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ABSTRACT frequent itemset operator, is becoming increasingly important for
many commercial applications.

All of these desired features of the frequent itemset operator are
related to a seemingly simple problemhat is the number of fre-
quent itemsets for the given minimum support level? Indeed, if the
number of frequent itemsets is large, the data miner may either in-
on the sampling estimator. We discover and prove several funda-C"€2S€ @ support level to reduce the number of frequent itemsets
mental but also rather surprising properties of the sampling estima- ©" YS€ the number pf'freque'nt itemsets to determine an appropriate
tor. We also propose a novel algorithm to estimate the number of §upport level for mining a given dat_aset_. The r_1umber of freq_ut_ent
frequent itemsets without using sampling. Our detailed experimen- itemsets holds the key for a cost estimation of different data mining

tal results have shown the accuracy and efficiency of our proposedalgorithms. Given this, predicting the number of frequent itemsets
has become a question similar to the traditional database query car-

Estimating the number of frequent itemsets for minimal supgort

in a large dataset is of great interest from both theoretical and prac-
tical perspectives. However, finding not only the number of fre-
guent itemsets, but even the number of maximal frequent itemsets,
is #P-complete. In this study, we provide a theoretical investigation

approach. dinality estimation problem [8].
The question of efficiently counting the number of frequent item-
1. INTRODUCTION sets without actually enumerating them, indeed has been a long
Given a set of itemg and a set of transactiori§ each of which standing open problem in data mining research. It has been proven
is a subset of, the frequent patteri® (alternatively called a fre- ~ [11, 21] that finding the number of frequent itemsets without find-
quent itemset) is defined as a subsef tfat occurs in at least|T| ing actual frequent itemsets is #P-complete. In other words, effi-

transactions, where is a number between zero and one and is re- Ciently counting the exact number of frequent itemsets for a chosen
ferred to as the minimum support of pattePh The problem of support level is as hard as enumerating them. Thus, there is lit-
finding frequent patterns in a set of given transactidrisas been tle hope that an efficient algorithm for finding the exact number of
extensively studied [3, 2, 12]. frequent itemsets will ever be found.

The simple and intuitive concept of frequent itemset mining has ~ This leads to the central question of this study: “Can we accu-
found many important applications in business-intelligence envi- rately estimate the number of frequent itemsets without actually
ronments, web analysis, networking security, and quality control, enumerating them?” In this study, we provide a theoretical inves-
among others. Recently, a frequent itemset operator has emergedigation on thesampling estimator. We discover and prove several
as a new feature supported in commercial databases and data wardundamental but also rather surprising properties ofstpling
houses. This includes Oracle 10g [15], IBM DB2 [22], and SQL estimator. We also propose a novel algorithm to estimate the num-
Server 9.0 [20]. ber of frequent itemsets without using sampling. Specifically, our

However, finding frequent itemsets is computationally expen- contributions are as follows.
sive, especially when the dataset is very large. Furthermore, to Sampling Estimator: Simply speaking, the sampling estimator
discover any meaningful and useful knowledge, the frequent item- tries to estimate the total number of frequent itemsets on the en-
set operator may be invoked many times with different parameter tire dataset by the count of frequent itemsets on a sample dataset.
values (such as a support level, for example), constraints, and di-We found this estimator tends to be biased and overestimate the
mensions. Therefore, how to facilitate and support the mining pro- true number significantly for most of the real datasets. We formally
cess more effectively, such as reducing the number of executionsprove that it isasymptotically unbiasedndconsisten{under cer-
of the frequent itemset operator, intelligently choosing the right tain conditions). We also prove it is biased and derive the specific
parameters and right dimensions (items), predicting the outcome condition that it can be unbiased. We also provide insight on the
of the mining results, and even estimating the running time of the overestimating behavior of the sampling estimator.

Besides overestimating, another issue of sampling estimator is
its high computational cost. Note that even running the fastest
available algorithms on the sample dataset to enumerate all fre-

Permission to copy without fee all or part of this material is granted pro- quent itemsets can still be very expensive due to the large number
vided that the copies are not made or distributed for direct commercial ad- of frequent itemsets.

vantage, the ACM copyright notice and the title of the publication and its  Sketch Matrix Estimator Considering these issues of sampling
date appear, and notice is given that copying is by permission of the ACM. estimator, we ponder the following problem: “Can we construct

To copy otherwise, or to republish, to post on servers or to redistribute to . . - .
lists, requires a fee and/or special permissions from the publisher, ACM. a concisesynopsis structure for a transaction database and obtain

EDBT 2009, March 24-26, 2009, Saint Petersburg, Russia. an estimate only using this synopsis?” In this study, we provide a
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positive answer to this question. pling with replacement):
We propose a novel synopsis, referred toskstchmatrix, for

the estimation purpose. Simply speaking, we partition the rows 1S\ .. 15| -1
(transactions) and columns (items) int and N disjoint groups, Pr(Xi=1) = l fi(l=fi)
respectively. Thus, the entire transaction dataset is also partitioned

into M x N disjoint parts, i.e., théi, j) part of the transaction
database contains all the transactionstin transaction group with
the items in thg-th item group. Further, a summary statistidep- Pr(Yi=1) = Pr(X; > a|S|) = Z Pr(X; =1)
sity, is calculate for each part of the database. If we represent the

The random variabl&’; is a Bernoulli trial:

transactional database as a binary matrix, where a cgltlatrow 1zl

andi-th column with1 corresponds item occurring in transac- Pr(Yi=0)=Pr(X; <ao|S|)= > Pr(Xi=1)

tion k& and with0, otherwise, the density of pa(t, ;) is simply the I<alS|

proportion of1’s in its corresponding submatrix. Given this, the . . »

sketch matrix has\/ rows andN columns, and each cell records In the following, we first report some positive results for the sam-

the density of the corresponding part in the transaction database Ping estimator (Subsection 2.1) and then we discuss some rather
We propose an efficient procedure using the sketch matrix to esti- "€gative properties of the estimator (Subsection 2.2).

mate the number of frequent itemsets. Our sketch matrix construc- . . .

tion is inspired by the recent progresshinclusteringresearch in 2.1 Asymptotic behavior of 2

data mining and machine learning community, which focuses on  Here, we study the properties Bfwhen the sample size become
simultaneous clustering of both rows and columns in a given data increasingly large.

matrix [16, 7]. However, the goal here is to construct a sketch ma-

trix which can produce the most accurate approximation. In this A .

study, we prop?)se a new criteria for the bi-EIFL)lstering in order to DEFINITION _1' [14] Let.E(G".) be the estimator of para[ngter
minimize the estimation error and develop an efficient algorithm to 0 fpr the sampling _populatlo_n W'_th samples. The estimatéris
construct the sketch matrix efficiently. said to beasymptotically unbiaseid

