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ABSTRACT
Data provenance is essential in applications such as scientific
computing, curated databases, and data warehouses. Sev-
eral systems have been developed that provide provenance
functionality for the relational data model. These systems
support only a subset of SQL, a severe limitation in prac-
tice since most of the application domains that benefit from
provenance information use complex queries. Such queries
typically involve nested subqueries, aggregation and/or user
defined functions. Without support for these constructs, a
provenance management system is of limited use.

In this paper we address this limitation by exploring the
problem of provenance derivation when complex queries are
involved. More precisely, we demonstrate that the widely
used definition of Why-provenance fails in the presence of
nested subqueries, and show how the definition can be mod-
ified to produce meaningful results for nested subqueries.
We further present query rewrite rules to transform an SQL
query into a query propagating provenance. The solution
introduced in this paper allows us to track provenance in-
formation for a far wider subset of SQL than any of the ex-
isting approaches. We have incorporated these ideas into the
Perm provenance management system engine and used it to
evaluate the feasibility and performance of our approach.

1. INTRODUCTION
Data provenance is information about the origin of data.

Provenance information can be used to estimate the quality
of data, to gain additional insights about it or to trace errors
in transformed data back to its origins.

In general, the provenance of a given data item includes all
the source data items used as input to the transformation(s)
that created the given data item. However, to consider the
complete input of a transformation as the provenance of its
output is often misleading and contra-intuitive. As a gen-
eral rule, a certain part of the input influences only part of
the output. Given that provenance information tends to be
quite large, it is important to narrow down exactly what
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input data contributes to what output data. In the liter-
ature, different interpretations of contribution are used to
define which subset of the input of a transformation belongs
to the provenance of a given part of the output (e.g., Why-
provenance, Where-provenance, etc.) [3, 11, 19, 18, 2, 7]. As
a result, the behavior of a provenance management system
(PMS) is determined to a great extent by how provenance
contribution is defined.

Regardless of the interpretation of provenance contribu-
tion used, and to the best of our knowledge, all existing PMS
[7, 17, 6] support only a subset of the SQL language. A key
part of the functionality missing is support for subqueries
embedded within other queries. We refer to such subqueries
as sublinks. If a sublink refers to attributes outside the sub-
link query we call it a correlated sublink. A sublink that
includes other sublinks is called nested. Sublinks, whether
in the form of correlated and/or nested subqueries, are an
important feature in complex decision support queries and
scientific applications. They are also widely used in data
warehouses. A Provenance Management System that does
not support subqueries is of limited use in practice.

In this paper, we present a way to address this limitation
and discuss its implementation within the Perm Provenance
Management System [12]. Cui and Widom [7] have pro-
posed a definition of provenance contribution that is a vari-
ant of Why-provenance for relational tuples. This definition
is more suited for the relational model than the variants of
Where-provenance introduced in [3, 11] and the annotation
propagation semantics from [6, 10]. We have implemented a
PMS called Perm that uses the definition of provenance con-
tribution proposed by Cui and Widom. Perm is an enhanced
relational database management system (implemented as an
extension to PostgreSQL) that allows a user to query the
provenance of data using an extension of SQL. Perm uses
rewrite rules that transform a query into a query that prop-
agates provenance alongside with the query results. The
transformed query is expressed in relational algebra and can
thus be executed by the unmodified execution engine of the
underlying database system, stored as a view and used as
a subquery. The big advantage of Perm is that it does not
change the data model and uses SQL to obtain the prove-
nance.

Perm, like all existing PMS, does not support queries with
sublinks. Our approach to introduce support for sublinks is
based on several steps, each one of them important on its
own. First, we show that the definition of provenance con-
tribution used in [7] fails in the presence of sublinks. This
definition produces incorrect results (false positives) when
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used for queries with sublinks and it is not well defined if
there are several sublinks. Second, we show how this defi-
nition of contribution (defined next in more detail) can be
extended to accommodate sublinks in the queries, thereby
producing correct results and supporting an arbitrary num-
ber of sublinks (Section 2). Third, we describe several query
rewrite strategies that, given a query, rewrite it so that it
also computes its provenance according to the extended def-
inition (Section 3). Finally, we present an exhaustive per-
formance study using TPC-H and synthetic data that ex-
plores the behavior of these strategies in a real PMS (Sec-
tion 4). Our experiments demonstrate that provenance for
queries with correlated sublinks is inherently an expensive
operation. Yet, the most generic strategy we propose can
be applied to all types of sublinks for moderate database
sizes. For larger data sets, we present additional strategies
that are more efficient but are only applicable to uncorre-
lated sublinks. In doing so, we identify several potential
optimizations that will be pursued as part of future work.

2. PROVENANCE AND SUBLINKS
In this section we first define provenance contribution fol-

lowing Cui and Widom. We then introduce an algebra that
supports sublinks. We use this algebra to derive the prove-
nance of queries with single sublinks and extend the analysis
towards correlation, nesting and queries with more than one
sublink. We also provide an extended definition of prove-
nance contribution that accommodates sublinks.

2.1 Defining Provenance Contribution
In Perm, the provenance of a tuple t from the result

of an algebra operator op is a tuple of maximal subsets
(T ∗1 , . . . , T ∗n) of the input relations T1, . . . , Tn of the op-
erator 1 that fulfills the following conditions:

Definition 1 (Provenance Contribution). For a
relational algebra operator op with input relations T1, . . . , Tn,
a tuple (T1

∗, . . . , Tn
∗) of maximal subsets of the input rela-

tions is said to contribute to the provenance of a tuple t from
the result of op iff:

op(T1
∗, . . . , Tn

∗) = t (1)

∀i ∈ {1, . . . , n} : ∀t∗ ∈ Ti
∗ :

op(T1
∗, . . . , Ti−1

∗, t∗, Ti+1
∗, . . . , Tn

∗) 6= ∅
(2)

The intuition behind this definition is that a subset of
an input relation should be included in the provenance of
an result tuple if it produces exactly this tuple (condition
1) and if each tuple in this set contributed to the result
(condition 2). This definition naturally captures the seman-
tics of relational operations. For example given a relation
R = {(1, 3), (2, 2), (3, 6)} with schema R = (a, b) and the
relational algebra statement σa=3(R), the set {(3, 6)} is the
provenance of the tuple (3, 6). As a second example consider
the query αsum(a)(R). For this query all tuples from R are
in the provenance of the single result tuple (6).

The provenance for a set of result tuples is defined as the
union of the provenance of each of the tuples from the set.
For an algebra statement the provenance can be computed
incrementally for each operator in the statement, because
the provenance according to Definition 1 is transitive.

1Multiple references to one relation are handled as different
relations.

2.2 Extending the Algebra with Sublinks
The extended relational algebra for sublinks used through-

out this paper is presented in Figure 1. The algebra operates
on bags (multi-sets). The cardinality of a tuple is denoted
by a superset, as in (1, 2)3. The schema R/q of a relation R
or algebra expression q is a list of attributes (a, b, . . .). For a
list A of attribute expressions (expressions over attributes,
constants and functions) and a tuple t, t.A is the projection
of t on A.

Projection and set operations are provided as a bag se-

mantics version (e.g.,
B

Π) and a duplicate removing set ver-

sion (e.g.,
S

Π). If made clear from the context the bag/set in-
dicator is omitted (e.g., Π). The projection operator projects
its input on a list of expressions over attributes, constants,
functions and renamings (represented by a → b). Aggre-
gation groups on a list of grouping attributes G and com-
putes the results of the aggregate functions from agg for
each group of tuples. The result of the aggregation includes
the aggregate function results and the values of the grouping
attributes (one tuple per group).

