
Efficient Constraint Evaluation in Categorical Sequential
Pattern Mining for Trajectory Databases

Leticia I. Gomez
Instituto Tecnólogico de Buenos Aires

lgómez@itba.edu.ar

Alejandro A. Vaisman
Universidad de Buenos Aires and

University of Hasselt and
Transnational University of Limburg, Belgium

alejandro.vaisman@uhasselt.be

ABSTRACT
The classic Generalized Sequential Patterns (GSP) algorithm re-
turns all frequent sequences present in a database. However, usu-
ally a few ones are interesting from a user’s point of view. Thus,
post-processing tasks are required in order to discard uninterest-
ing sequences. To avoid this drawback, languages based on regular
expressions (RE) were proposed to restrict frequent sequences to
the ones that satisfy user-specified constraints. In all of these lan-
guages, REs are applied over items, which limits their applicability
in complex real-world situations. We propose a much powerful
language, based on regular expressions, denoted RE-SPaM, where
the basic elements are constraints defined over the (temporal and
non-temporal) attributes of the items to be mined. Expressions in
this language may include attributes, functions over attributes, and
variables. We specify the syntax and semantics of RE-SPaM, and
present a comprehensive set of examples to illustrate its expressive
power. We study in detail how the expressions can be used to prune
the resulting sequences in the mining process. In addition, we in-
troduce techniques that allow pruning sequences in the early stages
of the process, reducing the need to access the database, making use
of the categorization of the attributes that compose the items, and
of the automaton that accepts the language generated by the RE.
Finally, we present experimental results. Although in this paper we
focus on trajectory databases, our approach is general enough for
being applied to other settings.

1. INTRODUCTION
In many application domains, information is organized as or-

dered sequences. Usual examples are log analysis and retail market
analysis. These applications can benefit from the discovery of hid-
den patterns in such sequences. The data mining community has
contributed to solve these problems developing algorithms for effi-
ciently discovering sequential patterns [3, 14, 10]. Some of these
algorithms defined a pattern as interesting if this pattern is frequent,
i.e., if it appears at least as many times as a user-specified threshold.
The problem with this approach is that the user may obtain frequent
sequential patterns not necessarily relevant enough from her point
of view. Garofalakis et al. [6, 7] address this problem by pruning

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

the candidate patterns obtained during the mining process adding
user-specified constraints in the form of regular expressions. The
sequential pattern algorithm returns only the frequent patterns that
satisfy these regular expressions.

In spite of the above, for many novel applications, more gen-
eral forms of constraints are required. For example, when we need
to discover patterns at different granularity levels involving some
kind of aggregation, the task becomes more involved. This is the
problem we study in this paper, where we introduce a language to
express a wide range of constraints not supported by previous pro-
posals, thus limiting their scope.

1.1 Motivation and Running Example
We motivate our work with an example from the field of mov-

ing object databases (MOD). Moving object data applications have
been steadily gaining attention [8], in particular, the ones involv-
ing trajectory aggregation, mainly regarding traffic analysis. The
behavior of moving objects is traceable by means of electronic de-
vices (e.g., GPS, RFID). Since locations of a moving object are
reported as a time-ordered sequence, sequential pattern algorithms
appear as natural tools for querying and mining MODs. In what
follows, we assume that MOD are captured at a given time interval,
with a certain granularity. Thus, the trajectory of a moving object is
given by samples composed of a finite number of tuples of the form
< Oid, t, x, y >, stating that at a certain point in time, namely t,
the object Oid was located at coordinates (x, y).

We address the problem of discovering patterns in a trajectory
database, where each trajectory is represented as a time-ordered
sequence of the geographic positions of an object. This trajectory
database is transformed, using the ideas introduced by Spaccapietra
et al. [13], and Alvares et al. [?], where it is assumed that objects
move over a map that contains disjoint geometries, along with se-
mantic information associated with them in the form of attributes.
We denote these geometries Places of Interest of the Application
(PoIs), because they depend on the application at hand, i.e., for the
same map, two applications may have different PoIs defined for
them. For example, in a tourist application PoIs can be restaurants,
hotels and tourist attractions. When a moving object spends a suf-
ficient amount of time within a PoI, the PoI is considered a stop of
the trajectory, and all (x, y) points in the PoI are replaced by a data
object representing the stop. This allows considering each object’s
trajectory as a sequence of stops instead of a sequence of points.
We apply sequential pattern algorithms to this approximation of
trajectories (also called “semantic trajectories”).

Throughout the paper we refer to a tourist application in the city
of Paris. The items to be mined are, precisely, sequences of stops,
composed of the PoIs visited by tourists, the time interval spent for
each moving object at each stop, and the attributes of the PoIs. The
data model we present supports item categorization, meaning that

541

each item can be classified as belonging to a category, described by
a set of attributes. Intuitively, this allows us to talk about schema
(i.e., the structure), occurrence (a concrete instance of a category,
e.g., a particular hotel), and instances (a set of occurrences) of cate-
gories. In our example we have four categories: hotels, restaurants,
the Eiffel Tower and zoos, with different attributes and number of
occurrences. Table 1 shows these categories and their schemas. An
instance (i.e., a set of occurrences), is shown in Figure 1. Each time
a tourist visits a PoI and stops at it, this information is recorded.
More precisely, each stop of the moving object (i.e., an item) is a
complex object composed of temporal attributes (indicating the du-
ration of the stop), and category attributes. Each item can belong
to exactly one category. We want to discover frequent sequential
patterns for moving objects (although the approach could be used
in any application domain), restricting these patterns to the ones
that satisfy a set of constraints, specified by means of regular ex-
pressions over the attributes of the objects. These constraints are of
the form “trajectories that first visit cheap restaurants, then go to a
3-star hotel, and finish at the first restaurant”.

1.2 Related Work
Two main approaches had been followed in the field of pattern

discovery in sequences: (a) The classic Agrawal and Srikant [3]
proposal, and (b) The approach of Mannila et al. [10]. The former
is aimed at discovering inter-transactions patterns, based on previ-
ous work [1, 2] dealing with detecting intra-transactions patterns.
The information to be mined is organized in transactions, and the
system returns the frequent sequential patterns among them. The
latter, instead, considers the information to be mined as a large
single sequence. The choice of the algorithm depends on the ap-
plication domain. Our work is based on (a) above, and its vari-
ants, i.e., we focus on the problem of mining sequential patterns in
transactions. In that work, data is pre-processed in a way such that
each customer (in a market basket analysis scenario) is associated
with all her transactions ordered by time of occurrence. The idea
is to find inter-transaction patterns corresponding to the same cus-
tomer with a certain support. An interesting sequential pattern is
one that appears in the database at least as many times as an user-
specified threshold. The support of a sequence is the fraction of
the total number of transactions containing it. In further work, the
authors extended their proposal [14] in order to support three kinds
of constraints: (a) time-gap constraints; (b) taxonomies; (c) time
windows. The resulting algorithm is called Generalized Sequential
Patterns (GSP). Although many frequent sequential patterns could
be obtained using GSP, it is likely that only a few of them could be
relevant to the user. To avoid this situation, Garofalakis et. al. [6, 7]
propose a variation of the GSP algorithm, denoted SPIRIT, where
user-defined regular expressions are used to prune the information
obtained. For example, assume that in a Web portal log, each user’s
transaction is recorded, and that the following frequent sequential
patterns are obtained:
〈{URL_B}, {URL_M}〉; 〈{URL_B}, {URL_R}〉
〈{URL_A}, {URL_D}, {URL_M}, {URL_A}, {URL_D}, {URL_Z}〉
The last pattern shows that users navigate fromURL_A toURL_Z,
passing through many pages on the way. Based on this information,
a Web designer may want to place a link between these two pages.
The first two patterns appear to be useless from this point of view.
Thus, the designer may want to specify the following constraint in
order to retrieve only the patterns of interest for her:
URL_A(URL_A|URL_B|URL_D|URL_M|URL_R)+URL_Z

A-priori like algorithms are based on the anti-monotony prop-
erty. Although they take advantage of pruning, they generate a gen-
erally huge number of candidate frequent patterns. To improve this,

pattern-growth methods have been proposed to avoid the genera-
tion of candidate sequences: FreeSpan [9] and PrefixSpan [11]. In
these methods, projected databases are built recursively, and these
smaller databases are scanned to find locally frequent sequences,
avoiding scanning the original sequences database. These meth-
ods find the full set of frequent subsequences. Then, constraint-
based sequential pattern mining based on constructing projected
databases have been studied [12]. Further, to avoid generating pat-
terns that could be obtained from other ones, Yan et al. introduce
the CloSpan algorithm [15], which reduces the number of gener-
ated patterns by mining only frequent closed subsequences, i.e.,
those containing no super-sequence with the same support.

In the field of trajectory analysis, Mouza and Rigaux [5] pro-
posed a language based on regular expressions for querying mobil-
ity patterns in trajectories where each zone could be represented by
its label (a constant) or by a variable (@x). In this language, each
occurrence of a variable in the pattern is instantiated with the same
value. The units of time spent by the moving object inside some
zone are expressed with the symbol + (undetermined time) or via
the temporal constraint boundaries {min, max}. The query “objects
that started in zone A, visited another zone and five minutes later
came back to A ”, is expressed in this language as: A,7.@X+A,12.
Here, variables can only be associated with places (represented by
labels or IDs) visited by objects. Thus, the language cannot deal
with time constraints or categories. On the contrary, our approach
allows variables associated with any attribute of an item.

