
Towards Materialized View Selection for Distributed
Databases

Leonardo Weiss F. Chaves1, Erik Buchmann2, Fabian Hueske1, Klemens Böhm2

1 SAP Research CEC Karlsruhe, Germany
{leonardo.weiss.f.chaves|fabian.hueske}@sap.com

2 Universität Karlsruhe (TH), Germany
{buchmann|boehm}@ipd.uni-karlsruhe.de

ABSTRACT
Materialized views (MV) can significantly improve the query
performance of relational databases. In this paper, we con-
sider MVs to optimize complex scenarios where many het-
erogeneous nodes with different resource constraints (e.g.,
CPU, IO and network bandwidth) query and update nu-
merous tables on different nodes. Such problems are typical
for large enterprises, e.g., global retailers storing thousands
of relations on hundreds of nodes at different subsidiaries.

Choosing which views to materialize in a distributed, com-
plex scenario is NP-hard. Furthermore, the solution space
is huge, and the large number of input factors results in
non-monotonic cost models. This prohibits the straightfor-
ward use of brute-force algorithms, greedy approaches or
proposals from organic computing. For the same reason, all
solutions for choosing MVs we are aware of do not consider
either distributed settings or update costs.

In this paper we describe an algorithmic framework which
restricts the sets of considered MVs so that a genetic algo-
rithm can be applied. In order to let the genetic algorithm
converge quickly, we generate initial populations based on
knowledge on database tuning, and devise a selection func-
tion which restricts the solution space by taking the simi-
larity of MV configurations into account. We evaluate our
approach both with artificial settings and a real-world RFID
scenario from retail. For a small setting consisting of 24 ta-
bles distributed over 9 nodes, an exhaustive search needs
10 hours processing time. Our approach derives a compa-
rable set of MVs within 30 seconds. Our approach scales
well: Within 15 minutes it chooses a set of MVs for a real-
world scenario consisting of 1,000 relations, 400 hosts, and
a workload of 3,000 queries and updates.

1. INTRODUCTION
Materialized views (MV) are a well-known technique to

reduce the response time of complex queries in database
management systems (DBMS). MVs can improve the query
performance by avoiding re-computation of expensive query

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

SELECT … FROM A,B,C,D

A B

C D

ERP

MIS1 MIS2

Shelf1

SELECT … FROM B,C,D SELECT … FROM A,C,D

SELECT … FROM A,B,D SELECT … FROM A,B,C

Shelf2

Figure 1: Simple example scenario

operations. In a distributed DBMS, MVs can materialize
query results near to the query issuer and reduce network
transmissions. On the other hand, MVs have to be recom-
puted when the underlying relations are updated, and var-
ious resource constraints have to be considered. Thus, it is
far from trivial to find the optimal set of MVs in complex,
distributed scenarios.

Example 1: Think of a large retailer that wants to adopt
RFID technology. Figure 1 illustrates a simple scenario con-
sisting of one central Enterprise Resource Planning System
(ERP), two Merchandise Information Systems (MIS) storing
the relations A, B and two smart shelves managing the tables
C, D. ERP, MIS and the smart shelves store different data.
A typical query in this scenario joins data from different
nodes, e.g., “Join the product code of blue pants from ERP
with the inventory data of all MIS in shops within a radius
of 20km, and count the tuples where the attribute sold is
false”. Many aspects have to be considered when optimizing
such queries. If the tables are updated very frequently, no
MV should be materialized. In the case of high-speed links,
the central ERP node should materialize the tables from
all MIS. Otherwise, the MIS could materialize the product
codes from ERP, etc.

Currently, there is no approach to compute which view
has to be materialized on what machine in a decentralized
DBMS consisting of many heterogeneous nodes with different
constraints on CPU, IO and network bandwidth, where each
node issues many different queries and updates at different
rates. We call this the distributed view selection problem.

1088

Solving this problem for complex, distributed scenarios
is challenging, for multiple reasons. First, the distributed
view selection problem is known to be NP-hard [10]. Sec-
ond, distributed scenarios consisting of nodes with many
different resource constraints result in non-monotonic cost
models. Thus, greedy algorithms which propose MVs based
on optimal solutions for subproblems cannot be applied be-
cause the benefit of materializing a certain view might de-
pend on all other MVs materialized. Third, the number of
possible views to materialize grows exponentially with the
number of computer nodes and queries, and with the num-
bers of columns, join predicates, grouping clauses and tables
referenced in each query. Due to the huge solution space,
brute-force strategies, e.g., backtracking, as well as biology-
inspired solutions like ant colony optimization or genetic al-
gorithms cannot be applied directly. Finally, a practical so-
lution for the distributed view selection problem must fulfill
two non-functional requirements:

1. Robust results for inaccurate costs: Database op-
timization is based on cost estimations, which might
deviate from the real cost to some extent. However, it
is important to obtain “good” MVs even if the under-
lying cost model is simplified or inaccurate.

2. Flexible cost models: Business IT scenarios feature
different optimization goals, e.g., guaranteed quality-
of-service agreements or staged pricing models, and
some machines might be tailored for specific queries.
Thus, a view selection algorithm must allow to ex-
change the model without depending on restrictions
like linearity or monotonicity.

Approaches for estimating a good set of MVs according
to a given query mix have been implemented in centralized
DBMS for years [1, 2, 6, 7, 21, 24, 26, 28, 29]. However, these
approaches depend on monotonic cost models, while consid-
ering updates and distributed data results in non-monotonic
models [4, 11]. All existing approaches to derive MVs in dis-
tributed scenarios we are aware of make prohibitive restric-
tions in order to obtain monotonic cost models or reduce the
complexity, e.g., no update costs [4, 10, 12, 25] or only one
querying node [10, 11, 12, 13, 16].

In this paper, we propose an algorithmic framework which
reduces the solution space of the view selection problem for
complex scenarios so that the problem becomes solvable by
a genetic algorithm. Therefore, we have to (1) represent the
solution space as a bit matrix that is small enough to be
fed into a genetic algorithm, and (2) propose mechanisms
that let the genetic algorithm converge quickly. We start
by choosing a set of “costly” tables. As this is a common
basis for view selection approaches, we use a standard al-
gorithm [2] to derive this set from our workload definition
and cost model. In a second step, we identify MV candi-
dates. Unlike other approaches which build numerous query
execution plan alternatives to extract MV candidates, our
approach is based on a syntactic analysis: We decompile the
workload into aggregation operations, joins and predicates,
and we recombine these operations to construct promising
MV candidates. In the final step, we use a genetic algo-
rithm to propose MVs and the nodes to materialize them
on. Therefore, we let the genetic algorithm start with ini-
tial populations containing individuals that either minimize
query execution costs or update costs. Finally, we devise

a selection function which restricts the solution space by
taking the similarity of MV configurations into account. Al-
though genetic algorithms do not guarantee to find optimal
solutions, they are well suited for this kind of problem as
they can avoid getting stuck in local optima.

We evaluate our approach both with artificial settings and
a large real-world RFID scenario we have devised together
with a large retailer. As our experiments show, an exhaus-
tive search over the complete solution space of a small sce-
nario with 9 hosts and 24 tables requires 10 hours to com-
pute the optimal set of MVs. For the same scenario, our
approach provides within 30 seconds a solution that is only
0.01% worse. Our experiments confirm that our approach
scales very well. Within 15 minutes, it proposes a good set
of MVs for very large scenarios consisting of 1,000 relations
distributed over 400 hosts, which together process a complex
workload of 3,000 queries and updates.