Estimating other Related Quantities. We note that in many real ) .

applications, users are likely to query only the frequent itemsets ,}LH;O E(0n) =0

with respect to a subset of items satisfying certain constraints. Such

conditions have been extensively investigated in the area of con- The estimatod is said to beconsistentf any fixede > 0,

straint data mining. Our estimators can easily be applied to such .

scenarios. Further, our techniques can provide accurate approxi- lim Pr(|0, — 0| >¢) =0

mation for the number of-frequent itemsets and the maximal fre- nee

guent itemset size as well. . . . . .
Experimental Evaluation: We conduct extensive experiments on Essentially, an asymptot_lcally unbiased estimator will converge
the publicly available sets of transactions on both the sampling es- [ the true value of the estimated parameter when the sample size
timators and the sketch matrix estimators. We found the sketch P&comes very large (towards infinity). A consistent estimator can
matrix estimator has a rather constant estimation time and is muchPreduce arbitrarily accurate estimate (the estimate is very close to
faster than the sampling-based estimator on the dense datasets. O Within very smalle with probability 1) when the sample size be-
experiments show that the sketch matrix estimator can obtain the COMeS Very large (towards infinity). Even though the sample size

approximate number of frequent itemsets within 70%-90% of the cannot really become infinity, these two properties do provide good
exact number for the tested datasets. indication on the behavior of the estimator when the sample be-

comes large. These properties are generally desired for good esti-
mators.

2 SAMPLING ESTIMATOR For a minimal support level, let Z,, be the number of itemsets

) . . with exact supportv in D: Zo = |{i : fi = a,i C I}| and
Let T be the set of all transactions of the entire transactional

g ! Z,, be the number of itemsets with support higher tham D:
database), and/ be the set of all items i). We denoteZ to the Za = |{i: f; > a,i C I}|. Clearly, the total number for frequent

number of all frequent itemsets dn with respect to t.he minimal itemsetsZ = Z, + Z. In addition, we denot€’ = Z, /2 + Za.
supporta: Z = [{i : ©« C I A fi > a}|, wheref; is the true
frequency of itemsetin D. .

Let S be the sample transaction set which is generated by sam- THEOREM 1. The sampling estimatat is asymptotically un-
pling the transaction s&t with replacement of the entire database biased for estimating”.
D. (Our sequel analysis will hold for the sampling without re-
placement as well). The sampling estimator is denoted, aghich Proof:We first assume no itemséthas supporty, and thusZ =
counts the total number of frequent itemsets on the sampling datasetZ’.
S. Let X; be the number of occurrences of itemsen S, and

Y; is defined as followsY; = 1, if X; > «|S| andY; = 0, if lim E(Z,) = lim ZE(Yi) = lim ZP’”(XZ' > an)
X; < «|S|. Given this, we can rewrite the sampling estimator as e et et
7= ZY, = lim Z Pr(X; > an) + Z Pr(X; > an)
iCI e fiza fi<a
Clearly, bothX; andY; can be treated as random variables. The —  lim Z 1— Pr(X; < an) + Z Pr(X; >an) | ()
random variableX; has binomial distribution (recall we use sam- TN\ i Sa fi<a
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fi > o lim Pr(X; <an)= lim Pr(X; <(1-90)fin)

n— oo

< lim e=8%fin/2 — ¢ (Chernof f Bounds) 2
n—oo
fi<a: lim Pr(X; >an)= lim Pr(X; > (14+9)fin)
n—oo n—oo
< lim e=0%fin/3 — ¢ (Chernof f Bounds) 3)

n— oo

Q&)= 1) =2"=2 ©)

Now, we consideZ,, # 0and we will showlimn, . 3 _, E(Y:)

Za)2.

lim
n—oo

> EWY) = Jim > Pr(X; > an)

i=a fi=a

(Central Limit Theorem,z = X, /n, \/ﬁu
ol —a)

i 1 —2(z—a)/2nc?
—e dx =a(l -«
fZ::Q/Q V2mno (o ( )

lim
n—oo

S = o} = Za/2

D&(5) =2 =2

O

~ N(0,1))

Q)

Now, we considelZ, # 0 and show its inconsistency. Surpris-
ingly, we will show thatlim,,—... Pr(|Z, — Z'| > ¢) can be far
way fromO.

lim Pr(|Zn —Z'|>¢€) (e<1)

n—oo
Jim_Pr(| N Yi—Zal <en| > Yi—Za/2| 2 1)
fiFa fi=a

(Assuming the above two events being independent)

im_Pr(| S Yi—Zal <) x Pr(l Y Yi—Za/2| > 1)

\%

fiFa fi=a

= lim Pr( S Yi—Za/2> 1)+ Pr( Y] Yi—Za/2< —1)
fi=a fi=a

— 5 — ~ ZO‘ Za

= 11— lim Pr(> Yi=Za/2) 1 (Za/2> x (1/2)

fi=a
For instance, letZ, = 10, then, we will havel — (ijz) x
(1/2)%e ~ 0.85.
However, we can show thg is indeed quite close t&’ (within
arange oZ, /2 + e in probability 1).

THEOREM 3. WhenZ, # 0, lim,, .o Pr(|Z,—Z'| > Za/2+
€) =0.

An asymptotically unbiased estimator does not necessarily have Proof:Omitted for simplicity.C

to be consistent, but a consistent estimator must be at least asymp-

We note that for the sampling without replacemeft, would

totically unbiased. Indeed, Theorem 2 shows that the sampling es-Share the similar behaviors (not convergingApas described in

timator is consistent foZ’ when no itemset has support.. How-

ever, whenZ, # 0, we will show this property does not hold any

more.

THEOREM 2. The sampling estimataZ is consistent for esti-

matingZ’ whenZ,, = 0.
Proof:
lim Pr(|Zn —2Z'| > €) =

N
|

lim " Pr(Y; — E(Y;) + E(Y;) = 1< —¢)

dim Pr(|Y Y= 2| >¢)

£
|

lim
n—oo

IN

Pr(Y Yi—Z'<—e)+Pr()_ Yi>e)

fi>a fi<a

IN

Mo Pr(Yi—1<—e+ > Pr(Y;>e)

fi>a fi<a

lim

n— oo

+ > Pr(Yi— E(Y:) + E(Y;) =0 > ¢)
fi<a
Jim Y7 Pr(lY; — B(Y)| 2 [e + B(Y;) — 1)

fi>a

+ > Pr(lYi - B(Yy)| > |e+ E(Y)))
fi<a

IN

BE((Yi — BE(Y))?)
t X By
Pr(X; < an)(1 — Pr(X; < an)) 4

(e+ E(Yi) —1)?