1.3 Contribution and organization
Regular expressions have been used for mining sequential pat-

terns, particularly in the field of trajectory databases. Proposals like
SPIRIT [6, 7] are aimed at pruning uninteresting sequences, using
regular expressions. However, when mining huge volumes of data,
and complex constraints must be managed, existing approaches do
not suffice for an effective pruning phase. With this in mind, we ex-
tend existing work in several ways: we propose a language based
on regular expressions, called RE-SPaM, built on constraints (i.e.,
conditions over attributes of complex items) rather than over atomic
items. Further, regular expressions in RE-SPaM can contain con-
stants, attributes, and variables in a way that substantially improves
earlier proposals. We also allow functions over attributes. These
functions can be defined, for instance, in a relational database, a
multidimensional database (in the form of a rollup function [4]),
or as a Web Service. We remark that, in the work of Srikant et
al. [14], only items (IDs) are allowed to participate on hierarchies.
We extend this idea allowing any kind of attribute (including tem-
poral ones) in such hierarchies. We show that supporting attribute,
variables, and categorization, implies not merely an addition to pre-
vious proposals, but introduces new theoretical and practical prob-
lems, providing a powerful language for sequential pattern mining,
relevant to many real-world applications.

We first introduce the formal data model (Section 2). Then, we
define the syntax and semantics of RE-SPaM, along with a com-
prehensive set of examples (Section 3). In Section 4 we present
an algorithm for sequential pattern mining supporting these new
features, also providing an in-depth discussion of different imple-
mentation issues. Section 5 presents and discusses experimental
results. We conclude in Section 6.

2. PRELIMINARIES AND DATAMODEL
Traditional algorithms for sequential pattern mining work over

atomic items, i.e., literals. Each item has the time interval of the
transaction associated with it, used to define an order among the
itemsets. In this work we consider items as composed of attributes.

542

Category Schema

hotels [ID, categoryName, geom, star]
restaurants [ID, categoryName, geom, typeOfFood, price]
Eiffel Tower [ID, categoryName, geom]

zoos [ID, categoryName, geom, price]

Table 1: Schema of the categories in the running example

We first introduce a formal model and then define the regular lan-
guage we use in the pruning phase of the data mining algorithm of
Section 4. As usual in databases, we work with the notion of cate-
gory schema and its associated instances. We have a set of attribute
names A, and a set of identifier names I. Each attribute attr ∈ A
is associated with a set of values in dom(attr), and each identifier
ID ∈ I is associated with a set of values in dom(ID).

DEFINITION 1 (CATEGORY SCHEMA). A category schema S
is a pair (ID ,A), where ID ∈ I is a distinguished attribute de-
noted identifier, and A = {attr|attr ∈ A}. Without loss of gen-
erality, and for simplicity, in what follows we consider the set A
ordered. Thus, S has the form (ID , attr1, ..., attrn). ��

DEFINITION 2 (CATEGORY OCCURRENCE). Given a category
schema S , a category occurrence for S is the pair (〈ID, id〉,P),
where ID is the ID attribute of Definition 1 above, id ∈ dom(ID),
and P is the set of pairs {(attr1, v1), ..., (attrn, vn)}, where: (a)
attri = A(i) (remember that A is considered ordered); (b) vi ∈
dom(attri),∀i, i = 1..n; (c) All the occurrences of the same cate-
gory have the same set of attributes; (d) ID is unique for a category
occurrence, meaning that no two occurrences of the same category
can have the same value for ID . (see below) ��

REMARK 1. In what follows, for clarity reasons, we assume
that attr0 stands for ID . Thus, a category occurrence is the set of
pairs [(attr0, v0), (attr1, v1), ..., (attrn, vn)]. ��

DEFINITION 3 (CATEGORY INSTANCES). A set of occurrences
of the same category is denoted a category instance. Also, given set
of category instances (see Figure 1), we extend the fourth condition
in Definition 2 to hold for the whole set: ID is unique for a set of
category instances, meaning that no two occurrences of categories
in the set can have the same value for ID. ��

EXAMPLE 1. The schemas of the four categories in our exam-
ple are shown in Table 1. The corresponding set of category in-
stances is shown in Figure 1 (for example, the category hotels has
two occurrences). ��

Adding a time interval to a category occurrence, produces an
item. The time interval of an item is described by its initial and
final instants, and denoted [ts, tf]. Definition 4 spells the above out.

DEFINITION 4 (ITEM). Let S be a category schema, andO(S)
a category occurrence of the form [(ID, v), (attr1, v1),...,(attrn,
vn)]. An item I associated with O(S) is the set of pairs: [(ts, vts),
(tf, vtf), (ID, v), (attr1, v1), (attrn, vn)], where ts and tf are
temporal attributes corresponding to the beginning and ending of
the time interval of the occurrence, and vts and vtf are actual val-
ues for these attributes. ��

REMARK 2. When necessary, we decompose the temporal at-
tributes ts and tf into date and time parts of the form ts_date, ts_time,
tf_date and tf_time, respectively. This allows to talk easily about
the different parts of the day, and an implementation can make use
of the many features provided by DBMSs to handle temporal data
types. Nevertheless, it must be clear that we can indistinctly use
both forms of referring to these temporal attributes. ��

DEFINITION 5 (STRICT TIME INTERVAL OVERLAP). Let
I1 = [ts1, tf1] and I2 = [ts2, tf2], be two time intervals. We
say that there is a Strict Time Interval Overlap between them, if
I1 �= I2 and neither tf1 precedes ts2 nor tf2 precedes ts1. ��

DEFINITION 6 (TABLE OF ITEMS). Given a finite set of items
I, the schema of a Table Of Items (ToI) for I is the pair T =
(OID, Items). An instance of T is a finite set of tuples of the
form 〈Oj , ik〉 where ik ∈ I is an item associated with the object
Oj . Given 〈Oj , ik〉 and 〈Oj , im〉, two tuples corresponding to the
same object, then, either both time intervals of ik and im are the
same, or there is no strict time interval overlap between them. ��

EXAMPLE 2. Figure 2 shows an instance of a ToI correspond-
ing to the category instances of Figure 1. Note that the first two
items for OID = O2 have the same ID because they correspond to
the same category occurrence: [(categoryName, zoo), (ID, Z),
(geom, pol7), (price, cheap)]. For the attribute geom, we assume
that pol7 stores the geometric extension of Z. ��

The Data Model includes a set of functions F = {f1, f2, ...fn}
such that each fi can be applied to an attribute of an item. A dis-
tinguished function Val returns the value of an attribute.

DEFINITION 7 (VALUATION OF AN ATTRIBUTE). Let (attr ,
v) be a pair in a category occurrence; a valuation of attr is ob-
tained applying a function Val such that Val(attr) = (v). ��

EXAMPLE 3. When the last item in Figure 2 is instantiated, a
valuation Val(ts_date) = 19/08/2008 is applied. ��

Besides the Val function, other (application-dependant) func-
tions can be defined ad-hoc. For instance, in a GIS environment
we may have the function Contains, that, applied to an attribute of
type geometry and a constant geometry, returns true if the first one
completely contains the second one. We can take advantage of the
fact that our model supports a family of functions defined above,
to integrate an OLAP environment in this setting. In OLAP, data
is aggregated along so-called dimensions, usually organized in hi-
erarchies. Each hierarchy is composed of levels (categories). Each
category is associated with instances, and between instances of two
levels in a hierarchy, a function (denoted rollup) is defined. Thus, at
the instance level, a dimension consists in a set of rollup functions
that define how aggregation is performed [4]. The rollup functions
can be part of the family of functions defined above, in order to add
OLAP capabilities in our data model. For example, if an attribute
of an item has a hierarchy associated with it, and such attribute is
the bottom level of this hierarchy, we can apply the rollup function
to an instance of the attribute as follows: for the last item in Figure
2, rollup(ts_date, quarter, T ime) returns Q3, meaning that the
function is applied to an element (ts_date) in the bottom level of
the Time dimension, and the range of the function is the dimension
level “quarter”. We make extensive use of a Time dimension, which
may have the levels day, month, quarter and year organized in the
hierarchy date → day → month → quarter → year. A re-
lational view of this dimension can contain, for instance, the tuple
〈22/09/07,22,September,Q3,2007〉. We omit further details for the
sake of space, and, in Section 3, we give an example of the use of
these rollup functions in our language.

