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ABSTRACT
Constraints are important for a variety of XML recommen-
dations and applications. Consequently, there are numerous
opportunities for advancing the treatment of XML seman-
tics. In particular, suitable notions of keys will enhance
XML’s capabilities of modeling, managing and processing
native XML data. However, the different ways of access-
ing and comparing XML elements make it challenging to
balance expressiveness and tractability.

We investigate XML keys which uniquely identify XML
elements based on a very general notion of value-equality:
isomorphic subtrees with the identity on data values. Pre-
viously, an XML key fragment has been recognised that is
robust in the sense that its implication problem can be ex-
pressed as the reachability problem in a suitable digraph.
We analyse the impact of extending this fragment by struc-
tural keys that uniquely identify XML elements indepen-
dently of any data. We establish a sound and complete set
of inference rules for this expressive fragment of XML keys,
and encode these rules in an algorithm that decides the as-
sociated implication problem in time quadratic in the size
of the input keys. Consequently, we gain significant expres-
siveness without any loss of efficiency in comparison to less
expressive XML key fragments.

1. INTRODUCTION
The eXtensible Markup Language (XML,[7]) provides a

high degree of flexibility to create and mark-up data. Con-
sequently, many users find it very simple to produce XML
documents. As a result XML has become the standard
to exchange and integrate data on the Web and elsewhere.
There has been wide consensus among researchers and prac-
titioners that XML requires commensurate data manage-
ment tools that can store, manipulate, and process XML
data in its native format. However, the syntactic flexibility
and complex tree-like nested data make it challenging to ex-
press desirable properties of XML data and provide facilities
that can reason efficiently about such properties.
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XML constraints restrict XML documents to those consid-
ered meaningful to the application domain under consider-
ation. Apart from the ability to express fundamental prop-
erties of data their significance is due to a wide range of ap-
plications ranging from schema design, query optimisation,
efficient storing and updating, data exchange and integra-
tion, to data cleaning [15].

One of the most fundamental classes of XML constraints
are keys. While there is a well-understood and fully ac-
cepted notion of a key in relational databases, there are dif-
ferent popular proposals for the notion of an XML key. It is
quite likely that there will never be a best notion. Instead,
database designers and administrators will choose a suitable
notion from a whole pool of different XML key concepts.
Such a choice may be based on the preference to express de-
sirable properties, guarantee efficient reasoning about keys,
or the support necessary for specific XML applications.

1.1 Previous Work
As it is the case with many other classes of constraints it is

a major challenge to find natural and useful notions of XML
keys whose associated decision problems are also tractable
[15, 16, 17, 31, 33]. For example, XML Schema allows to
specify certain keys but the associated consistency problem
has been shown to be intractable for many subclasses [3].
Moreover, the specification of such keys requires the pres-
ence of a schema definition which is not mandatory for XML
documents.

An alternative promising approach are the classes of ab-
solute and relative keys as defined and studied by Buneman
et al [8, 9]. Their definitions are independent of any schema
formalism such as a DTD [7] or XSD [32]. Moreover, a ro-
bust fragment of these keys is known whose associated im-
plication problem can be decided in time quadratic in the
size of the input keys [21]. Absolute and relative keys are
based on the representation of XML data as trees. This rep-
resentation is commonly used by DOM [2], XPath [24], and
XML Schema [32]. Figure 1 shows such a representation in
which nodes are annotated by their type: E for element, A
for attribute, and S for string (PCDATA).

More precisely, keys are expressions of the form

(Q, (Q′, {P1, . . . , Pk}))

in which Q, Q′, P1, . . . , Pk are node selection queries defined
in terms of suitable XPath expressions. For a fixed XML
tree T let n[[E]] denote the set of nodes in T reachable from
the node n of T by following the XPath expression E. The
context path Q selects the set r[[Q]] of context nodes, where r
denotes the root node of T . For each context node u ∈ r[[Q]]
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Figure 1: An XML data tree

the target path Q′ selects the set u[[Q′]] of target nodes, and
for every target node v ∈ u[[Q′]] and for every i = 1, . . . , k
the key path Pi selects the set v[[Pi]] of key nodes. An XML
tree satisfies the key (Q, (Q′, {P1, . . . , Pk})) if for all target
nodes v, v′ that belong to the same set of context nodes the
following holds: if for all i = 1, . . . , k the key node sets v[[Pi]]
and v′[[Pi]] agree, then v and v′ agree themselves. Different
XML key proposals define different notions of agreement.
For a comparison of popular XML key proposals see [18].
In this paper we follow the notion of agreement from [8, 9,
21] where v[[Pi]] and v′[[Pi]] agree whenever there are nodes
w ∈ v[[Pi]] and w′ ∈ v′[[Pi]] such that w and w′ form the
roots of isomorphic subtrees with the identity on strings.
Moreover, v and v′ agree in the definition above whenever
they denote the same node.

In Figure 1 the following absolute key is reasonable: the
doi-value identifies the publ node in the entire tree. That
is, the doi subnodes of different publ nodes must have dif-
ferent values. In contrast, an author cannot be identified in
the entire tree by its first and last subnodes since the same
author can have more than one publication. However, the
author can indeed be identified by its first and last subn-
odes relatively to the publ node. That is, for each individual
publ node, different author subnodes must differ on their
first or last subnode value. These examples already indicate
that the choice of an XPath language for accessing context
nodes, target nodes and key nodes is crucial. If the language
is too rich many properties may be expressed but reasoning
may become intractable, or even infeasible. If the language
is too simple, reasoning may be extremely efficient but the
language is incapable of expressing many important prop-
erties of the application domain. For the original notion
of XML keys [8] the context and target path expressions
may use parent-child and ancestor-descendant navigation as
well as wildcards for node labels, while key path expressions
may use parent-child navigation. In [9] context and target
path expressions may not use node label wildcards, but key
path expressions may use both parent-child and ancestor-
descendant navigation. So far, however, an axiomatisation
only exists for the fragment of XML keys from [9] in which
the set of key path expressions is required to be non-empty
and key path expressions may use parent-child navigation
[21]. The implication problem of this fragment is charac-
terised by the reachability problem of a suitable digraph
and decidable in time quadratic in the size of the input [20].
The axiomatisability and implication problem of most other
XML key fragments are still open [8]. In this paper, we will

analyse the impact of keys with an empty set of key path
expressions on the fragment studied in [20].

