
BaseX & DeepFS
Joint Storage for Filesystem and Database

Alexander Holupirek
∗

Christian Grün
∗

Marc H. Scholl
University of Konstanz

Dept. of Computer & Information Science
Box D 188, 78457 Konstanz, Germany

{holupire, gruen, scholl}@inf.uni-konstanz.de

ABSTRACT
Mere storage of personal data in state-of-the-art filesystems
is a markedly well done job in current operating systems.
Convenient access to and information retrieval from such
data, however, is crucial to leverage the stored informa-
tion. Thereby database style query languages can be of
great use. We demonstrate a user level filesystem imple-
mentation that is built on recent semi-structured database
storage techniques. As such, it serves as a storage layer for
the BaseX XQuery processor and, while it appears to the
operating system as a conventional filesystem, a large part
of its content can be queried using XPath/XQuery.

1. PROBLEM DESCRIPTION
Steadily increasing hard disk capacities lead to more and
more personal data stored in filesystems on personal com-
puters. While the mere storage is an easy-to-manage task,
convenient access to and information retrieval from huge
amounts of data is crucial to leverage the stored informa-
tion. Recent operating systems come with integrated search
capabilities (e.g., Instant Search or the Spotlight Architec-
ture) or can easily be equipped with a third-party desktop
search application, such as Google’s Desktop Search.

These tools clearly offer a smarter way to access personal
information stored in the filesystem. However, the keyword-
driven search approach, as it is used by today’s search en-
gines, is—while perfectly suitable for the user—inherently
limited for applications. An additional support for query
languages would be preferable.

We demonstrate a filesystem implementation in userspace,
called DeepFS, which is built on semi-structured database
storage techniques. Together with BaseX, an open-source

∗DFG Research Training Group GK-1042 “Explorative
Analysis and Visualization of large Information Spaces”.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

query processor[1], it offers query capabilities beyond key-
word search. Applications (or sophisticated users) may use
XQuery and its Full-Text and Update W3C recommenda-
tions to interact with the filesystem.

2. SYSTEM ARCHITECTURE
In Figure 1 we give an overview of the system we like to
demonstrate. The key element is the (joint) storage sys-
tem on the right side of the illustration. It is a filesys-
tem in userspace implementation and assembles all data of
the filesystem (file hierarchy, filesystem metadata, as well as
user data). It uses a storage format suitable for the BaseX
XQuery processor to evaluate queries on the data. In fact,
DeepFS is completely transparent to the query processor
and appears as just another storage layer with a conven-
tional database, holding a collection of documents.

2.1 Filesystems in USErspace (FUSE)
DeepFS is based on the Fuse framework, that allows to
implement filesystems outside the operating system kernel
in a separate protection domain in a user process. It was first
implemented for and integrated into the Linux kernel [11].
Additional implementations exist for the Mac OS X [10],
FreeBSD [5], NetBSD [6, 7] and the OpenSolaris [9] kernels.

The Fuse library interface closely resembles the in-kernel
virtual filesystem interface. Function callbacks, which are
registered by the user level implementations, get executed
once a corresponding request is issued by the OS kernel. The
Fuse kernel module and the Fuse library communicate via
a special file descriptor: /dev/fuse. This file can be opened
multiple times, and the obtained file descriptor is passed on
to the mount syscall, to match up the descriptor with the
mounted filesystem.

2.2 Joint Storage for FS and DB
From user level perspective, the system provides two access
paths to the filesystem (depicted by the octagons on the
left side). Conventional/legacy access can be achieved for
any application. The virtual filesystem (VFS) operations
initiated by the applications are looped back into userspace
and captured by the functions registered with the callback
interface of the Fuse user level library.

Since any Fuse implementation allows to organize the data
the way it likes, the DeepFS implementation stores the file

1108

 VFS

FUSE
kernel module

FUSE
user level library

DeepFS - Joint DB / FS Storage

...

......... ...

sizedistpre ...

File Hierarchy Table

XML File Storage

0

0
11

0

0

0
1
00

11 0 1

0
01 0
1

1
1 1
1

1

Regular File / Binary Data

BaseX
XQuery

Compiler

Applications
(Shell, ...)

FS

XQuery / XML View of the Filesystem

<!-- File Hierarchy XML Representation -->
<dir ino="12" name="home" ...>
 ...
 <file name="homepage.xhtml" .../>
 <file name="a.out" atime=".../>
</dir>

<!-- Homepage.xhtml -->
<xhtml>...</xhtml>

<!-- (Potential) metadata of binary -->
<binary>...</binary>

VFS

...

......... ...

sizedistpre ...