DEFINITION 8 (VALUATION OF AN ITEM). Let I be an Item,
and F a set of functions {f1, f2, ..., fn}, such that each fi maps
the value v in a pair (attr , v) ∈ I to a single value. In addition
to v, fi can have other constants as arguments. We generically

543

Category Instance

hotels (2 occurrences)
[(ID, H1), (categoryName, hotel), (geom, pol1), (star, 3)]
[(ID, H2), (categoryName, hotel), (geom, pol2), (star, 5)]

restaurants (3 occurrences)
[(ID, R1), (categoryName, restaurant), (geom, pol3), (typeOfFood, French), (price, cheap)]

[(ID, R2), (categoryName, restaurant), (geom, pol4), (typeOfFood, French), (price, expensive)]
[(ID, R3), (categoryName, restaurant), (geom, pol5), (typeOfFood, Italian), (price, cheap)]

Eiffel Tower (1 occurrence) [(ID, E), (categoryName, EiffelTower), (geom, pol6)]

zoos (1 occurrence) [(ID, Z), (categoryName, zoo), (geom, pol7), (price, cheap)]

Figure 1: Set of instances for the categories in Table 1

OID Items

O1

([(ts_date,04/08/2008), (ts_time,14:05), (tf_date,04/08/2008), (tf_time,14:33), (ID,R2),(categoryName,restaurant), (geom,pol4), (typeOfFood,French), (price,expensive)])
([(ts_date,04/08/2008), (ts_time,15:10), (tf_date,04/08/2008), (tf_time,16:05), (ID,E), (geom,pol6)])
([(ts_date,04/08/2008), (ts_time,17:30), (tf_date,04/08/2008), (tf_time,18:48), (ID,R3),(categoryName,restaurant), (geom,pol5), (typeOfFood,Italian), (price,cheap)])
([(ts_date,08/08/2008), (ts_time,06:22), (tf_date,08/08/2008), (tf_time,07:05), (ID,R1), (categoryName,restaurant), (geom,pol3), (typeOfFood,French), (price,cheap)])
([(ts_date,08/08/2008), (ts_time,10:00), (tf_date,08/08/2008), (tf_time,13:00), (ID,E), (geom,pol6)])
([(ts_date,08/08/2008), (ts_time,17:10), (tf_date,08/08/2008), (tf_time,18:17), (ID,R1), (categoryName,restaurant), (geom,pol3), (typeOfFood,French), (price,cheap)])

O2

([(ts_date,03/08/2008), (ts_time,11:00), (tf_date,03/08/2008), (tf_time,11:15), (ID,Z),(geom,pol7), (price,cheap)])
([(ts_date,08/08/2008), (ts_time,18:30), (tf_date,08/08/2008), (tf_time,21:00), (ID,Z),(geom,pol7), (price,cheap)])
([(ts_date,19/08/2008), (ts_time,09:00), (tf_date,19/08/2008), (tf_time,10:20), (ID,R1), (categoryName,restaurant), (geom,pol3), (typeOfFood,French), (price,cheap)])
([(ts_date,19/08/2008), (ts_time,17:00), (tf_date,19/08/2008), (tf_time,18:12), (ID,R2), (categoryName,restaurant), (geom,pol4), (typeOfFood,French), (price,expensive)])

Figure 2: An instance of the ToI

denote these additional arguments A. A valuation of I with F , de-
noted V(I,F) is the item resulting from applyingF to I as follows:
pick one fi in F and apply it to the value v in a pair (attrj , v) of
I , probably using some constants in A. Repeat the process with
the remaining pairs, until all pairs have been valuated. Note that
the same function could be applied to more than one pair. If the
function Val is applied to all the pairs in I, we obtain the identity
valuation, i.e., the valuation of the item is the item itself. ��

EXAMPLE 4. If we apply the rollup function to the first pair of
the last item in Figure 2, and the Val() function to all other pairs
in the item, we obtain the valuation [(ts_date,Q3), (ts_time,17 :
00), (tf_date,19/08/2008), (tf_time,18 : 12), (categoryName,
restaurant), (ID, R2), (geom, pol4), (typeOfFood, French),
(price, expensive)]. ��

DEFINITION 9 (TRANSFORMED SUBITEM). Given an item I,
a set of functions F , and a valuation of I with F , V(I,F), we de-
note any subset of V a Transformed Subitem, TS(I). ��

EXAMPLE 5. In Example 4, the valuation of the item yields
the transformed subitems [(tf_date,19/08/2008), (tf_time,18:12),
(price, expensive)], [(ts_date,Q3), (price, expensive)], and other
ones we omit for the sake of brevity. ��

DEFINITION 10 (ITEMSET). An itemset (i1, i2, ...in) is a non-
empty set of items, where n ≥ 1, and for all ik, k = 1..n, the
ts_date, ts_time, tf_date, tf_time values are the same. ��

REMARK 3. In the moving objects setting, since each moving
object can be in only one place at each moment, all itemsets be-
longing to the same OID contain exactly one item. ��

DEFINITION 11 (SUB-ITEMSET). Let IS= (i1, i2, ...in), be an
itemset. A sub-itemset of IS is a subset of (TS(i1), TS(i2),...
TS(in)), where TS(ii) is any transformed subitem of ii. ��

DEFINITION 12 (SEQUENCE). A sequence is an ordered list
of itemsets 〈i1, i2, ..., im〉 such that, for every pair of integers j, g,
j < g ⇒ Val(ij .tf , v) < Val(ig .ts , v) holds.(The i.a notation
means that a is an attribute of item i. ��

DEFINITION 13 (SUBSUMED SEQUENCE). We say that a se-
quence 〈a1, a2, ..., an〉 subsumes another sequence 〈b1, b2, ..., bn〉
if ∀ i ∈ 1..n, bi is a sub-itemset of ai. ��

DEFINITION 14 (CONTIGUOUS LIST). Given a ToI instance
with tuples of the form 〈Oj , ik〉, let us denote Items(Oj) the set of
items ik associated with Oj . Also let CL(Oj) ⊆ Items(Oj). We
say CL(Oj) is a contiguous list for Oj , if ∀i ∈ Items(Oj) and
i /∈ CL(Oj), the starting time of i (denoted vts(i)) is less than the
starting time of all the items in CL(Oj), or all the starting times of
the items in CL(Oj) are less than vts(i). Note that a contiguous
list is also a sequence. ��

Now we are ready to give a precise definition of the notion of
Support of a sequence.

DEFINITION 15 (SUPPORT). Given a ToI instance with tu-
ples of the form 〈Oj , ik〉. The support of a sequence S is the frac-
tion of the different objects Oj in the ToI, associated with a con-
tiguous list CL(Oj) which subsumes S. ��

Definitions 10 through 15 can be more clearly understood through
an example outside the MOD domain, i.e., in a scenario where
itemsets are of size > 1. Example 6 below is adapted from classi-
cal data mining literature, and shows that our approach is general
enough to capture other domains..

EXAMPLE 6. Consider the taxonomy shown in Figure 3, and
a corresponding ToI instance in Figure 4. There are two differ-
ent objects, C1 and C2. We show below that the sequence S =
〈([(ID, F)]), ([(ID, Tolkien)])〉 has a support of 100%, using
the notions introduced above (note that the second part of S is ob-
tained as a generalization of the ID attribute). The taxonomy can
be seen as a rollup function where, for example, rollup(F)=‘Tolkien’,
and rollup(I)=‘Clarke’.

The contiguous list CL(C1) is composed of the second, third
and fourth items in Figure 4. This sequence contains two item-
sets. The first one is ([(ts_date, 10/10/99), (ts_time, 00:02),
(tf_date, 10/10/99), (tf_time, 00:02), (categoryName,Book),
(ID, F)]). Applying the Val function and considering only the last
pair, we obtain the sub-itemset ([(ID, F)]), which coincides with
the first itemset of S. The second itemset is composed of two items:

544

Tolkien Clarke

F G H

I J

Figure 3: A taxonomy for Example 6

ID Items
C1 [(ts_date,10/10/99), (ts_time,00:01), (tf_date,10/10/99), (tf_time,00:01),

(categoryName,Book), (ID,I)]
C1 [(ts_date,10/10/99), (ts_time,00:02), (tf_date,10/10/99), (tf_time,00:02),

(categoryName,Book), (ID,F)]
C1 [(ts_date,10/10/99), ((ts_time,00:15), (tf_date,10/10/99), (tf_time,00:15),

(categoryName,Book), (ID,J)]
C1 [(ts_date,10/10/99), ((ts_time,00:15), (tf_date,10/10/99), (tf_time,00:15),

(categoryName,Book), (ID,H)]
C2 [(ts_date,10/10/99), ((ts_time,00:01), (tf_date,10/10/99), (tf_time,00:01),

(categoryName,Book), (ID,F)]
C2 [(ts_date,10/10/99), ((ts_time,00:01), (tf_date,10/10/99), (tf_time,00:01),

(categoryName,Book), (ID,I)]
C2 [(ts_date,10/10/99), ((ts_time,00:20), (tf_date,10/10/99), (tf_time,00:20),

(categoryName,Book), (ID,G)]
C2 [(ts_date,10/10/99), ((ts_time,00:50), (tf_date,10/10/99), (tf_time,00:50),

(categoryName,Book), ((ID,J]

Figure 4: Instance of a ToI containing two objects (C1, C2)

([(ts_date, 10/10/99), (ts_time, 00:15), (tf_date, 10/10/99),
(tf_time, 00:15), (categoryName, Book), (ID, J)], and
[(ts_date, 10/10/99), (ts_time, 00:15), (tf_date, 10/10/99),
(tf_time, 00:15), (categoryName,Book), (ID, H)]). Apply-
ing the Val function over all attributes (except ID, where we ap-
ply the rollup function) of the second item, we obtain the sub-
itemset ([(ID, Tolkien)]). This sub-itemset coincides with the sec-
ond itemset of S. Thus, the object C1 contributes to the support of
the sequence S. With a similar analysis, we can show that C2 also
contributes to the support of S. Then, we conclude that the support
of the sequence S is 100%. ��

3. THE RE-SPaM LANGUAGE
We now introduce a language based on regular expressions where,

instead of atomic items (as in previous proposals), the atoms are
constraints expressed as formulas over attributes of the complex
items defined in Section 2. The grammar for the constraints is
given in Table 2. The regular expression language is built in the
usual way, supporting the standard operators. The meaning of these
operators is specified in Figure 5, and the precedence is the usual
one (‘()’,‘*’,‘+’,‘?’,‘.’,‘|’). The language also supports variables
(strings preceded by ‘@’).