Interestingly, an empty set of key path expressions can
add a significant amount of expressiveness to the language
of XML keys. More precisely, the previous examples of XML
keys have all identified nodes based on the values of the key
nodes. In sharp contrast, structural keys, i.e. keys with an
empty set of key path expressions, identify nodes indepen-
dently of any data. For instance, there is at most one doi
subnode in every subtree rooted at a publ node. In other
words, there is at most one document identifier for each
publication. On the other hand, publ nodes may have more
than a single author descendant unless we want to restrict
our attention to publications authored by a single person.
Hence, structural keys can express significant properties of
XML data, but identify nodes quite differently from previ-
ously studied keys.

Notice that the articles in [12, 13] analyse an orthogonal
fragment of XML keys where value-equality is restricted to
string-equality on attribute nodes but structural keys are
permitted. This semantics deviates considerably from the
more expressive approach, well grounded by the same au-
thors in their earlier papers [8, 9]. Our work here carries
forward the investigation of the original approach. Indeed,
we will focus on the interaction between structural keys and
the keys investigated in [21].

More recent work on XML constraints include [4, 5, 8, 9,
10, 11, 16, 17, 20, 21, 22, 35, 37], for a brief survey see [15].

1.2 Contributions
We investigate the XML key fragment K′ that results from

extending the robust fragment K from [21] by structural
keys. We believe that an investigation of this fragment is
important for several reasons:

• as the name suggests, structural keys provide a means
to identify elements of an XML document based on the
structure of the document alone and independently of
any data. This is a feature that distinguishes XML
from other data models, and therefore justifies a spe-
cial investigation.

• Structural keys occur naturally in XML documents.
For instance, these keys can express the uniqueness of
attribute labels as required by the W3C recommenda-
tion [7]. Moreover, among other constraints structural
keys also cover the maxOccurs-attribute provided by
XML Schema [32] where the value is 1.
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• Structural keys identify element nodes by means that
are different from classes that have previously been
studied. Therefore, it is interesting to investigate their
impact on such classes.

• Apart from node label wildcards the class K′ defines
exactly those XML keys that were originally proposed
in [8].

• Our results show that K′ forms a large tractable frag-
ment of numerical constraints whose implication prob-
lem is strongly coNP-hard. Hence, K′ constitutes a
class of XML keys that is attractive to many XML
applications.

In contrast to the class K we cannot characterise the impli-
cation of keys in K′ in terms of the reachability problem in
a suitable digraph. This is not a surprise because structural
keys do use different means to identify element nodes.

Next we characterise the expressiveness of K′ in purely
syntactical terms. More precisely, we establish an axioma-
tisation for K′, i.e., a set of inference rules which is sound
and complete for the reasoning about XML keys in K′. The
axiomatisation has several benefits:

• one can infer all implicitly specified keys from the ex-
plicitly specified keys. This means we have an auto-
matic way of exhausting all the conclusions that follow
from the specification of our keys. Such a method is
extremely handy for design and validation purposes,
for data cleaning, and also for query optimisation. In
particular, we can ensure that we have exploited all
opportunities of utilising implicit knowledge for these
purposes.

• it provides insight into the properties of structural
keys. In contrast to the fragment K, for instance, in
K′ we have non-trivial absolute keys that are conse-
quences of relative keys.

• the syntactic inference rules can be encoded in an al-
gorithm that decides the implication of keys in K′ ef-
ficiently.

Indeed, we will devise an algorithm that decides XML key
implication in K′ in time quadratic in the size of the input
keys. Notice that this algorithm requires as input a set of
explicitly specified XML keys and an additional XML key
and returns yes precisely when this additional key is implied
by the set of explicitly specified keys. An enumeration al-
gorithm based on the inference rules of an axiomatisation,
however, requires only the set of explicitly specified keys as
input, and returns an enumeration of all implicitly specified
keys. Hence, these two algorithms establish different facili-
ties to reason about XML keys. To the best of our knowl-
edge, these are the first reasoning facilities for the fragment
K′. Our results show that there is no loss in efficiency when
adding structural keys to K. Consequently, our algorithms
establish a gain in expressiveness that comes for free in terms
of efficiency.

In contrast, it has been shown that the implication of
upper-bound constraints, which allow the specification of ar-
bitrary upper bounds on the number of target nodes (e.g.
that each author has at most three first names), is strongly
coNP-hard to decide. Therefore, our results show that the

fragment K′ (in which keys have a fixed upper bound of 1)
forms an expressive tractable subclass [20].

It is not surprising that the difference in the semantics of
keys in [12, 13] to keys in this and other papers [8, 9, 21]
results in different axiomatisations and decision algorithms,
cf. [13].

1.3 Organisation
We use Section 2 to formalise the underlying XML tree

model, the navigational path languages, the notion of value
equality and the notion of XML keys [8, 9]. In Section 3
we introduce the key fragment K′, and establish a finite
axiomatisation for the implication of keys in K′. In Section
4 we briefly summarise the techniques that have previously
been established for reasoning about keys in K. Section 5
illustrates why these techniques cannot simply be extended
to the larger key fragment K′. Subsequently, we develop new
techniques in Section 6 that enable us to reason about XML
keys in K′ efficiently. It is demonstrated in Section 7 that K′
forms a large tractable subclass of another constraint class
which is likely to be intractable. Finally, we conclude and
briefly comment on future work in Section 8.

2. PREREQUISITES
In this section we recall the basics of the XML tree model,

the notion of value equality, and describe the path language
used to locate sets of nodes within an XML tree. Through-
out the paper we assume familiarity with basic terminology
from graph theory, see e.g. [23].

It is common to represent XML data by ordered, node-
labelled trees. We assume that there is a countably infinite
set E denoting element tags, a countably infinite set A de-
noting attribute names, and a singleton set {S} denoting
text (PCDATA). We further assume that these sets are pair-
wise disjoint, and put L = E ∪ A ∪ {S}. We refer to the
elements of L as labels.