Paper outline: In the next section we discuss the re-
lated work. In Section 3 we describe the RFID scenario
that has motivated our work, and outline how MVs can op-
timize queries on RFID data. In Section 4 we present our
approach. We evaluate our approach in Section 5, and we
close with a conclusion.

2. RELATED WORK
We divide related work into (1) scenarios with one com-

puter node that holds all tables, and views are materialized
on this computer node (non-distributed MVs), (2) scenar-
ios with tables distributed across several computer nodes,
and views are materialized on one computer node (semi-
distributed MVs), and (3) scenarios where tables and MVs
can reside on any computer node in a network (distributed
MVs). The third scenario corresponds to our problem.
(1) Non-distributed MVs: Choosing MVs in centralized
scenarios is a well researched problem. In such scenarios,
storage is considered to be the limiting factor.

[2] describes a heuristic for automated selection of materi-
alized views and indexes in centralized relational databases
without considering updates. The approach introduces a
system model and an algorithm for choosing a set of “costly”
tables, which we have adapted as a starting point for our ap-
proach. Extensions of [2] include horizontal partitioning [1]
and the materialization of frequently accessed rows only [28].
All of these approaches iterate over subsets of MV candi-
dates to construct the final set of MVs from optimal solu-
tions for sub-problems. This is only possible with monotonic
cost models. Otherwise the benefit of materializing a certain
view depends on the complete set of MVs proposed.

A number of approaches consider updates when propos-
ing MVs. [24] describes an algorithm to derive MVs from an
existing query access plan. However, as the algorithm might
get stuck in local optima, the savings potential of this algo-
rithm is limited. Similar algorithms face comparable prob-
lems, e.g., [3] only considers a ”representative” query subset
of the workload. A more recent approach is [29], which intro-
duces an algorithm that uses the query optimizer to suggest
and evaluate multiple candidate MVs and indexes.

Many approaches have been proposed for data warehouses,
which are tailored for specific update strategies, storage re-
quirements or multidimensional data sets. [6] describes how
to automatically distribute storage space among MVs and
indexes. [21] proposes a heuristic to choose which aggregate
views to precompute for multidimensional datasets. [7] de-

1089

scribes how MVs can be incrementally updated using log
data. In [19], a method for maintenance of MVs is de-
scribed which exploits common subexpressions of different
MVs. [27] proposes an algorithm to lazily maintain mate-
rialized views. This decreases update costs and allows the
aggregation of updates. Algorithms to choose which MV
should be used for each query are presented in [7, 20].

[26] uses genetic algorithms to choose MVs from a genome
that represents a complete query access plan consisting of
multiple data warehouse queries. However, [26] cannot be
adapted to a distributed scenario: Here, the query access
plan depends on the nodes where the MVs are materialized
on, and the solution space is too large to be directly evalu-
ated by a genetic algorithm.
(2) Semi-distributed MVs: Many approaches consider
choosing which views to materialize in semi-distributed sce-
narios. [12] presents a model for analyzing materialized and
virtual views for distributed data where views are main-
tained on one mediator. The model calculates query re-
sponse time, view freshness and system load though param-
eters like query frequency, query complexity, update fre-
quency and network delay. [10] proposes a heuristic for
choosing which views to materialize in a data warehouse.
The heuristic is based on view graphs. The authors show
their problem is NP-hard, and their solution yields at least
63% of the optimal benefit. In [11], this solution is expanded
to choose MVs under the constraint of view maintenance
costs in contrast to the usual storage constraint. This seems
to be the first paper to present an algorithm for this type of
constraint. The problem of choosing which views to mate-
rialize has also been researched in federated databases: [16]
analyzes which views to materialize in front-end databases,
and [13] analyzes which views to materialize in back-end
databases. A self-tuning algorithm for data placement in
distributed databases is proposed by [15]. A method for in-
crementally maintaining MVs in semi-distributed scenarios
is shown in [22].
(3) Distributed MVs: There is little work on choos-
ing which views to materialize in a distributed scenario. [4]
seems to be the first paper to address the problem of ma-
terializing views in distributed scenarios. The concepts are
explained for data warehouses, but they should apply for
RDBMS. The algorithm is based on aggregation lattices.
However, [4] does not consider load or network transmission,
which is very important in distributed scenarios. Further-
more, [4] explains that the approach presented cannot han-
dle updates, because this would result in a non-monotonic
cost model. [25] uses a greedy algorithm based on view
derivation cubes to choose where to materialize views in a
distributed data warehouse. A linear cost model is used and
update costs are not considered. The paper emphasizes that
there is still no effective solution for distributed scenarios.

3. APPLICATION SCENARIO
In this section, we introduce a generic RFID scenario for

retail [23], which we have devised together with a large re-
tailer. The scenario demonstrates that complex enterprise
scenarios cannot be handled by existing approaches (cf. Sec-
tion 2). We will refer to this scenario as a running example,
and we will use it to evaluate our approach. Three aspects
make it challenging to solve the view selection problem for
such scenarios: the scale of the infrastructure, the hetero-
geneity of the hardware, and the complexity of the workload.

Merchandise
Information System

Smart Shelf Smart Shelf

Store C

Central ERP System Store B

Store A

Master Data

Product Price,
Min. Stock

Point of Sales

RFID Data

Sold Items

Figure 2: An IT hierarchy from a retail scenario

Infrastructure. Figure 2 sketches a typical IT infrastruc-
ture of a large retailer. One Enterprise Resource Planning
System (ERP) supports business tasks for all stores, e.g., lo-
gistics, data warehousing or purchase planning. Assume the
retailer has 100 stores. Each store has its own Manufactur-
ing Information System (MIS). The MIS holds information
about product orders, product sales and product data. Each
store has one point of sales (POS) and two RFID readers.
The POS hosts the product prices and manages all cash reg-
isters in the store. The two RFID readers hold the data from
all smart shelves in the front store and back store. Any node
in this setting – even a RFID reader – is capable of materi-
alizing a view.
Hardware. Since the IT infrastructure of an enterprise
grows over time, all nodes have different resource constraints.
Machines like ERP systems or RFID readers are tailored for
particular tasks. The network bandwidth varies at a large
scale. The MIS of large stores are connected with the ERP
over high-speed connections, while small stores use dial-up
telephone lines. The nodes within a store use Ethernet.
Workload. The workload consists of a large number of
complex queries and updates that are executed with differ-
ent frequencies and from different nodes. Due to different
products sold, bonus offers or peak sales, the workload is
unique for each node. The product information and summa-
rized sales data managed by the ERP system are updated
infrequently. The POS and RFID readers in a store have to
cope with approx. 25,000 updates per day. The MIS in each
store performs approximately 9,000 updates per day.

1090

Symbols of Scenario
f(q), f(u) The frequency of a query or update
N The set of computer nodes
Q The set of queries
U The set of update statements

Symbols of Algorithms
C The set of all MV candidates
costquery(x, c1, n1,
c2, n2, · · · , ci, ni)

The costs of a query or update state-
ment x when the view cw is material-
ized on node nw

costtable(x, t) The costs of table t in query or update
statement x

Qts The set of queries that contains the
table subset ts

spop The population size
TS The final set containing table subsets

of the table selection algorithm
θ Threshold for a table subset to be rel-

evant
θexpTab Threshold for expensive tables
θsim Threshold for similarity of popula-

tions
Uts The set of update statements that

contains the table subset ts

Table 1: Symbols used

4. MATERIALIZED VIEW SELECTION
In this section we describe our approach to solve the view

selection problem for complex, distributed scenarios. We
consider a distributed database system consisting of a set of
nodes N , a set of queries Q, a set of update statements U
and their respective frequencies f (cf. Table 1). Our solution
space is huge: Let m be the number of materializeable views.
Then there are 2m∗|N| possible solutions of which view to
materialize on which node. m can be very large. For each
query q ∈ Q, MVs can be generated for all combinations of
columns and predicates in q, i.e., for each query there are at
least m′ = (2|columns| − 1) ∗ (2|predicates| − 1) possible MVs.
Joins and grouping clauses further increase the size of m.