The nesting operators (ANY, ALL, EXISTS) are the al-
gebraic representation of the SQL constructs with the same
name2 and produce a boolean result. Tsub is the nested al-
gebra expression, op is a comparison operator (e.g., < or
=) and A is an attribute expression. We refer to the whole
construct defined by a nesting operator as Csub. We permit
the use of a sublink query Tsub without one of the nesting
operators, but require Tsub to produce exactly one result
attribute and tuple in this case. Sublinks are allowed in
selection, projection and join conditions. For example, the
following expressions are valid algebra expressions:

σ(a+b) = ANY (S)(R) Πa, EXISTS (σc=3(S))(R)

R ><a < ALL (T ) S σa = ANY (σc=b(S))(R)

In SQL, sublinks can be used in the GROUP BY and
HAVING clause in addition to the SELECT and FROM
clause. This can be simulated in our algebra using selection
(for HAVING) and projection on sublinks before applying
aggregation (for GROUP BY). The second selection exam-
ple from above contains a correlation (c = b) referencing
attribute b from relation R. Correlation attribute references
have to reference an attribute from the input of the oper-
ator or, in the case of nested sublinks an attribute from a
containing sublink. For example:

σa = ANY Tsub(R)

Tsub = σc=b∧c = ANY (σd=c(T ))(S)

A correlated attribute parameterizes the sublink query
Tsub. For each tuple t from the algebra expression that is
referenced, Tsub is evaluated for the parameter bound to the
value of the referenced attribute.

In what follows, we apply Definition 1 to compute the
provenance of queries with sublinks. We distinguish be-
tween sublinks in selections and sublinks in projections. For
queries without sublinks, Definition 1 produces correct re-
sults. For sublinks, the resulting provenance includes tuples
that do not actually contribute to the result (false positives).
Furthermore, if more than one sublink is used, the definition
is ambiguous.

2IN and NOT IN can be simulated with boolean negation
and ANY / ALL.
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Set operators Bag operators

S

ΠA(T ) = {a = (a1, . . . , an)1 | ∃t ∈ T, t.A = a}
B

ΠA(T ) = {a = (a1, . . . , an)sum | sum =
X

tn∈T,t.A=a

(n)}

T1

S
∪T2 = {t1 | t ∈ T1 ∨ t ∈ T2} T1

B
∪T2 = {tn+m | tn ∈ T1 ∧ tm ∈ T2}

T1

S
∩T2 = {t1 | t ∈ T1 ∧ t ∈ T2} T1

B
∩T2 = {tmin(n,m) | tn ∈ T1 ∧ tm ∈ T2}

T1

S
−T2 = {t1 | t ∈ T1 ∧ t /∈ T2} T1

B
−T2 = {tn−m | tn ∈ T1 ∧ tm ∈ T2}

T1 × T2 = {(t1, t2)n×m | t1n ∈ T1 ∧ t2
m ∈ T2}

T1 ><C T2 = {t = (t1, t2)
n×m | t1n ∈ T1 ∧ t2

m ∈ T2 ∧ t |= C}
σC(T ) = {tn | tn ∈ T ∧ t |= C}

T1 ><C T2 = {(t1, t2)n×m | t1n ∈ T1 ∧ t2
m ∈ T2} ∪ {(t1, tnull

2 )n | t1n ∈ T1 ∧ (6 ∃t2 ∈ T2 : (t1, t2) |= C)}
αG,aggr(T ) = {(t.G, res1, . . . , resn)1 | t ∈ T ∧ ∀i ∈ {1, n} : resi = aggri(ΠBi(σG=t.G(T ))}

Sublinks

A op ANY Tsub = ∃t ∈ Tsub : A op t Tsub = a ( for | Tsub | = 1 ∧ | Tsub | = a)

A op ALL Tsub = ∀t ∈ Tsub : A op t EXISTS Tsub = | Tsub | > 0 ⇔ ∃t ∈ Tsub

Figure 1: Relational algebra underlying our approach

2.3 Single Sublinks in Selections
Recall that according to Definition 1, the provenance of

an operator op and result tuple t is a subset of the input
relations used by the operator. For an operator op that con-
tains sublinks, the provenance thus includes subsets of the
sublink queries results. Note that Definition 1 defines only
the provenance of single operators and not of algebra state-
ments composed of more than one operator. The prove-
nance for an query is computed by recursively computing
the provenance for each operator in the query. Thus trac-
ing the provenance of a tuple from the query result back to
the relations in the database (called base relations) that are
accessed by the query. This computation is sound because
provenance according to Definition 1 is transitive.

At first we consider the uncorrelated case for selection
operators containing only a single sublink. In the remainder,
we extend our investigations towards other operators, multi-
sublink queries and correlation. For a given query q of the
form σC(T ) that contains a sublink Csub in condition C,
we are trying to find subsets T ∗ and Tsub

∗ of T and Tsub

that fulfill the conditions of Definition 1 and, thus, form the
provenance of q.

To apply Definition 1 to our algebra extended with sub-
links some preliminaries are needed. Note that the value of
a sublink is constant for a fixed tuple from the operator’s in-
put and fixed tuples of all correlated relations, if the sublink
is correlated.

According to Definition 1, a subset Tsub
∗ of the sublink

query contributes to a tuple t of the query result iff Tsub
∗

produces t (condition 1), each tuple from Tsub
∗ produces

not the empty set (condition 2) and Tsub
∗ is the maximal

subset with these properties. The definition implicitly states
a way to find the provenance of an algebra operator: Find
a subset of the input that fulfills the conditions and cannot

be extended without breaking the conditions. Showing that
every tuple of Tsub − Tsub

∗ would break the conditions if
unioned with an arbitrary subset of Tsub that fulfills the
conditions proves that Tsub

∗ is maximal.
From the definition of the selection operator we know that

if a tuple t is in the result of the operator, t is also in the
input and t fulfills the condition C (denoted by t |= C, see
Figure 1). A sublink Csub can play different roles in the
condition C of a selection according to an input tuple t.
One possible role is that condition C is only fulfilled, if Csub

is true. The second possibility is that C is true iff Csub is
false. The last role is that C is independent of the result
of Csub. We refer to these three influence roles as reqtrue,
reqfalse and ind. Note that T ∗sub can depend on the influence
role of the sublink. Therefore, we consider the provenance
of each sublink type for each influence role separately.