An XML tree is a 6-tuple T = (V, lab, ele, att, val, r) where
V denotes a set of nodes, and lab is a mapping V → L
assigning a label to every node in V . A node v ∈ V is
called an element node if lab(v) ∈ E, an attribute node if
lab(v) ∈ A, and a text node if lab(v) = S. Moreover, ele
and att are partial mappings defining the edge relation of T :
for any node v ∈ V , if v is an element node, then ele(v) is
a list of element and text nodes in V and att(v) is a set of
attribute nodes in V . If v is an attribute or text node then
ele(v) and att(v) are undefined. The partial mapping val
assigns a string to each attribute and text node: for each
node v ∈ V , val(v) is a string if v is an attribute or text
node, while val(v) is undefined otherwise. Finally, r is the
unique and distinguished root node. T is said to be finite if
V is finite, and is said to be empty if V consists of the root
node only.

For a node v ∈ V , each node w in ele(v) or att(v) is called
a child of v, and we say that there is an edge (v, w) from v to
w in T . A path p of T is a finite sequence of nodes v0, . . . , vm
in V such that (vi−1, vi) is an edge of T for i = 1, . . . ,m.
We call p a path from v0 to vm, and say that vm is reachable
from v0 following the path p. The path p determines a word
lab(v1). · · · .lab(vm) over the alphabet L, denoted by lab(p).
For a node v ∈ V , each node w reachable from v is called a
descendant of v. Note that an XML tree has a tree structure:
for each node v ∈ V , there is a unique path from the root
node r to v.
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We can now define value equality for pairs of nodes in an
XML tree. Informally, two nodes u and v of an XML tree T
are value equal if they have the same label and, in addition,
either they have the same string value if they are text or
attribute nodes, or their children are pairwise value equal if
they are element nodes. More formally, two nodes u, v ∈ V
are value equal, denoted by u =v v, if and only if the subtrees
rooted at u and v are isomorphic by an isomorphism that
is the identity on string values. That is, two nodes u and v
are value equal when the following conditions are satisfied:

(a) lab(u) = lab(v),

(b) if u, v are attribute or text nodes, then val(u) = val(v),

(c) if u, v are element nodes, then (i) if

att(u) = {a1, . . . , am},

then att(v) = {a′1, . . . , a′m} and there is a permutation
π on {1, . . . ,m} such that ai =v a

′
π(i) for i = 1, . . . ,m,

and (ii) if

ele(u) = [u1, . . . , uk],

then ele(v) = [v1, . . . , vk] and ui =v vi for i = 1, . . . , k.

Note that the notion of value equality takes the document
order of the XML tree into account. As an example, all
teacher -nodes in Figure 1 are value equal. We remark that
=v is an equivalence relation on the node set V of the XML
tree. This is easy to observe as value equality between nodes
corresponds to isomorphism of the subtrees rooted at these
nodes.

In order to define XML keys we need a mechanism for se-
lecting nodes in an XML tree. Path expressions have been
widely used for node selection in XML theory and practice,
cf. [24, 31]. We are interested in path languages that are ex-
pressive enough to be practical, yet sufficiently simple to be
reasoned about efficiently. This is the case for the languages
PL and PLs that have been used in [8, 9] for the definition
of XML keys. For the sake of completeness we will briefly
introduce these languages here.

Let ∗ be a distinguished symbol not in L. It will serve
as a variable length don’t care wildcard, that is, as a com-
bination of a single symbol wildcard (denoted by ) and the
Kleene star (∗). Let PL denote the set of all words over
the alphabet L∪{ ∗}. Further let PLs be the subset of PL
containing all words over the alphabet L. Both PL and PLs
form free monoids with the binary operation of concatena-
tion (denoted by .) and the empty word (denoted by ε) as
identity element.

Let P,Q be words from PL. P is a refinement of Q, de-
noted by P ∈ Q, if P is obtained from Q by replacing wild-
cards in Q by words from PL. For example, publ.author.first
is a refinement of ∗.first. Note that ∈ is a pre-order on
PL. Let ∼ denote the congruence induced by the identity
∗. ∗ = ∗ on PL. Observe that P ∼ Q holds if and only if
P and Q are refinements of each other.

We now define the semantics of words from PL in the
context of XML. Let Q be a word from PL. A path p in
the XML tree T is called a Q-path if lab(p) is a refinement
of Q. For nodes v, w ∈ V , we write T |= Q(v, w) if w is
reachable from v following a Q-path in T . For example,
in the XML tree in Figure 1, all first-nodes are reachable
from the root node following a publ.author.first-path. Obvi-
ously, they are also reachable from the root node following

a ∗.first-path. For a node v ∈ V , let v[[Q]] denote the set of
nodes in T that are reachable from v following any Q-path,
that is, v[[Q]] = {w | T |= Q(v, w)}. As an example consider
the second semester -node v in the XML tree in Figure 1.
Then v[[ ∗.student]] is the set of all student-nodes that are
descendants of the second semester node. We use [[Q]] as an
abbreviation for r[[Q]] where r is the root node of T . Thus,
[[ ∗.first]] is the set of all first-nodes in the entire XML tree.

Recall that each attribute or text node in an XML tree T
is a leaf. Therefore, a word Q from PL is said to be valid if
it does not have labels ` ∈ A or ` = S in a position other
than the last one. Note that each prefix of a valid Q is valid,
too.

Let P,Q be words from PL. P is contained in Q, denoted
by P ⊆ Q, if for every XML tree T and every node v of
T we have v[[P ]] ⊆ v[[Q]]. It follows immediately from the
definition that P ∈ Q implies P ⊆ Q.

The containment problem of PL is to decide, given valid
P and Q from PL, whether P ⊆ Q holds. In [9] it is shown
that valid P,Q from PL satisfy P ⊆ Q if and only if P is
a refinement of Q and that the containment problem of PL
can be decided in quadratic time.

In accordance with [8] we will work with the quotient set
PL/∼ rather than with PL directly: A word from PL is
in normal form if it has no consecutive wildcards. Each
congruence class contains a unique word in normal form.
Each word from PL can be transformed into normal form
in linear time, just by removing superfluous wildcards. In
particular, each word from PLs is in normal form. The
length |Q| of a PL expression Q is the number of labels in
Q plus the number of ∗ in the normal form of Q, cf. [9].
The empty path expression ε has length 0. The natural
homomorphism from PL to PL/∼ is an isomorphism when
restricted to words in normal form. By abuse of notation
we will use the words from PL to denote their respective
congruence class, cf. [8]. It is a straightforward exercise to
extend the terminology introduced above for PL to PL/∼.

