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ABSTRACT First, the user-specified time-constraint needs to be implicitly

The concept of time-constrained SQL queries was introduced totr@nsformed to SAMPLE clauses on individual tables. This was

address the problem of long-running SQL queries. A ke addrgssgd in .[3], whlch presgnted estlmgtlon of sample sizes for
approach adopted for supporting time-constrained SQL queries isdUeries involving various relational operations.

to use sampling to reduce the amount of data that needs to b&econd, the problem of estimating aggregates needs to be
processed, thereby allowing completion of the query in the considered. Thus, in this paper, we focus on estimating aggregates
specified time constraint. However, sampling does make the queryin time-constrained approximate SQL queries. Since the

results approximate and hence requires the system to estimate the&ggregates in time-constrained approximate queries are computed
values of the expressions (especially aggregates) occurring in thenly once, the result could vary significantly based on the chosen

select list. Thus, coming up with estimates for aggregates issample size, which warrants that additional measures are provided
crucial for time-constrained approximate SQL queries to be characterizing the goodness of the results. We consider commonly
useful, which is the focus of this paper. Specifically, we addressoccurring aggregates, name8t)M COUNT, AVG, MEDI AN, M N,

the problem of estimating commonly occurring aggregates and MAX. The measures (apart from the point estimate) that are

(namely,SUM COUNT, AVG, MEDI AN, M N, andMAX) in time- useful are confidence intervals for aggreg&ell COUNT, AVG,
cor}strained approximate queries. We give both _point and in_tervaland MEDI AN, and confidence levels for aggregates returning
estimates folSUM COUNT, AVG, and MEDI AN using Bernoulli extreme values (such & N and MAX) as tolerance limits. The

sampling for various type of queries, including join processing aggregate estimation techniques are presented for join queries that
with cross product sampling. Favl N (MAX), we give the employ cross-product sampling [1].

confidence level that the proportion 100 of the population will
exceed theM N (or be less than th&AX) obtained from the
sampled data.

The rest of this paper is organized as follows: Section 2 describes
the Bernoulli sampling scheme. Section 3 discusses the estimation
for SUM COUNT, andAVG. Sections 4 and 5 cover the estimation
for MEDI AN, QUANTI LE, M N andMAX. The results in Sections

1. INTRODUCTION 3, 4, and 5 are presented by assuming row sampling but could be
The growing nature of databases, compounded with the ability toextended to block sampling as well, as discussed in Section 6.
formulate arbitrarily complex SQL queries, has led to the problem Section 7 concludes the paper.

of long-running, complex SQL queries.

A solution being explored is to support time-constrained SQL 2. BERNOULLI SAMPLING

queries [2], [3] that would complete in a specified time constraint Oracle Database supports the Bernoulli (coin-flip) sampling
either by computing the first few rows (top-K rows) or scheme, where the sample percentdgmdicates the probability
approximate results through sampling. Of the two approaches, theof each row, or each cluster of rows in the case of block sampling,
latter approach, namely approximate query processing, is verybeing independently selected as part of the sample. Because the
promising in that the query processing time could be reduceddatabase does not retrieve the exact sample size of the rows
significantly by controlling the sample size. A practical (blocks) of table, Bernoulli sampling is a variable size sampling
application of time-constrained approximate query processing isscheme. The mean and variance of the random sample aize
queries involving aggregate functions. given by E(n)=fN and v(n)= f(1- f)N, whereN is the

Such queries are popular in applications such as OLAP and theypopulation size, or the number of rows (blocks) in the case of row
tend to be long running as they compute aggregate values ovefampling (block sampling). In this paper we assume that the value
large datasets. However, supporting time-constrained approximate®f N is known from Oracle Database’s object-level statistics,
SQL queries require work in two areas for them to become aWhich includes the number of blocks and the number of rows in a
practical and useful solution. table.

3. SUM, COUNT, AND AVG
Permission to copy without fee all or part of this material is granted \we start with the formulas for the estimat@@UNT, SUM and

provided that the copies are not made or distributed for direct AVG and their variance in join operations. We assume that there

commercial advantage, the ACM copyright notice and the title of the K tabl in the ioi fi d h table’ |
publication and its date appear, and notice is given that copying is by are ables in the join operauons and each fables sample

permission of the ACM. To copy otherwise, or to republish, to post on Percentagef(j =1, ...,K) is calculated by an algorithm described
servers or to redistribute to lists, requires a fee and/or special IN [3]. We also assume that tiuh sampleS hasn; rows chosen

permissions from the publisher, ACM. from N; rows of thej-th tableR;, where the value dfj; is known
EDBT09, March 24-26, 2009, Saint Petersburg, Russia. from table statistics. These assumptions also apply to the Sections
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00. 4 and 5. Note that under the Bernoulli (coin-flip) samplimds a

random variable with meag(n )= f,N;-
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3.1 SUM without Selection
In this section, we discuss the estimafd\V expr) without
selection, and its variance. We use the following notation to

