
A Query Processor for Prediction-Based Monitoring of
Data Streams

Sergio Ilarri
IIS Department

Univ. of Zaragoza
María de Luna 1

50018 Zaragoza, Spain
silarri@unizar.es

Ouri Wolfson
CS Department
Univ. of Illinois

Chicago, IL, 60607
wolfson@cs.uic.edu

Eduardo Mena
IIS Department

Univ. of Zaragoza
María de Luna 1

50018 Zaragoza, Spain
emena@unizar.es

Arantza Illarramendi
LSI Department

Univ. of the Basque Country
Apdo. 649

20080 San Sebastián, Spain
a.illarramendi@ehu.es

Prasad Sistla
CS Department
Univ. of Illinois

Chicago, IL, 60607
sistla@cs.uic.edu

ABSTRACT
Networks of sensors are used in many different fields, from
industrial applications to surveillance applications. A com-
mon feature of these applications is the necessity of a mon-
itoring infrastructure that analyzes a large number of data
streams and outputs values that satisfy certain constraints.

In this paper, we present a query processor for monitoring
queries in a network of sensors with prediction functions.
Sensors communicate their values according to a threshold
policy, and the proposed query processor leverages predic-
tion functions to compare tuples efficiently and to generate
answers even in the absence of new incoming tuples. Two
types of constraints are managed by the query processor:
window-join constraints and value constraints. Uncertainty
issues are considered to assign probabilistic values to the
results returned to the user. Moreover, we have developed
an appropriate buffer management strategy, that takes into
account the contributions of the prediction functions con-
tained in the tuples. We also present some experimental
results that show the benefits of the proposal.

1. INTRODUCTION
There has been a great interest in techniques for monitor-
ing networks of sensors in a variety of contexts (e.g., fleet
tracking, monitoring the levels of certain gases in a chem-
ical environment, etc.). The common feature of monitor-
ing applications for networks of sensors is the need of han-
dling a continuous supply of data streams. For this pur-
pose, many works propose the use of a Data Stream Manage-
ment System (DSMS) [3], in a monitoring computer, which

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

implements suitable non-blocking techniques to process un-
bounded amounts of data.

In this context, sensors send their data as continuous and in-
dependent streams of data. As the values they measure can
change very frequently (e.g., a GPS receiver in a car mea-
sures its location, that is changing constantly), this could
imply many communications of data from each sensor. On
the one hand, this implies that the DSMS has to process a
large amount of incoming tuples. On the other hand, there is
a great usage of the network, which is specially important in
wireless environments where communications are expensive
and quickly drain the energy of wireless devices [22].

However, in many situations, a sensor can predict the val-
ues that it will measure in the near future. For example,
a location sensor (e.g., a GPS receiver) in a car could pre-
dict future locations by considering the current speed and
route. Similarly, the temperature in a room will probably
evolve during the day following some predictable patterns.
Taking into account this situation, this work proposes to as-
sociate each sensor value with a prediction function in a way
that the sensor will update its value on the monitoring com-
puter only when it differs significantly from the predicted
value. This strategy reduces both the communication and
the query processing efforts. Due to the use of prediction
functions together with an update policy where only signif-
icant values are transmitted, a pair of sensors could start
satisfying a required constraint even when no new tuple is
received from any of the sensors. The use of prediction func-
tions requires the definition of a suitable query processor
able to handle them efficiently and effectively. The main
contributions of our work are:

• A query processor is defined, that processes queries on
data streams with prediction functions.

• Two types of constraints are considered: value con-
straints and window-join constraints. In particular,
window-join constraints have not been studied in other
works.

415



• Uncertainty issues are considered and managed by the
query processor.

• An appropriate buffer management is performed to
deal with storage limitations.

• An experimental study shows the interest of the pro-
posal in a variety of conditions.

The rest of this paper is as follows. In Section 2, we describe
the use of prediction functions and the format of tuples con-
sidered. In Section 3, we explain the types of constraints pro-
cessed by the proposed query processor: value constraints
and window-join constraints. In Section 4, we detail the
main components of the query processor. In Section 5, we
explain how the uncertainty in the values measured by the
sensors is managed. We present an experimental evaluation
showing the feasibility and performance of the query proces-
sor in Section 6. The paper finishes with some related works
in Section 7 and conclusions and future work in Section 8.

2. SENSORS AND PREDICTIONS
This paper argues that predictions can be reasonably used
in a variety of contexts. For example, a GPS in a car could
send not only the current location of the car but also its
vector of movement or expected trajectory [35]. Similarly,
the values measured by a temperature sensor indoors are not
expected to change in normal conditions. The level of fuel
or the distance traveled by a vehicle, the temperature of an
area, the altitude of an airplane, the intensity detected by a
light sensor during the day, the number of persons entering a
mall over a certain period, etc., are examples of values that
can be estimated with a prediction function (which can be
built using different techniques [15,27]).

Thus, in our proposal, every value measured by a sensor is
attached to a prediction function that will be used to pre-
dict future values of that sensor. In this way, the sensor
will only send significant values (e.g., values that differ from
the predicted value by more than a certain threshold) to the
monitoring computer instead of sending them continually,
saving a great amount of wireless communication efforts at
the sensors. This is very important, as wireless communica-
tions are expensive and drain quickly the energy of wireless
devices [22]. A reduction in the number of communicated
values also leads to a decrease in the processing overhead at
the monitoring computer, increasing the scalability of the
query processing.

Data streams from sensors are composed of update-tuples:
tpj=<si, typei, tsj, fj(t)>, where si is the identifier of a
sensor (assumed unique, as in many other works on query
processing in sensor networks, such as [5, 12, 13, 26]), typei

is the type of value it measures, tsj is the (implicit or ex-
plicit [33]) timestamp of the update, and fj(t) is a predic-
tion function that, given a certain time instant t, retrieves
the expected sensor value at that time. The value of the
sensor at the update time is given by fj(tsj). It should be
noted that sometimes several prediction functions can be in-
cluded in the same tuple (e.g., in the experiments presented
in Section 6, the sensors measure two-dimensional values,
corresponding to the horizontal and vertical coordinates of
moving objects). As an example, <locCar20, location, 10,

{15 + 4.5t, 3t}> is a tuple sent by a location sensor (identi-
fied by locCar20) in car20, moving with a horizontal speed
of 4.5 m/s and a vertical speed of 3 m/s, whose location
a t = 10 is (60, 30). This function can be maintained by
some dead-reckoning method [34]: each vehicle sends its lo-
cation and current speed to the monitoring computer, and
the speed and current location are sent again when the devi-
ation between the actual location and the location estimated
using the predicted function exceeds a threshold.

For simplicity, we consider that the sensors can estimate fu-
ture values based on past measurements. So, a sensor can
obtain and communicate a prediction function to the mon-
itoring computer. Although there may be some processing
cost associated to the estimation of prediction functions, its
use will save communications by the sensors, which is a key
element to reduce energy consumption. Moreover, the pro-
posed query processor does not contradict proposals where
a prediction model is computed and assigned to the sensors
by a third party, such as [14]. Indeed, this is required when
the prediction model is based on data not available at the
sensor (e.g., based on values measured by sensors nearby).

In order to predict the value of a sensor at a given time
instant, the last prediction function received from the sen-
sor before that time instant must be applied. In other
words, the prediction function of a tuple tpk is applicable
during the time interval between the timestamp of that tu-
ple and that of the next tuple from the same sensor, which
is called the Interval of Applicability of the Prediction Func-
tion: IAPFtpk

=[IAPFtpk
.start, IAPFtpk

.end).