IN

: B((Yi — E(Yi))?)
e f; (e+ E(Y:) —1)?

lim Z

n—oo fow
Pr(X; > an)(1 — Pr(X; > an))

z (e + BV

0 (From(2)& (3))

(6)
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Theorem 1, 2, and 3, as— |T| (n < |T)).

Observing the Behavior of Z in Theorems 1, 2, and 3: To
observe the asymptotic behavior of tHe we sample the follow-

ing transactional database witld0 transactions:50 of them are
{1,2,3,4,5,6,7,8,9,10,11,12}; 25 of them are{1, 2, 3,4, 5, 6,
7,8,9,10}, and anothe®5 are{1, 2, 3,4, 5}. We perform the ran-
dom sampling with replacement to generate sample database with
number of transactionst000, 2000, - - -, 2'° x 1000. We gen-
erate500 random sample database for each particular number of
transactions. Figure 1(a) shows the average number of frequent
itemsets for th&00 random sample database at support |60&,

51%, 60% and75%, where the exact number of frequent itemsets
on the entire database &¥ — 1 = 4095, and2'® — 1 = 1023,

210 _ 1 = 1023, and2'® — 1 = 1023, respectively.

We make the following observations: 1) It is easy to see that the
average number of frequent itemsets for suppbyt and60% con-
verge to the exact count. However, as we vary the number of sample
size from1000 to 1, 024, 000, the average number of frequent item-
sets for50% and75% are no where near their exact number. Theo-
rem 1 predicts they will converge 3% —1+(2'2—2'°) /2 = 2559
for support50% and2® — 1 4 (2'° — 25)/2 = 527 for support
75%, and explains their convergence behavior. 2) Whgn= 0,

i.e., at support leved1% and60%, almost all the sample database
would produce the same number of frequent item$e2s. How-

ever, wherZ,, # 0, e.g., at support levél0%, the sample database
would procedure eithe2'? — 1 = 4095 or 2*° — 1 = 1023 fre-
quent itemsets. Even though their averagghiso, each individual
sample dataset has very different number of frequent itemsets. But
they are all within the range predicted by Theorem 3. 3) Another
interesting behavior is for supposti %, when the sample size is
not very large, the sampling estimator seems always overestimate
(upper convergence) the true value. This will be the topic of Sub-
section 2.2.

2.2 Biasand Variance of Z

Note that the asymptotic property holds only when the sample
is very large. However, we generally will be able to afford a large
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sampleas our estimator will be used for cardinality estimation be-

fore the query processing. In the following, we take a detailed look
of the bias and the variance of the sampling estimatassuming

the sample is not large. In the meantime, we will focus on estima-
tion Z, instead ofZ’ (Similar results hold foz’ as well).

DEFINITION 2. [14] Let Z be an estimator ofZ. The bias of
estimatorZ is defined as

Bias(Z) = E(Z) - Z
The estimatoZ is unbiasedf the bias is0, i.e., the expectation of
the estimator is equivalent to the true value:

E(Z)=2Z

First, we show tha¥ is biased, i.e.Z # Z by a counterexample.
Let all the items be split into two sefs andI>, where|I;| = |I2|
andI; N I = (. Let us assume half of the transactions in the
database contains and the other half contairfs. Let the minimal
supporta = 55%. Then,

> EM)+ Y E(Yi)
iCIH iCly

= 2x2l12pp(X; > 55%n) £ 0

B(2)

Bias Analysis of Sampling Estimator: The bias of theZ can be
written as

Bias(Z) = E(Z) - Z =Y Pr(X; > an) - Z

iCl
= Z Pr(X; > an) + Z Pr(X; >an)—Z
fiza fi<a
= Z 1—Pr(X; <an)+ Z Pr(X; >an)—Z
fiza fi<a
= Z Pr(X; > an) — Z Pr(X; < an)
fi<a fiza

Clearly, only when

Z Pr(X; >an) = Z Pr(X; < an),
fi<e fiza

the estimate will be unbiased, i.&jas(Z) = 0.

Why Sampling Estimator Typically Overestimates Z? In gen-
eral, the sampling estimatdf tends to significantlyverestimate
the true number of frequent itemsefs?. In other wordsBias(Z) >

'Note that whenZ, # 0, the sampling estimatar tends to un-
derestimateZ (unbiased estimator faZ’). However, in most of
the casesZ’ will be equal toZ since without prior knowledge, the
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number of frequent itemsets

(b) connect sample count
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700000 900000

0,
an) > Z Pr(X; < an)

fiza

> Pr(X; >

fi<a

For instance, Figures 1(b) and 1(c) show the empirical distribution
of the sampling estimator on the public available datasets connect
and BMS-POS [1]. Here, we sample the original datasets with re-
placement forl000 times at1% and5% sampling ratio. The two
curves report the number of frequent itemsets versus the number
of sample trials. Clearly, in both datasets, the sampling estima-
tor tends to overestimate the actual number of frequent itemsets.
Indeed, this is rather counterintuitive and seems contradicting the
fact (Theorem 1) thaE(Z) converges t&’, which is smaller than

or equal toZ. Why does it behave like this? Here, we perform
some simple analysis to reveal the underlying cause. First, for an
itemset:, the difference between the estimated frequekgy|S|

and its true supporf;|.S| can be bound by

Pr(|X:/|S| — fil > €) < 2¢7218]

using Chernoff bounds [18]. Suppose- 1%, and|S| = 10, 000,

then the probability for the difference between the estimated fre-
quency and the true frequency is less thaft. This suggests that

if an itemset has frequencf; being close to the targeted support
level,|fi — «| < ¢, itis very likely to jump from frequent to infre-
quent or infrequent to frequent. However, when the frequency of
an itemset is either much lower or much higher than the target sup-
port levela, the probability of such jump is very small. Given this,
we simplify the bias by considering only itemsets whose support is
close to the support level, i.e., for certain very smaall

a—e<fi<a a<fi<ate
R 2 2
Z e~ (Xi—fin)*/(2fi(1=fi)n)" _

a—e< fi<a @

Z /a o= (Xi=fin)?/(2f; (1~ f;)n)?