Our approach uses background knowledge on database op-
timization to exclude inferior MVs from the solution space,
so that the view selection problem becomes solvable by a ge-
netic algorithm [5]. Therefore, we reduce the columns and
predicates that need to be evaluated by considering the sim-
ilarity of queries, and by focusing on“expensive” tables. Ap-
proaches for the view selection problem consist of steps that
select relevant tables, identify promising MV candidates and
enumerate over all candidates in order to obtain a“good” set
of MVs (cf. [2]). Our approach follows this structure, but
proposes novel solutions for the last two steps.

1. Table Selection: This step analyzes the workload
and chooses table subsets which have a significant im-
pact on the workload costs. Therefore, we adapt the
metrics of a table selection algorithm [2] for centralized
DBMS so that it considers distributed scenarios.

2. Candidate Generation: Based on the table subsets,
this step generates MV candidates. Our approach is
based on a syntactical analysis of the workload. We
decompile the workload into aggregation operations,

joins and predicates, we recombine base tables, oper-
ations and predicates to create MV candidates, and
choose the most promising ones using our cost model.

3. MV Selection: In this step, we use a genetic algo-
rithm to choose (1) the views from the candidate set
that are actually materialized and (2) the nodes they
are materialized on. Therefore, we devise an initial
population, a fitness function and a selection function,
and we develop a heuristic for the placement of MVs
to reduce the solution space evaluated.

Cost Model. Our approach requires cost estimates from a
cost model. As explained in Section 1, we must not depend
on specific cost models or restrictions like monotonicity or
linearity. Thus, we build on any cost model that provides
two generic measures costquery() and costtable().

costquery(x, c1, n1, c2, n2, · · · , ci, ni) estimates the costs of a
query or update statement x when i views are present,
while view cw is materialized on node nw. One view
can also be materialized on multiple nodes. The views
c and the nodes n are optional. If they are not given,
this function estimates the cost without considering
nodes and/or views.

costtable(x, t) estimates the costs of accessing a single table
t in a query or update statement x, i.e., costs of table-
scans, selection and sending data.

The cost model we have used for our evaluation will be
described in Subsection 5.2.

4.1 Step 1: Table Selection
We start by choosing tables with a high impact on the

runtime of the query mix, e.g., tables that have a high car-
dinality, which are queried very often, or located on low
performance computer nodes. At this step, the solution
space includes 2x − 1 possible combinations of relevant ta-
bles, where x is the number of different tables referenced
by all queries in the query mix. The naive approach would
be iterating through every possible subset of tables in order
to filter the relevant ones. But this approach is not feasi-
ble due to the large number of table combinations possible.
Instead, we adapt the metrics of a common table selection
algorithm [2] to consider distributed scenarios.

The algorithm works as follows: It iterates from i =
1, 2, · · · to the number of different tables specified in the
query mix. For each iteration it generates table subsets Si

consisting of i tables, and it computes a coarse estimation
for the cost savings if this subset would be materialized. If
the coarse cost estimation of such a table subset is smaller
than a threshold θ, the subset is discarded. Finally, the al-
gorithm uses a detailed cost metric to remove insignificant
subsets from the final result set. An evaluation of this algo-
rithm and of the choice of parameters can be found in [2].

The algorithm requires a cost threshold θ and two cost
metrics: TS–Weight(ts) calculates the detailed costs of all
queries in the query mix that use a given table subset ts, and
TS–Cost(ts) estimates approximate costs only, with TS–
Cost(ts) ≥ TS–Weight(ts). We derive TS–Cost(ts) and
TS–Weight(ts) from our generic cost measures costquery()
and costtable() as follows:

TS−Cost(ts) =
∑

q∈Qts

costquery(q) ∗ f(q) (1)

1091

Qts is the set of queries that reference the queries in ts.
costquery(q) returns the costs of a query q without using
MVs, and f(q) is the frequency of q in the workload.

[2] defines TS–Weight as the sum of query costs weighted
by the cardinalities of the tables. However, this definition is
not suitable for distributed scenarios where the cardinality
is not the only influencing factor. We base our calculation
of TS–Weight on costquery() to capture the performance of
the nodes hosting the tables:

TS−Weight(ts) =∑
q∈Qts

(
costquery(q) ∗ f(q) ∗

∑
t∈ts(costtable(q,t))∑
t∈Tq

(costtable(q,t))

)
(2)

Qts is the set of queries that refer to the tables ts, Tq is the
set of tables needed to answer query q, and f(q) is the fre-
quency of a query q in the workload. costtable(q, t) returns
the costs of a table t in q, i.e., the costs of table-scans, se-
lection and sending data, which depend on the resources of
the node storing t. This definition captures the cardinality
of a table, its query frequency and the performance of its
allocation node. Note that as the cardinality of ts increases,
the values of TS–Cost(ts) and TS–Weight(ts) will decrease
since there will be fewer queries that use all tables in ts.

Example 2: To illustrate how the table selection algorithm
works, we apply it to our simple scenario (Fig. 1). The
algorithm starts with table subsets containing one table, i.e.,
S1 = {{A}, {B}, {C}, {D}}, and it iterates over subsets
with two, three and four tables. Assume the threshold θ
is the cost of a table subset used by at least three queries.
Thus, the result is TS = {{A}, {B}, {C}, {D}, {A, B}, {A,
C}, {A, D}, {B, C}, {B, D}, {C, D}}.

4.2 Step 2: Candidate Generation
We now devise promising MV candidates from the queries

and the table subsets ts ∈ TS identified in the previous
step. In the following, we refer to the tables in ts as base
tables. Existing approaches, e.g., [29], obtain MV candi-
dates by generating numerous alternatives of query execu-
tion plans, which are filtered for“expensive” subgraphs. The
plans can be derived from multi-query optimization [19, 29]
or by merging multiple query plans [10, 11]. However, these
methods require optimizer calls that are expensive for com-
plex scenarios. Furthermore, as the number of processing al-
ternatives grows exponentially with the number of computer
nodes, query operators and tables involved, such approaches
produce huge candidate sets for complex settings.

We follow a different approach, that considers each table
subset ts ∈ TS in isolation and decomposes the queries into
selection and join predicates, grouping clauses and aggrega-
tion operations. We generate MV candidates in two phases:
First, we create two generic MV base candidates. One base
candidate materializes the join of all tables in ts and sup-
ports the intersection of all predicates of all queries Qts that
refer to the tables in ts. The other base candidate supports
grouping and aggregation functions in addition. Second,
we generate a number of refined MV candidates from the
generic candidates. The intuition is as follows: Computing
the intersection of all predicates over the join of all tables re-
sults in one costly MV with a high cardinality. On the other
hand, dividing the base candidate into multiple specialized
MVs that support only a few tables and predicates might

reduce the update cost of the MVs. In order to obtain dis-
tinct candidates at different levels of specialization, we use
an approach based on a binary tree to continuously split
the predicates of the base candidate. Thus, the root of the
tree is the base candidate that supports all queries in Qts,
and the leaves are the most specific MV candidates which
support only the predicates and tables of a single query.