Sensors can follow a number of update policies [34] in order
to decide when a value is significant and should be commu-
nicated to the monitoring computer. We advocate a thresh-
old policy with a maximum period between updates. With
this policy, every sensor commits to communicate an update
whenever: 1) the difference between its current value and the
value estimated using the last prediction function exceeds a
certain threshold (correction update), or 2) the time elapsed
since the last update has exceeded a certain period T (heart-
beat update). For example, a temperature sensor could com-
municate its current value whenever the difference between
the predicted value at a given time instant and its real value
exceeds two Celsius degrees with at least one update every
three minutes. The update period T indicates the maximum
amount of time during which a prediction function can be
applied. Outside that period, the prediction function is not
reliable and it can be assumed that the sensor is unable to
communicate new updates (e.g., it is not alive). Appropriate
threshold values can be specified depending on the Quality
of Service (QoS) requirements. Moreover, the threshold up-
date policy could also be adaptive, i.e., a sensor could dy-
namically adjust its threshold as a result of an assessment of
the tradeoff between the communication cost and the cost of
the imprecision of predictions [35] (in this case, the format
of tuples should be extended with the value of the threshold
considered by the sensor at the timestamp of the tuple).

3. TYPES OF CONSTRAINTS
Two types of query constraints, which may appear simul-
taneously in a query, are considered by the proposed query
processor: value constraints and window-join constraints.

416



Constraints such as “the selected temperature sensors must
measure a temperature under 50F degrees” are called value
constraints and are represented by vConstr(type, comp, K),
where type is a type of sensor value, comp is a compara-
tor among ≤, <, >, ≥, <>, and =, and K is a constant.
The sample constraint above would be expressed as vCon-
str(temperature, <, 50F).

Window-join constraints such as “the selected pairs of gas
sensors must measure a similar concentration of carbon diox-
ide within an interval of 10 seconds” are more complex and
are represented by wJConstr(type1, type2, w, comp, K),
where type1 and type2 are two types of sensor values, w
is called the valid-time window and specifies the maximum
time difference allowed between two values to be joined,
and the rest of parameters are as explained for value con-
straints. The sample constraint above would be expressed,
using this syntax, as wJConstr(CO2, CO2, 10 seconds, >,
1%), considering similar values those that differ less than
1%. The relative-timestamp condition allows comparisons
between values as long as they refer to approximately the
same time instant. Valid-time windows are useful: 1) in
cases where timestamps are uncertain (such as when the
sensors’ clocks are not precisely synchronized), and 2) also
in some specific queries (e.g., retrieving pairs of buses that
arrive at the same stop within 30 minutes of each other).
Other scenarios where window-join constraints can be use-
ful include: in network data processing to detect accesses
from the same IP at approximately the same time (it may
indicate a DOS attack) or other traffic patterns that oc-
cur simultaneously, in financial applications to find trends
when comparing stock quotes, to compare segments of tra-
jectories of objects which move unsynchronizely, to monitor
credit card transactions, etc.

4. QUERY PROCESSOR MODULES
In this section, we describe the components of the proposed
query processor (shown in Figure 1): the Tuple Evaluator,
the Buffer Manager, and the Prediction Validator. At the
end of the section, we also explain how they interact.

4.1 Tuple Evaluator
As opposed to what happens in traditional databases, que-
ries must be evaluated in an incremental way in order to cope
with a high arrival rate of data sent by an arbitrarily high
number of sensor devices. Thus, whenever a new tuple is re-
ceived by the Tuple Evaluator, it must verify how that tuple
affects the active queries (i.e., the continuous queries in ex-
ecution). For queries that consist only of a value constraint,
the new tuple is considered alone. For queries that involve
a window-join constraint, the new tuple is compared with
previous tuples corresponding to the other type of values
involved in the window-join constraint (potential matches).
This incremental approach will detect all the answers to the
constraint, as it is event-driven instead of being based on
periodic evaluations at specific times.

The comparison of tuples for window-join constraints is per-
formed in two stages: a filter step and an evaluation step. In
the filter step, possible matches are filtered out based on the
idea that two predicted values cannot match if they are not
comparable due to the difference in their timestamps. For
those pairs of tuples that are not filtered out, the window-

Query Processor

a class of sensors

Ouput Data Streams

validation period

PROCESSING
TRIGGER

VALIDATOR
PREDICTION

MANAGER
BUFFERqueries TUPLE

EVALUATOR

SENSORS

events alarms

Predictions

(centralized computer)
(tuples)

Input Data Streams

SAMPLING

t
Clock

T_refreshment

tuples

t

new tuple

tuples from

tuples

warnings

tentative predictions

snapshots

CLIENTS

of tuples
buffers

maxDelay

w’s

Figure 1: Modules of the query processor

join constraint must be evaluated over them to determine
when they will match (if ever). In the evaluation step, linear
prediction functions are considered1, so that the problem of
processing window-join constraints translates to comparing
prediction functions by solving a system of linear inequal-
ities, which can be performed efficiently. The correspond-
ing system of linear inequalities for window-join constraints
and a couple of prediction functions fk(tk) = a · tk + b and
fl(tl) = c · tl + d is shown in Figure 2, where T is the period
of the threshold update policy (see Section 2). A graphi-
cal resolution of the system of linear inequalities is possible,
by representing each constraint with a line, as shown in the
example of Figure 3. As a result of the comparison of two
tuples, predicted tuples that will satisfy the constraint are
generated. The cost of processing an incoming tuple for a
window-join constraint obviously depends on the number of
tuples stored for the other sensor class involved in the join
and, especially, on the number of potential matches that
pass the filter step; for each non-filtered potential match, a
system of linear inequalities like the one shown in Figure 2
must be solved. For more details about this process, the
interested reader is referred to [18,19].

For each active query, the Tuple Evaluator generates an out-
put data stream of tuples that are predicted to satisfy the
required constraints in the future. The format of these out-
put tuples, which is explained in the following, depends on
whether the query includes a window-join constraint or not.

1Many well-known estimation techniques, such as the lin-
ear extrapolation, the double exponential smoothing, or the
Kalman filter, are linear models. Moreover, non-linear func-
tions can be linearized in many cases [23].

417



fk(tk) − fl(tl) ≤ K → a · tk − c · tl + b − d ≤ K (1)
fl(tl) − fk(tk) ≤ K → c · tl − a · tk + d − b ≤ K (2)
tk − tl ≤ w (3)
tl − tk ≤ w (4)
tk ≥ IAPFtpk

.start (5)
tk ≤ MIN(IAPFtpk

.end, IAPFtpk
.start + T ) (6)

tl ≥ IAPFtpl
.start (7)

tl ≤ MIN(IAPFtpl
.end, IAPFtpl

.start + T ) (8)

Figure 2: Linear inequalities for window-joins

k

llPrediction function 2: g(   )=2   − 3
k kPrediction function 1: f(   )= 

8

validity interval=[0,12]

4 10 12

−4

−6 −4

6

−2

4

con
str

ain
t (4

)

constraint (5)

constraint (2)

constraint (1)

14

co
ns

tra
in

t (
6)

l
10

WINDOW−JOIN CONSTRAINT

w=4
K=1
With comparator <

(IAPF.start=0, IAPF.end=14)

(IAPF.start=0, IAPF.end=10)

constraint (8)

co
ns

tra
in

t (
7)

con
str

ain
t (3

)

timestamp−matching
boundary

t 

t t 
t t 

(0,2)

(12,8)

(10,6)

(0,1)

t 

(−6,−2)

Figure 3: Timestamp-matching boundary

For queries that include a constraint about pairs of sen-
sors, the format of an output predicted tuple is: <tpi, tpj ,
VM=(I,P)>, where tpi and tpj are the input tuples that
have been joined and V M is the validity mark of the output
predicted tuple. The validity mark indicates under which
conditions the predicted tuple applies; that is, when the pre-
diction functions of tpi and tpj can be used to estimate the
values of the corresponding sensors, values that will satisfy
the constraint. The validity mark can be seen as a general-
ization of the idea of validity period presented in [32], and
it has two components:

• A validity interval I. It is the time interval during
which the values of the sensors match, according to the
specified constraint and the given prediction functions.