For the provenance derivation of a query with an ANY -
or ALL-sublink we introduce two auxiliary sets Tsub

true(t)
and Tsub

false(t) that are parameterized by a tuple t from
the input of the selection:3

Tsub
true(t) = {t′ | t′ ∈ Tsub ∧ t.A op t′}

Tsub
false(t) = {t′ | t′ ∈ Tsub ∧ ¬(t.A op t′)}

2.3.1 ANY-sublinks in Selections
With the influence roles and the auxiliary sets Tsub

true

and Tsub
false we are able to derive the provenance for ANY -

sublinks, by finding maximal subsets Tsub
∗ for each influ-

ence role that fulfill conditions 1 and 2 from Definition 1.
An ANY -sublink Csub is true if the comparison condition
A op t′ is fullfilled for at least one tuple t′ from Tsub. Thus,
if Csub is true then Csub is true for all subsets of Tsub that

3If made clear from the context parameter t is omitted.
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ANY-sublink

Tsub
∗ =

(
Tsub

true if Csub is reqtrue

Tsub if Csub is reqfalse or ind

ALL-sublink

Tsub
∗ =

(
Tsub if Csub is reqtrue or ind

Tsub
false if Csub is reqfalse

EXISTS or Tsub sublink

Tsub
∗ = Tsub

Figure 2: Provenance for single sublink queries

contain at least one tuple from Tsub
true. If Csub is false then

Csub is false for all subsets of Tsub, because there are no tu-
ples in Tsub that fulfill A op t′. These facts can be used to
derive the provenance of an ANY -sublink. If the sublink is
reqtrue, Tsub makes Csub true and therefore fulfills condition
1 of the contribution definition, but condition 2 is only ful-
filled for tuples from Tsub

true. Thus T ∗sub = Tsub
true. If the

sublink is reqfalse or ind, Tsub fulfills conditions 1 and 2 and
is therefore the provenance of t. Figure 2 gives an overview
of the provenance for single sublinks.

It is possible to formally characterize the provenance pro-
duced by definition 1 when applied to ANY -sublinks in se-
lections as follows:

Theorem 1 (Provenance of ANY-Sublinks). Let
σC(T ) be an selection that contains an ANY-sublink Csub in
condition C. The provenance of a result tuple t according to
sublink Csub is:

Tsub
∗ =

(
Tsub

true if Csub is reqtrue

Tsub if Csub is reqfalse or ind

Proof.
For a selection σC(T ) with a sublink Csub in condition C we
have to show that Tsub

∗ as defined above is the maximal set
fulfilling conditions 1 and 2. Let C(T ) be condition C with T
substituted for Tsub. We use C∗ as a shortcut for C(Tsub

∗).
Let Csub(t) be the sublink Csub with {t} substituted for Tsub.

Assume Csub is reqtrue (Tsub
∗ = Tsub

true):
Condition 1: We have to show σC∗(T ∗) = t, which is

equivalent to C∗ = true. From the definition of Tsub
true

and the definition of the ANY -sublink (existential quantifi-
cation) we know that Csub(t

′) is true for each tuple t′ ∈
Tsub

true and, hence, also for Tsub
∗. From Csub is reqtrue we

can deduce that C∗ is fulfilled.
Condition 2: As shown for condition 1 Csub(t

∗) is true for
t∗ ∈ Tsub

∗ and thus σC(t∗) = t 6= ∅.
Maximality: Assume Tsub

′ ⊂ Tsub fulfills conditions 1 and

2. Every tuple t′ from Tsub − Tsub
∗ does not belong to

Tsub
true and thus does not fulfill t.A op t′. It follows that

Csub(t
′) = false holds. If we add such a tuple t′ to Tsub

′

then condition 2 is not fulfilled for t∗ = t′ and thus Tsub
∗ is

maximal.
Assume Csub is reqfalse or ind (Tsub

∗ = Tsub):
Condition 1: We have to show σC∗(T ∗) = t. From Tsub

∗ =
Tsub follows C∗ = C and thus σC∗(T ∗) = t.

Condition 2: If Csub is reqfalse we can deduce from the
definition of the ANY -sublink that there exists no tuple t′ ∈

R
a b
1 1
2 1
3 2

S
c d
1 3
2 4
4 5

q1 = σa = ANY (Πc(S))(R)

result tuple provenance
(1,1) R∗ = {(1, 1)}, S∗ = {(1, 3)}
(2,1) R∗ = {(2, 1)}, S∗ = {(2, 4)}

q2 = σc > ALL (Πa(R))(S)

result tuple provenance
(4,5) R∗ = {(1, 1), (2, 1), (3, 2)}, S∗ = {(4, 5)}

q3 = σ(a=3)∨¬(a < ALL (σc6=1(Πc(S)))(R)

result tuple provenance
(2,1) R∗ = {(2, 1)}, S∗ = {(2, 4)}
(3,2) R∗ = {(3, 2)}, S∗ = {(2, 4), (4, 5)}

Figure 3: Examples for sublink provenance

Tsub that fulfills condition t.A op t′. Therefore, for each
tuple t∗ ∈ Tsub the condition Csub(t

∗) is false and C(t∗)
is true. It follows that for each t∗ ∈ Tsub

∗ the condition
Csub(t

∗) is false and hence σC(t∗) = t 6= ∅. If Csub is ind C
is fullfiled independently of the result of Csub and conditions
1 and 2 hold.

Maximality: Tsub is the maximal subset of Tsub.

2.3.2 ALL-sublinks in Selections
The provenance for ALL-sublinks is derived analogously

to the provenance for ANY -sublinks, except that an ALL-
sublink uses universal quantification instead of existential
quantification. An ALL-sublink is true if the comparison
condition is fullfiled for all tuples from Tsub. If Csub is true
then Csub(T ) is true for all T ⊆ Tsub. It follows that Tsub

fulfills conditions 1 and 2, if Csub is reqtrue or ind. If Csub

is false then Tsub contains at least one tuple t′ that does not
fulfill condition t.A op t′, but is allowed to contain tuples
that fulfill the condition. If Csub is reqfalse, Tsub therefore
fulfills condition 1, but only tuples from Tsub

false fulfill con-
dition 2. Thus Tsub

∗ = Tsub
false. The proof is analog to the

proof for ANY -sublinks.

2.3.3 EXISTS-sublinks in Selections
For the provenance derivation of EXISTS -sublinks we can

use the fact that an EXISTS sublink is true if Tsub produces
a result with at least one tuple. Thus, Csub(T ) is true if
T is a non-empty subset of Tsub. If Csub is reqtrue then
Tsub fulfills condition 1 and condition 2. If Csub is reqfalse
then Tsub = ∅ and thus Tsub fulfills conditions 1 and 2. In
summary, Tsub

∗ = Tsub independently of the influence role.

2.3.4 Tsub-sublinks in Selections
The provenance derivation for sublinks without a specific

sublink operator is trivial, because a Tsub-sublink either has
a single result tuple or produces the empty set. In both
cases condition 1 is fulfilled for Tsub

∗ = Tsub. Condition 2
follows from condition 1, because Tsub contains at most one
tuple. Therefore, Tsub

∗ = Tsub.
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2.3.5 Examples
The provenance of three example queries is given in Figure

3. For q1, the sublink is reqtrue for all input tuples t from
R, but for each t, only one tuple t′ from S is in Rtrue(t). In
query q2 the ALL-sublink is also reqtrue. For tuple (4, 5), the
only tuple that fulfills condition C, all tuples from relation
R are included in the provenance of (4, 5). In Query q3 the
sublink is reqfalse for input tuple (2, 1) and reqind for input
tuple (3, 2).

2.4 Single Sublinks in Projections
For sublinks used in a projection instead of a selection,

the same influence roles apply as for selection.4 The main
difference is that different tuples from the input of the op-
erator can produce the same result tuple. The set of tuples
from the input T that produce a tuple t from the output
is the provenance T ∗ of t according to T (see [4, 12]). Let
w.l.o.g. T ∗ = {t1, . . . , tn}. We know that for every ti ∈ T ∗,
the expression E in which Csub is used in produces the same
result, because otherwise T ∗ would not fulfill condition 1.
For two tuples ti and tj from T ∗, the influence role of Csub

and the sets Tsub
true and Tsub

false can be different. For each
tuple ti from T ∗, the results established in the last section
hold.