Generation of Generic Candidates
We distinguish between (1) general MV candidates and (2)
aggregation MV candidates. General MV candidates can be
used by any query in Qts, while aggregation MV candidates
only support queries with the same aggregate functions and
the same selection predicates on the aggregated columns.
For each table subset, we generate one general base candi-
date and if applicable one aggregation MV candidate. The
candidates consist of the following components:

1. The general base candidate:

• Base tables: The join of all tables in ts.

• Predicates: Selection and join predicates that are
common for all q ∈ Qts and refer to a table in ts.
If queries have a predicate on the same column
but select different value ranges, the MV predi-
cate selects the union of these values ranges.

• Projections: Every column in ts that is part of the
query result or needed to compute a predicate,
join, grouping or aggregation in a query in Qts.

2. The aggregation candidate includes the general base
candidate together with the following components:

• Grouping clauses: Every column in ts that is
grouped by a query q ∈ Qts or required for the
computation of other query predicates.

• Aggregation functions: Every aggregation func-
tion that is part of any query q ∈ Qts and refers
to a table in ts.

Example 3 shows an intuition for the candidate generation.

Refinement of MV Candidates
Instead of materializing one MV with a general selection
predicate or aggregation function, it might be more efficient
to materialize multiple specialized MVs with highly selec-
tive predicates or aggregation functions. Such MVs have a
smaller cardinality, thus they can be queried and updated
at smaller costs. For example, consider the base candi-
date cts,Q from Example 3, which supports the queries q1

to q5. A MV candidate that supports only q2, q4, q5 has a
smaller cardinality, because its predicates are more selective:
σA.a1 = B.b1∧A.a2 > 100. In the case the MV supports q5 only,
its predicates would be σA.a1 = B.b1∧A.a2 > 100∧B.b2 = 10.

In this phase, we generate specific MV candidates, which
the genetic algorithm will evaluate together with the generic
candidates. A straightforward approach would generate the
permutation of all predicate combinations. However, the
number of combinations grows exponentially with the num-
ber of predicates. Our approach exploits the similarity of
queries. Because all queries in Qts use the same base ta-
bles in ts, their selection predicates must refer to the same
columns. Thus, it is possible to identify clusters of queries

1092

Example 3: Consider the Queries Q = {q1, q2, q3, q4, q5} re-
ferring to the tables A, B and C:

q1 : ”SELECT A.a1, A.a2, B.b2, C.c2
FROM A, B, C,
WHERE A.a1 = B.b1 AND A.a1 = C.c1”

q2 : ”SELECT A.a1, A.a2, B.b2
FROM A, B
WHERE A.a1 = B.b1 AND A.a2 > 100”

q3 : ”SELECT A.a1, A.a2, A.a3, B.b2
FROM A, B
WHERE A.a1 = B.b1”

q4 : ”SELECT A.a1, SUM(B.b3)
FROM A, B
WHERE A.a1 = B.b1 AND A.a2 > 120
GROUP BY A.a1”

q5 : ”SELECT A.a1, A.a2, B.b2
FROM A, B
WHERE A.a1 = B.b1 AND A.a2 > 100 AND

B.b2 = 10”

One table subset ts ⊆ TS which we obtained in the last step
from all tables used in Q is ts = {A, B}. Thus, the general
base candidate (cts,Q) and the aggregation candidate (c′ts,Q)
for this subset and the queries in Q are:

cts,Q : ”SELECT A.a1, A.a2, A.a3, B.b2, B.b3
FROM A, B
WHERE A.a1 = B.b1”

c′ts,Q : ”SELECT A.a1, SUM(B.b3)
FROM A, B
WHERE A.a1 = B.b1
GROUP BY A.a1”

which take advantage of one highly specific MV. For exam-
ple, q2, q4, q5 are similar, because they benefit from a single
MV that materializes Table A with the predicate σA.a2 > 100

and the projection πA.a1, A.a2. We define the similarity of
queries as the cardinality of the intersection of the query
results. Other metrics for similarity might also be used.

We use a binary tree (cf. Example 4) to organize and struc-
ture all predicates in Qts according to their similarity and
degree of specialization. The root contains the MV base
candidate with predicates that include the domain of values
for all queries, and the leaves contain MV candidates with
specific predicates for single queries. Thus, we only consider
(2 ∗ |Qts| − 1) cases. We use the tree to choose MV candi-
dates that minimize costs of query execution. However, we
must not neglect MVs that make updating other MVs less
expensive, e.g., one MV might materialize intermediate re-
sults which are useful when updating many other MVs. We
create such MV support candidates in a subsequent step.
(1) Raise the tree. In order to build the binary tree, we
first assign the root with the base candidate and all queries
in Qts. For each pair of children, we divide the set of queries
in the parent so that each child is assigned with queries
having similar predicates. In particular, for every candidate

Example 4: Assume a candidate tree whose base candidate
supports the queries q1 to q5 from Example 3:

C9C8

C7C6

C3

C1

C5C4

C2

{a1 = b1}

{a1=b1
AND a2>100}

{a1=b1
AND a2>100
AND b2=10}

15 20

25

65

50

20 10

5 5

Candidate C1 represents cts,Q in Example 3. The example
shows how query sets are split according to its similarity.
The first split separates the queries with selection predicates
(q2, q4, q5) from those without (q1, q3). The red labels in
the tree outline the cost reduction of the nodes. Observe
node C2, which provides a cost reduction of 25. Its children
C4, C5 cover the same range of predicates, but reduce the
cost by 15 + 20. Thus, our algorithm removes C2 and keeps
C4, C5. The final set of candidates is C3, C4 and C5.

in the tree the set of supported queries is split into two
subsets. Both subsets are used to build new child candidates,
which are appended to the tree. We split a set of supported
queries Q by sorting all queries q ∈ Q into two buckets based
on their similarity, i.e., according to the cardinality of the
intersection of the query results. We stop when all leaves
of the tree are candidates that support only one query. For
a base candidate that supports |Qts| queries, (2 ∗ |Qts| − 1)
candidates are generated.
(2) Remove inferior candidates. After building the
tree, we remove inferior candidates. Therefore, we calculate
the net reduction in costs rnet for each candidate c, i.e., the
difference between the minimal update costs costupd and the
maximal cost reduction rmax:

rnet(c) = rmax(c)− costupd(c) (3)

rmax(c) = (4)∑
q∈Qts

f(q) ∗max
n∈N

(costquery(q)− costquery(q, c, n))

costupd(c) = (5)∑
u∈Uts

f(u) ∗ min
n∈N

(costquery(u, c, n)− costquery(u))

To compute the maximal cost reduction of c, we sum up the
maximal cost reduction for every query q in Qts. Therefore,
we assume c is materialized on every node, and compute the
cost of executing q (Equation 4). The minimal update costs
of c are computed likewise (Equation 5), while Uts is the
set of update statements that alter tables in ts. We use the
minimal update costs, since the computation of updates is
much more expensive than replicating tables. Thus, our ap-
proach updates a view on the node with the smallest update
costs, and replicates the view to other nodes.