~
~

Bias(Z) Pr(X; > an) — Pr(X; < an)

Q

a<fi<ate”
~ DR Vo R N Y/
a—e< fi<a a< fi<a+te

1
5(\{i:a—e<fi <o} —H{i:a< fi <a+e}])
The above analysis provides a rule of thumb for estimating the

bias of sampling estimatdf. We observe that for many real datasets,
the number of itemsets is shown exponential growth as the support

chance for a user to select a minimal suppgnvhichhasZ., # 0,

is very small. In other words, a typical user-defined minimal sup-
port level will not have any itemset with exactly{7’| number of
occurrences in th®.



reduces, i.e.,
Hi:a—e< fi<a}l>H{i:a< fi<a+e}

Indeed, if we assumidi: a—e < fi < a}| = [{i: a < fi}|, the
bias can be almost as large as the true valu&his analysis shows

b1 b2 b3
al 1 0 1
a2 0 1 0
a3 1 0 1
al=a2=a3=100  bl=b2=b3=100

that why the observed mean of the sampling estimator can be much

larger thanZ (e.g., Figures 1(b) and 1(c)).
MSE and Variance Analysis of Sampling Estimator: A biased

estimator is not necessarily a bad estimator. Generally, the criteria

for a good estimator is th@ean square errofMSE):

MSE(Z — Z) = E(Z — Z)* = Bias(2)* + Var(Z)

When the bias and variance are both small, a biased estimator cal
still be desirable. The variance of the sampling estimator can be

written as
Var(Z) = Z Var(Y;) + Z Cov(Y;,Y5)
iCI i#j
= ZnPr(Xi >a)(l—-Pr(X; > a)+
iCI
> (Pr(Xi > aAX;>a)— Pr(X; > a)Pr(X; > a))
i#j

The direct computation is too expensive. Instead, we can estimate

Var(Z) through re-sampling the original transactional datatiése
times (Zy, is thek-th sample dataset):

An interesting observation based on the empirical distribution
of Z (e.g. Figures 1(b) and 1(c) is that the sampling estimator

Figure 1: Sketch Matrix Example

of frequent itemsets in a constant time. Indeed, consider the sketch
matrix D depicted in Figure 1.
Each cell of D contains 100 transactions and 100 items from

Mhe original set of transactions. Suppose that the supportdeig!

10%. Then it is easy to calculate the precise number of frequent
itemsets which is equal to
3*(2100 — 1) + (2100 o 1)(2100 _

1).

In general, suppose that columnsji, j2, ---, jx from D

satisfy the condition below.

El

i=1

That is, the number of transactions with items from thleselumns

is at leasta|T'|. We refer to thesé columns ofD as frequenk
columns. It is well known [3] that any subset of frequent columns
is also frequent. Consequently, the number of frequent itemsets for
items from frequenk columns ofD is as follows:

(251 — 1) x (292 — 1) x -+ x (2%9k — 1)

does not seem to have normal distribution, but it seems to becomeThus, to calculate the number of all frequent itemsets, we calculate

normal after we did the logarithm transform @h We conjecture

the number of frequent itemsets for every combination of frequent

that this may hold for many real datasets. The key open question isitem columns and take a sum of these numbers.

under what conditions, this will hold and how to analytically derive
it.

3. SKETCH MATRIX ESTIMATOR

In this section, we study how to estimate the total number of
frequent itemsets given a sketch matfx How to construct such
a matrix is discussed in Section 4.

To facilitate our discussion, we introduce the following nota-
tions. LetB be the binary matrix representing the transactional
databasé). Each row of3 corresponds to a transaction and each
column of B corresponds to an itemh;; in 5 is one if and only
if the i-th transaction contains itegh Let D be the sketch matrix
with s rows andi columns for the databade. Let A;, 1 <i<s
be the set of transactions being represented byi-therow of D
and leta; = |A;| be the number of transactions for th¢h row.

Let B;, 1 < j < t be the set of items being represented by the
j-th column, and leb; = |B;| be the number of items for theth
column. Clearly, we havg";_, a; = |T| where,|T| is the total
number of transactions b, andZ;:1 b; = |I| where,|I| is the
total number of items itD. Let the cell at-th row andj-th column

in D, d;;, be the proportion of ones in the submatrix/of which
contains transactions ia; with only items appearing if3;. Given

a support leveky, we would like to estimate the total number of
itemsets which have the support higher than or equal to

3.1 TheSmpleCase

Suppose that the sketch matfixis a binary matrix wherd,;; =
0 ord;; = 1. In this case, it is easy to obtain the exact number
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3.2 TheGeneral Case

Generally, the sketch matrix is not binary. In this subsection we
discuss our approach to approximation that is based on probabilistic
considerations. Recall that each cél} of the sketch matrixD
is derived from the block of original datasBt(which is a binary
matrix of | T'| rows and|I| columns). Let5(i, j) be the submatrix
of B which containsA4; rows andB; columns. ThusB(i, j) is a
binary block witha; rows andb; columns. Further3(z, j)r = 1,
1<k < a1 <1 <bj)ifand only if the k-th transaction
of A; hasi-th item of B;. Given this, we model the number of
1’s in each column of the blocK(i, j) as a random variabl&’; ;
with a binomial distributionBin(n = a;, p = d;; ), wheren is the
number of cells in a column of the block apds the probability
that the cell isl.

Thus, we estimate the number of frequent items for the entire
dataset3 by the expected number of frequent items for the entire
set of transaction® which is as follows:

t s
> b Pr(> Xy > o|T)).
j=1 i=1

To approximate the number of frequent itemsets resulting from a
single column of the sketch matrix we treat the random variables
for each column in the same block being independent, and apply
the following lemma:

LEmMA 1. The expected number of frequent itemsets which are



subsets oB; (itemsrepresented fojj-th column) is Algorithm 1 GeneralCount(D, |T|, «)

b; s %: F — 1/l number of frequent itemsets from akhycolumns
b 1S «—[1,1,---,1],|S| = s/l support vector
Z(kJ)Pr(ZX[k]U 2 a|T)) 3: RecuisiveCounti]ng|(1|,S,F) /I start counting from first column
k=1 i=1 Procedure RecursiveCounting(j, S, F)
where, X [k|;; is a random variable with binomial distribution 1:for i =jtotdo
A 3 F «F
. . . . 4: fork=1tob; do
Given this, we can approximate the total number of frequent item- . w < 0 // Normal Mean
sets from the entire sketch matrix for a given the minimal support 6: o2 — 0 // Normal Variance
Q. 7 for i = 1tosdo
8: S'[i] = S'[i] x d;; I/ a new support vecta$’
THEOREM 4. Given the sketch matrix and the binomial distri- ~ 9: u—u+S'i] X a;
bution assumption for each block, the expected number of all fre- 10: 02 — a2+ 8'[i] x (1= 8[i]) x a;
guent itemsets of the entire dataset is 11: end for
12 F e P ox bkl
b1 bt . 13: N — N+ F x Pr(X > a|T|) l rv.X ~ N(u,02) /|
Z Z ((kll) XX (ki) X Estimated Total Number of FIM
k1=0 k=0 14: if ' x Pr(X > o|T|) > 1then
s 15: RecursiveCounting@ 1, 5’, F’)
Prd_ X[ki, - kiliy o g = alT]) — 1 16: else
=1 17: break
18: end if
where, X [k1, - -+, kt|i1,... 4 is @ random variable with binomial ~ 19:  end for
distribution B(as, (di1)** x - -- x (di)**). 20: end for