Let Tsub
∗(ti) be the provenance of a tuple t for one tuple

ti ∈ T ∗, if computed using the results from the last section.
Intuitively, one would expect that the provenance of t should
include all these sets. Let

S
Tsub

∗ be defined as follows:[
Tsub

∗ =
[

i∈{1,...,n}

Tsub
∗(ti).

We can formally show that the provenance of a result tuple
t of a projection that contains sublinks is (1) the union of the
provenance derived for each input tuple t′ that was used to
produce t, and (2) that the provenance of each t′ is derived
as it is done for sublinks in selection.

Theorem 2 (Provenance of projection sublinks).
Let ΠA(T ) be an projection that contains a sublink Csub in
projection list A. The provenance of a result tuple t accord-
ing to sublink Csub is:

Tsub
∗ =

[
Tsub

∗

Proof.
To prove that a subset Tsub

′ of Tsub is the provenance of a
tuple t according to Tsub, we have to show that condition 2
holds for every ti from T ∗ and for every t′ from Tsub

′. In
addition, condition 1 must hold and Tsub

′ has to be max-
imal. Proving that condition 1 is fulfilled breaks down to
showing that for every tuple ti ∈ T ∗ the following holds:
ΠA(

S
Tsub

∗)(ti) = t, where A(T ) is the projection list A with
T substituted for Tsub.

For EXISTS - and Tsub-sublinks, Tsub(ti) = Tsub holds
for every i and, thus,

S
Tsub

∗ = Tsub(ti). It follows that
conditions 1 and 2 are fulfilled for Tsub

∗ = Tsub. To prove
that Tsub

∗ =
S

Tsub
∗ holds for ANY and ALL sublinks too,

we have to show that the conditions from Definition 1 are
fulfilled. We only present the proof for ANY -sublinks. The
proof for ALL-sublinks is analog.

4The ind role can appear if the sublink is used in an expres-
sion. For instance, Πtrue∨a = ANY (S)(R).

Condition 1: We have to show that ∀tx ∈ T ∗ : ΠA(tx)(tx) =
t holds. That can be proven by showing that A(tx) = A. If
Csub is reqtrue then A(tx) = A if Csub(

S
Tsub

∗) is true.S
Tsub

∗ contains Tsub
∗(tx) and therefore contains at least

one element t′ that fulfills condition t.A op t′. In con-
sequence A(tx) = A. If Csub is reqfalse, no tuple from
Tsub (and thus, also no tuple from

S
Tsub

∗) fulfills condi-
tion t.A op t′. Hence, A(tx) = A. At last, if Csub is ind,
A(tx) is independent of the result of Csub and A(tx) = A
trivially holds.

Condition 2: Let t∗ ∈
S

Tsub
∗. It follows that t∗ ∈ Tsub

∗(ti)
for some i and thus ΠA(t∗)(ti) = t 6= ∅. Because projection
is a monotone operator, ΠA(t∗)(T

∗) 6= ∅ holds too.
Maximality: We have to distinguish two cases. If there

is at least one tuple ti for which Csub is ind or reqfalse,
then Tsub

∗ = Tsub, which is the maximal subset of Tsub. If
Csub is reqtrue for all ti ∈ T ∗, then for each tuple t′ from
Tsub −

S
Tsub

∗ the condition t.A op t′ is false for each ti

and, hence, for every set Tsub
′ ⊂ Tsub fulfilling conditions 1

and 2, ΠA(Tsub
′∪{t′})(T

∗) 6= t holds. It follows that Tsub
∗ is

maximal.

2.5 Multiple Sublinks
In this section we extend the results stated for single sub-

links to queries with multiple sublinks and show that if a
selection or projection contains more than one sublink the
contribution definition from [7] is not well-defined anymore.
We demonstrate how the definition can be extended to pro-
duce meaningful results and that the extended definition has
the additional advantage that it excludes tuples from the
provenance of single sublink queries that do not contribute
to the result.

As an example to illustrate the problem consider the fol-
lowing selection on the relations R = {(1), (2), (3), . . . , (100)},
S = {(1), (5)} and U = {(5)} with schemas R = (b), S = (c)
and U = (a) :

σC1∨C2(U)

C1 = (a = ANY R) C2 = (a > ALL S)

For the tuple t = (5) from U the sub-condition C1 of the
selection condition C is true and the sub-condition C2 is
false. The problem with this example is that there are no
maximal subsets R∗ and S∗ that fulfill conditions 1 and 2,
because a solution that maximizes one set requires that the
other set is not maximized. The following solutions both
fulfill conditions 1 and 2, but maximize only R∗ or S∗:

solution 1 solution 2

R∗ = {5} R∗ = {1, . . . , 100}
S∗ = {1, 5} S∗ = {1}

This problem arises because the contribution definition only
requires the provenance to produce the same result tuples as
the complete input relations, but not to produce the same
results for sublink expressions in the query. This leads to
the ambiguity examined in the example. Solution 2 fulfills
the conditions of the contribution definition, but the results
of C1 and C2 are different from the results of C1 and C2

produced by the original query.
Intuitively, the provenance of a tuple t according to a sub-

link query Tsub should include only tuples that produce the
same result of the sublink Csub as in the original query, be-
cause other tuples would only have contributed if a query
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from another sublink produced a different result. This be-
havior can be achieved if the contribution definition is ex-
tended by a third condition that restricts the provenance to
generate the same results for all sublinks of the query for
each input tuple. A side-effect of this restriction is that the
ind influence role does not exist anymore, because it allows
the provenance to produce a different result for a sublink.

Based on this we propose the following extended definition
of provenance contribution:

Definition 2 (Extended Provenance Contribution).
Let op be an algebra operator with inputs T1, . . . , Tn and
Tsub1 , . . . , Tsubm . Each Tsubi denotes an input relation that
is used in a sublink Csubi . Let Csub(T

′, (t1, . . . , tn)) with
ti ∈ Ti be the result of Csub computed for the input tu-
ples from (t1, . . . , tn), if T ′ is substituted for Tsub. A tuple
op∗ = (T1

∗, . . . , Tn
∗, Tsub1

∗, . . . , Tsubm
∗) of subsets of the

input relations is the provenance of a result tuple t of the
operator iff all elements from op∗ fullfill conditions 1 and 2
of definition 1 and the following condition holds:

∀tup = (t1
∗, . . . , tn

∗) : ∀i ∈ {1, . . . , n} : ti ∈ Ti
∗ :

∀j ∈ {1, . . . , m} : ∀t∗ ∈ Tsubj

∗ :

Csubj (Tsubj , tup) = Csubj (t
∗, tup)

(3)

The extended contribution definition has the effect that the
provenance of an operator with multiple sublinks is unique
and the provenance for each sublink in a query is the same
as for single sublink queries (Except that we only have the
reqtrue and reqfalse influence roles).

Note that condition 3 is not required for single sublink
queries. However, it should be applied to these queries too,
because otherwise the provenance can contain tuples that do
not contribute to the result of the sublink query (false posi-
tives). For instance, consider the query σa=2∨a = ANY S(R)
over the relations from Figure 3. For the result tuple t =
(2, 1) the sublink is true and ind. Therefore the provenance
of the sublink query is S∗ = S, but only the tuple t′ = (2, 4)
from S contributed to the result of the sublink.