We now traverse the tree in reverse level-order and cal-
culate the net reduction in costs for each candidate in the
tree. If the reduction of a candidate is larger than the sum

1093

of reductions of its children, the children are removed from
the tree. Otherwise, the children are adopted by the parent
of the candidate. The tree loses the binary property in this
step. We stop if the tree has only one level.
(3) Add support candidates. When the trees of all base
candidates have been built and cut, we refine the result set
by adding candidates that reduce the update costs of the
MV candidates proposed. The candidates generated so far
consider the costs of query execution only. But there can
also be MVs that reduce update costs of other MVs. For
example, a MV could compute a complex intermediate re-
sult that is needed when updating a number of other MVs.
We call these additional candidates support candidates. For
every candidate with two or more base tables, we identify ex-
pensive base tables which have a big influence on the update
costs of the view. A table t is considered to be expensive for
a MV candidate c, if Equation 6 holds:

∑
ut∈Ut

costquery(ut, c) >

(∑
u∈U

costquery(u, c)

)
∗θexpTab (6)

costquery(u, c) computes the update costs of the MV c for the
update statement u, U is the set of update statements that
alter any base table of c, Ut is the set of update statements
that alter t and θexpTab is a threshold. Having identified the
expensive base tables of c, we compute the support candi-
date’s set of base tables TSsup by subtracting the expensive
tables from the set of c’s base tables. The support candidate
csup is build from TSsup and the set of queries supported by
c. We check if csup supports c by comparing the update
costs for c with and without csup being materialized. If c’s
update costs are reduced, we add csup to the result set.

The Candidate Generation Algorithm
Now we describe how the concepts introduced in this section,
i.e., generic candidates and their refinement, are combined
into one algorithm, cf. Algorithm 1. The algorithm gener-
ates a set of MV candidates for a given set of queries Q, a set
of updates U , and a set of computer nodes N . For each table
subset ts the set Qts of queries and the set Uts of update
statements that contain ts are obtained (Lines 5, 6). We
build the generic MV candidates from these sets (Line 7).
For each MV candidate we build a tree and generate special-
ized MV candidates (Lines 10, 11), and add the remaining
candidates to the result set of candidates in Line 12. After
that, we improve the result set further by adding candidates
that reduce the update costs of already selected candidates
(Line 14). When all candidates have been checked for sup-
port candidates, the algorithm returns the result set (Line
15) and terminates.

4.3 Step 3: MV Selection
This step evaluates the base MV candidates together with

the specialized MV candidates obtained from the last steps.
In particular, we find out (1) which MVs should be realized,
and (2) what are the optimal nodes to materialize them on.
Because even after applying our heuristics the solution space
is still too large to enumerate every possible MV configura-
tion, we adapt a genetic algorithm to solve the view selection
problem.

Genetic algorithms [5] belong to the class of probabilistic
optimization algorithms. The algorithm organizes possible
solutions (individuals) in populations. New individuals are

1: input set of table subsets TS, set of queries Q and a set
of updates U

2: Cbase = {}
3: Cres = {} // initialize result set
4: for all (ts ∈ TS) do // Generate base candidates
5: Qts = selectReferencingQueries(ts)
6: Uts = selectReferencingUpdates(ts)
7: Cbase = Cbase∪generateBaseCandidates(ts, Qts, Uts)
8: end for
9: for all (cbase ∈ Cbase) do // For each base candidate

10: buildTree(cbase) // build tree for base candidate
// remove candidate w/ inferior quality from tree

11: cutTree(cbase)
// add remaining candidates to result set

12: addTree(cbase, Cres)
13: end for
14: addSupportingCandidates(Cres)
15: output Cres

Algorithm 1: Candidate Generation Algorithm

derived by random mutations and crossings of individuals.
The next generation is composed from individuals that are
selected based on their quality (fitness). In order to solve
the view selection problem by a genetic algorithm, we code
all the possible configurations (the individuals) as binary
allocation matrices that specify if a certain MV candidate
(column) is materialized on a certain node (row). We re-
fine the genetic algorithm for the view selection problem
by (1) generating initial populations based on knowledge on
database tuning, and (2) devising a selection function that
is specific to our problem. Both extensions help the genetic
algorithm to converge faster than the standard approach [9].

(1) Initial population
Although the previous steps reduced the solution space for
the view selection problem by selecting promising MV can-
didates only, the number of alternatives to be evaluated still
grows exponentially with the number of computer nodes
where the MVs can be materialized. Standard implemen-
tations of genetic algorithms start with a randomly selected
initial population. However, if we can devise an initial pop-
ulation that is close to the optimal solution, the genetic al-
gorithm will converge after a few iterations instead of brows-
ing a large number of inferior solutions. Therefore, we apply
the following heuristic: A candidate c is preferably materi-
alized on a node which either hosts one or more of c’s base
tables (minimizes update costs) or is the issuer of a query
supported by c (minimizes execution costs). Note that this
heuristic does not inhibit the materialization of views on
nodes than neither host nor query a table; such nodes can
still be chosen for materialization through mutations. Fol-
lowing this heuristic we define for each candidate c a set of
’promising’ materialization nodes Nc:

Nc = {n | n ∈ N, (∃t, t ∈ tsc, n ∈ Nt) ∨
(∃q, q ∈ Qc, n = origin(q))} (7)

tsc are the base tables of c, Nt is the set of computer nodes
hosting the table t, Qc is the set of queries supported by c
and origin(q) gives the origin node of a query q.

1094

(2) Selection function
When composing a new population, a genetic algorithm se-
lects the ’fittest’ individuals from the previous population
and introduces some mutation and crossover of the genome.
In the case of the view selection problem, this means select-
ing MV sets according to their cost reductions. However,
selecting individuals only because of their fitness might lead
to populations consisting of individuals with similar genetic
information, i.e., the genetic algorithm evaluates the fitness
of similar individuals in parallel. To reduce the number of it-
erations and diversify the population, our selection function
takes the similarity of individuals into account. We define
the similarity s(i1, i2) between two individuals i1, i2 as the
sum of identical bits in their allocation matrices:

s(i1, i2) =

 |N|∑
i=1

|C|∑
j=1

xi,j

 /(|N | ∗ |C|) (8)

xi,j =

{
0 , if A1[i][j] 6= A2[i][j]

1 , if A1[i][j] = A2[i][j]
(9)

A1, A2 are the allocation matrices of i1 and i2 respectively.
The average similarity of an individual i to all individuals
in a population P is calculated as follows:

avgSimilarity(i, P) =

(∑
i′∈P

s(i, i′)

)
/ |P | (10)

1: input population P , population size spop,
similarity threshold θsim

2: Psort = sortPopulationByFitness(P)
// sort individuals by fitness in descending order

3: Pnext = {} // initialize the next population
4: for all (individual i in Psort) do
5: if (avgSimilarity(i, Pnext) < θsim) then
6: Pnext = Pnext ∪ i

// add individual i to Pnext

7: end if
8: if (|Pnext| = spop) then
9: break // Exit loop

10: end if
11: end for
12: output Pnext

Algorithm 2: Selection function

Our selection function select(P, spop, θsim) is described in
Algorithm 2. Its input parameters are the current popu-
lation P , which is the combined set of former selected in-
dividuals and those derived from mutation and crossing,
the maximal population size spop and a similarity threshold
θsim. First, we sort P according to the fitness of the indi-
viduals in descending order (Line 2). We iterate over the
sorted set starting with the fittest individual (Line 4) and
check for each individual if its average similarity to the next
generation is less than the threshold θsim (Line 5, Equa-
tion 10). An individual that passes the check is added to
the next generation (Line 6). We stop adding individuals to
the next population, if either the size of the next generation
reaches the desired population size (Line 8) or all individ-
uals have been processed. Finally, the next generation is
returned (Line 12).

The right choice of θsim involves a tradeoff between run-
time and the quality of the result. A small threshold will
result in small populations (Pnext) that can be evaluated
quickly. On the other hand, a large threshold results in
a more comprehensive set of alternatives to be evaluated,
and might produce better results. In our experiments we
achieved a good tradeoff with a setting of θsim that required
at least (0.2 ∗ |C|) cells of the allocation matrices to differ
(i.e., xi,j = 0 in Equation 9).