We will call members of PL/∼ (and PLs/∼) PL expres-
sions (or PLs expressions, respectively) in order to empha-
sise their use for node selection in XML. Note that there is
an easy conversion of PL expressions to XPath expressions
[24], just by replacing “ ∗” with “.//.” and “.” with “/”.

The choice of a path language for selecting nodes in XML
trees is directly influenced by the complexity of its contain-
ment problem. Buneman et al. [8, 9] argue that PL is simple
yet expressive enough to be adopted by data designers and
maintained by systems for XML applications.

To conclude this section we repeat the notion of value
intersection from [9]: For nodes v and v′ of an XML tree T ,
the value intersection of v[[Q]] and v′[[Q]] is given by v[[Q]]∩v
v′[[Q]] = {(w,w′) | w ∈ v[[Q]], w′ ∈ v′[[Q]], w =v w

′}. That is,
v[[Q]] ∩v v′[[Q]] consists of all those node pairs in T that are
value equal and are reachable from v and v′, respectively, by
following Q-paths.

3. KEYS FOR XML
In this paper we study the following fragment K′ of XML

keys.

Definition 1. A key constraint ϕ for XML (or short
XML key) is an expression (Q, (Q′, S)) where Q,Q′ are PL
expressions and S is a finite set of PLs expressions such
that Q.Q′.P are valid PL expressions for all P in S, if S
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is non-empty, and Q.Q′ is a valid PL expression, if S is
empty. Herein, Q is called the context path, Q′ is called the
target path, and the elements of S are called the key paths
of ϕ. If Q = ε, we call ϕ an absolute key; otherwise ϕ is
called a relative key.

For an XML key ϕ, we use Qϕ to denote its context path,
Q′ϕ to denote its target path, Sϕ to denote its set of key
paths and Pϕ1 , . . . , P

ϕ
kϕ

to denote the elements of Sϕ, where

kϕ is the non-negative number of its key paths.
Finally, an XML key ϕ is called structural if and only if

Sϕ = ∅, and let K denote the class of XML keys that results
from K′ by removing all structural keys.

Definition 2. An XML tree T satisfies the XML key ϕ
if and only if for all nodes q ∈ [[Qϕ]] and all nodes q′1, q

′
2 ∈

q[[Q′ϕ]] such that for all i = 1, . . . , k there are nodes xi ∈
q′1[[Pϕi ]], yi ∈ q′2[[Pϕi ]] with xi =v yi, then q′1 = q′2.

In particular, an XML tree satisfies the structural key ϕ
if and only if for all nodes q ∈ [[Qϕ]] the set q[[Q′ϕ]] contains
at most one element.

Example 1. We formalise some of the examples from the
introduction. In an XML tree that satisfies the absolute key

(ε, ( ∗.publ, {doi}))

one will never be able to find two different publ nodes that
have value equal doi subnodes. Furthermore, under a publ
node in an XML tree that satisfies the relative key

( ∗.publ, (author, {first.S, last.S}))

one will never find two different author subnodes that are
value-equal on some first.S subnodes and on some last.S
subnodes.

If we specify the structural key

( ∗.publ, (doi, ∅)),

then every legal XML tree must not have any two distinct
doi children nodes under any publ-node.

Example 2. Definition 1 guarantees that keys in K′, in
particular structural keys, cover XML Schema constraints of
the form maxOccurs=”1” [32]. However, keys in the class
K cannot express these constraints. Moreover, structural
keys can also express common constraints that cannot be ex-
pressed by the maxOccurs attribute. As an example, con-
sider a university that is divided into several faculties. Each
faculty has several schools, each school has a head, and for
every faculty there is a single dean who is one of the heads
in the schools of the faculty. Based on this format, we may
then specify the structural key

( ∗.faculty, (school.head.dean, ∅))

stating that in every faculty there is at most one dean who
is the head of some school within the faculty.

Let Σ be a finite set of keys in K′. An XML tree T satisfies
Σ if and only if T satisfies every σ ∈ Σ. Let Σ ∪ {ϕ} be a
finite set of keys in K′. We say that Σ (finitely) implies ϕ,
denoted by Σ |=(f) ϕ, if and only if every (finite) XML tree
T that satisfies Σ also satisfies ϕ. The (finite) implication
problem is to decide, given any finite set of keys Σ ∪ {ϕ},
whether Σ |=(f) ϕ. For a finite set Σ of keys in K′, let

Σ∗(f) = {ϕ ∈ K′ | Σ |=(f) ϕ} be its (finite) semantic closure,
i.e., the set of all keys (finitely) implied by Σ. Finite and
unrestricted implication problem coincide, even for a more
general class of XML keys than K′, cf. [9]. We will therefore
commonly speak of the implication problem for keys in K′.

The notion of derivability (`R) with respect to a set R of
inference rules can be defined analogously to the notion in
the relational data model [1, pp. 164-168]. For a set Σ of
keys in K′, let Σ+

R = {ϕ | Σ `R ϕ} be its syntactic closure
under inference using R.

As a first contribution we establish that the set R of infer-
ence rules in Table 1 is sound (i.e., Σ+

R ⊆ Σ∗) and complete
(i.e., Σ∗ ⊆ Σ+

R) for the implication of keys in K′.
Notice that the first nine inference rules of the top three

lines in Table 1 form an axiomatisation for the class K [21].
In that case, the prefix rule reduces to the epsilon-prefix rule

(Q, (Q′, S ∪ {ε, P ′}))
(Q, (Q′, S ∪ {ε, P ′.P ′′})), cf. [21].

We will exemplify the four new inference rules by examples
from the XHTML language [29]. The examples will also
provide insight into the expressiveness of structural keys.

Suppose that for each table row of an XHTML table a cell
(table data) can be identified by its contents (the string S),
and suppose further that in each XHTML table there is at
most one table row. Then it follows that in each XHTML
table, each cell of that row is uniquely identified by its con-
tents. This reasoning can be formalised by our keys: the
two keys

σ1 = ( ∗.table.tr, (td, {S}))

and

σ2 = ( ∗.table, (tr, ∅))

imply the key

ϕ = ( ∗.table, (tr.td, {S})).

Indeed, ϕ can be inferred from σ1 and σ2 by a single appli-
cation of the context-to-target rule.