3.1 Syntax and Semantics

DEFINITION 16 (TERMS). There exist no terms other than the
following ones: (1) Constants: a literal enclosed by simple quotes.
For example, ‘3’ for the integer three, ‘12/10/2007’ for a date. (2)
Attributes: See Definition 4. There exist two types of attributes: (a)
attributes in categories, which are elements in the category schema
(e.g., categoryName, ID, geom, price); (b) temporal attributes, i.e.,
attributes which identify temporal occurrences of an item. They are
denoted ts_date, tf_date, ts_time and tf_time. (3) Variables: a lit-
eral that begins with the ‘@’ symbol. For example, @x, @Y1, etc.
(4) Functions of n arguments: An expression fn(attribute, ‘ct1’,

Symbol Meaning

| Disjunction. For example, C | D expresses “C” or “D”.
. Concatenation. For example, C.D expresses that

constraint “D” immediately follows constraint “C”.
* Zero or more occurrences. For example, C∗ expresses

that constraint “C” holds zero or more times.
+ One or more occurrences. For example, C+ expresses that

constraint “C” holds one or more times
? Zero or one occurrence. For example, C? expresses that “C” is optional

Figure 5: Regular Expression operators

R1 CONSTRAINT← [CONDITION]
R2 CONDITION← λ
R2 CONDITION← EQ
R2 CONDITION← EQ ∧ CONDITION
R3 EQ← attr = ‘constant’
R3 EQ← attr = @vble
R3 EQ← functionName(attr, ...) = ‘constant’
R3 EQ← functionName(attr, ...) = @vble

Table 2: Grammar for constraints

‘ct2’, ... , ‘ctn−1’), n ≥ 1, is a function where the first parameter
is an attribute and all the other ones are constants. ��

DEFINITION 17 (FORMULA). Let C, V, A and F be a set of
constants, variables, attributes and functions, respectively. The ex-
pression term1 = term2 is a formula, where term1 ∈ A ∪ F, term2
∈ C ∪ V, and ‘=’ is the equality symbol. Moreover, if F1 and F2

are formulas, F1 ∧ F2 is also a formula. ��
In RE-SPaM, a constraint is a formula enclosed in squared brack-

ets. We denote this formula a condition (Table 2). There are two
kinds of conditions: (a) empty condition: satisfied by every item;
(b) non-empty condition: built as a conjunction of terms.

EXAMPLE 7. The expression [].[price = ‘cheap′] includes two
constraints. The first one is an empty condition, satisfied by all
the items in an instance of a table of items (in what follows, ToI).
The second one expresses the equality condition. In our running
example it is satisfied by the items identified by Z, R1 and R3.

Constraints can include functions over attributes. In our running
example we use functions over OLAP hierarchies. These functions
have the form rollup(attribute , ‘level_i’, ‘dimension_k’) = ‘c’,
and rollup(attribute , ‘level_i’, ‘dimension_k’) = @v. In the
first case, the function evaluates to true whenever in the hierarchy
of dimension_k, the value of attribute in the bottom level rolls up
to the member ‘c’ in the level level_i. Analogously, in the second
case, the function evaluates to true whenever in the hierarchy of
dimension_k the value of attribute in the bottom level rolls up
to a member which matches an instantiation of the variable @v in
level level_i.

In RE-SPaM, a constraint is expressed as a regular expression
R; to evaluate if a sequence satisfies the constraint, we build a DFA
AR which accepts the language generated by R.

3.2 RE-SPaM by Example
In this section through a set of queries, we give the reader the in-

tuition of what RE-SPaM can express, and how it differs from, and
substantially improves, other proposals. For example, existing ef-
forts force the user to enumerate the IDs of the items to express dis-
junctions, like (A|B|C|D)∗. When the number of items becomes
large, this solution would not be applicable. RE-SPaM allows writ-
ing concise expressions using the semantic information available.

545

a b c
[ID=‘H1’]

[]

[ID=‘E’]

[ID=‘H1’]

Figure 6: Automaton for Q2

Expressions can be built with attributes, functions, constants and
variables. We now present examples of the different kinds of ex-
pressions supported by RE-SPaM.
Constraints without variables.

Q1: Trajectories of tourists who visit hotel H1, then optionally
stop at restaurant R3 and the Zoo, and either end at H1 or visiting
the Eiffel Tower.

[ID=‘H1’].([ID=‘R3’].[ID=‘Z’])∗.([ID=‘E’]|[ID=‘H1’])
Note that Q1 uses only ID attributes in all its subexpressions.
Q2: Trajectories that visit hotel H1, then, optionally visit differ-

ent places, and finish at the Eiffel Tower or going back to H1.
[ID=‘H1’].[]∗.([ID=‘E’]|[ID=‘H1’])
The use of the empty condition allows avoiding the enumera-

tion of all the items. If an expression includes an empty condition,
during the mining process it is instantiated with all the IDs of the
category instances. Figure 6 shows the DFA shows the determinis-
tic finite automaton (DFA) that accepts the language generated by
the expression.

Q3: Trajectories of tourists who visit hotel H1 and then a cheap
place or a place serving French food.

[ID=‘H1’].([price=‘cheap’]|[typeOfFood=‘French’])
Q3 contains a subexpression with no ID. The disjunction is eval-

uated as follows. Places with cheap prices are R1, R3 and Z, and
places that serve French food are R1 and R2. During sequential
pattern mining, we compute the items which satisfy these condi-
tions, without the need of explicit enumeration of all the possibili-
ties (note that the expression is equivalent to [ID=‘H1’]([ID=‘R1’]
| [ID=‘R3’] | [ID=‘Z’] | [ID=‘R2’]).

Q4: Trajectories that visited hotel H1 and then some cheap place,
on 10/10/2007.

[ID=‘H1’].([ts_date=‘10/10/2007’ ∧ price=‘cheap’])
Q4 contains a subexpression with a temporal attribute, which

characterize the occurrences of items in the database of sequences.
Q5: Trajectories that visit a cheap place during the third quarter

of any year.
[rollup(ts_date, ‘quarter’, ‘Time’)=‘Q3’ ∧ price=‘cheap’]
Q5 contains a rollup function over time. Like in the previous

query, during mining, by accessing the ToI we compute the items
that satisfy the temporal constraint.
Constraints with variables.

Q6: Trajectories that start at a place characterized by price (i.e.,
a place such that price is an attribute of the item representing this
kind of place), then stop either at the zoo or the Eiffel Tower, and
end up going to a place that serves French food, and has the same
price range as the initial stop. Figure 7 shows the DFA that ac-
cepts the language generated by the regular expression (we use this
automaton later in the paper).

[price=@x].([ID=‘Z’] | [ID=‘E’]).[typeOfFood=‘French’ ∧
price=@x]
In our running example, ‘cheap’ and ‘expensive’ are the only

possible values for prices; thus, the only valid combinations are:
cheap-cheap and expensive-expensive. Sequences such as {H1 Z
R1} and {Z E R2} do not satisfy the query. The first one because
hotel H1 is not characterized by price, the second one because Z has

a

b

c

d

[price=@x]

[ID=‘Z’] | [ID=‘E’]
[typeOfFood=‘French’ ∧ price=@x]

Figure 7: Automaton for Q6

cheap prices but R2 is expensive. On the other hand, the sequence
{Z Z R3} does satisfy the query. In our implementation, variables
are bound to items during the mining process as we explain later.

Q7: Trajectories that stopped at two places (the second one hav-
ing cheap prices), at the same part of the day (e.g., both of them
during the morning), on 10/10/2008.

[rollup(ts_time, ‘range’, ‘Time’)=@z ∧ ts_date=‘10/10/2008’].
[rollup(ts_time, ‘range’, ‘Time’)=@z ∧ ts_date=‘10/10/2008’ ∧

price=‘cheap’]
Q7 uses variables that the system binds (during the mining pro-

cess), to the result of applying a function over temporal attributes.
Metadata constraints.

Although, in general, variables are used to express matching con-
ditions between different subexpressions, they can also be used to
constraint items according to their structure. We call these kinds of
expressions, metadata constraints.

Q8: Trajectories that visited a place characterized by price.
[price=@Z]
The semantics here is: a sequence is in the result if it contains an

item with an attribute price in it. The variable here is not bound to
any particular value. As a more involved example, the constraint
[price=@x]+ is verified by sequences of one or more item (not
necessary the same ones), all of them with the same price. In our
running example, Z, R1, R2 and R3 are the items that satisfy this
constraint. Let us analyze another example.

Q9: Trajectories that visited a place characterized by price, and
finished somewhere, on October 10th, 2006.

[price=@x].[ts_date=‘10/10/2006’]
In our running example, only items Z, R1, R2 and R3 can satisfy

the first constraint.