The MV Selection Algorithm
Algorithm 3 shows how we have integrated our heuristics
into a genetic approach [5]. First, the algorithm generates
an initial population (Line 2). generateInitialPopulation()
randomly generates an initial population. Then the algo-
rithm steps into an evolution loop and computes descendant
populations until the termination condition is fulfilled (Line
3). We define the termination condition as (genCount ≥
genThreshold), where genThreshold is a threshold for the
number of consecutive iterations without significant cost re-
duction and genCount counts the iterations without cost re-
duction. A descendant population is generated by mutation
(Line 6), crossing (Line 11) and selection (Line 16) of its an-
cestor population’s individuals. For the next iteration of the
evolution loop, the descendant population becomes the an-
cestor population (Line 17). Finally, getBestIndividual(Psuc)
returns the fittest individual of the population.

1: input mutation probability pm, crossover probability pc

2: Panc = generateInitialPopulation()
// generate initial population

3: while (Termination Condition is not fulfilled) do
4: Pnew = {}
5: while (i < |Panc|) do

// do for every individual of Panc

6: if random() < pm then
// Mutate i-th individual and add mutant to Panc

7: Pnew = Pnew ∪mutate(Panc, i)
8: end if
9: if (random() < pc) then

// Cross i-th and random individual and
// add offspring to Panc

10: j = (random() ∗ |Panc|)
11: Pnew = Pnew ∪ crossover(Panc, i, j)
12: end if
13: i = i + 1
14: end while
15: computeF itnesses(Panc)

// select individuals for next generation
16: Psuc = select((Panc ∪ Pnew), spop, θsim)
17: Panc = Psuc

18: end while
19: output getBestIndividual(Psuc)

Algorithm 3: Genetic Algorithm

5. EVALUATION
In this section we evaluate our approach by simulating dif-

ferent scenarios consisting of a query mix, a workload def-
inition and a distributed setup of machines with different
resource constraints. Genetic algorithms do not guarantee
optimal solutions. However, we show that our approach de-

1095

vises ’good’ MVs that are intuitively reasonable for database
administrators. We compare our approach with a brute-
force variant that finds the optimal set of MVs by brows-
ing through the whole solution space, and we measure how
our approach copes with misestimated cost parameters. We
demonstrate that the results of our approach are stable, i.e.,
there is little deviation in the results of multiple test runs.
Finally, we show that our approach copes with huge dis-
tributed scenarios consisting of up to 400 nodes, 1,000 tables
and about 3,000 queries and update statements.

Note that the right choice of the parameters for genetic
algorithms is not the focus of this paper. We obtained our
results with a population size of 64 individuals, a crossing
probability of 25%, a mutation probability of 15%, and ter-
mination if none of the last 4 iterations had a cost reduction
of at least 0.1%. An in-depth analysis of parameters of ge-
netic algorithms can be found in [9].

5.1 Experimental Setup
For our experiments we programmed a Java prototype of

the algorithms described in Section 4. We implemented a
simulated distributed database environment including com-
puting nodes, database tables and a cost-based query opti-
mizer. The cost model for the optimizer will be described
in the next section.

The optimizer generates query execution plans for our
simulated database environment, i.e., it decides which MV
are used in which queries. Further, it calculates the ex-
ecution costs of queries and updates needed for our algo-
rithms. The implementation of the optimizer is based on
well-known algorithms [8, 18] which we adapted to consider
MVs and distributed databases. The optimizer follows the
dynamic programming approach and computes an execu-
tion plan from a restricted set of operators. In particular,
it supports a subset of SPJG without nested subqueries. To
obtain a distributed execution plan the optimizer computes
a join order and allocates operators on computer nodes of
the distributed database. In presence of materialized views,
the optimizer checks for every intermediate result if it can be
computed from a MV. The optimizer estimates the size of in-
termediate results based on the principles of independence
and equal distribution. It computes the costs for update
statements that update base tables for an eager incremental
maintenance strategy.

We use a simple and a real-world test scenario:
Simple Scenario. We use a simple scenario as described
in Figure 1 to show how our approach works. It contains four
tables and five computer nodes with the same constraints for
CPU, IO and network bandwidth. All tables have the same
structure, cardinalities and update frequencies.
Real-world Scenario. This scenario is based on the
retail scenario described in Section 3. The setting consists
of one ERP system, and varies between 20 and 100 stores.
For each store, 4 nodes, 10 tables, 15 queries and 14 update
statements are added. In contrast to the simple scenario,
the workload is different for each node. The scenario and
the test data come from a large retailer; except for the RFID
table which we estimated from an ongoing field trial.

5.2 Cost Model
For our evaluation, we use a cost model similar to [18],

which we have extended for distributed settings. For each
relational operator we consider its most simple implementa-

SELECT … FROM A,B,C,D

A B

C D

CREATE VIEW … FROM A,D
CREATE VIEW … FROM B

ERP

MIS1 MIS2

Shelf1 Shelf2

SELECT … FROM B,C,D SELECT … FROM A,C,D

SELECT … FROM A,B,D

CREATE VIEW … FROM B,C
CREATE VIEW … FROM A

SELECT … FROM A,B,C

CREATE VIEW … FROM A,D

CREATE VIEW … FROM A,D
CREATE VIEW … FROM C

CREATE VIEW … FROM B,C
CREATE VIEW … FROM D

Figure 3: Example scenario

tion, e.g., sequential table scans and nested-loop joins. Our
cost model assumes consistent data, i.e., if a view is stalled,
it has to be updated before querying. We compute the cost
of a query as the sum of all normalized individual costs in-
curred by the required relational operations. Therefore, we
consider the computing and IO costs of a computer node
(CPU, IO), and the network transmission cost NETN1,N2

between two computer nodes N1, N2. Furthermore, we use
catalog information: iCard is the cardinality of a table. iW
is the summed width of one or more input tuples, i.e., the
number of bytes fetched to process one input row. compW
is the summed width of the columns checked by predicates.
aggW and groupW are the summed widths of the rows be-
ing aggregated or grouped. We use these data in our cost
model as follows:
SELECT Fetching a table, incl. projection and selection.

costsel = (IO ∗ iW ∗ iCard)+(CPU ∗compW ∗ iCard)
JOIN Nested loop join, evaluation of join predicates.

costjoin = (CPU ∗ compW ∗ iCard1 ∗ iCard2)
GROUP and AGGREGATE Sorting the input and se-

quential comparison or aggregation.
costagg = (CPU ∗ groupW ∗ iCard ∗ log2(iCard)) +
(CPU ∗ iCard ∗ (groupW + aggW))

DATA SHIPPING Costs for transferring data.
costnet = (NETN1,N2 ∗ iW ∗ iCard)

Note that our approach is not limited to this kind of simple
cost models. As we have pointed out in Section 4, more
complex models [14, 17, 18] can be used as well, e.g., in
order to consider resource contention.