For path expressions Q ∈ PL and P ∈ PLs, Q is said to
have border P if and only if there are some path expressions
Q′, Q′′ ∈ PL such that Q = P.Q′ and Q = Q′′.P . The ex-
pression Q is said to have the proper border P if and only if
Q has border P and Q 6= P . For instance, the path expres-
sion ol.li.ol.li.ol has proper border ol.li.ol, and the
path expression li has proper border ε, but ε has no proper
border since its only border ε is not proper.

Suppose that every ordered list of an XHTML document
can contain at most one unordered list as a subelement.
Then it is also true, for instance, that each subelement of
an unordered list nested inside another unordered list inside
an ordered list can be identified by its list item. In terms of
XML keys this reads as follows: the key

σ = ( ∗.ol, ( ∗.ul, ∅))

implies the key

ϕ = (ε, ( ∗.ol. ∗.ul. ∗.ul. ∗, {li})).

However, ϕ can be inferred from σ by a single application
of the border rule. In particular, ul is a proper border of
ul. ∗.ul.

The previous examples illustrate how structural keys en-
able us to reason about patterns. For instance, certain nest-
ings of elements may be restricted. Among others, our ax-
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(Q, (ε, S))

(Q, (Q′, S ∪ {P, P.P ′})),
(Q.Q′, P, ∅)

(Q, (Q′, S ∪ {P, P.P ′.P ′′}))
(Q, (Q′, S))

(Q, (Q′, S ∪ {P}))
(Q, (Q′.P, {P ′}))
(Q, (Q′, {P.P ′}))

(epsilon) (prefix) (superkey) (subnodes)

(Q, (Q′, S))

(Q′′, (Q′, S))
Q′′⊆Q

(Q, (Q′, S))

(Q, (Q′′, S))
Q′′⊆Q′

(Q, (Q′.Q′′, S))

(Q.Q′, (Q′′, S))

(Q, (Q′.P, {ε, P ′}))
(Q, (Q′, {ε, P.P ′}))

(context-path-containment) (target-path-containment) (target-to-context) (subnodes-epsilon)

(Q, (Q′, {P.P ′ | P ′ ∈ S})),
(Q.Q′, (P, S))

(Q, (Q′.P, S))

(Q.Q′, (Q′′, S)),
(Q, Q′, ∅)

(Q, (Q′.Q′′, S))

(Q, ( ∗.P, ∅))
(ε, (Q. ∗.Q′. ∗, ∅))

Q′ 6= ∗

has proper

border P

(Q, (Q′.P, {P1, . . . , Pk})),
(Q.Q′, (P, ∅))

(Q, (Q′, {P.P1, . . . , P.Pk}))
(interaction) (context-to-target) (border) (multiple subnodes)

(Q, ( ∗.P, ∅))
(ε, (Q. ∗, {P1.P.P ′, P2.P.P ′′}))

P1 6=P2

(neighbour)

Table 1: An axiomatisation of XML keys in K′.

iomatisation of XML keys establishes means to infer all im-
plicitly specified restrictions of patterns from those that have
been specified explicitly.

As another example consider the constraint that each def-
inition list of an XHTML document contains at most one
data definition. This restriction implies other restrictions,
for instance that every subelement of a definition list can
be uniquely identified by the data definition of a defining
term and the data definition of a defining term of a further
definition list. In terms of XML keys these restrictions read
as follows: the XML key

σ = ( ∗.dl, ( ∗.dd, ∅))

implies the XML key

ϕ = (ε, ( ∗.dl. ∗, {dt.dd, dl.dt.dd})).

Indeed, ϕ can be inferred from σ by a single application of
the neighbour rule.

Finally, we illustrate the application of the multiple subn-
odes rule. Suppose that an XHTML document satisfies
the restriction that every form element that occurs in any
paragraph has at most one input field. Furthermore, the
XHTML document satisfies the restriction that for each
paragraph the input field of a form can be uniquely iden-
tified by its type and name. Then the XHTML document
also satisfies the following constraint: for each paragraph the
form element can be uniquely identified by its input type and
its input name. Expressed as XML keys these requirements
read as follows: the XML keys

σ1 = (p.form, (input, ∅))

and

σ2 = (p, (form.input, {type,name}))

imply the XML key

ϕ = (p, (form, {input.type,input.name})).

It is not difficult to see that ϕ can be inferred from σ1 and
σ2 by a single application of the multiple subnodes rule.

Our first main result establishes that the inference rules
from Table 1 form an axiomatisation for the class K′ of XML

keys. This provides us with an algorithm that enumerates all
those XML keys in K′ that are implicitly specified by a set
of explicitly specified keys. Such implicit knowledge may be
utilised to validate user requirements, improve the design of
the XML database, optimise and rewrite XPath and XQuery
queries or perform data cleaning routines. Moreover, the
enumeration algorithm guarantees that all avenues for any
of these purposes can be explored, i.e., no implicitly specified
XML key will be missed.

Theorem 1. The inference rules from Table 1 are sound
and complete for the implication of XML keys in K′.

Furthermore, the tree model for XML adopted from [8] for
our investigation here leaves considerable freedom to data
designers. To some extent this flexibility can be exploited
when constructing XML trees in the proofs. For certain ap-
plications one might want to incorporate additional features
as specified by the W3C standard of XML. As an example
we mention the uniqueness of attributes: no element may
possess two distinct attribute children with the same label.
This requirement cannot be captured by keys of the frag-
ment K. However, it may be expressed by the structural
key ( ∗, (`a, ∅)) with `a ∈ A.

Suppose we require the uniqueness of attributes as part of
the XML tree model. Then the structural keys ( ∗, (`a, ∅))
with `a ∈ A hold trivially. When adding a corresponding
axiom to the inference rules in Table 1 we obtain a result
similar to Theorem 1.

4. PREVIOUS TECHNIQUES
Theorem 1 provides us with a reasoning facility that infers

all implicitly specified knowledge. In practice, however, it
often suffices to validate partial implicit knowledge. That
means, one is interested in deciding the implication problem
of XML keys, i.e., the problem of deciding whether for an
arbitrary finite set Σ ∪ {ϕ} of keys in K′ the XML key ϕ
is implied by the set Σ of explicitly specified XML keys.
We will use this section to briefly summarise the techniques
developed for efficiently deciding the implication problem of
keys in K [21]. In Section 6 we will extend these techniques
to the class K′.
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Let Σ ∪ {ϕ} be a finite set of keys in K. Let LΣ,ϕ denote
the set of all labels ` ∈ L that occur in path expressions of
keys in Σ ∪ {ϕ}, and fix a label `0 ∈ E− LΣ,ϕ. Further, let
Oϕ and O′ϕ be the PLs expressions obtained from the PL
expressions Qϕ and Q′ϕ, respectively, when replacing each
∗ by `0.