Discussion. In SPIRIT [6, 7], regular expressions are used to re-
strict the sequences produced by the mining algorithm. However,
SPIRIT deals only with the IDs of items. Using attributes (sup-
ported by the formal model introduced in Section 2), lets us avoid
the enumeration of items, as we explained before. But, besides
writing concise queries, our proposal supports the binding of vari-
ables to any attribute (or function over an attribute) during the min-
ing process. As far as we are concerned, this is the first proposal
in this sense, in pattern discovery. We showed above that in RE-
SPaM, variables are not only used for matching between unknown
values of different attributes, but also for checking the existence of
an attribute in an item. The next example illustrates this feature.

EXAMPLE 8. ([star = @c]|[price = ‘expensive′]).[star =
@c] is satisfied by sequences where the first item is expensive and
the second item is characterized by a ‘star’ attribute, and also it
can be satisfied by sequences where the first and last item are char-
acterized by the same ‘star’ attribute. In the first case the variable
is only used for restricting items (those with ‘star’ attribute) and in
the second case variables are also used for matching values.

REMARK 4. Note that variables can also appear in optional
paths (i.e., |, ?), or affected by a Kleene closure operator.

546

4. RE-SPAM EVALUATION

4.1 Preliminary considerations
We explained in Section 2 that the ToI is composed of itemsets

such that items are associated with an OID. Since we assume that,
at every time instant, each OID can only be in exactly only one
place, itemsets are of length one. Nevertheless, the algorithm we
present can be applied to itemsets of any length. We work with
the category instances depicted in Figure 1. Temporal informa-
tion associated with item occurrences is stored in the ToI (Figure
2), which in our implementation is decomposed (i.e., normalized)
as follows: we have a table with schema (OID, ts_date, ts_time,
tf_date, tf_time, ID), where ID is the identifier of the correspond-
ing category instance. All other attributes of the ToI are stored in
a different structure, and retrieved via the ID. Moreover, we imple-
mented two alternative approaches: (a) information about category
instances is stored in an XML file; (b) information is stored in a
relational table, accessing the data through a join operation. Figure
8 shows the normalized ToI instance for our running example.

Computing the support of a sequence requires computing its Trans-
formed Subitems (Definition 9).

EXAMPLE 9. Consider the regular expression [price = @x].
[price = @x ∧ typeOfFood = ‘French’]. To obtain the Trans-
formed Subitems we use the function F = {V al} over the at-
tributes price (for the first subexpression), and attributes price and
typeOfFood (for the second one). Now, let us denote S the sequence
of the transaction with OID=O2 composed of two sub-itemsets, the
second and third lines in Figure 2, each one containing occurrences
of items Z and R1 respectively. Let us write again these items, for
clarity reasons:
Z= {(ts, ‘08/08/2008 18:30’), (tf, ‘08/08/2008 21:00’), (ID, ‘Z’),
(price, ‘cheap’)};
R1= {(ts, ‘19/08/2008 09:00’), (tf, ‘19/08/2008 10:20’), (ID , ‘R1’),
(price, ‘cheap’), (typeOfFood, ‘French’)};

The question is: which are the sub-sequences supported by S?
Since the first itemset of S is composed only by item Z, all of its sub-
itemsets are obtained building subsets of the Transformed Subitem
TS(Z), using F , and the price attribute. These sub-itemsets are: ∅
and {(price, ‘cheap’)}. The second itemset of S is composed only
by item R1; thus, its sub-itemsets are obtained building subsets of
TS(R1), using F and the attributes price and typeOfFood. This
sub-itemsets are: ∅, {(price, ‘cheap’), (typeOfFood, ‘French’)}.
Then, the subsequences of S satisfying the regular expression are
the ones whose items can be transformed to {(price, ‘cheap’)},
and {(price, ‘cheap’), (typeOfFood, ‘French’)}. In our run-
ning example, these sequences are: {Z}, {R1}, {R3} for the first
transformation; {R1} for the second transformation; and {Z R1},
{R1 R1} and {R3 R1} for both of them. Note that, even S and the
sequences {R3 R1} and {R1 R1} are not exactly the same, they
can be considered semantically equivalent with respect to the at-
tribute price, i.e., both of them are associated with a ‘cheap’ price.

��
4.2 Incremental phases in the mining process

Typically, in GSP-based algorithms, frequent sequences with a
user-specified minimum support are computed in incremental phases.
At each intermediate step k, the following occurs: (1) A temporary
set Ck is built using the previous set Ck−1. Its elements are candi-
date sequences of length k. (2) Each element in Ck which contains
at least one sub-sequence with support less than the minimum is
discarded due to anti-monotony property (Ck−1 is analyzed). (3)
The database is accessed in order to analyze support, and each el-
ement in Ck with at least minimum support is added to the set F

of frequent sequences. (4) When an empty Ck set is obtained, F
contains the frequent sequences with minimum support.

In RE-SPaM, a constraint is expressed as a regular expression
R; to evaluate if a sequence satisfies it, we build a DFA, denoted
AR which accepts the language generated byR. The idea of using
AR for pruning Ck before querying the database was first proposed
in the SPIRIT algorithm. There, instead of using the original con-
straint C, a relaxed constraint C’ (not necessarily anti-monotonic)
is used during the mining process. When C’ is not anti-monotonic,
the second phase above is replaced with a strategy consisting in
pruning the sequences in Ck which contain at least one subse-
quence which satisfies C’ and does not have minimum support. In
the last phase, F is analyzed to obtain the frequent sequences that
satisfy C, i.e., a strict C verification is carried out. In what follows,
we use a relaxed constraint C’ that accepts the sequences (denoted
legal) which correspond to a path inAR. Informally, if the automa-
ton accepts only two words “abbd” and “acabd”, then the sequence
“cab” is not pruned because it is a substring of the second one, but
the sequence “cbd” is pruned because it is not a substring of any of
these words. Other variations for C’ are discussed in Section 5.

We identify three phases when building Ck: (i) Ck population:
Ck is populated using the information previously obtained. (ii) Ck

pruning by AR: Ck is pruned using the automaton and perhaps
some extra information. If a candidate sequence does not satisfy
the relaxed constraint C’, it is discarded at this moment. (iii) Ck

pruning by the ToI instance: Ck is pruned using the ToI instance,
as we explain later, and added to a set F of frequent candidate se-
quences. Finally, F is pruned using the original constraint C.

4.3 The RE-SPaM algorithm

Using AR: Check by verification. During the candidate
generation step, sequences that do not satisfy the constraints must
be pruned, given that they do not contribute to the result. We dis-
cuss here how RE-SPaM uses the automaton to prune candidate
sequences while generating intermediate Ck’s, without accessing
the ToI. In step k, once Ck has been populated with candidate se-
quences of length k, we use AR for pruning (AR is stored in main
memory). Using AR we check which candidate sequences sat-
isfy the relaxed constraint C’. In this step, the algorithm finds out
whether or not the conditions in the edges of paths of length k in
AR are satisfied by candidate sequences in Ck. The edges of the
automaton are labeledwith constraints. This is a relevant difference
with existing approaches (where edges are labeled with IDs).

Let p={e1, e2, ..., ek} be a path of length k in AR, and let cs =
{ID=‘ID1’, ID=‘ID2’, ..., ID=‘IDk’} be a candidate sequence in
Ck. We use AR to determine whether or not each one of the items
identified by IDj , j ∈ 1..k, satisfies the constraint that labels the
edge ej . Thus, we need to find the values of the attributes that char-
acterize the item identified by IDj . Notice that our intention is to
prune Ck without accessing the ToI; thus, the only sources of in-
formation we can use are the automaton and the category instances
(this table is also likely to be stored in main memory), and the only
kinds of attributes that can be analyzed are the ones in categories.
The analysis of temporal attributes is postponed to a later stage. In
summary, during this step we only use the automaton and category
instances to verify the sub-conditions that do not involve temporal
attributes, and postpone the evaluation of the conditions over tem-
poral attributes. Note that, actually, in this step we compute the
transformed subitem of Definition 9.

EXAMPLE 10. In query Q6, the sub-conditions to evaluate are
four: price=@x, ID=‘Z’, ID=‘E’ and typeOfFood=‘French’. As

547

OID Items

O1

([(ts_date,04/08/2008),(ts_time,14:05),(tf_date,04/08/2008),(tf_time,14:33),(ID,R2)])
([(ts_date,04/08/2008),(ts_time,15:10),(tf_date,04/08/2008),(tf_time,16:05),(ID,E)])
([(ts_date,04/08/2008),(ts_time,17:30),(tf_date,04/08/2008),(tf_time,18:48),(ID,R3)])
([(ts_date,08/08/2008),(ts_time,06:22),(tf_date,08/08/2008),(tf_time,07:05),(ID,R1)])
([(ts_date,08/08/2008),(ts_time,10:00),(tf_date,08/08/2008),(tf_time,13:00),(ID,E)])
([(ts_date,08/08/2008),(ts_time,17:10),(tf_date,08/08/2008),(tf_time,18:17),(ID,R1)])

O2

([(ts_date,03/08/2008),(ts_time,11:00),(tf_date,03/08/2008),(tf_time,11:15),(ID,Z)])
([(ts_date,08/08/2008),(ts_time,18:30), (tf_date,08/08/2008), (tf_time,21:00),(ID,Z)])
([(ts_date,19/08/2008),(ts_time,09:00), (tf_date,19/08/2008), (tf_time,10:20),(ID,R1)])
([(ts_date,19/08/2008),(ts_time,17:00), (tf_date,19/08/2008), (tf_time,18:12),(ID,R2)])

Figure 8: Normalized ToI instance

none of them involve temporal attributes, all of them can be ana-
lyzed using AR and category instances.