5.3 Experiment 1: Providing an Intuition
In order to show that our approach proposes ’good’ MVs

that are intuitively reasonable, we conducted a number of
experiments with the simple scenario. Figure 3 shows the
MVs which are devised by our approach according to the
given workload and query mix. The edges symbolize the
network connections, and the vertices the computer nodes.
Since all nodes have the same resource constraints, and all
tables have the same update ratio and cardinality, we ex-
pected each node to compute its query only from local tables
and MVs to save transport costs. The figure shows that our
expectation holds: the MVs proposed for this setting are
spread over all nodes. Our approach suggests creating views

1096

SELECT … FROM A,B,C,D

A B

C D

CREATE VIEW … FROM A,B
CREATE VIEW … FROM B
CREATE VIEW … FROM D

ERP

MIS1 MIS2

Shelf1 Shelf2

SELECT … FROM B,C,D SELECT … FROM A,C,D

SELECT … FROM A,B,D

CREATE VIEW … FROM A,B
CREATE VIEW … FROM A
CREATE VIEW … FROM C

SELECT … FROM A,B,C

CREATE VIEW … FROM C,D

Figure 4: MVs after changes in computer nodes

over one and two tables on the nodes MIS1, MIS2, Shelf1
and Shelf2, and a view over two relations on ERP. This
setup enables MIS1, MIS2, Shelf1 and Shelf2 to compute
their queries without any direct network access. Note that
the VIEW on A,D is only computed once and then replicated
to other nodes. Because of the symmetry of the scenario and
because the genetic algorithm is indeterministic, there are
other solutions with equal quality, e.g., materializing B,C
instead of A,D on node ERP.

Now we decrease the CPU and IO costs of the MIS nodes
and their network costs to the ERP and Shelf nodes by 50%.
If our approach works well, more views should be materi-
alized on these nodes, as they can do faster computations
and network transmissions now. Figure 4 shows that our ap-
proach works as expected: Tables previously materialized on
Shelf1 and Shelf2 are now materialized on MIS1 and MIS2.
The thick lines in the figure show the communication costs,
e.g., MIS1 and MIS2 have a fast connection to the ERP, but
the connection from MIS1 to MIS2 is slow.

Finally, we switch back to the original costs, but change
the workload: We increase the number of tables queried
by Shelf1, Shelf2 from three to four, and we decrease the
number of tables queried by ERP from four to two. The
nodes MIS1, MIS2 now query three external tables, instead
of two external and one internal table. We expect that the
result favors local computation of queries as all nodes have
the same performance parameters. The modification of the
workload should cause a shift of views in a way that more
views are materialized on the shelves. The results can be
seen in Figure 5. In comparison to the first experiment, the
new workload results in MVs that let every node process its
queries from local data. Again, because of the symmetry of
the scenario there are multiple equal solutions, e.g., materi-
alizing C on Shelf2 instead of materializing D on Shelf1.

5.4 Experiment 2: Result Variation
Since the genetic algorithm introduces randomness into

the process of selecting MVs, the set of MVs proposed varies
from one test run to another. However, we assume that
many sets of MVs provide comparably good results. In order
to verify this assumption, we ran 10 tests with our real-
world scenario consisting of 20 stores (80 nodes), and we
recorded the relative cost reduction of each generation. We
define the relative cost reduction r as the difference of the
costs of the original scenario (co) and the costs when the

SELECT … FROM A,B

A B

C D

CREATE VIEW … FROM C,D
CREATE VIEW … FROM B

ERP

MIS1 MIS2

Shelf1 Shelf2

SELECT … FROM A,B,C,D SELECT … FROM A,B,C,D

SELECT … FROM B,C,D

CREATE VIEW … FROM A,B
CREATE VIEW … FROM C,D
CREATE VIEW … FROM A

SELECT … FROM A,C,D

CREATE VIEW … FROM A,B

CREATE VIEW … FROM A,B
CREATE VIEW … FROM C,D
CREATE VIEW … FROM D

CREATE VIEW … FROM A,B
CREATE VIEW … FROM C,D

Figure 5: Materialization after workload changes

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0 5 10 15 20

Generations

R
el

at
iv

e
co

st
 r

ed
u
ct

io
n

Best

Worst

Average

Figure 6: Variation in relative cost reduction

MVs are applied (cm), normalized by the costs without MVs:
r = (co − cm)/co.

Figure 6 shows the results of this series of experiments.
Each dot on the curves represents one generation of our ge-
netic algorithm. For each generation the best, worst and
average relative cost reduction of 10 test runs is shown. For
this experiment we relaxed the termination condition so each
test would run for many more generations than needed. We
only show the results for the first 20 generations of the ge-
netic algorithm, since further generations did not introduce
significant improvements. The runtime of each test was less
than 4 minutes. The experiments confirm that our heuristics
are effective: the genetic algorithm converges in surprisingly
few generations. Furthermore, the worst and best result do
not deviate more than 2% from the average value during op-
timization time. The experiment also shows that the results
are stable. Even one run produces a result that saves a high
share of the processing costs.

5.5 Experiment 3: Cost Savings and Runtime
We now explore how our approach works in a complex set-

ting. We run experiments with the real-world scenario, and

1097

0%

5%

10%

15%

20%

25%

30%

35%

40%

20 40 60 80 100

Number of stores

R
el

at
iv

e
co

st
 r

ed
u
ct

io
n

0

5

10

15

20

R
u
n
ti

m
e

in
 m

in
u
te

s

Cost reduction

Runtime

Figure 7: Runtime and cost reduction in dependence
of the scenario size

we measure both the runtime and the relative cost reduction
of the MVs proposed. In order to investigate the influence
of the complexity on our approach, we varied the number
of stores from 20 to 100. We executed 10 test runs for each
scenario size and computed the average of the results. We
expect the size of the scenario will have little influence on
the quality of the MVs proposed, and the runtime will stay
low even for huge scenarios.

The results are shown in Figure 7. All tests show a relative
cost reduction of at least 28%, which is slightly decreasing
with an increasing complexity of the scenario. Even though
runtime significantly increases with the size of the scenario,
it is still low. The scenario with 100 stores which has more
than 400 computer nodes and more than 1,000 tables has a
runtime of around 14 minutes. As expected, the experiment
confirms that the quality of the results is not significantly in-
fluenced by an increasing scenario complexity. Furthermore,
we have shown that our approach is applicable to large-scale
distributed environments.

5.6 Experiment 4: Optimality
Genetic algorithms do not guarantee to find the global

optimum, because of their probabilistic behavior. However,
we can show that our approach provides ’good’ results.

In this experiment we compare the set of MVs proposed by
our approach with the optimal set of MVs. Therefore, we
implemented a straightforward brute-force algorithm that
finds the optimal solution by browsing trough all sets of
MVs and MV placements possible. Since this is very time-
consuming, we had to reduce our real-world scenario to the
ERP node and two stores, i.e., to 9 nodes and 24 tables.

After running both our approach and the brute-force vari-
ant, we compare the quality of the MVs proposed. In the sce-
nario described, our approach proposes MVs that are near
the optimum. In particular, the relative cost reduction of the
set of MVs proposed by our genetic algorithm is less than
0.01% worse than the relative cost reduction of the optimal
set of MVs. However, when comparing the runtimes of the
algorithms, our genetic approach required 30 seconds while
browsing through the whole solution space of the NP-hard
problem took 10 hours processing time.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

-100%-75%-50%-25% 0% 25% 50% 75%100%

Error of cost model

R
el

at
iv

e
co

st
 r

ed
u
ct

io
n

CPU

IO

NET

Figure 8: Influence of the cost model on our ap-
proach

5.7 Experiment 5: Robustness of the Result
Obviously, the effect of the MVs proposed for the query

runtime will degrade with misestimated cost parameters.
For example, if the resources available at a certain node are
overestimated, our approach might materialize many MVs
at a slow machine. A practical solution for the distributed
view selection problem must devise good sets of MVs even
with (slightly) misestimated cost parameters.