Thus, our approximation for the number of frequent itemsets de- . . .
pends on the probability that the sum of random variables, each one3.3  Estimating Other Related Quantities
with binomial distribution, is higher than or equal to the minimal
supporta|T|. However, the exact calculation of such a probabil- Number of Frequent k-itemsets: An approximation of the num-
ity is computationally expensive. To avoid computationally expen- ber of frequent itemsets each of which contains exaktifems
sive probability evaluation, we use a normal distributiVifu = (referred to as frequerdt itemset) is a special case of the approx-
np, o = np(1—p)) to approximate a binomial distributidBin(n, p), imation of the total number of frequent itemsets. Note that in the
np > 10. Itis well known that if two random variables are normal counting process, we essentially estimate the number of frequent
and independent, their sum is also normal. Therefore, the sum ofitemsets from different combinations of items Bf, 1 < j < ¢
binomial random variables can be approximated as and summarize each of these cases. Thus, we have the following

theorem to estimate the number of frequisitem sets.

k k
DXk ki, g ~ NOQ D aidi x - x dil, THEOREM 5. Given the sketch matrix and the binomial distri-
i=1 i=1 bution assumption for each block, the expected number of frequent
s . . . . k-itemsets of the entire dataset is
AR (1 — dFt ceex df (1= gn
izzlaldzh( dljl) X x dl]l( dl]l)) k14 +ki=k ) )
The probability for a normal random variable to be higher than 0<ky <by o ,0<ks <by
a|T| is easily approximated [6]. s
Let us analyze the computational complexity to estimate the num- Pr(z Xkt S ktlifjy e g = T)) — 1
ber of frequent itemsets based on Theorem 4. The inner formula i=1
(involving only product) can be computed in a constant tire), where, X k1, , kiJif1.... 4 is a random variable with binomial

the time complexity of the entire formula @(H;:l(bj + 1)).

This is significantly less than the total search space of enumerating
all possible itemsets. For instance, if we haw®0 items in the
entire dataset and assume the sketch matrix henelumns with
each one has00 items, the complexity for estimation i€0'° ~

27 << 219, where2'""? is the number of all itemsets. Onthe  Size of the Largest Frequent Itemsets: For the largest frequent
other hand, this is still too expensive to calculate. To reduce the itemsets, we simply use the cutoff condition. Mathematically, we

distribution B(a;, d! x - x d¥t).

Clearly, a recursive procedure similar to Algorithm 1 can enumer-
ate all the different combinations of frequénttemsets.

computational cost, we use a simple heuristic, referred tortsf: estimate the largest frequelititemsets to be
. - 1<k <bi, - 1<k <
DEFINITION 3. (Cutoff Condition) Any k; > kq, ---, ki > K max{klt Fhell kS b, 1S ke S b
ke, where(3t )xc - x (B Pr(S5_, Xlke, -+ s keligyy o g0 = @lT]) < DIV s POV PR(S X et e Bl > alT)) > 1
1, will not be counted in estimation of the total number of frequent () () (; v oo Relitgy, g 2 e TD) 2 13
itemsets.

Basically, the cutoff heuristic is similar to the apriori principle. Al-  Number of Frequent Itemsetson a Subset of Items: As we men-

gorithm 1 is the key counting procedure for estimating the total tioned before, in many real applications, users are likely to query

number of frequent itemsets utilizing the cutoff heuristic. only the frequent itemsets with respect to a subset of items satisfy-
ing certain constraints. Ldt; be the subset of items which users
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are interested in. Given the minimal support levelvewould like support higher than minimal suppettand half of the number of

to estimate the number of frequent itemsets which are subsets ofthe frequent itemsets whose support equals)toln some sense,

1. The sketch matrix approach can handle this case by simply ad-the sketch matrix tries to describe the underlying distribution of
justing the groups of item®8;, ---, Bsto By N I, ---, By N I, the transactional database and then directly compute the expected

respectively.

THEOREM 6. Given the sketch matrix and the binomial distri-
bution assumption for each block, the expected number of all fre-
quent itemsets of the entire dataset is

b/
X () %

L
S 3G x

k1=0 k=0
S
Pr(d Xk,
=1

where,b; = |B; N L], and X [k1, -+, kip
variable with binomial distributior3(a;, (di1)* x - - -

7ki]i[]’1,~~ jt) > Q‘TD) -1

.-..4] Is a random
x (dig)™).

In addition, the sketch matrix can be adjusted to handle only part
of the transaction set as well. Essentially, we need attach a selectio
estimator for each transaction group, i.e., to estimadten 75|,
whereTs is the subset of transactions. In genefaljs likely to be
expressed as a predict clause. Thus, we only need to adjusteach
to a} in estimating the number of frequent itemsets. Note that this
is a little more complicated than estimating the number of frequent
itemsets on a set of items since the number of items is generally
much smaller than the number of transactions. For item groups, we
can explicitly record each item group; and perform the intersect
operation. However, this (especially the direct intersection) can be
too expensive for the transaction group. Thus, we can apply the
typical selection estimators [8], which has been extensively studied
in relational database research, for such a purpose.

The sketch matrix can naturally adapt to the dynamic environ-
ments, where insertions and deletion of transactions are likely to
occur. As we will discuss in the next section, the sketch matrix is
constructed in an incremental fashion and thus, can adjust to the
change easily.

Finally, we note that these quantities can be easily estimated by
the sampling estimators as well. However, as we will show later,
sampling estimator is in general too computationally expensive to
be applied for query cost estimation.

4. OPTIMAL SKETCH MATRIX CONSTRUC-
TION

The sketch matrix determines the estimation accuracy. Different
sketch matrices can provide very different estimation results. The
key problem is what is a good criterion for the sketch matrix and
how to construct such a matrix. We will answer these two questions
in this section.

4.1 Optimal Criterion

Before introducing the optimal criterion, we first need to con-
sider the properties for the sketch matrix, which are essential for
the estimator. Specifically, the random variables of each column
in a same block3(i, j) are i.i.d. (independent and identically dis-
tributed) according to the binomial distributid®in(n = a;,p =
d;;); all the random variables of the columns in the same row group
but in the different column group$X;1,--- , Xit), are indepen-
dent; and the random variables of the columns in the same column
(X1j,-+-,Xs;) are independent as well. Indeed, if these condi-
tions are satisfied, our sketch matrix estimator can be proved to be
unbiasedor Z’ (the sum of the number of frequent itemsets whose
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number of frequent itemsets for such a distribution.