• A timestamp-matching boundary P . It is a polygon
that constraints the admissible combinations of times
ti and tj for a match (as shown in Figure 3), where ti

is a time instant for the evaluation of the prediction
function fi(t) in tpi, and tj is an evaluation time in-
stant for fj(t) in tpj . This can be used, for example, to
find examples of values that match. More importantly,
it is used to validate predicted tuples (see Section 4.3).

If the query consists only of a value constraint, the format of
predicted tuples is: <tpi, VM=I>, where the validity mark
is given just by the validity interval I. For example, a tuple
<s1, type1, t1, 3t+2, [5,15]> indicates that the sensor s1 sat-

isfies the constraint during the interval [5,15] by considering
the prediction function 3t + 2 (with timestamp t1).

4.2 Buffer Manager
The Tuple Evaluator communicates the tuples it receives to
a module that is called the Buffer Manager. The Buffer
Manager decides which input tuples will be stored (because
they can be needed to answer monitoring queries) and which
ones will be discarded. In this way, when the Tuple Evalua-
tor receives a new tuple tpi from a sensor si of value type Si,
it asks the Buffer Manager about tuples tpk of other types of
values involved in window-join constraints with Si, in order
to find possible matches. In the following, we first explain
the basic mechanism to decide whether it is interesting to
store a tuple or not. Then, we explain the policy applied
when there is insufficient storage space for all the tuples.

4.2.1 Temporal Width of a Buffer
The tuples that should be stored in the buffers are deter-
mined by the constraints of the active queries. As different
types of values are subjected to different query constraints, a
different buffer is used for each type of value. In the buffer of
a certain type of value, only tuples with IAPFs intersecting
with a given time interval need to be stored. Thus, storing
more tuples would imply both a waste of storage space and
a higher join processing cost. The temporal width of the
buffer for the type of value S is given by:

tWidth(S) =



MAX(w) + maxDelay if window-join(S)
maxDelay otherwise

where window-join(S) returns true iff S is involved in a
window-join constraint, MAX(w) is the maximum w in
these constraints, and maxDelay is an estimation of the
maximum delay of input tuples (i.e., a tuple with timestamp
t can arrive in the query processor as late as t+maxDelay).
A tuple tpk for the type of value S must be kept in the buffer
only if:

([currentT ime−tWidth(S), currentT ime]
T

IAPFtpk
) 6= ∅

since, as mentioned in Section 2, a tuple is not only appli-
cable at its timestamp but at any time instant within its
IAPF .

The Buffer Manager will periodically shift the windows of
tuples stored in its buffers (removing the unneeded tuples
according to the previous considerations) in a process called
purging. It must also manage problems derived from the
lack of space to store new tuples. If there is not enough
space to store an incoming tuple, purging is automatically
activated. If purging does not solve the problem, the relative
importance of the prediction functions of the different tuples
is considered by following an appropriate replacement policy.
This issue is explained in more detail in the following.

4.2.2 Dealing with Limited Storage
In a real environment, there will probably be a certain lim-
ited amount of space available for tuples in the buffers. As

418



the rate of arrival of new tuples is unbounded, it is possible
that some tuples that should be placed in the buffers (ac-
cording to the previous explanation) cannot be physically
stored.

To deal with this problem, we propose a method that trades
the need of additional storage space for a greater inaccuracy
(which is unavoidable because of the storage limitation that
prevents the storage of all the tuples needed). In the event
that the maximum allowed space for a buffer is reached,
the Buffer Manager decides if a new incoming tuple should
replace another tuple in the buffer or be discarded. For that
purpose, the contribution of each of the tuples stored in the
buffer, and also of the new tuple, is considered. In this
way, the tuple with the smallest contribution is discarded.
Although several methods have been proposed to deal with
storage limitations in the context of data streams [3] (e.g.,
random sampling, histograms and wavelets), none of them
considers the peculiarities of data streams with prediction
functions.

The proposed buffer replacement policy is based on the idea
that each tuple contributes to decrease the error of the sensor
values predicted, as it provides an updated prediction func-
tion. Thus, each tuple tpk can be associated to a value that
indicates its contribution Ctpk

. The contribution of a tu-
ple tpk from sensor si is the decrease in the error committed
when predicting values of si in the interval IAPFtpk

by using
the prediction function in tpk instead of a prediction func-
tion from a tuple with a contiguous IAPF . Thus, several
alternatives to predict values for the time interval IAPFtpk

are possible if tpk is removed (depending on whether a pre-
vious tuple tpk−1 and/or a next tuple tpk+1 from the same
sensor is available or not):

• If there is both a previous tuple tpk−1 and a next tuple
tpk+1 stored in the buffer, then there are two possibil-
ities to choose:

1. The prediction function fk−1(t) of the previous
tuple tpk−1 could be applied within IAPFtpk

. In
that case, the IAPFtpk−1 should be modified as
follows:

IAPFtpk−1=[IAPFtpk−1.start, IAPFtpk
.end)

By applying the out-of-date prediction function
fk−1(t) in tpk−1 instead of the updated prediction
function fk(t) in tpk, a certain error ek−1

k arises,
whose accumulated value can be computed as the
absolute value of the definite integral of the differ-
ence of the prediction functions within IAPFtpk

:

ek−1
k =

˛

˛

˛

˛

˛

Z IAPFtpk
.end

IAPFtpk
.start

fk(t) − fk−1(t) dt

˛

˛

˛

˛

˛

2. The prediction function fk+1(t) of the next tu-
ple tpk+1 could be applied within IAPFtpk

. In
that case, the IAPFtpk+1

should be modified as
follows:

IAPFtpk+1
=[IAPFtpk

.start, IAPFtpk+1
.end)

As the prediction function fk+1(t) in tpk+1 is used
to estimate values in IAPFtpk

(a past time in-
terval), instead of using the prediction function
fk(t), an error ek+1

k arises, which can be com-
puted similarly to the previous case:

ek+1
k =

˛

˛

˛

˛

˛

Z IAPFtpk
.end

IAPFtpk
.start

fk(t) − fk+1(t) dt

˛

˛

˛

˛

˛

• If there is a next tuple tpk+1 but not a previous tu-
ple tpk−1, then the next tuple tpk+1 could be applied
within the IAPFtpk

, as explained above.

• If there is a previous tuple tpk−1 but not a next tuple
tpk+1, then the previous tuple tpk−1 could be applied
within the IAPFtpk

, as explained above.

• Finally, if neither a previous nor a next tuple is avail-
able in the buffer, then it is not possible to predict
values within the IAPFtpk

(unless tpk is stored).

Based on the previous ideas, a priority queue is maintained
for the tuples in the buffers, where the priority of a tuple
is the inverse of its contribution. Thus, the tuple at the
head of the queue (one with the smallest contribution) is
the candidate to be removed in case of insufficient storage.
According to the definition of contribution indicated before
and the previous considerations, the contribution of a tuple
tpk is given by:

Ctpk
=

8

<

:

MIN(ek−1
k

, ek+1
k

) if (∃ tpk+1 ) ∧ (∃ tpk−1)

ek+1
k

if (∃ tpk+1) ∧ (¬∃ tpk−1)
∞ otherwise

where an infinite contribution is assigned to a tuple if it is the
only tuple stored for the corresponding sensor (intuitively,
if that tuple is removed then there is no way to predict the
value for its sensor, as no other prediction function for that
sensor is available). A tuple with an infinite contribution
can only be selected as a victim to be removed from the
buffer in case there is no other tuple with a smaller con-
tribution (the selection among several tuples with infinite
contribution is random). As shown in the previous formula,
the contribution of a tuple tpk is also set to infinite when it is
the last tuple from that sensor (i.e., ¬∃ tpk+1), even though
(as it has been indicated before) the previous tuple could
be applied within the IAPF of such a tuple. The reason is
that the tuple with the greatest timestamp from each sensor
should be kept if possible in the buffer; otherwise, the pre-
cision of future estimations will degrade. Thus, it should be
noted that if the last tuple from a sensor is removed and the
previous tuple is extended to cover its IAPF , the prediction
function of such a previous tuple will be the one considered
to compute the contribution of a new future incoming tuple
(this is not precise but there is no other choice). By as-
signing an infinite contribution to the latest tuple from each
sensor, this problem is minimized since such tuples will be
stored if possible.