However, in the case of query Q7, the sub-conditions are three:
rollup(ts_time, ‘range’, ‘time dimension’)=@z, ts_date=‘10/10/2008’
and price=‘cheap’. The only sub-condition that can be analyzed
using AR and category instances is price=‘cheap’. ��

We have said that, in general, variables are used to match dif-
ferent constraints within the same expression. However, in the in-
termediate phases, when building set Ck, only sub-paths of length
k are considered. If the same variable is used in both extremes of
a path of length k, sets Cj with j<k are not useful for detecting
if these variables coincide. Another question that arises is: which
is the best strategy when a variable appears only once in an ex-
pression? Notice that such a situation can occur either when the
user defines an expression which involves a variable only once, or
when the system is building Cj with j < k and variables appear
in the extremes of paths of length k. In both cases, the system can
only check for the existence of the attribute in an item that it is
being compared against the variable, and bind its value using the
attribute of this item. We can conclude that, even though a priori it
seems that early evaluation using the automaton is a good strategy,
given that attributes in categories can be affected by functions, or
compared against constants or variables, yielding rather complex
expressions, it is not trivial to infer if this approach will always be
the best, as we show in the next example.

EXAMPLE 11. Expression Q6 looks for a matching in the prices
at the beginning and end of a path. The set C1 is composed of se-
quences of one item, that satisfy the constraints [price = @x],
[ID = ‘Z’], [ID = ‘E’] and [typeOfFood = ‘French’∧price =
@x]. Also, C2 is composed of sequences of two items that satisfy
the constraints [price = @x].[ID = ‘Z’], [price = @x].[ID =
‘E’], [ID = ‘Z’].[typeOfFood = ‘French’ ∧ price = @x] and
[ID = ‘E’].[typeOfFood = ’French’ ∧ price = @x]. There-
fore, the binding of the variable @x is not used in these two phases
(we are interested in matching both extremes). Only during C3 this
is relevant, because both bindings can be compared, and perhaps
some candidate sequences could be pruned. For example, the se-
quence {Z Z R2} does not satisfy this constraint because Z is cheap
and R2 is expensive. Thus, deciding which strategy is be better
than the other, particularly when variables are involved, is not triv-
ial. Finally, note that during the computation of C1, the automaton
AR helps to eliminate H1 and H2 because they do not match any
of the edges of the automaton. ��

We propose two possibilities regarding the moment when the
verification phase for non-temporal attributes can take place: early
evaluation and late or postponed evaluation. In the former, the
system determines if a sub-condition with no temporal attributes
belonging to an edge of the automaton is verified by an item when
building Ck and before querying the ToI instance. In the latter, the

verification occurs when the algorithm enters its final phase, i.e.,
when it must prune the set F using the original constraint C. Thus,
verification is postponed until the final phase, and constraints are
not checked while building intermediate Ck’s. Obviously, late or
early evaluation only affects performance, not the the final result. In
the remainder of this paper, except when noted, we assume the fol-
lowing: early evaluation for conditions that involve non-temporal
attributes and constants, and late evaluation for conditions that in-
volve non-temporal attributes and variables. We compare perfor-
mance between different combinations of these approaches in Sec-
tion 5.

Using the ToI. We now discuss the use of the ToI for prun-
ing candidate sequences with support less than the minimum. As-
sume we have computed Ck, which now contains the candidate
sequences that satisfy the subexpression of length k. We continue
with the analysis of Q6, and we want to discover the sequences that
satisfy the constraint, with a support of 100%. At a first glance, in
the table of Figure 8 there is one sequence with OID= O1, which
satisfies the constraint: {R1, E, R1}. With a similar analysis, there
exists only one sequence with OID= O2 which satisfies Q6: {Z, Z,
R1}. Since we are interested in categorical mining (i.e., we are us-
ing semantic information), not just in counting strict occurrences
of items, we have to modify the way of counting support. Al-
though none of the two transactions in Figure 8 contains the same
sequence, we can say that both satisfy Q6. We do not intend to find
the same sequence of IDs (like GSP or SPIRIT do), because we are
introducing the idea of decomposing items into their descriptive
attributes. Moreover, in this example, Z and R1 are semantically
equivalent with respect to Q6, because both have cheap price asso-
ciated1. This is the reason why the algorithm cannot discard a can-
didate sequence (although it has support less than the minimum),
if it is supported by at least one transaction. Figure 9 depicts the
three steps to compute C1. Note thatAR prune H1 and H2 in step2,
because they do not match any of the edges of the automaton.

REMARK 5. If we had followed the SPIRIT strategy, C1 would
have only contained R1 and R2. Items Z, E, and R3, would have
been pruned, because their support is less than the minimum (each
of them are in only one transactions). Moreover, no sequential pat-
tern with this support would have been found, given that the regular
expression requires that the trajectory stops at Z or E.

In Step 3 (computing Ck), we scan the ToI for pruning the can-
didate sequences not present in any transaction. After this, Ck is
added to the temporary set F. Figures 10 and 11 show how C2 and
C3 are computed. Given that C4 is empty, the algorithm enters its
final phase, i.e., the strict verification of the sequences in F.

1 In our implementation we also display the list of frequent sequences that have con-
tributed to the computation of the support.

548

IDs
H1
H2
R1
R2
R3
E
Z

IDs
R1
R2
R3
E
Z

IDs
R1
R2
R3
E
Z

Figure 9: Computing C1: Step 1 (left), Step 2 (Legal) (cen-
ter), Step 3 (right)

IDs
R1 R1
R1 R2
R1 R3
R1 E
R1 Z
R2 R1
... ...
R3 R1
R3 R2
... ...
E R1
... ...
E Z
Z R1
... ...
Z Z

IDs
R1 E
R1 Z
R2 E
R2 Z
R3 E
R3 Z
E R1
E R2
Z R1
Z R2
Z E
Z Z

IDs
R1 E
R2 E
E R1
Z R1
Z Z

Figure 10: Computing C2: Step 1 (left), Step 2 (Legal) (cen-
ter), Step 3 (right)

The final phase uses all sequences in the temporary set F and
proceeds as follows. First, it uses the automaton to prune all se-
quences which are not accepted. Notice that here we are using the
automaton for acceptance verification and not for legal verification.
Note that using the automaton to find sequential patterns with min-
imum support does not suffice, i.e., the ToI must be scanned. This
scan has different goals: for verification of conditions that have
been postponed (for example, expressions which involve variables
or temporal constraints), and for calculation of minimum support.
Until this phase we only know that the sequences in F are present
in some transaction. Now, we have to check if the set F has enough
support. Recall that we consider all sequences in F equivalent with
respect to the regular expression under analysis. In our example,
we detect that OID=O1 supports {R1 E R1} and that OID=O2 sup-
ports {Z Z R1}. Thus, all of these sequences verify the original
expression, yielding a support of 100%. Figure 12 shows the set F
before and after automaton verification, and set F after the ToI is
scanned. As our expression does not involve temporal attributes,
the ToI scan does not change sequences in the set F . However, this
scan is necessary to compute the support.

Algorithm details. Algorithm 1 sketches the procedure for min-
ing sequential patterns using the approach described above.

Once the user defines the regular expression RE and the min-
imum support, the DFA automaton is built. The relaxation con-
straint C’ is also defined. We explained above that any relaxation
constraint can be used (see Section 5 for further details). The algo-
rithm proceeds in incremental phases until the final condition holds,
which depends on the relaxation choice. We follow the approach
of Garofalakis et al [6, 7], who proposed four variations of the al-
gorithm based on this criteria. For example, in the Legal algorithm,
the final state is reached when no legal sequences of length k with
respect the start state of the automaton can be generated.

The main loop is the core of the algorithm. Line 9 corresponds
to the generation of candidate sequences. For example, in the Legal

IDs
R1 E R1
R2 E R1
E R1 E
Z R1 E
Z Z R1
Z Z Z

IDs
R1 E R1
R2 E R1
Z Z R1

IDs
R1 E R1
Z Z R1

Figure 11: Computing C3: Step 1 (left), Step 2 (Legal) (cen-
ter), Step 3 (right)

IDs
R1
R2
R3
E
Z
R1 E
R2 E
E R1
Z R1
Z Z
R1 E R1
Z Z R1

IDs
R1 E R1
Z Z R1

IDs
R1 E R1
Z Z R1

Figure 12: Table F: Initial (left); Accepted by automaton (cen-
ter); After the ToI scan (right)

and WRT algorithms this step corresponds to the generation of Ck

using Ck−1. However, adopting the Valid variation would require
using F and the automaton. Steps 12-14 analyze each of the can-
didate sequences ci ∈ Ck. The idea consists in detecting all the
paths in the automaton, which in fact represent sequences of con-
ditions satisfied by ci. To do this we need the information stored
in the automaton and the category instances. If ci does not verify
any path of length k, it is pruned. Steps 16-18 scan the ToI in-
stance to compute support. If we are using early evaluation for the
temporal attributes, here is where the ToI is used to validate tem-
poral conditions. For each OID we calculate the ci ∈ Ck supported
by consecutive sequences. Given that we are introducing semantic
information into the mining process and we consider equivalent se-
quences to be exchangeable, we add all the sequences ci supported
by at least one OID to the set F, and prune the ones not supported
by any OID. While the support of the set F is equal or greater than
the minimum, the algorithm continues. In the final phase (Step 24-
25), the algorithm repeats the sequence performed inside the loop,
but using C instead of C’.