XQuery

Figure 1: The user level filesystem serves as a joint storage for filesystem and database. Queries against an
XML representation of the filesystem are possible as well as conventional filesystem access via the OS.

hierarchy by using the pre/distance/size encoding (see next
section). It augments the table with some additional in-
formation, such as a unique inode number or the file type.
However, the crucial point is that—while the storage is in
first place optimized to communicate with the operating sys-
tem kernel—it also communicates with the BaseX XQuery
processor.

From the XQuery perspective, the Fuse system stores an
XML representation of the filesystem, which is valid against
a W3C XML Schema Definition. A DeepFS database in-
stance consists of a file hierarchy representation and a col-
lection of XML documents. Following the UNIX tradition
there are block and character special, directory, fifo, sym-
bolic link, socket, and regular file types. Filesystem meta-
data (access time, protection mode, file size, . . .) is placed
in a dedicated http://www.deepfs.org/fs namespace.

Traditionally, files are roughly classified as either text or bi-
nary. Motivated by the steadily increased dissemination of
XML files, the DeepFS implementation adds XML as a third
type. DeepFS uses the pre/distance/size encoding to store
the file hierarchy—and its related metadata—and XML doc-
uments. As such, XML files are ready to be queried as an
integrated part of the DeepFS document collection.

The data of regular files is stored, as before, by the underly-
ing filesystem of choice. By default, only its metadata can be
queried. However, on user’s request, it can be transformed
into a queryable representation by translator plugins. For
instance, textual files with an inherent structure, such as

e-mails, can be included with their structure exposed. The
current e-mail translator produces a mapping, such as:

<Mail >
<Subject >...</ Subject >
<From >...</From >
<To >...</To>
<Content -Type >...</ Content -Type >
<Section >...</ Section >
<Attachment ...>...</ Attachment >

</Mail >

2.3 The pre/distance/size encoding
The BaseX XQuery processor operates on XML data stored
in the pre/distance/size encoding. It is derived from the
XPath Accelerator encoding [3], which is currently used in
the MonetDB/XQuery system [8]. Those flat tree encodings
have proven to show excellent query performance [2, 4].

Figure 2 shows a pre/distance/size encoded tree. The pre

value is dense and ordered for the complete tree structure,
and it is implicitly given by its position. dist defines the
relative distance to the parent pre value, and size contains
the number of descendants of a node.

To facilitate updates, the table structure is organized in disk
blocks. A block directory references the first pre value of
each block. The dist and size values have to be modified
if deletions/insertions are performed: The size values are
updated for all ancestor of that node—which means that a
maximum of log(n) nodes in the tree has to be accessed—
and the dist values are updated for the following siblings

1109

$ tree ./a

0a0
|-- 1b1
| `-- 2c1
| |-- 3d1
| `-- 4e2
`-- 5f5

|-- 6g1
`-- 7h2

|-- 8i1
`-- 9j2

<a>

<c>
<d/>
<e/>

</c>

<f>

<g/>
<h>

<i/>
<j/>

</h>
</f>

0 a 0

1 b 1

2 c 1

3 d 1 4 e 2

5 f 5

6 g 1 7 h 2

8 i 1 9 j 2

pre dist size n
0 0 9 a

1 1 3 b

2 1 2 c

3 1 0 d

4 2 0 e

5 5 4 f

6 1 0 g

7 2 2 h

8 1 0 i

9 2 0 j

Figure 2: Storing trees (such as file hierarchies, XML documents) in the pre/distance/size encoding.

and the following siblings of the ancestor nodes. In compar-
ison, e.g., the storage of absolute parent references would
demand a complete renumbering of all nodes in the tree ta-
ble that follow a deleted/inserted nodes, yielding it as inapt
for updates in filesystems.

2.4 The encoded file hierarchy
As the pre/distance/size encoding is basically a storage for
tree structures, it can be seamlessly used to store the file hi-
erarchy of a filesystem. The hierarchical mapping of filesys-
tems is straight-forward, as illustrated in Figure 2. To-
gether with the metadata (access time, protection mode, file
size, . . .) and any information relevant to operate a tradi-
tional filesystem, the file and directory structure is stored in
the ”File Hierarchy Table” (Figure 1) and accessible for the
XQuery processor as well as for operating system requests.

3. QUERY THE FILESYSTEM
Once BaseX is told to operate on a filesystem database
instance, it communicates with the DeepFS filesystem in
userspace implementation and accesses the instantiated file-
system data structures. The filesystem appears to the BaseX
XQuery processor as storage layer, providing access to the
file hierarchy and a collection of XML documents. Many
standard operations on files and directories can easily be
represented in XPath/XQuery, as is shown in the following
examples:

• the disk usage can be calculated with du -s or ex-
pressed in XPath with sum(//file/@size)

• files can be searched in the current directory with the
command find . -name find.me or, by using XPath,
with .//file[@name = ’find.me’]

• text files can be deleted with rm -r *txt or, alterna-
tively, delete .//file[matches(@name, ’txt$’)]

Although the implemented mappings are straightforward,
they externalize formerly hidden information. The lever-
age of tacit information, formerly encapsulated in various
formats, leads to a standardized and easily accessible rep-
resentation. This provides a basis to operate on filesystem
data with query languages.