As the contribution of a tuple depends on its previous and/or
next tuple, the contribution is not fixed. On the contrary,
it changes along time when new tuples are inserted or old
tuples are removed:

419



• Case 1: a new tuple tpk is inserted into the buffer. In
this case, the contribution Ctpk

of the new tuple must
be computed. In case there is a previous tuple tpk−1

(from the same sensor) in the buffer, its contribution
Ctpk−1

must also be updated (since the computation
of the contribution of a tuple must consider the pre-
diction function of its next tuple –if any–, as explained
before). Finally, if there is a next tuple tpk+1 (from
the same sensor) its contribution must also be updated
(as the contribution of a tuple may be affected by the
previous tuple).

• Case 2: a tuple tpk is removed from the buffer. If
there exists a previous tuple tpk−1 but not a next tuple
tpk+1 (for the same sensor) in the buffer, then only the
previous tuple can “cover the gap” and therefore the
IAPFtpk−1

is extended by considering the IAPFtpk
.

Similarly, if there exists a next tuple tpk+1 but not a
previous tuple tpk−1 in the buffer, then the IAPFtpk+1

is extended to cover the IAPFtpk
. If there is both

a previous tuple and a next tuple in the buffer, the
one considered to be applied within the IAPFtpk

is
the one that minimizes the accumulated error caused
by the difference in the prediction functions (the ek−1

k

and ek+1
k errors). After that, the contributions of the

previous and/or the next tuple (Ctpk−1
, Ctpk+1

) must
be recomputed. It should be noted that this whole
process is only applied when a tuple is removed due to
insufficient storage space. Thus, if a tuple is removed
due to purging (i.e., because it is not needed anymore),
then only the next tuple must be checked to update its
contribution.

By recomputing the contributions as needed, the Buffer Ma-
nager keeps up-to-date the information needed to select, as a
victim to be evicted from a buffer, the tuple whose removal is
expected to have the smallest impact on the accuracy of the
query processor. The benefits of this buffer management
policy are evaluated experimentally in Section 6.3, where
other alternatives are also considered.

4.3 Prediction Validator
The Tuple Evaluator releases, for each query, predicted tu-
ples about values that will satisfy the query. The communi-
cation of another prediction function by any sensor involved
in an output predicted tuple could invalidate such predicted
tuple. Therefore, the tuples obtained by the Tuple Evalua-
tor are only tentative and will be considered validated only
when there is a guarantee that they cannot be found to be
wrong later2. A predicted tuple from the Tuple Evaluator
can be invalidated due to two reasons: 1) if it will not be
valid until a future time instant (according to the validity
interval of the predicted tuple), then an updated prediction
function from any sensor involved will invalidate the previ-
ous prediction function and, therefore, the predicted tuple;
and 2) if a tuple that arrives late (i.e., it arrives “now” but
it refers to a past time instant) invalidates the prediction.

A module called Prediction Validator can be plugged be-
tween the output of the Tuple Evaluator and the input of a
2Similar to the potential answers proposed in [25], which
“may turn into current answers and be reported to the
users”.

client, with the goal of releasing only tuples that are guar-
anteed to be valid3. Prediction functions in a predicted tu-
ple allow to get predicted values that satisfy the query con-
straints during the validity interval of the tuple. Assuming
that tuples are not received by the Tuple Evaluator later
than maxDelay time units since they were released by sen-
sors, a predicted value is considered committed/validated
maxDelay time units after the timestamp of the prediction
function that estimated it. Thus, the Prediction Validator
checks the tuples it stores with a certain validation period
(e.g., every second) to release valid tuples that can be in-
ferred from them.

4.3.1 Validating Value Constraints
For predicted tuples with only one sensor identifier (i.e., cor-
responding to queries with a single value constraint), the
validity mark of the predicted tuple is just appropriately
modified. As an example, for a predicted tuple <s1, type1,
ts, 3t + 2, [5, 20]>, maxDelay=5, and the current time in-
stant equals 15 time units, the tuple that would be released
in the output data stream is <s1, type1, ts, 3t + 2, [5, 10]>.
If the validation period is 1 time unit, then the next tuple
would be <s1, type1, ts, 3t + 2, [5, 11]> at time instant 16.
If it is 2 time units, then it would be <s1, type1, ts, 3t + 2,
[5, 12]> at time instant 17. A new tuple from sensor s1 could
invalidate the predicted tuple at any time before t = 20 and
stop the process.

4.3.2 Validating Window-Join Constraints
Predicted tuples corresponding to queries with a window-
join constraint (i.e., tentative tuples with two sensor iden-
tifiers) are a little bit more difficult. Thus, the timestamp-
matching boundary, which contains points (ti,tj) indicating
the valid combinations of the timestamps for the sensors
matched (as explained in Section 4.1), must be analyzed.
In particular, the Prediction Validator must check if the
square with vertices (t′ − w, t′ − w), (t′ − w, t′), (t′, t′ − w),
(t′, t′), where t′ is the considered time instant (the current
time instant minus maxDelay, since the Prediction Valida-
tor releases at time t + maxDelay a tuple predicted valid
at time t) and w is the valid-time window, intersects the
timestamp-matching boundary. If there is an intersection,
then one sensor at t′ matches the value of the other sensor
at a time instant t′′, with t′ − w ≤ t′′ ≤ t′. Notice that it
is not enough to check whether t′ is within the timestamp-
matching boundary, since the value at t′ may match only
with values of the other sensor at future time instants (there-
fore, not validated yet). In case of match, the output tuple
is released with a validity interval (and timestamp-matching
boundary) limited to that considered time instant t′.

As an example, tuples tp1=<s1, type1, ts, t> and tp2=<s2,
type2, ts′, 2t− 3> match according to the window-join con-
straint wJConstr(type1, type2, 4, ≤, 1) at t = 0; however,
the value that matches for tuple tp2 is one second into the
future; if that match is released at t = 0, a new predic-
tion function from sensor s1, that invalidates it, could be
received in the meanwhile. So, checking the validity interval
of a predicted tuple is not enough: the timestamp-matching

3In some contexts, releasing predicted (non-validated) re-
sults could be interesting. Therefore, the Prediction Valida-
tor can be turned off.

420



boundary must be checked too, as we have explained.

4.4 Interactions between Modules
When the Tuple Evaluator receives a new tuple tp1 from
sensor s1, of a type of value S1, it first communicates it to
the Buffer Manager, which computes the IAPFtp1

for that
tuple and updates the IAPF of the previous tuple from the
same sensor. For each active query with constraints about
type S1, the Tuple Evaluator generates an invalidation tu-
ple for sensor s1 and the time interval IAPFtp1

, indicating
that previous prediction functions for that sensor are not
applicable anymore in that interval. It also generates new
predicted tuples (if any), as explained in Section 4.1. A
query could include several window-join constraints; for ex-
ample, three sensor streams A, B, and C, related with two
window-join constraints A-B and B-C can be processed by
considering separately the joins A-B and B-C and then inte-
grating the results. Possible optimizations for queries with
multiple joins are left as future work.