Let p be an Oϕ-path from a node rϕ to a node qϕ, let
p′ be an O′ϕ-path from a node r′ϕ to a node q′ϕ and, for
each i = 1, . . . , kϕ, let pi be a Pϕi -path from a node rϕi to a
node xϕi , such that the paths p, p′, p1, . . . , pkϕ are mutually
node-disjoint. From the paths p, p′, p1, . . . , pkϕ we obtain
the mini-tree TΣ,ϕ by identifying the node r′ϕ with qϕ, and
by identifying each of the nodes rϕi with q′ϕ. Note that qϕ is
the unique node in TΣ,ϕ that satisfies qϕ ∈ [[Oϕ]], and q′ϕ is
the unique node in TΣ,ϕ that satisfies q′ϕ ∈ qϕ[[O′ϕ]].

The following definition enables us to capture those nodes
of TΣ,ϕ which must be duplicated in a possible counter-
example tree. The marking of the mini-tree TΣ,ϕ is a subset
M of the node set of TΣ,ϕ: if for all i = 1, . . . , kϕ we have
Pϕi 6= ε, then M consists of the leaves of TΣ,ϕ, and other-
wiseM consists of all descendant-or-selfs of q′ϕ in TΣ,ϕ. The
nodes in M are said to be marked.

Example 3. The left of Figure 2 shows the mini-tree TΣ,ϕ

for the key

ϕ = (ε, ( ∗.publ, (author, {first.S,last.S}))

and some Σ, where library is the fixed label chosen from
E−LΣ,ϕ. The marking of the mini-tree consists of its leaves
(emphasised by ×).

We use mini-trees to calculate the impact of a key in Σ on
a possible counter-example tree for the implication of ϕ by
Σ. To distinguish keys that have an impact from those that
do not, we introduce the notion of applicability. A key σ is
said to be applicable to ϕ if and only if there are nodes wσ ∈
[[Qσ]] and w′σ ∈ wσ[[Q′σ]] in TΣ,ϕ such that w′σ[[Pσi ]] ∩M 6= ∅
for all i = 1, . . . , kσ. We say that wσ and w′σ witness the
applicability of σ to ϕ.

Example 4. Let Σ consist of the two keys

σ1 = (ε, ( ∗.publ, {doi}))

and

σ2 = ( ∗.publ, (author, {first.S,last.S})),

and let

ϕ = (ε, ( ∗.publ.author, {first.S,last.S})).

We find that σ1 is not applicable to ϕ, while σ2 is indeed
applicable to ϕ.

We define the witness graph GΣ,ϕ as the node-labelled di-
graph obtained from TΣ,ϕ by inserting additional edges: for
each key σ ∈ Σ that is applicable to ϕ and for each pair of
nodes wσ ∈ [[Qσ]] and w′σ ∈ wσ[[Q′σ]] that witness the appli-
cability of σ to ϕ, GΣ,ϕ should contain the edge (w′σ, wσ).
Subsequently, we refer to these additional edges as witness
edges, while the original edges from TΣ,ϕ are referred to as
downward edges of GΣ,ϕ. This is motivated by the fact that
for every witness wσ and w′σ, the node w′σ is a descendant-
or-self of the node wσ in TΣ,ϕ, and thus the witness edge
(w′σ, wσ) is an upward edge or loop in GΣ,ϕ.

Example 5. Let Σ = {σ1, σ2} and ϕ be as in Example 4.
The witness graph GΣ,ϕ is illustrated in the middle of Figure
2. It contains a witness edge arising from σ2.

The size |ϕ| of a key ϕ is defined as the sum of the
lengths of all path expressions in ϕ, i.e., |ϕ| = |Qϕ|+ |Q′ϕ|+Pkϕ

i=1 |P
ϕ
i |. Furthermore, let ||Σ|| denote the sum of the

sizes |σ| over all σ ∈ Σ.

Lemma 1 ([21]). Let Σ ∪ {ϕ} be a finite set of XML
keys in K. The node qϕ is reachable from q′ϕ in the witness
graph GΣ,ϕ if and only if ϕ ∈ Σ+.

Example 6. Let Σ = {σ1, σ2} and ϕ as in Example 4.
Since ϕ is not implied by Σ the completeness proof of the
axiomatisation for K includes the description of a generation
of a counter-example tree. An example of such a counter-
example tree is illustrated in Figure 2.

Based on Lemma 1 we have established the following al-
gorithm for deciding XML key implication in the fragment
K.

Algorithm 1 (XML Key-Implication in K).
Input: finite set Σ ∪ {ϕ} of XML keys in K
Output: yes, if Σ |= ϕ; no, if Σ 6|= ϕ

Method:
(1) Construct GΣ,ϕ from Σ and ϕ;
(2) IF qϕ is reachable from q′ϕ in GΣ,ϕ

THEN RETURN(yes)
(3) ELSE RETURN(no).

Theorem 2 ([21]). Let Σ∪{ϕ} be a finite set of XML
keys in K. Algorithm 1 decides the implication problem Σ |=
ϕ in time O(|ϕ| × (||Σ||+ |ϕ|)).

5. NON-EXTENSIBILITY
We will briefly describe some showcases that illustrate

how Algorithm 1 fails when structural keys are permitted as
well, i.e. for XML keys in K′.

Let Σ1 = {(ul, ( ∗.ol, ∅))} and

ϕ1 = (ε, (ul. ∗.ol.li.ol, {li.S})).

The relative structural key in Σ requires each legal XHTML
document to have at most one ordered list nested inside each
unordered list (on the level following the root of the docu-
ment). Among other restrictions, it is implicit that every
such legal document cannot have any ordered list occur-
ring as a list item of another ordered list which is nested
inside an unordered list. Hence, ϕ1 must also be satisfied
by every XHTML document that satisfies Σ1. More for-
mally, the soundness of the border, target-path-containment
and superkey rule shows that Σ1 implies ϕ1.