With this series of experiments we want to explore the
impact of such inaccurate cost parameters on the cost re-
ductions that result from the proposed set of MVs. Again,
we use the real-world scenario in this experiment. We define
one cost model of the scenario to be 100% accurate, i.e., we
assume it correctly models the actual database costs. First
we run our approach using this model. Then, we vary the
costs of the CPU, IO and NET parameters independent from
each other and run our approach again.

The results are summarized in Figure 8. The x-axis graphs
the relative increase and decrease of the parameter value,
and the y-axis graphs the relative cost reduction. If CPU
costs are underestimated more than 75% or overestimated
more than 50%, results of our approach will be worse. The
modeling of the IO costs influences the results if costs are
underestimated more than 50%. Misestimating the network
costs NET has surprisingly little impact. This can be ex-
plained when looking at the heuristic for generating ini-
tial populations. Since this heuristic places MVs on nodes
that query or update them frequently, the genetic algorithm
starts with a population that minimizes network transfers
even if they are not assigned with any costs. Observe that
even in the presence of strongly deviating cost parameters,
our experiments never proposes MVs that produce higher
costs than they save. Thus, our approach is robust towards
misestimated cost parameters.

6. CONCLUSION
Materialized views (MV) promise to improve the perfor-

mance of queries in centralized and distributed database sce-
narios. However, considering distributed settings where nu-
merous nodes with different resource constraints issue com-
plex queries and updates at different rates result in a huge

1098

solution space and non-monotonic, NP-hard optimization
problems. Therefore, greedy algorithms or brute-force ap-
proaches cannot be applied directly, and all existing solu-
tions we are aware of make prohibitive assumptions, e.g., no
update costs or only one querying node.

In this paper we have introduced a practical approach that
reduces the solution space in order to solve the view selec-
tion problem with a genetic algorithm. Therefore, we have
restricted the set of queries and tables to be considered for
materialization, and we have identified clusters of queries
with similar predicates that can be supported with one spe-
cialized MV. In order to let the genetic algorithm converge
quickly, we have generated initial sets of MV that are close
to an optimal solution, and we have developed a selection
function based on the similarity of queries.

The evaluation confirms that our practical approach is
applicable for real world problems. In particular, we have
shown for artificial settings and a large RFID scenario from
retail that our approach scales well and proposes almost op-
timal sets of MVs. For example, our approach generates
within 30 seconds a set of MVs comparable to the optimal
solution, which we obtained after 10 hours processing time
with an exhaustive search over the complete solution space.

7. REFERENCES
[1] S. Agrawal, S. Chaudhuri, L. Kollar, A. Marathe,

V. Narasayya, and M. Syamala. Database Tuning
Advisor for Microsoft SQL Server 2005. In Proceedings
of VLDB’04, 2004.

[2] S. Agrawal, S. Chaudhuri, and V. R. Narasayya.
Automated Selection of Materialized Views and
Indexes in SQL Databases. In Proceedings of
VLDB’00, 2000.

[3] E. Baralis, S. Paraboschi, and E. Teniente.
Materialized views selection in a multidimensional
database. In Proceedings of VLDB’97, 1997.

[4] A. Bauer and W. Lehner. On solving the view
selection problem in distributed data warehouse
architectures. In Proceedings of SSDBM’2003, 2003.

[5] D. Beasley, D. Bull, and R. Martin. An overview of
genetic algorithms: Part 1, fundamentals. University
Computing, 15(2):58–69, 1993.

[6] L. Bellatreche, K. Karlapalem, and M. Schneider. On
efficient storage space distribution among materialized
views and indices in data warehousing environments.
In Proceedings of CIKM’00, 2000.

[7] R. G. Bello, K. Dias, A. Downing, J. James J. Feenan,
J. L. Finnerty, W. D. Norcott, H. Sun, A. Witkowski,
and M. Ziauddin. Materialized Views in Oracle. In
Proceedings of VLDB’98, 1998.

[8] S. Chaudhuri. An overview of query optimization in
relational systems. In Proceedings of PODS’98, 1998.

[9] A. E. Eiben, R. Hinterding, and Z. Michalewicz.
Parameter control in evolutionary algorithms. IEEE
Trans. on Evolutionary Computation, 1999.

[10] H. Gupta. Selection of views to materialize in a data
warehouse. In Proceedings of ICDT’97, 1997.

[11] H. Gupta and I. S. Mumick. Selection of views to
materialize under a maintenance cost constraint.
Lecture Notes in Computer Science, 1999.

[12] R. Hull and G. Zhou. Towards the study of
performance trade-offs between materialized and

virtual integrated views. In Proceedings of VIEWS’96,
1996.

[13] H. Jiang, D. Gao, and W.-S. Li. Exploiting correlation
and parallelism of materialized-view recommendation
for distributed data warehouses. Proceedings of
ICDE’07, 2007.

[14] D. Kossmann and K. Stocker. Iterative dynamic
programming: a new class of query optimization
algorithms. ACM Trans. on Database Systems, 2000.

[15] M. L. Lee, M. Kitsuregawa, B. C. Ooi, K.-L. Tan, and
A. Mondal. Towards self-tuning data placement in
parallel database systems. Proceedings of SIGMOD’00,
2000.

[16] W.-S. Li, D. C. Zilio, V. S. Batra, C. Zuzarte, and
I. Narang. Load balancing and data placement for
multi-tiered database systems. Data Knowl. Eng.,
62(3):523–546, 2007.

[17] T. Liu. Cost-based query optimization in a
heterogeneous distributed semi-structured
environment. In The VLDB PhD workshop, Vienna,
Austria, 2007.

[18] L. F. Mackert and G. M. Lohman. R* optimizer
validation and performance evaluation for local
queries. In Proceedings of SIGMOD’86, 1986.

[19] H. Mistry, P. Roy, S. Sudarshan, and
K. Ramamritham. Materialized view selection and
maintenance using multi-query optimization.
Proceedings of SIGMOD’01, 2001.

[20] R. Pottinger and A. Y. Levy. A scalable algorithm for
answering queries using views. In Proceedings of
VLDB’00, 2000.

[21] A. Shukla, P. Deshpande, and J. F. Naughton.
Materialized view selection for multidimensional
datasets. In Proceedings of VLDB’98, 1998.

[22] H. Wang, M. Orlowska, and W. Liang. Efficient
refreshment of materialized views with multiple
sources. In Proceedings of CIKM’99, 1999.

[23] L. Weiss Ferreira Chaves, E. Buchmann, and
K. Böhm. Tagmark: Reliable estimations of RFID tags
for business processes. Proceedings of KDD’08, 2008.

[24] J. Yang, K. Karlapalem, and Q. Li. Algorithms for
materialized view design in data warehousing
environment. In Proceedings of VLDB’97, 1997.

[25] W. Ye, N. Gu, G. Yang, and Z. Liu. Extended
derivation cube based view materialization selection in
distributed data warehouse. In Proceedings of
WAIM’05, 2005.

[26] C. Zhang and J. Yang. Genetic algorithm for
materialized view selection in data warehouse
environments. In Proceedings of DaWaK’99, 1999.

[27] J. Zhou, P.-A. Larson, and H. G. Elmongui. Lazy
maintenance of materialized views. In Proceedings of
VLDB’07, 2007.

[28] J. Zhou, P.-A. Larson, J. Goldstein, and L. Ding.
Dynamic materialized views. Proceedings of ICDE’07,
2007.

[29] D. C. Zilio, C. Zuzarte, G. M. Lohman, H. Pirahesh,
J. Gryz, E. Alton, D. Liang, and G. Valentin.
Recommending Materialized Views and Indexes with
IBM DB2 Design Advisor. In Proceedings of ICAC’04,
2004.

1099