However, producing a sketch matrix b, which satisfy all these
conditions, is not easy. First, any statistic tests will not be able to
confirm whether these conditions hold. Instead, they will reject the
alternative hypothesis, e.g., the dependence assumption. Further,
the chi-square independence testfarandom variable requires a
k-dimensional contingency table and a totakéfcells [5]. This
is too computationally expensive. Finally, our contingency table is

very sparse (including many zeros or very small number of counts

in the cells). Even though there are some recent development for
the sparse contingency table [13], they would not be able the handle
the test at such a scale.

Under such constraints, we proceed with the assumption that in-
dependence holds for the random variables and try to directly min-
imize the variance of the estimator. The experimental results in
Section 5 do indicate that such treatment seems to be appropriate

"and can produce rather accurate estimation.

Here, the variance for the number of frequent itemsets composed
of k1,--- , k¢ items fromB;, , - - - , B;,, respectively, can be writ-
ten as

b b
(kll) XX (ki) X Priki,--- ’kt]i[jlw-wjt] X
(L= Prlky, - keliggy o 1)
WherePriky, -« kilijjy, .. j = Prii_y Xlke, o keligyy, oo g =

a|T|) is a function ofd;;,1 < j < t. Here, we basically treat the
events that itemsets being frequent or not as independent Bernoulli
trials. Each of them haBr[k1, - - - , ki), ... j,) Probability being
frequent. Thus, the total number of théde + - - - + k;)-itemsets

can modeled as a random variable with Binomial distribution. Es-
sentially, the smaller the variance of this random variable, the more
precise we have our estimation, which is the expectation of this
random variable. Unfortunately, though the variance maybe esti-
mated/approximated, the closed analytic form is very hard to de-
rive.

To deal with this problem, we introduce an alternative variance
which is closely related to the original variance but much easier to
compute. Minimizing the alternative variance results into a sub-
optimal value of the former variance. Specifically, the alternative
variance is defined as follows.

b1 by
Var(y 2+ 30 (2)

k1=0 k=0

X (Zi)X[kh T >kt]i[j1w“ 7jt])

The above variance is denoted¥as Here, we basically treat the
sum of all the support for every possible itemset in the database as
a random variable. Note that in our probabilistic framework, each
support is treated as an sum of random variable with binomial dis-
tributions (Subsection 3.2). The closed formula of the alternative
variance is stated in Theorem 7.

THEOREM 7.

v

Var( Z Z

k1=0  k;=0

s t
3 ai H(1+3d” =TT +dij)®)
i=1 j=1 Jj=1

)X [k,

vktlijy, e 50])



Proof:

by bt
b
Do Do) X X X R ki )

k1=0 k=0

s t J
= 5 dlar gorithm iClustering(T, s,
> > TTIT+ 2l dlar)] Algorithm 2 BiClustering(T, s, t
et ]:,1 7?71 ] Parameter: Thetransaction databage
where, z[i, jlgr ~ Bernoulli(di;) Parameter: The number of transaction (row) group
) ; ; Parameter: the number of item (column) group
Thus, V =V 1+ 2[i, §lor /I Step 1:
s ar(; ; 1131[};[1( alé, glar)l) 1: Randomly partition the transactions ind@roups
2: Randomly partition the items intogroups
s a; t b /I Step 2:
= > > var(]]l H (1 + [i, ]qr)]) 31 Vi, 1 < i< 8,Vi — ai([T5y (1+3di)? — [T4oy (1 +dij)?)
i=1g¢=1 j=1r=1 4: for each transactionz do
s a; t by 5:  iisthe current group transactianbelongs to
= E 1+ 2, j]qr : 5,1 < j <t d. «— ——1=SU A1 | ¢ is the number of items
ar)? 6: v dj;  “EHESU ] g; is the number of
i=l¢=1 j=1r=1 in item- grong of transactlonv
t b 70 V= ai(ITj= (1 + 3d; ) / H;:l(l + déj)%j)
_E2(H H + z[i, flqr)]) 8: for each groupk k#1 do
j=1r=1 9: Vk — ag (H;:l(l + 3dkj)bj — H;‘:l(l + dkj)ij)
. . apXbixXd;i—q;
s a; ot b o 10: vj,1<3<td;jHW
= 2.2 H [T B+ =i, 5ler)?)D) 110V a([They (14 3dy)% — TTE, (1 + df,)?9)
i=lg=l j=1r=1 12 Ak<—v+v,€—vi’—vk’
t by 13:  endfor
7(H[ E2(1 + x[i, jlqr))]) 14: k= max(Ay),A; = 0// movingx from i-th group tok-th group
J=1 r=1 maximally reduce the variance
e . 15:  ifi # kthen
BN b \2b; 16: Ali]  Ali] — {z}, A[K] — A[k]U {z}
= 22([{1(1+3d”).7)*(11(1+du) 7)) 17: ‘v’],l<]<td”<—d“, s
s Z7 . = 18: endif
s _ _ 19: end for
= > ai(JJ(+3dij)* — [T +diy)*) Il Step 3:
=1 j=1 i=1 20: Vi, 1 <i < s,pi = [1joy (14 3dis)%,p) = [T5; (1 +dij)*°
0 21: for each itemy do
22:  jisthe current group item belongs to
4.2 Bi-Clustering Algorithm 23: Vi,1<i<s,d, — “20Xdi"9i ;o s the number of trans-
ij a;x(bj—1)
Finding the exact sketch matrix which minimizes the variance _  actions in transaction groupcontaining itemy
(objective function) is very hard. Thus, we resort to heuristic algo- 24 for e?Ch gr‘?“pl'l 7’51 d% byt
rithm which perform a k-means type bi-clustering [16, 7] to identify 25 Vi, 1 < i < s, dfy o SOSLE
the sketch matrix with local minima. THaiClusteringalgorithm . s (143d;,)b5 71 (143d},)0 !
. 26: Al “— Z'fl ai[pi X - 5 X L T
accepts user-defined number of rowvand number of columns = (1+3d;5)% (1+3d;;)"
and proceeds as follows. 57 , (+3d; J“'fl’ (143d],)2(01+D)
Step 1: (Random Partition) Randomly partition the original dataset ' Pi (143d;,)%" (1+3d;;)b
into s subsets of transactions andubsets of items; 28 end for

Step 2: (Transaction Adjustment) For each transaction, move it 290 l=maxz(A),Aj =0 .
/I moving y from j-th group tol-th group maximally reduce the

to a new group so that the objective function is maximally reduced; variance
Step 3: (Item Adjustment) For each item, move itto anew group  3g: s j # 1 then

so that the objective function is maximally reduced; 31: Blj] < Blj] — {y}, B[l] — B[] u {y}