The tuples generated by the Tuple Evaluator are received by
the Prediction Validator. If the tuple received is an invali-
dation tuple for a sensor, then the Prediction Validator will
update the validity mark (validity interval and timestamp-
matching boundary) of predicted tuples involving that sen-
sor, in order not to include the invalidation interval for that
sensor (this could even invalidate the whole predicted tuple).
If the tuple received is a predicted tuple, then the Predic-
tion Validator will store it in the table of tentative tuples
and release it as required (see Section 4.3). It should be
noted that the Tuple Evaluator could release either just an
invalidation tuple or also predicted tuples. The Prediction
Validator also validates the tentative tuples according to the
required validation period (as explained in Section 4.3).

5. MANAGING UNCERTAINTY
The evaluation step as it is presented in Section 4.1 assumes
that there is no uncertainty in the predicted values. How-
ever, the values predicted using the prediction functions of
tuples are subject to a certain uncertainty, given by the
threshold update policy (see Section 2). This implies that if
the value obtained using the prediction function is x and the
threshold used for updates is δ, then the real value can be
any value in the interval [x−δ, x+δ]. In Figure 4, an example
of how the uncertainty determines the possible real values
corresponding to a certain predicted value is shown. Con-
sidering the time interval between seconds three and four,
it can be seen that the value of fk(t) will be in the range
[3.2, 7] while fl(t) will be in the range [4.2, 7]. However, with
no uncertainty the ranges would be [4.4, 5.4] and [5, 5.4] re-
spectively.

The proposed query processor supports uncertainty man-
agement. On the one hand, queries can be processed with
different semantics to take uncertainty into account. On the
other hand, a tuple in an answer can be tagged with the
probability that the tuple satisfies the query constraints, ac-
cording to the existing uncertainty. Moreover, the minimum
probability required for a tuple to be shown in the answer
can be also specified as a query condition. Although some
works, such as [9], have studied probabilistic queries, we
study uncertainty issues in the context of data streams with
prediction functions and focusing on the new window-join

f (t)

f (t)

3 4

3.2

7

u
u

u =1

4.2
4.4

5.4

5.

value

time

l

k

u =1.21
2

u

u1

1

2

2

Figure 4: Uncertainty in the prediction functions

constraints. In the following, we explain how the uncer-
tainty is managed by the query processor.

5.1 Query Semantics for Uncertainty
To take uncertainty into consideration, two different seman-
tics are defined –may and must– for satisfaction of a query.
For a given constraint, any of these two semantics could be
required. Such semantics were first proposed in [31] in the
context of moving objects and were also used in [34]. This
semantic distinction can be of great interest in sensor net-
works. For example, we could need to know if the temper-
ature increases above a certain level with logging purposes
(must) or to detect the possibility of values of a dangerous
chemical substance above a certain level (may).

In the following, we formally define the semantics of may and
must satisfaction for window-join queries, and we show how
the evaluation step (given in Section 4.1) can be modified to
process the queries according to these two different seman-
tics. The queries given by value constraints can be handled
similarly under the two uncertainty semantics. Now, con-
sider the following window-join constraint on two different
sensors s1, s2: |v1 − v2| ≤ K and |t1 − t2| ≤ w, where v1, v2

are the values of sensors s1 and s2 at times t1 and t2 respec-
tively. Let [l1, u1] and [l2, u2] be the uncertainty intervals
for the values of sensors v1 and v2 respectively (l1 and l2
are the lower uncertainty bounds and u1 and u2 are the up-
per uncertainty bounds). The values of sensor s1 at time t1
and the value of sensor s2 at time t2 may satisfy the above
window-join constraint if |t1 − t2| ≤ w and ∃x ∈ [l1, u1] and
∃y ∈ [l2, u2] such that |x−y| ≤ K. Note that this condition
is equivalent to requiring a non-empty intersection between
the intervals [l1 − K, u1 + K] and [l2, u2]. The following
lemma is easily seen from this observation.

Lemma 1: Assume that the uncertainty intervals for the
values v1 and v2 of the sensors s1 and s2 at times t1 and
t2 are given by [l1, u1] and [l2, u2], respectively. Then, they
may satisfy the window-join constraint |v1 − v2| ≤ K and
|t1−t2| ≤ w iff l1−u2 ≤ K and l2−u1 ≤ K and |t1−t2| ≤ w.

In view of the above lemma, the evaluation step given in 4.1
is modified for checking may satisfaction as follows. Let δk

and δl respectively be the thresholds used for the updates of
the two sensors. Then, the intervals of uncertainties on the

421



predicted values of these two sensors are [fk(tk)−δk, fk(tk)+
δk] and [fl(tl) − δl, fl(tl) + δl], respectively. Inequalities (1)
and (2) in Section 4.1 (see Figure 2) are simply replaced by
the following inequalities:

a · tk − c · tl + b − d − δk − δl ≤ K

c · tl − a · tk + d − b − δl − δk ≤ K

Now, the must satisfaction is defined. The value of sensor s1

at time t1 and the value of sensor s2 at time t2 must satisfy
(or definitely satisfy) the previous window-join constraint if
|t1 − t2| ≤ w and ∀ x ∈ [l1, u1] and ∀ y ∈ [l2, u2] it is the
case that |x − y| ≤ K. In order for the above condition to
be satisfied it is necessary and sufficient that u2 ≤ l1 + K

and l2 ≥ u1 − K. Note that this condition implies that the
lengths of the two intervals are bounded by 2K. From these
observations, the following lemma is obtained.

Lemma 2: Assume that the uncertainty intervals for the
values v1 and v2 of the sensors s1 and s2 at times t1 and
t2 are given by [l1, u1] and [l2, u2], respectively. Then, they
must satisfy the window-join constraint |v1 − v2| ≤ K and
|t1−t2| ≤ w iff |t1−t2| ≤ w and u2−l1 ≤ K and u1−l2 ≤ K.

Inequalities (1) and (2) in Section 4.1 (see Figure 2) are
simply replaced by the following inequalities for checking
the must satisfaction:

c · tl − a · tk + d − b + δl + δk ≤ K

a · tk − c · tl + b − d + δk + δl ≤ K

5.2 Determining the Probability of a Match
Assuming a certain probability distribution of the real value
v1 ∈ [l1, u1] of a sensor s1 at time t1, the probability of
a match can also be computed. Let V1 denote the random
variable corresponding to the value of s1 at time t1. We
assume that each value within the interval [l1, u1] is equally
possible for V1. So, the real value of sensor s1 is given by
the random variable V1 with the following density function:

PV1
(v1) =



1
u1−l1

if l1 ≤ v1 ≤ u1

0 otherwise

In order to compute the probability of satisfaction of a win-
dow-join constraint for the values v1 and v2 of sensors s1

and s2 at time instants t1 and t2, v2 is considered to be a
random variable V2 whose density function has value 1

u2−l2

within the range [l2, u2] and zero otherwise. Now, a random
variable Z = V1−V2 is defined. Assuming that the variables
are independent, the density function for this new variable
is given by the convolution:

PZ(z) =

Z +∞

−∞

PV2
(z − τ) · PV1

(τ) dτ

Since PV1
(τ) is zero if τ is outside the interval [l1, u1], and

1
u1−l1

otherwise, the following holds good:

PZ(z) =

Z u1

l1

PV2
(z − τ) ·

1

u1 − l1
dτ

Let us assume that u2− l2 ≤ u1− l1; if this is not satisfied v1

and v2 can be interchanged to satisfy this. It is not difficult
to see that (l1 − u2) ≤ (l1 − l2) ≤ (u1 − u2) ≤ (u1 − l2).
It can now be shown that the probability density function
PZ(z) has the shape of a trapezoid and is given as follows,
where D = 1

