvement can be made.

Table 3 shows the total construction time of the TreeSketch
and our sample tree synopses for three different sizes, 25KB,
50KB, and 100KB. The sizes of Xseed synopses are 15KB
for DBLP, 20KB for XMark, and 50KB and 100KB for Tree-
Bank (as explained earlier, the construction stops when no
further improvement is possible). As shown in Table 3,
TreeSketch and Xseed synopses generally take several or-
ders longer time than the sample tree synopsis to construct.
The construction time of the TreeSketch and Xseed synopses
largely depends on the complexity of the dataset. This is
demonstrated in their significant construction time for the
small but complex TreeBank dataset. In fact, the construc-
tion of neither synopses could be completed after 4 day’s run-
ning on a dedicated computer. As a result, we were forced
to use a 4% version of the original TreeBank dataset in the
experiment, which is merely 3M B. However, even for such a
small dataset, it still took more than a day (1,955 minutes)
to build the Tree-Sketch synopsis and around 4 hours (235
minutes) to build the Xseed synopsis. This prohibitively
costly construction process could hinder the applications of
TreeSketch and Xseed to complex datasets and/or dynamic
datasets that undergo frequent changes.

As observed, the entire sampling process took only a very
short period of time, for instance, tens of seconds. The sam-
pling time is primarily dependent on the size of the dataset,
not its complexity. The quickness of sampling renders this
approach particularly suitable for dynamic datasets as sam-
ples can be redrawn quickly to reflect the changes.



Table 4: Query Set Statistics

Dataset Simple Paths | Complex Paths
Set 1 | Set 2 | Set 1 | Set 2
DBLP 854 814 776 698
Xmark 927 959 818 857
TreeBank | 2167 | 1717 | 1721 | 1468
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Figure 6: Simple Paths with P/C on DBLP

4.4 Estimation Accuracy

We compare the estimation accuracy of the synopses for
different types of queries on three datasets, namely DBLP,
Xmark, and TreeBank.

The queries are categorized into two groups, the simple
path queries and the complex path queries. The simple
path queries include linear path queries and existential twig
queries, both of which study the occurrences of linear path
patterns, with the latter taking into account the existential
condition of specified branches. The complex path queries
here refer to regular twig queries, which search for the occur-
rences of twig patterns that involve multiple branch paths.

In general, the size estimation of simple path queries is
easier than that of complex path queries as the latter re-
quires not only the existential but also the quantitative in-
formation of the specified branch paths.

For each dataset, these two query types were tested. Each
query type has two query sets, one containing only parent-
child relationships (Set1) and the other ancestor-descendant
relationships (Set2). All the queries are positive in the sense
that they return non-empty result sets. The query sets are
generated by randomly picking linear paths or twigs from
the XML data tree. Table 4 shows the number of queries in
each query set.

The error metric we used is the average absolute relative
error, which is defined as RE = avg(100 * |t — e|/t), where
t and e are the true and estimated sizes of the query result
set, respectively.

Performance on the DBLP dataset. Asshown in Fig-
ure 6, all synopses perform well for simple path queries with
parent-child (P/C) relationships only on the DBLP dataset,
with Xseed having the best performance. Structure syn-
opses generally record parent-child relationships exactly. If
a tag does not have more than one parent tag or all its par-
ent tags have uniform characteristics, structure synopses can
yield accurate estimates for linear path queries. Uniformity
of the data also helps to estimate existential twig queries
accurately. The good performance of Xseed and TreeSketch
benefits tremendously from the simplicity and uniformity of
the DBLP dataset.
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Figure 16: Complex Paths with A/D Relationships

As the sample size increases, the accuracy of Subtree Sam-
pling improves. On the other hand, TreeSketch shows no
noticeable performance improvement with the increase of
space budget, which might be due to its ineffectiveness in
further capturing irregular structural relationships. Conse-
quently, as shown in Figure 6, Subtree Sampling surpasses
TreeSketch under larger space budgets for simple path queries.

As TreeSketch doesn’t support queries with ancestor-descendant

(A /D) relationships, Figure 7 shows the performance of Sub-
tree Sampling and Xseed on simple path queries with A/D
relationships. Once again, because of the simplicity of the
dataset, Xseed is able to estimate the selectivity accurately
and thus outperforms Sampling. On the other hand, with
the increase of space budget, the estimation accuracy of sam-
pling improves steadily.

Figure 8 shows the result of complex path queries with
P/C relationships only. TreeSketch performs better than
Subtree Sampling due to the simplicity and uniformity of
the DBLP dataset. Note that the performance of Xseed is
missing since Xseed does not support complex path queries.

Performance on the Xmark dataset. Xmark exhibits
a little more complex structure than DBLP and has a light
degree of recursions. As shown in Figure 9, Xseed still per-
forms the best for simple path queries with P/C relation-
ships only as it employs a special mechanism to handle re-
cursive structures. It supports recursion by recording "recur-
sion levels” and "recursive path expression” in its synopses.