Step 4: (Iteration) Perform ste2 and 3 alternatively until the 32: Vi, 1 <i <s:dig e djy,dig — df,

certain stop condition is satistified, i.e., either a local minimum is 33 o (Bdy )bj—l (143d/))01H!

reached, or the improvement is too small. : LCRNE AN TPy (1+3d;)0
TheBiClusteringalgorithm is sketched in Algorithm 2. A major ) (4+3d)* ™D (1434l,)2(r+D

challenge here is that each move needs to recalculate the variancg’ ) Py = P X (1+3d”)2bj X (13

(V), which costsD(st) to compute it from scratch. However,aswe 35: end if
try to adjust a transaction or an item, we only need to compute the 36: end for
different between the original variance and the new variance (after 37: I Step 4: . o -
the movement). Based on a simple analysis of the variance formula, Repeat Steg ands until the stop condition is satistied
our algorithm can reduce the cost of the variance difference for a
transaction moving to an alternative group¢t).

The correctness of our algorithm can be derived from Lemma 2.

LEMMA 2. LetV be the variance for the current grouping of
datasetT. Let )’ be the variance for the new grouping if we
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move transaction: from its original groupi, A; to a new group
k,Ag,i # k. LetV" be the variance for the new grouping if we
move itemy from its original groupingj, B; to a new grouping
l,Bi,j # 1. Then, we have

V-V =Apand V-V"=A
Further, if A, > 0, thenY > V’; and if A; > 0, theny > V",

Note thatAy is defined in Linel2 of the Algorithm 2 andj; is
defined in Line27 of the Algorithm 2. If we choose row group

and column group such that they maximally reduce the variance
V, we simply choose the maximal;, and A; for a transaction
and an item, respectively. We also note that this lemma allows to
have many different moves to adjust the grouping so that we can
minimize the varianc®’. In theBiClusteringalgorithm we adjust

rows and then adjust columns. Since for each adjustment, we do

not increase the variance, the algorithm will eventually converge to
a local minimum.

The time complexity of th&iClusteringalgorithm is as follows.

In Step2, we adjust each transaction. The cost for calculating
Ay, for each alternative group i©(t). There ares — 1 alterna-

tive groups. Putting all these together, it caStsst) to adjust one
single transaction. Thus, the total cost of Skep O(|T'|st). Sim-
ilarly, we have the total cost for Stepto beO(|1|st). Therefore,
assuming the algorithm will iterate times and the initial density
calculation for the entire dataset, then the cost of the entire algo-
rithm is O(N + L(|T| + |I])st), whereN is the size of the entire
datasef".

Finally, we note that the cost of creating a sketch matrix is amor-
tized for obtaining approximation of the number of frequent item-
sets for different minimal support levels. In addition, since this
algorithm is inherently executed in an incremental fashion, it can
quickly adjust for database changes without starting from scratch.

4.3 Two-level Hierarchical Bi-clustering

A key advantage of sketch matrix is its computational cost. How-
ever, this cost is determined by the size of the sketch matrix. As the
number of rows and columns of a sketch matrix increases, the esti-
mation cost will increase as well (Algorithm 1). However, a small
sketch matrix may not be able to capture the underlying distribu-
tion of a transactional database very well, in the sense, that the
independence assumption may not hold and the variance is large
consequently, the estimation is rather inaccurate.

To handle such a difficulty, we propose a two-level hierarchic'
clustering method to improve the estimation accuracy with minim.
increasing of the estimation cost. The basic idea of the hierarchi
clustering is as follows. At the first level, we apply tBeClustering
algorithm to partition all transactions intorow groups, and all
items intot item groups. Thus, we have a total ofx ¢ blocks.

At the second level, we explore thacal structureof each block
by partitioning them further inta’ x ¢’ blocks. That means the
entire dataset’ is partitioned into a total of x ¢ x s’ x ¢’ blocks.
However, as we will show later, the actual estimation does not tre¢
this sketch matrix as x ¢ x s’ x t'.

To achieve this, we enforce the following constraints for the sec
ond level clusteringall blocks in the same column generated by
the first level clustering shares the same column clustering (iter
grouping) in the second level clustering, but no constraints for the
second level transaction groupingConsider for a column group
Bj in the first level. This constraint essentially would split it into
subgroups. However, for a row group, different blocks sharing
A; may split it very differently at the second level.

Construction Procedure: The currenBiClusteringalgorithm can
be easily modified to handle the second level clustering. Basically,
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after the first level clustering, we assemble all the blocks in the
same column as one sub-dataset. Thus we have a totadudd-
datasets, which are denoted’&s - - - ,7:. We then cluster each

of them with the following constraints: all the items in the sub-
dataset will be partitioned intd groups, and each existing row
group based on the first level clustering will be partitioned into
s’ groups. In the transaction adjustment process, each transac-
tion is allowed to switch to the subgroups belonging to its origi-
nal group. The time complexity for the second level clustering is
O(N + L'(|T| x t'ts’ + |I| x ss't")), assuming each sub-dataset
converge inl’ iterations.

Estimation Procedure: The estimation procedure utilizing the two-
level sketch matrix splits the estimation into two steps: 1) using the
sketch matrix generated by the second level clustering to estimate
the number of frequent itemsets for each sub-datAsdtach sub-
datasetl; is treated as the entire dataset and the thus procedure
in Algorithm 1 can estimate the number of frequent itemsets from
the each sub-dataset; 2) estimating the number of frequent itemsets
which combines itemsets from more than one sub-datasets.

The key trick then is that for each different type of itemsets (each
type correspond to a fix number of items from each item-group at
the second level clsutering), their support in each block (generated
in the first level clustering) is recorded. For instance, consider item
group A; is split into three subgroupsi;o, A;1, andA;». Let us
denoteA;[2, 3, 1] to be an itemset type which hastems in A;o,
3itemsinA;; andl item in A;». After calculating its support in
using the second level clustering. We will compute a new density
for this itemset at each block (in the first level clsutering), denoted
asd;;[2, 3, 1] for the j-th column block. Note that this density can
be different from the originad;;, which records the density for the
B(i, 7) block. Here, this new density varies from one itemset type
to another type, and is computed based on the second level clus-
tering. In particular, this density will be recorded for each itemset
type, and each type hasmew density values corresponding to the
s transaction groups in the first level of clustering. Given this, we
can easily combine different types of frequent itemsets from differ-
ent column groups and use their new densities to do the estimation.
Finally, we note that this procedure is efficient since it estimates
the number of frequent itemsets for the second step usingtonly
transactional groups insteadok ¢'.