Either using early or late evaluation, we need to bind a variable
to a value. In RE-SPaM, there is no limit on the number of variables
that can be defined. Thus, we use a hashing structure to store and
check if a variable has already been bound. This structure is built
for each of the candidate sequences, i.e. the bindings cannot be
shared between sequences. For each item in a candidate sequence
we analyze the variables involved. For each variable that appears,
it may happen that: (a) it is the first time that this variable is in-
stantiated; thus, the variable and the value are hashed in a structure
of variable bindings; (b) the variable has been already bound to a
value; thus, the new binding is compared with the previous one. For
an efficient support count, we also use hashing structures to store
sequences and the OIDs which support them.

EXAMPLE 12. For query [price = @x]+, suppose we obtain
a candidate sequence {R1 R2}. Due to the item identified by R1,
@x is stored in a hash table with its corresponding value (‘cheap’).
Later, analyzing the price associated with the item R2, we obtain
the value ‘expensive’, which does not match the previous one. Thus,
the candidate sequence does not verify the expression. ��

549

Algorithm 1 RE-SPaM Algorithm

01. minSupport := ReadSupport()
02. query := ReadQuery()
03. AR := BuildAutomaton(query)
04. C’ := define C relaxation
05. //Incremental phases
06. k := 1
07. REPEAT
08. // Add sequences of length k which verify C’ to set F
09. // Populate Ck

10. Ck := { ck | ck is a candidate sequence of length k }
11. // Update Ck using AR and category instances
12. tmp := { ck | ck is not verified by any path
13. of length k in AR }
14. Ck := Ck - tmp
15. // Update Ck using ToI instances
16. tmp := { ck | ck is not verified by any sequence
17. of any OID }
18. Ck := Ck - tmp
19. // Update F
20. F := F ∪ Ck
21. UNTIL FinalConditionHolds or MinSupport(F) < minSupport
22. // Final phase
23. // Eliminate from F sequences that do not satisfy constraint C
24. F := VerifyOriginalConstraint(F , minSupport)
25. ListSequences(F)

Final considerations: concise expressions. A strong point
of RE-SPaM is that, when a disjunction is present in an expression,
we do not need to enumerate all possible alternatives, like exist-
ing approaches require. For a large number of items, this would be
hard to handle. For instance, if instead of three restaurants we had
a more realistic number, a query asking for a disjunction of all of
them would result in an extremely long expression. RE-SPaM al-
lows to write equivalent queries in a more elegant and concise way.
Let us consider, for instance, the expression: ([ID=‘Z’] | [ID=‘E’]).
We have shown that the RE-SPaM algorithm populates the Ck’s
with the IDs of the items that verify the expression. In this case,
C1 would be populated with E and Z. RE-SPaM allows other ways
of writing concise sub-expressions, that result in the same set C1.
Suppose that instead of considering the Eiffel tower and the Zoo
as two different categories, we would have considered them two
occurrences of, say, the “attractions” category. A query equivalent
to the above one would have been: [categoryName= ‘attractions’].
During query evaluation, C1 would be populated with E and Z.

As another option, we could chose to define two different cat-
egory names (e.g., Eiffel tower and Zoo), but a common attribute,
say, Family. Further, the user could have organized the places of in-
terest into a hierarchy (e.g., an OLAP dimension) named PoI, such
that the level categoryName rolls up to the level family. For ex-
ample, the expression [rollup (categoryName , ‘family’, ‘PoI’) =
‘tourist attraction’] returns true when categoryName is instanti-
ated with the Zoo or the Eiffel tower. In this case, the query would
read: [rollup(categoryName , ‘family’, ‘POI’) = ‘tourist attraction’].
Again, during query evaluation, C1 is populated with E and Z.

4.4 Complexity
We now briefly analyze the complexity of Algorithm 1. Each

step of the algorithm is composed of three phases. Each phase gen-
erates candidate sequences of the same length (i.e., at each step
k, candidate sequences of length k are computed in three phases).
The elements in Ck (line 10, first phase) are computed using the
sequences in the set Ck−1. We compute Ck by means of a self-
join between the sequences in Ck−1, and discard the ones such that

their suffixes and prefixes of length k − 2 do not match. For ex-
ample, when joining the sequences ‘ABC’ and ‘BCD’, we generate
‘ABCD’ (the suffix and prefix ‘BC’ is the same for both sequences).
In the worst case, this operation has complexityO(|Ck−1|2),where
|Ck−1| is the number of candidate sequences in Ck−1.

The second phase (see lines 12, 13 and 14) consists in using Ck

and pruning it with the automaton generated from the constraints
used in the query (i.e., the automaton is used to verify if a candidate
sequence of IDs in Ck satisfies some path of length k). If |AR|
is the number of states of the automaton, then, in the worst case
the algorithm performs |AR|(k+1) comparisons to detect if a k-
sequence of IDs in Ck satisfies an expression in a path of length
k in the automaton. Since |AR| is the number of nodes of the
graph representing the automaton, the number of paths of length k
could be at most |AR|(k+1), because the automaton accepts loops.
Checking which sequences in set Ck (generated in the previous
phase) satisfy the constraints in the automaton, takes, in the worst
case O(|Ck| ∗ |AR|(k+1)). All these sequences of candidate Ck

are organized in a hash table, for the following phase.
The last phase of step k consists in pruning using the ToI, thus,

accessing the database (lines 16, 17 and 18). A database scan must
be performed in order to build contiguous lists (see Definition 14)
of length k. Let us denote |Items| the number of items in the ToI.
In the worst case, all these items belong to the same object and the
number of consecutive lists (each one of these lists is composed
of IDs.) of length k that are generated is given by |Items|-k+1.
This is an upper bound. If these items are distributed among differ-
ent objects (transactions) the number of lists becomes considerably
smaller. The candidate sequences in Ck are organized in a hash
table; thus, checking if a list of IDs belonging to the ToI matches a
list of IDs in Ck could be done in O(1). Depending on the query,
this phase requires more than a simple matching between IDs in the
list and IDs in some element in Ck. Recall that we do not evaluate
only coincidence here. For example, if a sequence in Ck is ‘ABA’
and there is a list ‘ABA’ in the database, we may initially think
that this sequence satisfies the query. However, let us consider the
[ts = @x ∧ price = ‘cheap’].[tf = @x ∧ food = ‘Italian’].
Although ‘AB’ is a candidate sequence in C2 (because A verifies
the price=‘cheap’ and B verifies food=‘Italian’), we must postpone
the evaluation of ts and tf to the database scan stage. We cannot do
this with the automaton because temporal attributes are not part of
category occurrences. Thus, the database scan is not only for eval-
uating support. Then, in the worst case, this phase can be done in
O(|Items|− k + 1). These three phases are preformed repeatedly
until no more candidate sequences are generated or the candidate
sequences in Ck are all pruned accessing the ToI, because there
does not exist any useful list in the database of length k.

The last part of the algorithm (line 24) is analogous to the former
ones, except for the first phase (generation of Ck). Phases two
and three use all the candidate sequences not pruned in previous
steps, to detect if they are recognized by the automaton and have
the required support.

5. EXPERIMENTAL RESULTS
We ran our tests on a dedicated IBM 3400x server equipped with

a dual-core Intel-Xeon processor, at a clock speed of 1.66 GHz.
The total free RAMwas 4.0 GB, and there was a 250GB disk drive.
The ToI was stored in PostgreSQL 8.2.3. Information about cate-
gories has been stored in the database and also in an XML file (both
strategies delivered similar results). The rollup functions were im-
plemented on Mondrian2, using the MDX query language. Algo-

2http://mondrian.sourceforge.net.

550

Re1 [price=@x].[price=@x]
Re2 [price=@x].([ID=‘E’] | [ID=‘Z’])*.[price=@x]
Re3 [price=@x].([ID=‘E’] | [ID=‘Z’]).[price=@x]
Re4 [price=@x].([ID=‘Z’] | [ID=‘E’]).[typeOfFood=‘French’ ∧ price=@x]
Re5 [ts_date=‘10/10/2007’ ∧ price=@x].([ID=‘Z’] |

[ID=‘E’]).[ts_date=‘10/10/2007’ ∧ typeOfFood=‘French’ ∧ price=@x]
Re6 [ts_date=@d ∧ price=@x].([ID=‘Z’]|

[ID=‘E’]).[ts_date=@d ∧ typeOfFood=‘French’ ∧ price=@x]
Re7 [ID=‘E’]+.[typeOfFood=‘French’ ∧

rollup(ts_date, ‘quarter’, ‘date dimension’)=‘Q2’]

Figure 13: Queries

rithms have been implemented in Java 1.6.
We used real moving object data of 1.9 million of records of the

form (Oid,x, y, t), collected by GPS sensors at intervals of one sec-
ond. We worked with trajectories of 6276 different moving objects
(OIDs). The PoIs correspond to the category instance discussed
in Section 1, with additional attributes. For example, we included
parking and speciality for restaurants, and parking and pets for ho-
tels. These PoIs were created for the experimental evaluation, and
do not correspond to a real world situation. There are 17 occur-
rences of category instances, 5 hotels, 10 restaurants, a zoo and the
Eiffel tower. We have rewritten each trajectory as a sequence of
stops, and this information was stored in the ToI3. Each OID has
associated items that represent the visited PoIs. The minimum, av-
erage and maximum of number of items per transaction (per OID)
was 2, 17 and 363 respectively. In short, in our database there exist
moving objects that have only passed through two places and other
ones that have passed through 363 places. The queries used in our
experiments are shown in Figure 13. They have been executed three
times, and we report the average execution time.