Figure 10 shows that for simple path queries with A/D
relationships, Xseed still outperforms Subtree Sampling un-
der small space budgets. With the increase of space budget,
however, Subtree Sampling gradually overtakes Xseed.

Figure 11 shows the performance for complex path queries
with P/C relationships only on the Xmark dataset. As
demonstrated in the figure, Subtree Sampling performed the
best. This is mainly due to the increased structural complex-
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ity in the dataset, including the presence of recursions and a
higher structural irregularity that TreeSketch is ineffective
to capture.

It is worth mentioning that TreeSketch can have problems
dealing with recursive structures. The following example
illustrates this point.

Figure 17 shows how recursive structures are clustered
to build the TreeSketch synopsis under some space budget.
The left side of the figure shows the structure in the XML
data tree. For clarity of discussion, two nodes that have the
same label name ”A” are marked as ”A:” and ”Ap”, where the
subscripts stand for top and bottom, respectively. Similarly,
two nodes having the same label name "B” are marked the
same way.

Note that nodes A; and A, have the same label name and
a very similar sub-structure. As a result, they are merged as
one single A node in the Tree-Sketch synopsis. In a similar
manner, node B; and B, are also merged to one single B
node in the TreeSketch synopsis, thus creating a loop in the
Tree-Sketch synopsis and posing a problem of how this loop
should be traversed. In particular, if we allow the queries to
contain ancestor-descendant relationships, then there is no
way to determine how to traverse the loops. This restricts
TreeSketch’s applications to queries with only parent-child
relationships.

Performance on the TreeBank dataset. As Tree-
Bank exhibits a complex structure and has a high degree
of recursions, structure synopses have difficulty effectively
summarizing its intricate structural relationships. As far
as TreeSketch is concerned, Figure 12 shows it now consis-
tently yields erroneous estimates for queries on TreeBank as
it has difficulty dealing with complex XML datasets. The
high-degree recursions could cause estimation problems to
TreeSketch. The increased depth of the tree can also intro-
duce greater summarization errors since the summarization
errors accumulate and propagate in a bottom-up manner.
Because of TreeSketch’s high estimation error, it will not be
further compared with the other two methods.

Figures 13 and 14 show that our sample tree synopsis
surpasses Xseed and yields the best performance for simple
path queries with P/C and A/D relationships.

As for the complex path queries with P/C relationships

only, Figure 15 shows that Subtree Sampling still performs
reasonably well. In fact, structural complexity of the queries
tend to have little effect on the performance of Subtree Sam-
pling.

Performance on Complex Queries with Ancestor-
Descendant Relationships. Since the implementation
of TreeSketch doesn’t support queries containing ancestor-
descendant relationships and Xseed doesn’t support regular
twig queries, only the performance of Subtree Sampling is
shown in Figure 16. Like in other cases, the performance
of Subtree Sampling improves with the increase of space
budget and there is no significant performance difference
between different query sets on the same dataset.

4.4.1 Summary

The construction of structure synopses, specifically the
TreeSketch and Xseed synopses in this research, generally re-
quires complicated analysis and expensive processing while
the sample tree synopsis is derived through simple random
sampling. For complex datasets such as TreeBank, con-
structing a structure synopsis can be prohibitively time-
consuming, whereas regardless of the dataset’s complexity,
generating a sample tree synopsis is always easy and fast.

As far as selectivity estimation is concerned, a sample
tree synopsis can be applied to any type of queries, while
TreeSketch is only applicable to queries with P/C relation-
ships and Xseed simple path queries. Moreover, a sample
tree synopsis can be applied to aggregation queries, such as
SUM, AVG, etc., as well as non-aggregation queries.

The performance of structure synopses generally relies on
the independence and uniformity assumptions of the datasets
and the simplicity of the query patterns. Xseed performs
very well for simple path queries on simple and uniform
datasets such as DBLP and XMark. However, as the datasets
become more complex, the uniformity and independence as-
sumptions no long hold and thus the performance of struc-
ture synopses degrades dramatically. In comparison, the
performance of Subtree Sampling is good for uniform datasets
as well as complex datasets and for simple path queries as
well as complex path queries.

S. CONCLUSIONS

Tree-structured data, notably XML data, pose serious
challenge to conventional structural summarization techniques.
The intricate structural relationships among nodes are diffi-
cult, if not impossible, to measure and model. Since the effi-
ciency of structure synopses largely depends on the summa-
rization of the structural relationships, structure synopses
could perform poorly or even erroneously on complex XML
datasets. Besides, the construction of these structure syn-
opses is usually slow and costly, especially for complex XML
datasets.

Instead of trying to measure and model the intricate struc-
tural relationships, in this research, we propose a sampling
method that preserves the structural relationships. Com-
pared with conventional summarization techniques, not only
is the proposed sampling method significantly simpler both
conceptually and practically, it is also outstandingly more
effective in dealing with complex XML datasets.
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