, Where is an abbreviated

notation for Z Z Z

B0OR bOR, i ORy
from the unit or expression after joining tketables, i.e. after
joining theil-th row in Ry, ... and theik-th row inR,, the value
. Two
[

, and Y, is the value obtained

,,,,,,

and

v wherey can be shown as a special case

_ NN, S’fky _

My i
of = estimators or Horvitz-Thompson estimators, which is
unbiased; and/ is an approximately unbiased estimator, which
has a smaller variance thany . Note that, Iin

and

v ~ may be different values

because the former is from the resulting unit by joiningitith
rowins, ..., and thath row inS, whereas the latter is from the
resulting unit by joining thé-th row inRy, ... , and the,-th row

in R. The symbol” denotes an estimate of a population
characteristic, which is made from a sample.

Theorem 1: \?ﬂ is an unbiased estimator of. Y is an

approximately unbiased estimatorof
To prove thaty is an unbiased estimator, let be a random
m 1

variable that takes the value 1 if theh row of the first tabldR;
is selected in the sample, and the value 0 otherwise. Sgi are

anda_ . It is obvious that Ea.a )= E@)..E@, )="f,.

because of the independent sampling over dlfferent tables
Therefore:

ﬂﬁF

k iy

That Y is apprOX|mater unbiased can be proved by using the
first-order Taylor approximation:
Y .
)
N,...Ny
Theorem 2: The variance ofy_is

V(Y,) =
GDP({ZJ.:..,, K} [ !:L

where P({1,...
tables,

S8

Z y'1 de T

k‘l i

?=Y+

1-
f

9

f

9

2 Vi
{LORINIGE)

k} or the set ofk

{ iy0Ry| g0G}
,k}) is the power set of {1
{ iy0Ry|g0OG} ig

={g1, ..., ¢ and [B] =x < k, andG® = P({1,...,k}) \ G, or the
complement ofs. The variance of is approximately
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The proof is omitted due to space limitations.

V(Y) =
N GDP«ZL.:..,k))Lll

1- 1,
ngg

=V(Y,) -

GOP(l....kD |:EJD

Theorem 3: An unbiased estimator af (Y,) is given by

1)er 1- f
(] L[l( g)(_b%:gm}

An estimator ofy/(y) is given by

B
@ﬁm%J”{

The proof is omitted due to space limitations.
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Note that the condition of achieving the minimajy ) or \(Y)

may be different from the condition of achieving the maximal
fox..* f,or maximal n*..*n., which is described in [3].

In practice, because many factors in these equations are unknown
prior to query, or the knowledge of the variances is absent without
trials, we believe that the objective of achieving the maximal
fox..x f,or maximal n*..*n, is justified. As V(\?) is
normally smaller thar\/(\?”), we will focus ony, V(Y), and \'/(\?)

in the rest of this paper.

According to finite-population Central Limit Theorem,

(Y=Y IV(Y) OF (Y- v)/,/V(Y)tends to normality asy, ... ,
and ny increase. Letza . satisfy ¢ Z,,)=1-al2,

where ® is the cumulative distribution function ®f0,1). So
the 100(1é)% confidence interval foty is often computed as

¥ 7z, Ny, ¥+ Z, [N(v)]- The normal approximation is used

for not onlySUM but alsoCOUNT andAVG, whenng, ... , andny
are large.

3.2 AVG without Selection

We useY to denoteAVG o-_ 1 "™ ,andV to
denote the estimator oAVG ¥ = \?/Nlme , which is

approximately unbiased. Note is also written asy because

S,.... Sk
= Z yl‘ .

i1y

. And the variance of

Y=V N... N, Inen =

or y and its estimator are given b)fy) =\ = V({()/lemez
and (V) = Yy = U9)/NEN-
3.3 SUM and COUNT with Selection

When there are predicates, we can taye = 0 if the

-------

the results in Section 3.1 still hold.