5.1 Experiments
We explained in Section 4 that different algorithms could be used

to prune the sequences which do not match a path in AR. To
present the algorithm we assumed the variant denoted Legal [6,
7]. We also implemented the valid WRT alternative. In a nut-
shell, WRT obtains a family of automaton by moving the initial
state to any other state in the automaton, but leaving the final state
untouched. The algorithm prunes the sequences not recognized by
any of the automata in this family. On the other hand, the reader
may have noticed that the Legal approach is equivalent to consider
all states in the automaton as starting and final. We also analyzed
different strategies for processing expressions containing variables:
early and postponed evaluation. Thus, four variants were tested:
legal-early, legal-postponed, WRT-early, and WRT-postponed.

5.2 Discussion of results
Figure 14 compares the performance of the four algorithm vari-

ations. Each query was run with different minimum support: 20%,
40%, 60%, 80% and 100%. The average time of each one is re-
ported. For Re1 and Re7, the performance of all four algorithms
is similar. This is because the expressions contain no variables (the
first case) or two variables (the second case, where variable com-
parison is used in the early computation of C2). Differences appear
when we use variables in paths of at least length three. In all of
them, the “early evaluation” outperforms the “postponed evalua-
tion”. Thus, the combination of Legal-Early evaluation has better
performance than Legal-Postponed evaluation. Analogously,WRT-
Early evaluation has better performance thanWRT-Postponed eval-
uation. In general, WRT-Early delivered the best performance, es-
pecially when expressions involve many variables or long paths in

3 The datasets and a demo can be found at http://piet.exp.dc.uba.ar/mo-patterns.

Figure 14: Performance

Min. Sup. Re1 Re2 Re3 Re4 Re5 Re6 Re7
20% 38 75 16 10 0 7 9
40% 38 75 16 10 0 7 0
60% 38 75 16 0 0 0 0
80% 38 75 0 0 0 0 0
100% 38 75 0 0 0 0 0

Figure 15: Number of sequences obtained

the automaton. Finally, the queries involving loops (+ or * meta-
symbols) are the most expensive ones because the intermediate sets
Ck’s must be expanded through many iterations.

Figure 15 shows the number of sequences obtained for each query.
These numbers are coherent with the restrictions that queries Re1
to Re7 incrementally add. For instance, the set of sequences ob-
tained by Re2 includes the set of sequences obtained by Re1, be-
cause Re2 adds an intermediate optional sub-path. In Re3, the
intermediate sub-path is not optional. In this case, the number of
sequences changes as the minimum support changes. Note the use
of variables in these three queries. Re1 produces only sequences of
length 2, Re3 only sequences of length 3 and Re2, due to the op-
tional sub-path, produces sequences of length of at least two. Query
Re4 is similar toRe3, but its last subexpression is more restrictive,
as the last itemmust be not only a place with price attribute, but also
one serving French food. This is whyRe4 produces less sequences
than Re3, and no sequence for a support of 60%. Query Re5 adds
conditions on the date of the events. It it reasonable, then, to obtain
less sequences than in Re4 (indeed, no sequences are obtained for
Re5). Re6 replaces the specific date in Re5 with a variable. Fur-
ther, we are interested in finding sequences where all their the item
occurrences correspond to the same day. Finally, Re7 is a query
with no variables, but that includes a rollup function over ts_date.

Figure 15 shows that queries Re1 and Re2 produce 38 and
75 sequences, respectively. However, the performance of the lat-
ter is approximately eight times slower. Figures 16 and 17 show
the phases executed for solving Re2 and Re1, respectively. The
first column shows the number of candidate sequences before au-
tomaton pruning, the second column the number of candidate se-
quences after automaton pruning, and the third one, the number of
sequences after pruning using the ToI instance. We can see that the
number of iterations when solving Re2, is larger than in Re1.

Figures 18 and 19 show comparisons between the average execu-
tion time of the queries against the number of sequences obtained,
for supports 20% and 60%. We omit the graphics for other sup-
ports the sake of space. As expected, the execution time increases
as the number of sequences obtained also increases. In all cases,
the curves for the four combinations behave similarly.

551

Phase Population Pruning by Automaton Pruning By ToI
C1 17 11 11
C2 187 73 38
C3 646 0 0

Figure 16: SolvingRe1: sizes at each phase

Phase Population Pruning by Automaton Pruning By ToI
C1 17 11 11
C2 187 87 46
C3 782 109 23
C4 391 73 13
C5 221 41 7
C6 119 18 4
C7 68 9 2
C8 34 9 2
C9 34 9 1
C10 17 0 0

Figure 17: SolvingRe2: sizes at each phase

Figure 18: Performance Minimum Support 20%

Figure 19: Performance Minimum Support 60%

6. FUTURE WORK
We believe that there is still room for improving the language

we proposed in this paper. Thus, we are planning to extend RE-
SPaM, in order to support more complex kinds of constraints. For
instance, we would like to express conditions like “the second stop
in a trajectory is a hotel with more stars than the first stop”, and to
allow conditions stating that the difference between the initial and
ending instants of the trajectory, less than 5 days have passed.

Acknowledgments. This research has been partially funded by
the Research Foundation Flanders (FWO- Vlaanderen), Research
Project G.0344.05, the European Union under the FP6-IST-FET

programme, Project n. FP6-14915, GeoPKDD: Geographic Privacy-
Aware Knowledge Discovery and Delivery, and the Argentina Sci-
entific Agency, project PICT 2004 11-21.350.

7. REFERENCES
[1] R. Agrawal, T. Imielinski, and A. Arun Swami. Mining

association rules between sets of items in large databases. In
Proceedings of the ACM SIGMOD Int’l Conference on
Management of Data, 1993.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In Proceedings of the 20th Int’l Conference
on Very Large Databases, 1994.

[3] R. Agrawal and R. Srikant. Mining sequential patterns. In
Proc. of the Int’l Conference on Data Engineering (ICDE),
1995.

[4] L. Cabibbo and R. Torlone. Querying multidimensional
databases. In Proceedings DBPL’97, pages 253–269, East
Park, Colorado, USA, 1997.

[5] C. du Mouza and P. Rigaux. Mobility patterns. In
Proceedings of the STDBM’04, pages 1 – 8, Toronto,
Canada, 2004.

[6] M. N. Garofalakis, R. Rastogi, and K. Shim. Spirit:
Sequential pattern mining with regular expression
constraints. In Proceedings of the 25th VLDB Conference,
1999.

[7] M. N. Garofalakis, R. Rastogi, and K. Shim. Mining
sequential patterns with regular expression constraints. In
IEEE Transactions on Knowledge and Data Engineering,
2002.

[8] R. H. Güting, M. H. Böhlen, M. Erwig, C. S. Jensen, N. A.
Lorentzos, M. Schneider, and M. Vazirgiannis. A foundation
for representing and quering moving objects. ACM Trans.
Database Syst., 25(1):1–42, 2000.

[9] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and
M. Hsu. Freespan: frequent pattern-projected sequential
pattern mining. In KDD ’00: Proceedings of the sixth ACM
SIGKDD Int’l conference on Knowledge discovery and data
mining, pages 355–359, 2000.

[10] H. Mannila, H. Toivonen, and I. Verkamo. Discovering
frequent episodes in sequences. In Proceedings of the First
Int’l Conference on Knowledge Discovery and Data Mining
(KDD’95), pages 210–215, 1995.

[11] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen,
U. Dayal, and M. Hsu. Prefixspan: Mining sequential
patterns by prefix-projected growth. In Proceedings of the
17th Int’l Conference on Data Engineering, pages 215–224,
Washington, DC, USA, 2001.

[12] J. Pei, J. Han, and W. Wang. Constraint-based sequential
pattern mining: the pattern-growth methods. J. Intell. Inf.
Syst., 28(2):133–160, 2007.

[13] S. Spaccapietra, C. Parent, M. L. Damiani, J. A.
Fernandes de Macedo, F. Porto, and C. Vangenot. A
conceptual view of trajectories. In Technical Report, 2007.

[14] R. Srikant and R. Agrawal. Mining sequential patterns:
Generalizations and performance improvements. In Proc. of
the Fifth Int’l Conference on Extending Database
Technology (EDBT), 1996.

[15] X. Yan, J. Han, and R. Afshar. Clospan: Mining closed
sequential patterns in large databases. In SDM, 2003.

552