(u1−l1)·(u2−l2)
:

PZ(z) =

8

>

>

>

>

<

>

>

>

>

:

0 if z ≤ l1 − u2

(z − l1 + u2) · D if l1 − u2 ≤ z ≤ l1 − l2
1

u1−l1
if l1 − l2 ≤ z ≤ u1 − u2

(u1 − l2 − z) · D if u1 − u2 ≤ z ≤ u1 − l2
0 if z ≥ u1 − l2

Now, the probability that |Z| ≤ K must be computed. This
is equal to the probability that −K ≤ Z ≤ K, which is:

Z K

−K

PZ(z) dvz

This value depends upon how the values −K and K are
related to the values l1−u2, l1−l2, u1−u2, and u1−l2. Note
that these last four values are in increasing order. A careful
analysis shows that there are only fifteen different possible
ranges of values for K. One extreme is when K ≥ u1 − l2
and −K ≤ l1 − u2; in this case, the above probability is 1
and this corresponds to the must satisfiability. At the other
extreme, K ≤ l1−u2 or −K ≥ u1−l2; in this case, the above
probability (i.e., the probability of satisfaction) is zero. It
is not difficult to see that the complement of this condition
corresponds to the condition of the may satisfaction and in
this case the probability of satisfaction is non-zero. Some
other possible ranges are the following. If u1 − u2 ≤ K ≤
u1 − l2 and −K ≤ l1 − u2, then the above integral and

hence the probability comes out to be 1 − D·(u1−l2−K)2

2
. If

l1−l2 ≤ K ≤ u1−u2 and −K ≤ l1−u2, then the probability
is 2K+u2+l2−2l1

2(u1−l1)
.

For each of the above cases, a set of linear equations can be
set up as given in Section 4.1 after replacing the inequalities
(1) and (2) by those given in Lemma 1, and for those tk

and tl satisfying the system of inequalities the probability
of satisfaction is computed using the expression given above.

In this analysis, we have assumed that the random variables
V1 and V2 are uniformly distributed in their respective in-
tervals, which implies that we have considered uncertainty
in the worst case. Another reasonable assumption is that
they have a bounded normal distribution within their re-
spective intervals; analysis of this case may be more difficult
and could be a subject for future work.

6. EXPERIMENTAL EVALUATION
In this section, we show some results obtained using the im-
plemented prototype. The experimental settings are sum-
marized in Table 1. In the experiments, the sensors are

422



location devices (GPS receivers) attached to objects moving
at 60 mph (about 26.8 m/s) within an area of 10 squared
kilometers. Every object is initialized with a random lo-
cation and an orientation that changes randomly, with a
50% probability, every 10 seconds. Thus, a random mobil-
ity model is considered to generate the datasets. The ob-
jects’ trajectories are precomputed and stored in files to be
readily available in the different experiments. Every moving
object measures its location every three seconds, and com-
municates input tuples (with two values and two prediction
functions based on simple linear extrapolation, for the x and
y coordinates) to the query processor according to the spec-
ified threshold update policy: a threshold of 25 meters with
a minimum of one update every 30 seconds is considered.
The trajectory files are unified into a single trace file that is
processed using the IBM Location Transponder [28], which
assigns threads as needed to meet the deadlines of the loca-
tion updates.

Table 1: Parameters for the experiments
Objects’ speed 60 mph (∼ 26.8 m/s)

GPS sampling rate 3 seconds
Period of angle change 10 seconds
Prob. of angle change 50%

Scenario size 10 squared kilometers
Threshold update policy 25 meters

Max. period update policy (T) 30 seconds
K of the window-join constraint 400 meters
w of the window-join constraint 3 seconds

comp of the window-join constraint “≤”
Validation period 1 second

Duration of the test 3 minutes
Indexing mechanism R-Tree

In the described scenario, each monitoring test is run for
three minutes and new tuples are released into the output
data stream every second (i.e., the validation period, defined
in Section 4.3, is one second). The query that is evaluated
retrieves pairs of objects that are within 400 meters of each
other both in the horizontal and vertical dimensions. For
this, a window-join constraint with K = 400 meters, a com-
parator comp = “ ≤ ”, and a valid-time window w of three
seconds, is considered. The experiments were carried out
on a computer with a 2xDual-Core AMD Opteron proces-
sor running at 2.6 GHz, with 8 GB of RAM, and SunOS
5.10. The Buffer Manager stores tuples in main memory.
The current prototype, implemented in Java, does not use
any specialized solver for systems of linear inequalities. An
R-Tree [16] is used to filter potential matches of an input tu-
ple, previous to the filter step described in Section 4.1 (for
more details, please see [19]).

In the rest of this section, we present experiments that ana-
lyze: 1) the scalability of the query processor, 2) the benefits
of using prediction functions, and 3) the suitability of the
proposed buffer management policy. The accuracy is mea-
sured in terms of precision, recall, and F-measure, adopting
these definitions from the field of Information Retrieval [4].
In order to compute the ideal answer for a given time in-
stant, the last GPS samples of the objects are considered.
We focus on window-join constraints because processing this
type of constraint is more challenging.

6.1 Scalability of the Query Processor
Figure 5 shows the impact of the total number of moving
objects/sensors on the accuracy of the query processor. As

can be seen in the figure, the accuracy is not perfect even in
scenarios with a small number of moving objects, as there is
always some imprecision regarding the values that can be es-
timated using the prediction functions (imprecision allowed
by the threshold update policy). However, it should be em-
phasized that the query processor exhibits a good scalability
when the number of moving objects increases. The slight
performance degradation affects especially the recall, as the
query processor strives to process a large number of input
tuples so as to release new output tuples quickly. However,
a large number of moving objects is needed to challenge a
single monitoring computer. It should also be noted that
a worst-case situation is considered in this experiment, in
the sense that all the input tuples are of the type of value
in which the query is interested (GPS locations). This im-
plies that any new tuple received could, in principle, match
with any other tuple, as all the input tuples are stored in
the same buffer. Besides, as the size of the scenario is fixed,
the object density increases with the number of moving ob-
jects, reducing the efficiency of the R-Tree. Although it is
not shown in the figure, the total query processing time (ac-
cumulated during the whole experiment) increases linearly
with the number of objects (ranging up to about 70 seconds
in a scenario with 1000 objects); considering also a value
constraint decreases this cost dramatically (20 seconds with
1000 objects), as the value constraint is verified before per-
forming the join, saving many tuple comparisons.

Figure 5: Effect of the number of objects: accuracy

6.2 Benefits of Prediction Functions
In this experiment, the accuracy of the approach presented
in this paper is compared with an alternative approach where
no prediction functions are used. In this latter case, the
threshold update policy described in Section 2 is modified
accordingly so as to communicate a new update when the
difference between the current value and the last communi-
cated value exceeds the threshold (estimating values is no
longer possible). The general query processor architecture
is maintained in both cases.

Figure 6 shows how the accuracy of the query processing
is considerably better when prediction functions are used,
except for scenarios with a small number of moving ob-
jects/sensors (< 150). Thus, without prediction functions
the values measured by the sensors cannot be estimated, so
only the values at update-time can be considered accurate.
The decrease in the accuracy of the approach that does not
use prediction functions is explained by a high query pro-
cessing overload, due to the huge increase in the number of
tuples communicated by the moving objects when no pre-
diction functions are used (about 300 tuples per second in a

423



scenario with 1000 objects): the Tuple Evaluator is not able
to cope with a very high update rate.