Note that definition 2 produces the same provenance as
definition 1 for queries with no sublink or only a single sub-
link. This can be formally proven as follows:

Theorem 3 (Provenance under definition 2). The
provenance of each sublink of a query with multiple sublinks
according to definition 2 is the same as for single sublinks
according to definition 1.

Proof.
We prove this claim by showing that the provenance defined
for single sublinks form the maximal sets fulfilling the con-
ditions from definitions 1 and 2. We just present the proof
for single input operators and selection, because the poofs
for multi input operators and projection are analog.

Let t be a tuple from the output of selection σC(T ) with a
condition C that contains n sublinks Csub1 , . . . , Csubn . For
a single input tuple the results of the sublinks are fixed and
each Csubi(Tsubi

∗) is required to produce this fixed result.
Let Tsubi

′ be the provenance of a sublink computed using
the results for single sublinks. Obviously each of these sets
fulfills condition 3 from Definition 2.

Condition 1: We know that C′ = C(Tsub1
′, . . . , Tsubn

′) is
true because t is in the result of the selection. Therefore,
σC′(T ∗) = t holds.

Condition 2: Let i be an arbitrary number from {1, . . . , n}
and t∗ ∈ Tsubi

′. C′ = C(Tsub1
′, . . . , t∗, . . . , Tsubn

′) is true iff
Csubi(t

∗) is true, because each Csubj (Tsubj
′) is required to

produce the same result as the original query. From the re-
sults for single sublinks follows that also Csubi(t

∗) produces
the same result as Csubi(Tsubi) and, thus, σC′(T ∗) = t 6= ∅.

Maximality: Let i ∈ {1, . . . , n}. Consider Tsubi
′′ an ar-

bitrary subset of Tsubi that fulfills conditions 1 to 3. If we
union Tsubi

′′ with a tuple t′ from Tsubi − Tsubi
′ we can de-

duce from the results for single sublinks that Csubi(t
′) 6=

Csubi(Tsubi). Therefore, condition 3 is not fulfilled.

2.6 Correlated Sublinks
The difference between correlated sublinks and uncorre-

lated sublinks is that for correlated sublinks not only Csub

depends on the input of the operator the sublink is used in,
but Tsub depends on the input too. If we consider single
input operators like selection or projection, Tsub is constant
for a fixed input tuple t from the operators input T . For
selection, a single output tuple is derived from one tuple of
the input. Thus, the provenance of a tuple t is defined as
for uncorrelated sublinks.

For projections, more than one input tuple can belong to
the provenance of an output tuple t. The attribute values of
each of these input tuples t′ parameterize the sublink query
Tsub. Therefore, the results of the sublink query Tsub can
differ, depending on which of the input tuples is used to pa-
rameterize it. E.g., for the query q = Πa = ALL (σb=c(S))(R)
on the relations from Figure 3, the sublink query Tsub =
σb=c(S) has three different results computed for the three
tuples from R:

Tsub(1, 1) = {(1, 3)}
Tsub(2, 1) = {(2, 4)}
Tsub(3, 2) = ∅

Because of the parameterization of the sublink query, the no-
tion of a unique subset Tsub

∗ does not make sense anymore.
For instance, if we compute the provenance of query q for
the result tuple (true), there is no set that fulfills condition
1 for both input tuples (1, 1) and (2, 1). We therefore com-
pute the provenance of a projection with correlated sublinks
according to an output tuple t and an input tuple t′. This
enables us to apply definition 1 and 2 as for uncorrelated
sublinks. For example the provenance of tuple (true) of the
result of query q according to input tuple (1, 1) is:

R∗ = {(1, 1)} S∗ = {(1, 3)}

The restriction to a single input tuple seems to be a severe
limitation, but in section 3 we demonstrate that this restric-
tion poses no problem for provenance computation.

2.7 Nested Sublinks
Definitions 1 and 2 define the provenance of single oper-

ator expressions. The provenance of an algebra expression
is computed by iteratively computing the provenance for
each operator starting at the result of the outermost opera-
tor (see [12]). This form of computation is sound, because
provenance is defined to be transitive (see [7]). Thus the
provenance of nested sublinks can be computed iteratively
too, by rewriting the outmost sublink first and using the
results of this computation in the following computations.
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R+ = ΠR,R(R) with P(R+) = R where R is a unique renaming of the attributes from R (R1)

(
S/B

Π A(T ))+ =
S/B

Π A,P(T+)(T
+) with P((

S/B

Π A(T ))+) = P(T+) (R2)

(σC(T ))+ = σC(T+) with P((σC(T ))+) = P(T+) (R3)

(T1 × T2)
+ = T1

+ × T2
+ with P((T1 × T2)

+) = P(T1
+) I P(T2

+) (R4)

(αG,aggr(T ))+ = ΠG,aggr,P(T+)(αG,aggr(T ) ><G=Ĝ ΠG→Ĝ,P(T+)(T
+)) with P((αG,aggr(T ))+) = P(T+) (R5)

Figure 4: Perm provenance rewrite rules

3. QUERY REWRITE RULES
In this section we introduce algebraic rewrite strategies

that transform a query q into a query q+ that computes the
provenance for all result tuples of q, and prove the correct-
ness of the rewrite rules used by these strategies. First we
introduce the provenance representation used by Perm and
the rewrite rules used for queries without sublinks. Then
we present the Gen rewrite strategy that is applicable for
all types of sublinks and the Left, Move and Unn strategies
that are restricted to specific types of sublinks.

3.1 Relational Representation of Provenance
In contrast to the method presented in [7], we use a single

relation to represent the provenance of a query. Represent-
ing the provenance as a tuple of relations has the disadvan-
tage that the representation is not within the relational data
model and thus can neither be queried using SQL nor stored
in a standard relational DBMS. Additionally, in this repre-
sentation the association between the original query results
and the provenance is lost if the provenance of a set of result
tuples is computed.

With the Perm provenance management system we fol-
low a different approach, by representing the provenance of
a query as a single relation and using algebra expressions to
compute the provenance. This has the intrinsic advantage
that the provenance computation benefits from query opti-
mization techniques of relational DBMS, can be stored as a
materialized view and used as a subquery in standard SQL
queries.

In Perm, the provenance of the result of a query q is rep-
resented as a single relation that contains all the original
result tuples. Each original result tuple is extended by the
contributing tuples from each base relation accessed by q. If
there is more than one contributing tuple from a base rela-
tion, the original tuple has to be duplicated. If a query q
accesses base relations R1, . . . , Rn, the schema of the prove-
nance of q is (q,P(R1), . . . ,P(Rn)). P(T ) is a unique re-
naming of the attributes from T and is called the provenance
schema of T . Due to space constraints we do not present
the actual naming scheme used by the Perm system, but
use the prefix p for provenance attributes instead.

For example, the provenance of the query qex = Πa,c(σa<c(
R × S)) with base relations R = {(1, 2), (3, 4)} and S =
{(2), (5)} and schemas R = (a, b) and S = (c) is:

a c pa pb pc
1 2 1 2 2
1 5 1 2 5
3 5 3 4 5

Note that the provenance representation used by Perm
not only associates a result tuple t with its provenance, but

also associates tuples from different input relations that were
used together to derive tuple t. This is similar to How -
provenance introduced in [13]. The contribution definition
used in [13] generates additional information of how the in-
put tuples where combined to produce an output tuple, but
only for a limited subset of relational algebra.