Think about finding an e-mail with a known sender, a big
attachment and some keywords:

for $mail in //file/Mail
let $attach := $mail/Attachment
where $mail/From = ' jim.walker@mail.com '

and $mail/Section
ftcontains ' Hansson ' ftand ' report '

and $attach/@size > 3000000
return deepfs:path($attach)

Queries may combine filesystem metadata (such as file size,
directory names) with file content and use both filesystem
commands and languages for semi-structured data, such as
XQuery, to request and manipulate the data. In the case of
e-mails, comparable functionality is already offered by ad-
vanced e-mail applications. However, each application has
to provide its own implementation, leading to highly redun-
dant code for similar functionality. Our approach strives to
provide such capabilities as a basic service of the filesystem
layer. Furthermore, the search is not restricted to applica-
tion defined communication paths (such as the often con-
nected e-mail, calendar, address book applications), but can
include any data stored in the filesystem.

4. DEMONSTRATION SCENARIO
We will present two Fuse enabled operating systems (e.g.,
Linux, OS X, Free-/NetBSD . . .) installed on a notebook. A
preloaded database—containing a filesystem hierarchy and
file data—is prepared and ready for operation. For a fresh
start, an empty filesystem/database instance is mounted as
well. The database instances are mounted as filesystem in
userspace (system information will reveal that) and are as
such ready to be used as any other conventional filesystem
in a Unix OS. A Unix shell is opened in a terminal window,
which allows for the navigation and operation of the filesys-
tem with conventional Unix commands, such as cd, mkdir,
rmdir, find, grep, etc. Arbitrary tools can be used to mod-
ify existing file contents, such as vi or emacs for text files.
Next, the visual interface to BaseX (see Figure 3) is con-
nected to the same database/filesystem instance. One can
follow the manipulations done in the Unix shell by watch-
ing the database changes and vice versa. On the other hand,
XQuery, XQuery Full-Text and XQuery Update requests can
be performed on the file system, as described in the previous
section. On a second workspace, additional verbose system
information about the running processes will be displayed

1110

Figure 3: BaseX provides visual access to query results. The user can browse and manipulate the results and
further refine the result set by issuing further keyword-based or full-fledged (X)Queries.

(including a logging trace of the table accesses). We pre-
pare numerous example queries (using BaseX as command
line interpreter), so you do not have to rely on your XPath/
XQuery knowledge. What you should experience from the
demonstration is the parallel use of known, established and
conventional filesystem interaction together with the query
capabilities of an XQuery Processor. Recalling Figure 1, the
two views on the filesystem/database instance are offered to
the user and ready to be explored.

5. REFERENCES
[1] BaseX. Visual Exploration and Querying of XML

Data. http://www.basex.org/.

[2] P. A. Boncz, T. Grust, M. van Keulen, S. Manegold,
J. Rittinger, and J. Teubner. Pathfinder: XQuery -
The Relational Way. In Proc. of the 31st Int’l
Conference on Very Large Databases (VLDB),
Trondheim, Norway, 2005.

[3] T. Grust. Accelerating XPath Location Steps. In Proc.
of the ACM SIGMOD Int’l Conference on
Management of Data, Madison, Wisconsin, June 2002.

[4] T. Grust, M. Mayr, J. Rittinger, S. Sakr, and
J. Teubner. A SQL:1999 Code Generator for the
Pathfinder XQuery Compiler. In Proc. of the ACM
SIGMOD Int’l Conference on Management of Data,
Beijing, China, June 2007.

[5] C. Henk. FreeBSD Port of the FUSE Framework.
http://fuse4bsd.creo.hu/, 2007.

[6] A. Kantee. puffs - Pass-to-Userspace Framework File
System. In Proc. of the 2nd Asia BSD Conference
(AsiaBSDCon), 2007.

[7] A. Kantee and A. Crooks. ReFUSE: Userspace FUSE
Reimplementation Using puffs. In Proc. of the 6th
European BSD Conference (EuroBSDCon), 2007.

[8] MonetDB. Query Processing at Light Speed.
http://monetdb.cwi.nl//.

[9] OpenSolaris Project. Fuse on Solaris.
http://opensolaris.org/os/project/fuse/, 2008.

[10] A. Singh. A FUSE-Compliant File System
Implementation Mechanism for Mac OS X.
http://code.google.com/p/macfuse/.

[11] M. Szeredi. Filesystem in USErspace.
http://fuse.sourceforge.net/.

1111