While the use of predictions and the accuracy of the query
processing may be affected by factors such as the speed of the
objects, the threshold of the update policy, the size of the
valid-time window, or the existence of bursts and concept
drifts, we have obtained a good accuracy in a variety of
settings [19].

Figure 6: Benefits of prediction functions

6.3 Buffer Management Policy
In this section, the buffer management policy presented in
Section 4.2.2 is evaluated. For this, a scenario with 300
objects/sensors and a buffer limitation of 325 tuples is con-
sidered. The GPS sampling rate is of one sampling every
second. The period of angle change by a moving object is
set to five seconds with a probability of 75%; in this way, the
rate of input tuples increases considerably, which leads to a
higher competition for the use of the limited space available
in the buffer for the GPS sensors of the moving objects. For
evaluation purposes, the proposed policy (that will be called
in this section discard-min-C, as it tries to maximize the con-
tribution of the tuples stored) is compared with three other
possible policies: 1) discard-if-full, where an incoming tuple
is just discarded if there is no space to store it; 2) discard-
oldest, where the oldest tuple stored is discarded to leave
space for the incoming tuple; and 3) discard-randomly, where
a victim is selected randomly. Like in the proposed pol-
icy (see Section 4.2.2), existing tuples are used “to cover
the gaps” (time intervals for which an accurate prediction
function is not available due to removals), except with the
discard-if-full policy. Doing this with the discard-if-full pol-
icy would mean that purging would never have an oppor-
tunity to discard tuples, as their IAPFs would never fall
outside the buffer window, which would have a very nega-
tive effect on the precision of the query processor when using
that policy.

Figure 7 shows the recall achieved by the different policies
for different values of the valid-time window. The policy pro-
posed in this paper (discard-min-C) clearly achieves the best
recall, the second best policy is to discard the oldest tuple,
the third best policy is to discard tuples randomly, and fi-
nally the worst policy is to discard incoming tuples while the
buffer is full (i.e., until some stored tuples are purged by the
Buffer Manager). Similar conclusions are obtained by ana-
lyzing the precision (for the sake of clarity, not shown in the
figure), although in this case the precision of discard-min-C
and discard-oldest is very similar. Thus, the advantage of
discard-min-C over discard-oldest is a significant increase in
the recall (at the expense of a slightly higher processing cost

due to the need of computing the contributions of tuples
and keeping them up-to-date). It is also remarkable that,
in this experiment, the accuracy (in terms of both precision
and recall) of the proposed policy is in every case less than
1% worse than in a situation where there is no buffer size
limitation (this ideal situation increases only the F-measure
in about 0.85% on average). We have performed other ex-
periments simulating delayed incoming tuples, and similar
conclusions can be drawn.

Figure 7: Comparison of different buffer policies

7. RELATED WORK
Due to its importance, minimizing the size and number of
transmissions in sensor networks has been the focus of many
works (e.g., see [29, 30]). In relation to this problem, there
are several works that (as we do) propose to use predictions
in the context of data streams:

• The most relevant work is [24], which also advocates
the use of predictors to minimize the communication
costs in a sensor network. The authors of that work
study several prediction techniques, all of them based
on linear functions. A similar idea is proposed in [21],
where a Kalman filter is specifically chosen among the
linear estimation methods. However, these works do
not focus on query processing issues.

• In [14], the basic assumption is that in many con-
texts the readings of nearby sensors are correlated.
Therefore, the authors propose to analyze the exist-
ing spatio-temporal correlations to compute prediction
models in networks with static sensors. However, how
to efficiently process the data received from sensors to
answer different types of queries is out of the scope of
their work. Therefore, this work is complementary to
ours. There are other works that also exploit correla-
tions among sensors’ values (e.g., [10, 30]).

• Another interesting work is [20], where Kalman filters
are used to adjust dynamically the sampling rate of
sensors: sensors for which the prediction error is higher
will sample at a higher rate. The main disadvantage
is that unexpected events between samplings cannot
be detected, which may be a problem if the sampling
interval is large. This is also a complementary work
to ours: it could be used with our query processor to
dynamically adjust the sampling rate of the sensors.

• Probabilistic models are used in [11] to capture cor-
relations among sensors so as to provide more robust
interpretations of sensor readings and optimize their

424



acquisition. Its ultimate goal is similar to ours: to
reduce energy consumption and processing overload.
However, the approach is different, as it focuses on
data acquisition in a pull-based query model. Thus,
for example, continuous queries or window-join con-
straints are not considered.

Regarding the query constraints handled by the proposed
query processor, some relevant works are worth mentioning:

• In [17], time window constraints are used to limit the
sets of sensor tuples that can be matched for a query,
and a mechanism to process multi-way joins is pro-
posed. However, the authors focus on a different prob-
lem (tracking the motion of a moving object) and their
technique requires the specification of the names of the
individual sensors involved in the join, so they must be
known in advance.

• Also in the context of moving objects, CAMEL (Con-
tinuous Active Monitor Engine for Location-based Ser-
vices) [7, 8] is a location stream database with a loca-
tion management engine to support intelligent location
aware services. It supports unary and binary moving
objects triggers, which can be seen as a special case
of the value and window-join constraints that we con-
sider. However, it does not deal with prediction func-
tions or temporal conditions. Moreover, as in [17], the
objects of interest must be referenced in the query.

• In [6], the Dynamic Time Warping distance is consid-
ered, such that a point in a time series can be aligned
with multiple points of another time series in different
(previous or later) temporal positions. So, although
the context of that work is different (the goal there is
to compare time series), the importance of taking into
account temporal shifts is also highlighted (as with
the possibility to specify a valid-time window in the
window-join constraints proposed in this paper).

• Finally, it is also interesting to mention that different
types of sliding windows have been proposed in the lit-
erature (e.g., time-based or tuple-based windows [2]),
which can be considered as complementary to the pro-
posal presented in this paper: such windows should be
considered when extracting the tuples from the buffers
for query processing and also as an additional criteria
to purge old tuples from the buffers.

To conclude, [1] is a recent relevant work that also advocates
implementing query operators by solving equation systems
derived from piecewise polynomial models. The main focus
of such work is on query validation. A technique called query
inversion is proposed to translate an accuracy requirement
on the output tuples into an accuracy requirement on the
input tuples. An accuracy validation drives the proposed on-
line predictive query processing: only input tuples that may
cause a change in the result are processed. An important
difference between our proposal and this and other works
described in this section is that we define a complete query
processor architecture for handling data streams with pre-
diction functions, studying all the issues affecting the query
processing, from the sensors to the clients.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have described a query processor for han-
dling data streams with prediction functions in a network
of sensors. The use of prediction functions allows to mini-
mize communications from the sensors, which is an impor-
tant concern due to energy and bandwidth limitations, and
it also allows an efficient query processing.

Although the use of predictions has been already proposed
in the literature of data streams, and some works such as [21,
24] compare different prediction techniques, no other work
focuses on query processing aspects. The proposed incre-
mental query processing approach detects all the answers,
adapts to different types of clients (e.g., a trigger processing
module that reacts to certain events, or a sampling mod-
ule that presents periodically a snapshot of the answer to
a user), and allows the processing of predicted future re-
sults. Two types of interesting constraints are considered,
with an emphasis on window-join constraints, that have not
been considered so far in other works. An appropriate buffer
management policy, that takes into account the contribution
of the prediction functions contained in the tuples, has also
been proposed. Moreover, uncertainty issues are managed
by supporting may and must queries and tagging the output
tuples with a probability of satisfaction. The experiments
performed show the interest of our proposal.

As future work, some aspects of the proposed query proces-
sor could be optimized. There is a wide variety of proposals
in the literature focusing on optimization issues for query
processing (join re-ordering for queries with more than two
inputs, sharing computation across similar queries, etc.) and
some of them could probably be adopted in our approach.