For example, if we represent the provenance of qex as
(R∗, S∗), the information which tuples from R∗ and S∗ were
used together to derive the result tuple (3, 5) is lost. In the
Perm representation, this information can be derived from
the fact that tuples (3, 4) and (5) are stored in the same
provenance result tuple. This representation is well-suited
for queries containing projections with correlated sublinks,
because the provenance computed for each parameterization
of a sublink query is stored together with the input tuples
that where used to parameterize the query.

3.2 Rewrite Rules for Standard Operators
Perm computes the provenance of a query q by transform-

ing it into a query q+ propagating provenance by applying
query rewrite rules (see [12]). In [7], provenance is com-
puted tracing the path of a result tuple back to its origins.
By propagating provenance information from the source to
the result, the Perm provenance computation is similar to
annotation propagation approaches, such as DBNotes[6] or
MONDRIAN [10].

In Perm there is a rewrite rule for each algebra operator.
A query is rewritten by iteratively applying the rewrite rules
for the algebraic operators used in the query. In Figure 4 we
present rewrite rules for the most important algebra opera-
tors. For the sake of brevity we do not present the proofs
here, but it can be shown that the provenance produced by
these rewrite rule fulfills the conditions of definition 1. The
I operator is used to concat two lists of attribute names.
For each rewrite rule, the list P of provenance attributes is
presented.

For example, reconsider query qex from above. Using the
rewrite rules from Figure 4 this query is transformed into
the following query:

qex
+ = Πa,c,pa,pb,pc(σa<c(Πa,b,a→pa,b→pb(R)×Πc,c→pc(S)))

3.3 Gen Rewrite Strategy
We now present the Gen rewrite strategy for queries that

contain sublinks and prove that the strategy computes prove-
nance according to Definition 2. The Gen strategy uses the
Perm rewrite rules for standard algebra expressions and ad-
ditional rewrite rules to transform sublinks.

The two main problems developing rewrite rules for sub-
links are that (1) the result of a sublink query is not included
in the query result, and that (2) it is not immediately clear
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Gen strategy rewrite rules

(σC(T ))+ =σC∧Csub1
+...∧Csubn

+(T+ × CrossBase(Tsub1) . . .× CrossBase(Tsubn)) (G1)

(ΠA(T ))+ =σCsub1
+...∧Csubn

+(ΠA,P(T+)(T
+)× CrossBase(Tsub1) . . .× CrossBase(Tsubn)) (G2)

Csubi

+ = EXISTS (σJsubi
∧P(Tsubi

+)=nTsubi
′(ΠP(Tsubi

+)→Tsubi
′(Tsubi

+)) ∨ (¬EXISTS(Tsub) ∧ P(Tsub
+) =n null)

Left strategy rewrite rules

(σC(T ))+ =ΠT,P(T ),P(Tsub1 ),...,P(Tsubn )(σC(T+ ><Jsub1
Tsub1

+ . . . ><Jsubn
Tsubn

+) (L1)

(ΠA(T ))+ =ΠA,P(T ),P(Tsub1 ),...,P(Tsubn )(T
+ ><Jsub1

Tsub1
+ . . . ><Jsubn

Tsubn

+) (L2)

Move strategy rewrite rules

(σC(T ))+ =ΠT,P(T+),P(Tsub1 ),...,P(Tsubn )(

σCtar (ΠT,P(T+),Csub1→C1,...,Csubm→Cm
(T+) ><Jsub1

Tsub1
+ . . . ><Jsubn

Tsubn

+))
(T1)

(ΠA(T ))+ =ΠA′′,P(T ),P(Tsub1 ),...,P(Tsubn )(ΠA′(T+) ><Jsub1
Tsub1

+ . . . ><Jsubn
Tsubn

+) (T2)

Unn strategy rewrite rules

(σ EXISTS Tsub(T ))+ = T+ × Tsub
+ (U1)

(σx = ANY (Tsub)(T ))+ = T+ ><x=Tsub Tsub
+ (U2)

Figure 5: Provenance query rewrite rules for sublinks

how to determine the influence role of a sublink. We ap-
proach the first problem by joining the original query with
the sublink query, and the second by restricting the join to
filter out tuples according to the influence role of the sub-
link. For correlated sublinks it is not possible to simply join
the sublink query, because correlations are only allowed in
sublinks but not in standard subqueries.

One approach to overcome this problem is to completely
de-correlate the query by injecting the top query into the
sublink query, produce results for each correlated attribute
binding and propagate the bindings throughout the query.
The propagated attributes are then used to bind the corre-
lated attributes values in the join condition. This is similar
to query de-correlation problem studied in area of query op-
timization (see [5]). The solutions from this field are only ap-
plicable for specific correlations. Even though we do not aim
at performance optimization, the de-correlation approach is
quite complicated in the general case and it is far from clear
how this solution will perform.

To circumvent de-correlation the Gen strategy joins the
original query with all theoretically possible provenance tu-
ples and simulates the join by an additional sublink that
filters out tuples that do not belong to the provenance. All
possible provenance tuples for a sublink can be produced
using the cross product of all base relations accessed by the
sublink query. In some cases, e.g. if a base relation is the
empty set, a tuple consisting only of null values is the prove-
nance for this relation. Therefore, we extend each base re-
lation R with a tuple null(R) that has the same schema as
R and all its attributes set to null.

Let Base(Tsub) = R1, . . . , Rn be the list of all base rela-
tions accessed by a sublink query Tsub. The relation Cross-
Base(Tsub) is defined as follows:

CrossBase(Tsub) =ΠR1→P(R1)(R1 ∪ null(R1))×
. . .×ΠRn→P(Rn)(Rn ∪ null(Rn))

CrossBase(Tsub) is the set of all possible provenance tuples
of a sublink Tsub.

To restrict the CrossBase of a sublink to the actual prove-
nance, we need to know which influence role Csub has for
every input tuple t. In addition, we need to know the prove-
nance of the sublink query Tsub. The provenance of the sub-
link query can be computed using the standard provenance
rewrite rules to produce Tsub

+. To get the influence role, we
can use the sublink Csub. The join condition can then be
formulated using Csub and a condition Csub

′ that filters out
the provenance according to the influence role of Csub. As
presented in section 2, the provenance of a sublink is either
Tsub, Tsub

true or Tsub
false. Thus, Csub

′ is either true, A op t
or ¬(A op t). We define Csub

′ = A op t, because we do not
need an extra selection condition for true, and ¬(A op t) is
expressed as ¬Csub

′.
Csub

′ and Csub are used to define a selection condition
Jsub for each sublink type:

Jsub = (Csub ∧ C′
sub) ∨ ¬Csub (ANY-sublink)

Jsub = Csub ∨ (¬Csub ∧ ¬C′
sub) (ALL-sublink)

Jsub = true (EXISTS- or Tsub sublink)

By applying logical equivalences, Jsub for ANY- and ALL-
sublink can be transformed into:

Jsub = C′
sub ∨ ¬Csub (ANY-sublink)

Jsub = Csub ∨ ¬C′
sub (ALL-sublink)

The condition Jsub is used to restrict Tsub
+ to the actual

provenance of Csub. The join between CrossBase and T+

is simulated with equality conditions between the attributes
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from CrossBase and the attributes from Tsub
+. In this com-

parison we have to consider null values as equal and there-
fore use the comparison operator =n:

a =n b ⇔ a = b ∨ (a = null ∧ b = null)

The simulated join condition between CrossBase and Tsub
+

is defined as follows:

Csub
+ = EXISTS (σJsub∧P(Tsub

+)=nTsub
′(

ΠP(Tsub
+)→Tsub

′(Tsub
+))

∨ (¬EXISTS(Tsub) ∧ P(Tsub
+) =n null)

The first EXISTS sublink in Csub
+ checks that a tuple from

the CrossBase actually belongs to the provenance of the
sublink Csub. To belong to the provenance a tuple has to
be an element of Tsub

+. This is checked by the condition
P(Tsub

+) =n Tsub
′. In addition, the tuple has to fulfill the

condition Jsub. The second EXISTS sublink is needed to
handle the special case of an empty sublink query result.
In this case the provenance attributes are filled with null
values.