Let us consider the witness graph GΣ1,ϕ1 in the left of
Figure 3. The node qϕ1 is not reachable from the node q′ϕ1 .
Consequently, Algorithm 1 returns the wrong result, and
the generated alleged counterexample tree (according to the
general construction in the completeness argument, cf. [21])
violates Σ1, see Figure 3. Consequently, Algorithm 1 does
not work correctly for the class K′.

Algorithm 1 also fails for instances in which keys can be
derived by an application of the neighbour rule, e.g., Σ2 =
{(ol, ( ∗.ul, ∅))} and

ϕ2 = (ε, (ol. ∗, {li.ul.S, li.ol.li.ul})).

363



E

E

E

EE

E

SS

E

E

E

SS

Efirst E last

Edb

E

E

E

SS

Efirst E last

publ

library

author

publ

library

author

Georg GottlobGottlobGeorg

q’
ϕ

E

E

E

E

E E

S S

publ

db

library

author

first last

q
ϕ

publ

db

library

author

lastfirst

x x

Figure 2: A mini-tree, witness graphs and counter-example tree.

In contrast to the case when structural keys are not permit-
ted it now appears that non-trivial absolute keys are indeed
implied by relative keys.

Let

Σ3 = {(ol.li, (ol, ∅)), (ol, (li.ol, {li.S,type}))}

and

ϕ3 = (ol, (li, {ol.li.S,ol.type})).
According to the soundness of the multiple subnodes rule
Σ3 implies ϕ3. However, qϕ3 is not reachable from q′ϕ3 in
the witness graph GΣ3,ϕ3 , cf. Figure 3. Consequently, Algo-
rithm 1 returns the wrong result, and the generated alleged
counterexample tree violates Σ3, cf. Figure 3.

6. XML KEY IMPLICATION
We have seen in the last section how the algorithm for de-

ciding implication of keys in K does not work for the broader
class K′. The showcases that highlight how the algorithm
fails, however, have given us new insights into a possible
extension of our techniques to the class K′. We will now
introduce and explain these extensions. In particular, we
will establish an efficient algorithm for deciding implication
of the fragment K′. Indeed, the gain in expressiveness from
K to K′ comes for free in terms of efficiency.

Let Σ ∪ {ϕ} denote an instance of the implication prob-
lem for K′ where Σ contains some structural key. In this
case, the mini-tree TΣ,ϕ may not be suitable for generating
a possible counterexample tree because a single copy of the
minitree may already violate some structural key in Σ that
is applicable to ϕ.

As a first step we introduce tiny-trees as compressed ver-
sions of mini-trees. Intuitively, in the tiny-tree TΣ,ϕ we iden-
tify separate paths in TΣ,ϕ that offend some structural key
in Σ whenever we can, i.e., whenever such paths have the
same sequence of node labels.

Two nodes v, w in the node set of the mini-tree TΣ,ϕ are
said to be equivalent, denoted by v ∼ w, if and only if there
is some structural key (Qσ, (Q

′
σ, ∅)) ∈ Σ+ such that there is

some wσ ∈ [[Qσ]] and some simple path expression P ′ ⊆ Q′σ
such that v, w ∈ wσ[[P ′]]. The relation ∼ is an equivalence
relation on the node set of TΣ,ϕ, i.e., reflexive, symmetric
and transitive.

The tiny tree TΣ,ϕ has as its node set the quotient of the
node set of the mini-tree TΣ,ϕ with respect to ∼. The edge
set of the tiny tree TΣ,ϕ consists of precisely those edges
(V,W ) where V 6= W and there are v ∈ V and w ∈W such
that (v, w) is an edge of the mini-tree TΣ,ϕ.

Algorithm 2 (Tiny-Tree Generation).
Input: mini-tree T

Output: tiny-tree T

Method:
(1) WHILE ∃(Qσ, (Q′σ, ∅)) ∈ Σ such that
(2) ∃wσ ∈ [[Qσ]] and ∃P ′ ⊆ Q′σ such that

∃w′σ, w′′σ ∈ wσ[[P ′]] with w′σ 6= w′′σ
(3) DO Identify in T the paths from the root to w′′ and w′

(4) RETURN(T ).

Lemma 2. Algorithm 2 computes the tiny tree TΣ,ϕ from
the mini tree TΣ,ϕ.

Let M denote the marking of the mini tree TΣ,ϕ. As a
next step we define the markingM of the tiny tree TΣ,ϕ as
follows: a node V of TΣ,ϕ belongs toM if and only if there
is some v ∈ V such that v ∈ M or there is some ancestor
node W of V in TΣ,ϕ that already belongs toM. Informally,
the marking of the tiny tree is the downward closure of the
marking of the mini tree with respect to document order.

Example 7. Let Σ = {(publ, (author, ∅))}, and

ϕ = (ε, (publ, {author.first.S,author.last.S})).

The mini-tree TΣ,ϕ, tiny-tree TΣ,ϕ and a counterexample for
the implication of ϕ by Σ are illustrated in Figure 4.

For the class K′ the tiny-tree TΣ,ϕ will take on the role
that the mini-tree TΣ,ϕ played for the class K. In fact, the
witness graph GΣ,ϕ is defined exactly as before but results
from the tiny-tree TΣ,ϕ rather than the mini-tree TΣ,ϕ.

A key σ ∈ K′ is said to be applicable to ϕ if and only if
there are nodes wσ ∈ [[Qσ]] and w′σ ∈ wσ[[Q′σ]] in TΣ,ϕ such
that w′σ[[Pσ]]∩M 6= ∅ for all Pσ ∈ Sσ. We say that wσ and
w′σ witness the applicability of σ to ϕ.

In order to decide implication in K′ we now only require
a single additional step which results from the following
lemma. Intuitively, if the tiny tree still violates some struc-
tural key in Σ, then there cannot be any counterexample for
the implication of ϕ by Σ.

Lemma 3. Let Σ∪{ϕ} be a finite set of XML keys in K′,
and let TΣ,ϕ denote its tiny tree. If there is some structural
key σ ∈ Σ such that there is some wσ ∈ [[Qσ]] in TΣ,ϕ and
there are distinct w′σ, w

′′
σ ∈ wσ[[Q′σ]] in TΣ,ϕ, then {σ} `

ϕ.

Example 8. Let

Σ = {(publ, ( ∗.author, ∅))},
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and

ϕ = (ε, (publ. ∗, {journal.author,conference.author})).