9. ACKNOWLEDGEMENTS
Research supported by NSF grants 0326284, 0330342, ITR-
0086144, 0513736, 0209190, EIA-0320956, EIA-0220562,
HRD-0317692, and CICYT project TIN2007-68091-C02-02.
We thank Raquel Trillo for her useful comments.

10. REFERENCES
[1] Y. Ahmad, O. Papaemmanouil, U. Cetintemel, and

J. Rogers. Simultaneous equation systems for query
processing on continuous-time data streams. In 24th
International Conference on Data Engineering,
ICDE’08, pages 666–675, Washington, 2008. IEEE
Computer Society.

[2] A. Arasu, S. Babu, and J. Widom. The CQL
continuous query language: Semantic foundations and
query execution. VLDB Journal, 15(2):121–142, 2006.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems.
In 21st ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, PODS’02, pages
1–16, New York, 2002. ACM.

[4] R. Baeza-Yates and B. Ribeiro-Neto. Modern
Information Retrieval. ACM / Addison-Wesley, 1999.

[5] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor
database systems. In 2nd International Conference on
Mobile Data Management, MDM’01, volume 1987 of
Lecture Notes in Computer Science, pages 3–14,
London, 2001. Springer.

425



[6] P. Capitani and P. Ciaccia. Warping the time on data
streams. Data & Knowledge Engineering,
62(3):438–458, 2007.

[7] Y. Chen, F. Rao, X. Yu, and D. Liu. CAMEL: a
moving object database approach for intelligent
location aware services. In 4th International
Conference on Mobile Data Management, MDM’03,
volume 2574 of Lecture Notes in Computer Science,
pages 331–334, London, 2003. Springer.

[8] Y. Chen, F. Rao, X. Yu, D. Liu, and L. Zhang.
Managing location stream using moving object
database. In 14th International Workshop on Database
and Expert Systems Applications, DEXA’03, pages
916–920, Washington, 2003. IEEE Computer Society.

[9] R. Cheng, D. Kalashnikov, and S. Prabhakar.
Evaluation of probabilistic queries over imprecise data
in constantly-evolving environments. Information
Systems, 32(1):104–130, 2007.

[10] D. Chu, A. Deshpande, J. Hellerstein, and W. Hong.
Approximate data collection in sensor networks using
probabilistic models. In 22nd International Conference
on Data Engineering, ICDE’06, page 48, Washington,
2006. IEEE Computer Society.

[11] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein,
and W. Hong. Model-based approximate querying in
sensor networks. VLDB Journal, 14(4):417–443, 2005.

[12] T. Ghanem. Supporting predicate-window queries in
data stream management systems. In 22nd
International Conference on Data Engineering
Workshops, ICDE’06 Workshops, page 139,
Washington, 2006. IEEE Computer Society.

[13] T. Ghanem, W. Aref, and A. Elmagarmid. Exploiting
predicate-window semantics over data streams.
SIGMOD Record, 35(1):3–8, 2006.

[14] S. Goel and T. Imielinski. Prediction-based monitoring
in sensor networks: Taking lessons from MPEG. ACM
Computer Communication Review, 31(5):82–98, 2001.

[15] J. D. Gooijer and R. Hyndman. 25 years of IIF time
series forecasting: a selective review. Department of
Econometrics and Business Statistics, Monash
University, 2005.

[16] A. Guttman. R-trees: a dynamic index structure for
spatial searching. In ACM SIGMOD International
Conference on Management of Data, SIGMOD’84,
pages 47–57, New York, 1984. ACM.

[17] M. Hammad, W. Aref, and A. Elmagarmid. Stream
window join: tracking moving objects in
sensor-network databases. In 15th International
Conference on Scientific and Statistical Database
Management, SSDBM’03, pages 75–84, Washington,
2003. IEEE Computer Society.

[18] S. Ilarri, O. Wolfson, E. Mena, A. Illarramendi, and
N. Rishe. Processing of data streams with prediction
functions. In 39th Hawaii International Conference on
System Sciences, HICSS-39, page 237a, Washington,
2006. IEEE Computer Society.

[19] S. Ilarri, O. Wolfson, E. Mena, A. Illarramendi, and
P. Sistla. An architecture for prediction-based
monitoring of data streams. Technical Report
RR-08-08, University of Zaragoza, September 2008.

[20] A. Jain and E. Chang. Adaptive data sampling for
sensor networks. In 1st International Workshop on

Data Management for Sensor Networks, DMSN’04,
pages 10–16, New York, 2004. ACM.

[21] A. Jain, E. Chang, and Y.-F. Wang. Adaptive stream
resource management using Kalman filters. In ACM
SIGMOD International Conference on Management of
Data, SIGMOD’04, pages 11–22, New York, 2004.
ACM.

[22] C. Jones, K. Sivalingam, P. Agrawal, and J. Chen. A
survey of energy efficient network protocols for wireless
networks. Wireleless Networks, 7(4):343–358, 2001.

[23] K. Kowalski and W.-H. Steeb. Nonlinear Dynamical
Systems and Carleman Linearization. World Scientific,
Singapore, 1991.

[24] V. Kumar, B. Cooper, and S. Navathe. Predictive
filtering: a learning-based approach to data stream
filtering. In 1st International Workshop on Data
Management for Sensor Networks, DMSN’04, pages
88–97, New York, 2004. ACM.

[25] D. Lin, B. Cui, and D. Yang. Optimizing moving
queries over moving object data streams. In 12th
International Conference on Database Systems for
Advanced Applications, DAASFA’07, volume 4443 of
Lecture Notes in Computer Science, pages 563–575,
Berlin, 2007. Springer.

[26] S. Madden, M. Franklin, J. Hellerstein, and W. Hong.
TinyDB: an acquisitional query processing system for
sensor networks. ACM Transactions on Database
Systems, 30(1):122–173, 2005.

[27] J. Miles and M. Shevlin. Applying Regression and
Correlation: A Guide for Students and Researchers.
SAGE Publications, London, 2001.

[28] J. Myllymaki and J. Kaufman. IBM Location
Transponder. IBM alphaworks,
http://www.alphaworks.ibm.com/tech/transponder, 2002.

[29] M. Sharaf, J. Beaver, A. Labrinidis, and P. Chrysanthis.
Balancing energy efficiency and quality of aggregate data in
sensor networks. The VLDB Journal, 13(4):384–403, 2004.

[30] A. Silberstein, R. Braynard, and J. Yang. Constraint
chaining: on energy-efficient continuous monitoring in
sensor networks. In ACM SIGMOD International
Conference on Management of Data, SIGMOD’06, pages
157–168, New York, 2006. ACM.

[31] A. Sistla, O. Wolfson, S. Chamberlain, and S. Dao.
Querying the uncertain position of moving objects. In
Temporal Databases: Research and Practice, volume 1399
of Lecture Notes in Computer Science, pages 310–337,
Berlin, 1998. Springer.

[32] Y. Tao and D. Papadias. Time-parameterized queries in
spatio-temporal databases. In ACM SIGMOD
International Conference on Management of Data,
SIGMOD’02, pages 334–345, New York, 2002. ACM.

[33] K. Torp, C. Jensen, and R. Snodgrass. Effective
timestamping in databases. The VLDB Journal,
8(3-4):267–288, 2000.

[34] O. Wolfson, S. Chamberlain, S. Dao, L. Jiang, and
G. Mendez. Cost and imprecision in modeling the position
of moving objects. In 14th International Conference on
Data Engineering, ICDE’98, pages 588–596, Washington,
1998. IEEE Computer Society.

[35] O. Wolfson, A. Sistla, S. Chamberlain, and Y. Yesha.
Updating and querying databases that track mobile units.
Distributed and Parallel Databases, 7(3):257–287, 1999.

426