3.4 AVG with Selection Y, =M. 0 otherwise; andg 1 K& 5

In the selection caseAVG(expr_a) can be written as e NN
SUM expr _a) / COUNT(expr_a) . When tables are sampled, We also assume a continuous distribution model, i.e.
we can use esti mat edSUM expr _a)/ W :d ,Up_ mxm)J,(m_LmJ)yM) if m is not an integer. Thus

esti mat edCOUNT( expr _a) as an estimator  of
AVE expr _a) . It is called a ratio estimator, which is shown to M =Y (1 B Ny, 1)
be an approximately unbiased estimator. In this section, we brieflystatistics: Yor € Yoy S S Yonn - To estimate the value of
describe how to calculate the variance of the new estimator. o

is the MEDIAN over the order

M over a cross-product sample of...n. elements, we can

Lety andY denote the SUM and its estimator respectively, estimate ;. _o  _ 1 Sz@ , and use the following
X and X denote theCOUNT and its estimator respectively, medan medan T n A
R and R denote theAVG and its estimator respectively. equal events
Theorem 4: The variance oR is approximately { Xnegian= 1 NN ={M =Y s 0 nn) = Yeioimonot to
R V(Y) + RV (X ) -2 RCov(Y, X) derive M . However, sinceM is unknown, we simply cannot
V(R) = _ 2 - ) ) . . .
X decide which X, i 18 1, 0.5, or 0. In practice, we simply take
2 _ .
12 |_L 1-f, [ (y . —Rx . )] X, ogon = E(Xogon) = Xoposon = 05 10 get  the  estimated
X% eoplo | aos  Fo (yoRpane) \(oamoedy M:M = Y 05 . +05) over the order  statistics:
50,y +0.
and an estimator af(Ryis given by: : i
of(R)is g y Yo S Yoy S S Yoaony- Furthermore, leg _ be 1 if
V(R Vy+ RY 2:2 ROoV(Y, X) _ Yios <M 05 if y L =M. or 0 otherwise; and
1

2 o = S . The confidence interval foM at a
N2 NZ ~ X median— zxi1,...ik

% Z (G rl(l_ fy) Z [ Z:()(l,...ik - Rﬁ,,...;k)] M- in 5

XN GPi. k) o {§ISI976} \{ {,08In0G%) confidence level (normally 95%) can be defined[y(%, y(u)],

where oy, X) is an estimator o Y X)- .
QY. X) Bou¥, X) where Yoy andy(u) are estimated from the sample of the Ny

The proof is omitted due to space limitations. elements. To obtain the valuesl @ndu, we need to compute the

The ratio estimator technique can be directly applied to the variance of Rnediar M ¥oediad = E X nedion— Ximegiad - SINCE
SUM expr_a)/ SUM expr _b) case. For any complex _

expression involving aggregates that can be written as an X median
expression ofSUM and COUNT, its approximate variance can be that with 100(1&)% confidence level, X ...~ lies in
obtained, using the first-order approximation of the Taylor series ;5  _ S Rt Zyy N Foa)
Of these eXpreSSIOnS [ >$hed|an %/2 Xﬂedlan ’ 'median al2 'median, ] .

4. MEDIAN

In [4], Manku et al. studied a sampling-bad&eDl AN algorithm.
However, their sampling operation occurs only in the final stage. don’t know the exact value ™, y(x 1 is simply replaced with
Unlike their approach, we push the sampling operations as early\y(y(-medlal)_ Thusv(?'med.ar) is an approximate eStimatorthnediar)'

as possible to achieve the time constraint, but run the exact

VEDI AN algorithm over the approximated result from sampling Note that one major difference between cross-product sampling
operations. We separate our discussion into the cases of withound sampling in the final stage [4] is that the variance in the

andx so

is known (0.5), we need to switgh mediar

median

Therefore,

[,! ]l;[l+(7%gdian_ A (}%edi;j-) (p.p-2, 1+(Xedia;|'- Zy ;(Xnedig')(Q"n( ]|

where\/(x11e o) has to be estimated b}(xﬂemaa. However since we

selection, and with selection. former case has to be computed by using the techniques described
) ) in Section 3, because many factors in the variance are unknown
4.1 MEDIAN without Selection prior to query, or the knowledge of the variance is absent without

The single table case is omitted since it is similar to the casetrials. In contrast, the variance in the case of sampling in the final
studied in Section 5 of [4]. So we start with the cross-product casestage is relatively simple. For example, under the simple random
under the Bernoulli sampling scheme. Besides the assumptionsampling without replacement, the variancesof .~ is simply
made in Section 3, such ksamples§, j=1, ..., R are obtained iven by 025 N