5. EXPERIMENTAL EVALUATION

connect.dat Support =70

Figure 2: Estimation of the Number of Frequent K-Itemsets

In the experiments, we use five publicly available datasets from
the Frequent Itemset Mining Implementations (FIMI) Repository [1].



The datasets araccidents chess, connect, mushrooamdretail

theoretical analysis of the sampling estimator: when the sample is

[4, 10]. The characteristics of these datasets are listed in Table 5.small, the sampling estimator tends to overestimate the number of
Datasetsiccidents, chess, andconnect are rather dense (mean-
ing a large number of frequent itemsets exists at a high support estimation reduces, and thus the running time actually can reduce.
level, for instance&)0%). Retail dataset is very sparse (frequent
itemsets are generated only at a very low support level, ranging estimator and the sketch matrix estimator with two different config-
from 0.01% t0 0.25%). The mushroom dataset is moderately dense urations,35 — 20 — 10 — 10 and50 — 35 — 15 — 3 for mushroom.

with a range of tested support levels betw8en 40%.

Dataset Transactions| Iltems Sparsity
accidents.dat 340183 468 Dense
chess.dat 3196 75 Dense
connect.dat 67557 129 Dense
mushroom.dat] 8124 119 Moderate
retail.dat 88126 16470 | Very Sparse

Our experiments are performed on a computation server equippe

with Dual AMD Opteron 270 Dual Core Processors &rilGB of

main memory. The operating system is the Fedora Core Linux. All
algorithms were implemented in C++.

For each dataset the approximation is performed on different

sketch matrix configurations. Each configuration is specified by

four parameters: 19is the number of transaction groups¢23 the

number of item groups, 3)is the number of sub transaction groups
and 4)k is the number of sub item groups. We denote each config-

uration ass-t-j-k.

In the following, we report the approximation

accuracy and running time for different datasets and different for
configurations.

Estimators Comparison: Sampling Estimator vs. Sketch Ma-

trix Estimator:. Figures 4 and 5 compare the the sampling esti-
mator with sketch matrix estimator on the connect and mushroom

dataset, respectively. Here, we sample the original transactional
dataset without replacement @6%, 1% and3% ratio, and then

we apply the state-of-art LCM [19] (one of fastest software) for
enumerating the number of frequent itemsets. To show the distri-
bution of the sampling estimator, we generdd® sample datasets

at each sampling ratio.

Figure 4(a) and (b) show the estimation results from the sam-

pling estimator and the sketch matrix estimator with two different

configurations20 — 15 — 8 — 8 and20 — 20 — 10 — 10 for con-
nect. Clearly, the sketch matrix provides much accurate estimation
than the sampling estimator estimator. Figure 4(c) and (d) show the

average running time for the sampling estimator (the LCM running

time on the sample dataset) and approximation time for the sketch
matrix estimator. Interestingly, as sample size increases, the aver-

age running time also reduces slightly. This is well captured by our

Maximal K-Itemsets

accidents.dat

connect.dat

—— Apriori

—e— Estimation 15-15-4-4

—=— Estimation 15-15-10-1(
Estimation 20-20-6-6

—=— Estimation 20-20-10-1

Maximal K-ltemsets

—o— Estimation 8-8-8-4
—=4— Estimation 20-15-8-8

Estimation 20-20-10-1
—&—Estimation 20-20-15-15
—— Apriori

E] E]
Support

@

C3 7o 3

w70 72 7

7% 78w &2 8 &
Support
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Figure 3: Estimation of the Size of Largest |temsets
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frequent itemsets and when the sample becomes large, such over-

Figure 5(a) and (b) show the estimation results from the sampling

Here, the two methods seem comparable. The sampling estimator
has probability around5% and75% and60% to overestimate the
true number of frequent itemsets for the sampling ratid%, 1%

and 3%, respectively. The sketch matrix tends to underestimate
the true number. Figure 5(c) and (d) show the running time com-
parison. In this case, the sampling estimator actually runs much
faster than the sketch matrix. We illustrate this figure to show that
the sampling estimator can be acceptable when the dataset is not
Jyery dense and the number of itemsets is not very large. Here, the
number of frequent itemsets is less tH&00 at both support level.

We also note that even though the sketch matrix is slower than the
sampling estimator, its running time is still acceptable (less than
0.4 seconds).

In general, sketch matrix estimator can be completed within 1
second (or much less). For instance, it completes all the estimation
for retail in averaging 0.003 seconds and accidents averaging 0.008
seconds. Compared witt% sample for connect and accidents,
sketch matrix is more than000 and50 times faster, respectively.

To sum, the sketch matrix is more accurate at lower support levels
and also for the dense datasets making it especially applicable for
cardinality approximation. The sampling estimator can be applied

for sparse datasets and generally with higher support level.

In the following, we will mainly focus on studying the sketch
matrix estimator.

Estimation of thetotal number of frequent itemsets.. Figures 6
reports the approximation accuracy for the total number of frequent
itemsets. Here, we vary the support level and report both the true
count our approximation based on four sketch matrix configura-
tions.

We have the following observations. First, we found that the
finer the partitions (i.e. higher andt), the better the approxima-
tion of the true count of frequent itemsets. This is understandable
as the finer the partition, the more precise summarization can be
achieved for the underlying dataset. Second, the approximations
for the dense datasets, chess, connect, mushroom and accidents, are
very accurate. If we define the accuracy®BgI", whereFE is the
approximation and” is the true count, the best approximation of
these datasets is consistently within or clos8d%. Third, while
the approximation for the sparse (retail) dataset is not as precise,
it still provides reasonably good approximation§@¥ accurracy.
Fourth, we can observe that the approximation algorithm generally
underestimates all true counts, thus, providing a lower bound for
the total number of itemsets for a given support level. This phe-
nomena can be partially explained by the assumption that each of
the items is an independent random variable with probability equal
to the density of the block it is in.

Estimation of thenumber of frequent k-itemsets:. Figure 2 shows
the detailed approximation of the number/oftemsets. We can
see overall, our approximation algorithm not only provides a good
accuracy for the total number of frequent itemsets, but also can es-
timate each component {temsets) reasonably well. Figure 2(a)
shows the approximation df-itemsets for the connect dataset at
support level70%. Figure 2 (b) is the result for the mushroom
dataset at suppot2%.



Estimating the large K for the frequent K-itemsets.. Figure 3 [6] George Casella and Roger L. Berg8tatistical Inference,

(a) and (b) show the approximation of the size of the largest fre- 2nd. Edition. DUXBURY Publishers, 2001.
quent itemsets denoted &. Our approximation o’ for the [7] Deepayan Chakrabarti, Spiros Papadimitriou, Dharmendra S.
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