Csub
+ enables us to define the Gen strategy rewrite rules

for selections and projections with multiple sublinks. These
rules are presented in Figure 5 (G1 and G2 ).

3.4 Correctness of the Gen strategy

Theorem 4 (Gen Strategy Correctness). For a
query q with sublinks, the provenance computed by the rewrit-
ten query q+ according to rules G1 and G2 is the provenance
derived according to definition 2.

Proof.
To prove the correctness of the Gen rewrite rules, we have
to show that each tuple t produced by the rewritten query
there is an original tuple with attached provenance, and that
for every original tuple with attached provenance this tuple
is included in the result of the rewritten query. We only
present the proof for selection and ANY -sublinks here.
Result Preservation:
To show that the normal attributes T of a rewritten query
q+ contain exactly the tuples from q we have to show that
S

ΠT(q+) =
S

ΠT(q). For rewrite rule G1 the input to the
outer most selection is: inn = T+×CrossBase(Tsub1) . . .×

CrossBase(Tsubn). Trivially
S

ΠT(inn) =
S

ΠT(q), because
none of the CrossBases generates the empty set. Therefore,
S

ΠT(q+) =
S

ΠT(q) iff the selection condition C is fulfilled for
ever tuple from T+ and for each condition Csubi

+ there is at
least one tuple ti from CrossBase(Tsubi) that fulfills condi-
tion Csubi

+. The first requirement is always meet, because
every tuple from the result of q fulfills the selection con-
dition C. The selection condition Csubi

+ filters out tuples
from CrossBase(Tsubi) that do not belong to the provenance
of Csubi . If no tuples belong to the provenance of Csubi , the
second EXISTS condition selects a tuple with all attributes
set to null. Thus the second requirement is fulfilled too.
Correct provenance propagation:
To show that rewrite rule G1 generates the provenance of a
result tuple t according to Definition 2 we have to show

that for ∀i ∈ {1, . . . , m} :
S

ΠP(Tsubi
)→Tsubi

(σT=t(q
+)) =

S

ΠTsubi
(Tsubi

∗) holds. This is equivalent to proving Csubi
+(t′)

⇔ t′ ∈ Tsubi
∗ for all tuples t′ from CrossBase (Tsubi). We

ignore the fact that Tsubi
∗ and q+ have different schemas to

omit extra projections and thus keep the proof readable.
Csubi is reqtrue: Tsubi

∗ = Tsubi
true. Let t′ be a tuple from

CrossBase(Tsubi) that belongs to Tsubi
+. The sub-condition

P(Tsubi
+) =n Tsubi

′ is fulfilled only for such tuples, because
it compares t′ with tuples from Tsubi

+. Iff t′ ∈ Tsubi
true

then Csubi
′(t′) is fulfilled. From Csubi is true we can deduce

that Jsubi is fulfilled and hence Csubi
+(t′) ⇔ t′ ∈ Tsubi

∗

holds.
Csubi is reqfalse: Tsubi

∗ = Tsubi . Let t′ be a tuple from

CrossBase(Tsubi) that belongs to Tsubi
+. The sub-condition

P(Tsubi
+) =n Tsubi

′ is fulfilled only for such tuples. Csubi

is false and from Tsubi
∗ = Tsubi we know that Csubi

′(t′) is
false too. Thus the condition Jsubi is fulfilled and it follows
that Csubi

+(t′) ⇔ t′ ∈ Tsubi
∗ holds.

3.5 Example of the Gen strategy
As an example for an application of the Gen strategy con-

sider the query q = σa = ANY (σc=b(S))(R) on relations R and
S with schemas R = (a, b) and S = (c). The rewritten query
produced by the rewrite rule G1 is as follows:

q+ =σCsub∧Csub
+(Πa,b,a→pa,b→pb(R)×

Πc→pc(S ∪ null(S)))

Csub =(a = ANY (σc=b(S)))

Csub
+ = EXISTS (σ(a=c∨¬Csub)∧pc=nc′(

Πc,pc→c′(σc=b(Πc,c→pc(S))))

∨ (¬ EXISTS (σc=b(S)) ∧ pc =n null)

3.6 Rewrite Strategies for Uncorrelated Sub-
links

The Gen strategy presented in the last section is inef-
ficient, because it uses a cross product that is restricted
by a complex sublink condition and sublinks in general are
hard to optimize. Hence we developed strategies that are
more efficient but are only applicable for uncorrelated sub-
links. These strategies utilize the fact, that for uncorrelated
sublinks the sublink query Tsub

+ contains no correlated at-
tributes and, thus, can be used in a normal join.

For reasons of space, we omit the proofs of correctness for
these strategies. The proofs are similar to the prove of the
Gen strategy.

3.6.1 Left Strategy
As mentioned above, uncorrelated sublinks enable us to

directly join rewritten sublink queries. The Left strategy
uses left-outer-joins to join the results of a query with the
provenance of the sublinks. To join only tuples from a
rewritten sublink query that belong to the provenance of
a sublink we can utilize the join condition Jsub from the last
section. To produce correct results for empty sublink queries
we have to use outer joins. The rewrite rules (L1 and L2 ) of
strategy Left are presented in Figure 5. Consider the exam-
ple query q = σa = ALL (S)(R). After applying rewrite rule

L1, the resulting query q+ is:

q+ = Πa,b,pa,pb,pc(

σCsub(Πa,b,a→pa,b→pb(R)) ><Csub∨¬Csub
′ Πc,c→pc(S))

Csub = (a = ALL (S))

C′
sub = (a = c)
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(a) (b)

(c) (d)

Figure 6: Performance of queries with sublinks in TPC-H for database sizes 1MB (a), 10MB (b), 100MB (c),
and 1GB (d)

3.6.2 Move Strategy
The rewrite rules of the Left strategy have the disadvan-

tage that the sublink Csub is duplicated in the condition
Jsub. This is unproblematic if the query optimizer is aware
of the duplication and computes Csub only once. If the du-
plication is not recognized, query performance will suffer
dramatically. To circumvent this potential problem, we in-
troduce the Move strategy that uses modified versions of the
Left rewrite rules. These rewrite rules have been modified to
move selection sublinks into a projection. Thus we are able
to use the results of a sublink in the selection and in condi-
tion Jsub. Rewrite rule T1 uses this strategy for sublinks in
selection. Selection condition Ctar is selection condition C
with all sublinks replaced by the new projection attributes
C1, . . . , Cm. For example, the result of the rewrite for query
q from above is:

q+ = Πa,b,pa,pb,pc(σC1(Πa,b,pa,pb,(a = ALL (S))→C1(R)

><C1∨¬(a=c)Πc,c→pc(S)))

Rewrite rule T2 is the modified rewrite rule for projection
sublinks. A new inner projection on A′ is used to project
on all expressions from A that do not contain a sublink, and
on the sublinks used in A. The modified outer projection on
A′′ includes all expressions from A′ that do not contain a
sublink, all expressions from A that contain sublinks and the

provenance attributes of T+. For each projection expression
containing sublinks, the sublinks are replaced by the new
attributes from A′. As an example consider the query q =
Πa,S(R):

q+ = Πa,C1,pa,pb,pc(Πa,S→C1(R) ><true (S))

3.6.3 Unn Strategy
Provenance computation can benefit from the de-corre-

lation and un-nesting techniques developed for query opti-
mization [4, 9, 1, 5, 16, 8, 14]. Besides the fact that these
approaches are normally only suitable for specific types of
sublink queries, the performance gain can be significant. For
provenance queries we expect the performance gain to be
even higher, because most techniques transform sublinks
into joins for which the provenance rewrite rules are very
efficient. In addition, the complex join conditions used in
the Left and Move strategies can be omitted.