. ; -n/(N-Dn)-
fromk tables R, j=1, ..., B, we assume thadl is theMEDI AN of g Y02 N ")

the Ny...Nc elements. Lety =1 if y <M. x | —q5" if 4.2 MEDIAN with Selection
When there are predicates, only a fraction (@afements) of the
n;...nc elements (i.e the sample) is returned. We can get the

estimated M : M = Y oswyy OVEr the w elements. An
! For the simplicity of our presentation, no duplicatesvaiare approximate confidence interval is calculated as follows:
assumed. This assumption also applieMoanQQJANTl LE.. . Letx'i1 _____ 5 be 1 if Vi < M and Vi, is selected, 0.5 if
When there are duplicates, the actual value in this equation is v = and y  is selected, or O otherwise, and
computed by(N,..N, /2-COUNTy, , <M))/COUNTy,_, =M)- ik Il
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1 S

lell,...lk '

LEEL
0.5w/(n;...n), different from the value of 0.5 in Section 4.1.
Therefore, we can have the confidence intepyal y '] at an

Note that X is equal to

X median— median

approximate 100(»% confidence level, wheré and u are
defined as:

=1+ (0-5_ Zy 12V (Rlnegan )1 /W)(W_l)

u=1+ (0-5+ Z 12V (Ripegan )Mo /WJ(W -1

Note that under the Bernoulli (coin-flip) sampling scheme,
w/n..n, is an approximately unbiased estimator of the
population proportiony,n,..N, . Where w elements will be
selected from the population of, n,  elements. Butw is

unknown to our system, because the whole populatiog ofy,
elements is never processed. In contrastis known in the case

of sampling in the final stage [4], because its purpose is not to
reduce the processing time of join and selection operations
Therefore under our sampling scheme, we have to calculate the

estimated variancé(x-med‘an) in the context Ofnl... n, elements.

4.3 Extension to QUANTILE

I = 1+(o.05 -2V (o )) (n,.n -1)=1

=
u= 1+(o.95 + 2,V (X )) (n,..n, —1)= n,..n,

Z,=005/\V(X'ys) for MIN
Z,=005/V(X'ye) for MAX

Note that normallyza > 0. Once we obtairzn , we can obtain
the confidence level1001-a)%=1-a = »(Z,)-

6. BLOCK SAMPLING

The results in Sections 3, 4 and 5 assume row sampling, but can
be extended to block sampling. We briefly discuss one estimator
used for the extension.

, where Vi, is the value
1J1

Yisjs e

obtained from the unit after joining theth row in thei;-th block
SB, of the samplés, that hasmy blocks chosen frorvl; blocks of

the first tableR; under Bernoulli sampling, ..., and theh row

‘in thei,-th block SER of the sample&§, that hasm, blocks chosen

from My blocks of thek-th table R, under Bernoulli sampling.
Then take } S as an approximately

%= MM Xy /mem

ik

The techniques in Sections 4.1, and 4.2 can also be applied to thgnpjased estimator ofy, or SUM, which is similar to

QUANTI LE aggregate. For example, tpeQUANTI LE can return
the element in position N-1) in the sorted sequence MNf
elementsMEDI AN is the 50%QUANTI LE. Let Q be the required

@ QUANTI LE. So we can simply use formulas described in
Sections 4.1, and 4.2, and replace 0.5 é(lﬁmedian) with ¢ and

\7(7(-¢) respectively to obtain approximate confidence intervals
for QUANTI LE.

5. MINAND MAX

In our time-constrained approximate queries, we returriviiié
and MAX over the sample as the estimak@dN and MAX over the
population. To estimate the goodness of the estimisted or

Y described in Section 3.1.
7. CONCLUSION

In this paper, the most common aggregates in SQL including
SUM COUNT, AVG, MEDI AN, M N, andMAX are studied in time-
constrained approximate queries. We not only present the point
estimates for these aggregates, but also present the interval
estimates for these aggregates, (more specifically, the confidence
intervals for SUM COUNT, AVG, and MEDI AN, and confidence
level thatM N or MAX is taken as a tolerance limit.) These results
are the foundation of estimation in time-constrained approximate
queries.

MAX that is returned, we compute the confidence level that the8. ACKNOWLEDGMENT

proportion 10§% of the population will exceed thd N (or be
less than thé/AX) in the sample. This measure is related to the
one-sided tolerance limit, which is given by eN (or MAX) in a
sample of size, wheren is determined so that one can assert with
100(1-0)% confidence that at least the proportion ;2060of the
population will exceed thé N (or be less thaiMAX) in the
sample.

To compute the confidence level that the proporte®5% of the
population will exceed thé N (or be less than thBRX), we
compare the lower bound ¢E5% QUANTI LE with theM N, (or
compare the upper bound ¢gf 95% QUANTI LE with the MAX).

Assume a positivga satisfiescp(za) =1-a, Where we directly

use a because we only use one-sided limits to compute
Pr(y,, = MIN) for ¢ =5%, and pr(y , <MAX) for ¢ = 95%.

For example, in the case without selecti@n, can be computed
as follows:
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