The mini-tree TΣ,ϕ is illustrated in Figure 5. Since there is
no single simple path expression via which both of the distinct
author nodes in TΣ,ϕ can be reached from the publ node,
the tiny-tree coincides with the mini-tree. Notice that ϕ can
be inferred from Σ by a single application of the neighbour
rule.
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Figure 5: Mini-tree and Tiny-tree for Example 8.

Lemma 3 implies, in particular, that we cannot charac-
terise key implication in K′ by reachability in the witness
graph, as established for the class K. However, reachability
is still a sufficient condition. The proof encodes paths of
the witness graph into inference steps to derive ϕ from Σ.
This is accomplished by utilising correspondences between
witness edges and applicable keys.

Lemma 4. Let Σ∪{ϕ} be a finite set of XML keys in K′.
If qϕ is reachable from q′ϕ in the witness graph GΣ,ϕ, then
ϕ ∈ Σ+.

Algorithm 3 (XML Key-Implication in K′).
Input: finite set Σ ∪ {ϕ} of XML keys in K′

Output: yes, if Σ |= ϕ; no, if Σ 6|= ϕ

Method:
(1) Construct TΣ,ϕ from Σ and ϕ;
(2) IF ∃(Qσ, (Q′σ, ∅)) ∈ Σ such that ∃wσ ∈ [[Qσ]] in TΣ,ϕ

and ∃ distinct w′σ, w
′′
σ ∈ wσ[[Q′σ]] in TΣ,ϕ

(3) THEN RETURN(yes)
(4) ELSE Construct GΣ,ϕ from Σ and ϕ;
(5) IF qϕ is reachable from q′ϕ in GΣ,ϕ

THEN RETURN(yes)
(6) ELSE RETURN(no).

A comparison between Algorithm 3 and Algorithm 1 shows
that adding structural keys to K results in the additional
steps between lines (1) to (3). These are justified by Lemma
3.

Example 9. Let Σ∪{ϕ} be as in Example 8. Recall that
ϕ is implied by Σ, and consider the tiny-tree TΣ,ϕ in Fig-
ure 5. With this input instance Algorithm 3 returns yes in
line (3) since there are two distinct author nodes in TΣ,ϕ

reachable from the publ node.

Example 10. Let

Σ = {( ∗, (publ.author, {first.S, last.S}))}

and

ϕ = ( ∗, (publ, {author.first.S, author.last.S})).
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The associated mini-tree TΣ,ϕ is the one illustrated in the
very left of Figure 4. The tiny-tree TΣ,ϕ coincides with this
mini-tree since there are no structural keys in Σ. The wit-
ness graph GΣ,ϕ is illustrated in the left of Figure 6. Since
qϕ is not reachable from q′ϕ Algorithm 3 returns no. A coun-
terexample tree for the implication of ϕ by Σ is illustrated in
the middle of Figure 6. Let us now consider

Σ = {(publ, (author, ∅)), ( ∗, (publ.author, {first.S, last.S}))}

and

ϕ = ( ∗, (publ, {author.first.S, author.last.S})).

We know from previous examples that removing any single
key from Σ means that ϕ is not implied by Σ. The mini- and
tiny-trees are those of Figure 4, respectively. The witness
graph GΣ,ϕ is illustrated in the right of Figure 6. Notice
that

( ∗, (publ.author, {first.S, last.S}))
becomes applicable to ϕ in TΣ,ϕ. With this input instance
Algorithm 3 returns yes in line (5) since qϕ is reachable from
q′ϕ.

The additional effort in lines (1)-(3) necessary for deciding
key implication in K′ rather than K does not add to the
time-complexity, cf. Theorem 2.

Theorem 3. Let Σ ∪ {ϕ} be a finite set of XML keys in
K′. Algorithm 3 decides the implication problem Σ |= ϕ in
time O(|ϕ| × (||Σ||+ |ϕ|)).

7. BORDER TO INTRACTABILITY
The keys of the class K′ form a fragment of numerical

constraints [20]. For the purposes of this paper it suffices
to consider the following fragment of numerical constraints.
An upper-bound constraint ϕ for XML is an expression

card(Q, (Q′, S)) ≤ max

where Q,Q′ are PL expressions, and all P ∈ S are PLs
expressions such that Q.Q′ is a valid path expression if k =
0, and Q.Q′.P are valid path expressions for all P ∈ S if k >
0, where k is a non-negative integer, and where max ∈ N ∪
{∞}. An XML tree T satisfies card(Q, (Q′, {P1, . . . , Pk})) ≤
max if and only if for all q ∈ [[Q]], for all q′ ∈ q[[Q′]] such
that for all x1, . . . , xk with xi ∈ q′[[Pi]] for i = 1, . . . , k, the
following holds:

| {q′′ ∈ q[[Q′]] | ∃y1, . . . , yk such that
yi ∈ q′′[[Pi]] and xi =v yi for i = 1, . . . , k} |≤ max .

However, it has been shown [20] that the implication prob-
lem of the class {card(ε, (P ′, S)) ≤ max | 1 ≤ max ≤ 6} is
already coNP-hard to decide. Hence, our results show that
K′ constitutes the large tractable fragment of upper-bound
constraints where the upper bound is fixed to 1. A further
tractable fragment of upper-bound constraints are numeri-
cal keys in which the set S of simple key path expressions is
non-empty [20]. This fragment is incomparable to K′.

8. CONCLUSION AND FUTURE WORK
We have demonstrated that the class K′ forms an expres-

sive, yet tractable fragment of XML keys [8]. The class K′
extends the previously-studied robust class K [21] by struc-
tural keys which identify nodes independently of any data
values. The gain in expressiveness comes for free as our ax-
iomatisation can be encoded in an algorithm that decides
key implication in K′ as efficiently as for K [21]. However,
we could not characterise key implication in K′ as reacha-
bility in a suitable digraph, in contrast to K. Moreover, K′
constitutes an efficiently-decidable subclass of upper-bound
constraints for which implication is strongly coNP-hard to
decide [20].

One area that warrants future research is the study of keys
with respect to even more expressive path languages [6, 14,
27, 28, 38]. In particular, axiomatisability and implication
problem are still open for XML keys with key path expres-
sions in PL [9]. It may also prove a challenging task to apply
the notion of value-equality, studied in this paper, to more
expressive classes of XML constraints such as functional or
multivalued dependencies [4, 19, 22, 25, 26, 30, 34, 35, 36].
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