As an example for un-nesting we introduce the Unn strat-
egy. The Unn strategy uses two rewrite rules U1 and U2 (see
Figure 5) for specific types of sublinks. Rule U1 is a specific
rewrite for a selection with a condition C = EXISTS Tsub.
Because the provenance of an EXISTS -sublink includes all
tuples from Tsub and C is fulfilled only if Csub is true, the
provenance can be computed using a simple cross product.
Rule U2 rewrites a selection with a condition that is a sin-
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gle ANY -sublink with an equality comparison. The sublink
condition is true if the comparison condition is true. There-
fore, Csub is always reqtrue and the sublink can be trans-
formed into a join on the comparison condition.

4. IMPLEMENTATION AND EXPERIMENTS

4.1 Implementation
The rewrite strategies presented in the last section have

been implemented in the Perm provenance management sys-
tem [12]. Perm is realized as an extension of the PostgreSQL-
DBMS [15]. The Perm module is located below the Post-
greSQL analyzer and operates on the internal query tree rep-
resentation used in PostgreSQL. The module applies prove-
nance rewrite rules to the query tree produced by the an-
alyzer. The output of the provenance rewrite module is
passed to the planner and is subject to the standard query
optimization of PostgreSQL. The original parser has been
modified to recognize language extensions that trigger the
rewrite process. For instance, the keyword PROVENANCE
is used in the select clause to mark a query for provenance
rewriting.

For example, to produce the provenance of the algebra
expression σa=3,b = ANY (S)(R), the following statement in
extended SQL can be used:

SELECT PROVENANCE ∗
FROM R
WHERE a = 3 AND b = ANY (SELECT ∗ FROM S ) ;

For a more detailed explanation of the SQL extension used
by Perm and the adaptation of the rewrite rules for query
trees the interested reader is refered to [12].

4.2 Experiments
To evaluate the performance of the sublink rewrite strate-

gies we conducted a series of experiments. All experiments
where performed on a 2GHz Intel-dual-core machine with
1GB of main memory running MacOS version 10.15.

4.2.1 TPC-H Benchmark
The first series of experiments uses the TPC-H bench-

mark [20], because there is no standard benchmark for PMS.
TPC-H is a stress test of the ideas presented in this pa-
per, because of its subset of complex queries with differ-
ent sublink patterns. The TPC-H benchmark consists of 22
query templates that can be randomly parameterized with
a query generator. Nine of these queries contain sublinks,
from which three contain only uncorrelated sublinks. We re-
strict the experiments to these queries. The query generator
was used to generate 100 instance of each of these queries.
The Gen strategy was used for all 9 queries with sublinks.
For the queries with uncorrelated sublinks (11,15 and 16)
the Left and Move strategy are also applied (none of the
queries fulfills the requirements to apply the Unn strategy).
The average execution times for each strategy and databases
of sizes 1MB, 10MB, 100MB and 1GB are given in Figure
6. Queries with a run time of more than 6 hours or that are
not supported by a strategy are excluded from the results.

As apparent from the results, the Gen strategy scales only
for moderate database sizes. For a database size of 10mb the
runtime of some queries took several hours (queries 2,17,22).
The Left and Move strategies computed the provenance for
uncorrelated sublinks for database sizes up to 1GB. It is

Figure 7: (Synthetic) Varying size of input relation

Figure 8: (Synthetic) Varying size of sublink relation

important to be aware of the inherent complexity of these
queries. For instance, the provenance computation of query
11 for a database size of 1GB produces approximately 38 mil-
lion tuples. In the experiments the Move strategy showed
no significant improvement in comparison to the Left strat-
egy. The examination of the query plans generated for these
strategies showed that the cost-estimation for the complex
join conditions used in these strategies were extremely inac-
curate. As part of future work we will explore making the
query optimization cost-model of PostgreSQL provenance-
aware to improve performance.

4.2.2 Synthetic Data
In addition to the TCP-H experiments, we also tested

Perm on synthetic data. The goal is to discover potential op-
timizations. We produced tables with two integer attributes
(a and b) in sizes from 10 to 500000 tuples. The attribute
values where drawn from a gaussian distribution with a fixed
mean and a standard derivation of 100 times the table size.
For the experiment we used two parameterized queries. The
first query is a selection with an ANY -sublink and equality
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Figure 9: (Synthetic) Varying size of both relations

comparison:

q1 = σrange∧a = ANY (σrange2(R2))(R1)

The range and range2 conditions restrict the input tables on
a random range (with a fixed size) of values from attribute
b. This query was used to test the performance of a simple
sublink with an equality comparison.

The second query is an inequality condition in an ALL-
sublink.

q2 = σrange∧a < ALL (σrange2(R2))(R1)

Like for query q1, the range-conditions were used to select a
random subset of the tuples from the input tables. All four
rewrite strategies were used for both query types, except
Unn that provides only a rewrite rule for query q1.

We used the synthetic data to run three sets of experi-
ments. For the first set of experiments we employed a fixed
size of 1000 tuples for the relation used in the sublink and
varied the size of the input relation of the selection. In the
second set of experiments, we fixed the size of the input rela-
tion and varied the size of the sublink relation. For the last
set of experiments the sizes of both relations were varied.
All experiments were run for 100 queries of type q1 and q2.
The average run times are given in Figures 7, 8 and 9.

The results demonstrate that the specialized Unn strategy
outperforms the other strategies by an order of magnitudes.
The Left and Move strategies showed a significant improve-
ment over the Gen strategy.

As these results show our approach can be used to de-
termine the provenance of queries with sublinks. Some-
thing that was not possible with any of the existing sys-
tems. The inherent cost of computing the provenance for
complex queries and large databases is evident in our re-
sults. Yet, there is much room for optimization, as the spe-
cialized strategies presented in this paper indicate. As part
of future work we plan to investigate the applicability and
impact of other de-correlation and un-nesting techniques for
provenance computation. Another optimization would be to
develop new physical operators that propagate provenance.
This could to lead to significant improvements, because the
algebraic rewrites often require the recreation of intermedi-
ate results, leading to expensive join or sublink operations.

5. CONCLUSIONS
In this paper we have presented a solution to the prob-

lem of computing the provenance of queries with sublinks.
To the best of our knowledge, Perm is the first PMS that
supports such functionality. Our experiments indicate that
our approach is feasible for databases of moderate size. For
larger databases we provide optimized strategies and discuss
potential optimizations.
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