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ABSTRACT can be a node query (//A), a path query (//A)/ Br a tree query
Twig queries have been extensively studied as a major fragment of (/A[./C]/B). The main contributions of this work are summa-
XPATH queries to querxxmL data. In this paper, we studyxmL- rized below. First, we focus on node queries, and propose a new
RANK query, (@, k), which is to rank top-kprobabilities of the dynamic programming algorithm which can compute koprob-
answers of a twig query) in probabilisticxmL (PxMmL) data. A abilities for the answers of node queries based on the previously
new research issue is how to compute toprbbabilities of an- computed results irXML data. Our algorithm considers the con-

swers of a twig queryy in PxXML in the presence of containment tainment issue (ancestor/descendant) as well as thé fwpba-
(ancestor/descendant) relationships. In the presence of the ancesility and the score ranking (score functions) issues. We further
tor/descendant relationships, the existing dynamic programming propose optimization techniques to share the computational cost.
approaches to rank topgrobabilities over a set of tuples cannot be  Second, we show that our techniques can be used to support any
directly applied, because any node/edgexmL may have impacts path queries, and certain tree queries efficiently without enumerat-
on the top-kprobabilities of answers. We propose new algorithms ing all the possible worlds. We give conditions on the tree queries,
to computePxML-RANK queries efficiently and give conditions un-  and discuss our approaches. Third, we conduct extensive perfor-
der which aPXxML-RANK guery can be processed efficiently with- mance studies using both real and large benchmark datasets, and
out enumeration of all the possible worlds. We conduct extensive confirm the efficiency of our algorithms.

performance studies using both real and large benchmark datasets,

and confirm the efficiency of our algorithms. The remainder of the paper is organized as follows. Section 2 re-
views the definition of probabilistic XML, and gives our problem
1. INTRODUCTION statement. In Section 3, we discuss the technique details of answer-

ProbabilisticxmL (PxML) have been extensively studied recently "9 @PXML-RANK node query, and in Section 4, we discuss how to
[16, 11, 12, 22, 1, 20, 14, 5]. The issues studied widely cover the exten_d the algorlt_hms of noc_ie query to process aI_I path queries and
pxML models, semantics, data integration, constraints, expressive-C€Main tree queries. Experimental studies are given in Section 5,
ness, query evaluation, query tractability, and complexity analysis. followed by discussions on related work in Section 6. Finally, we
In this paper, we study a new research issue, and we stasty conclude the paper in Section 7.

rank query,(@, k), which is to rank top-Aprobabilities of the an-

swers of a twig queng) in PxML data. The new challenging is _

how to compute top-/probabilities of answers of a twig queéy 2. PXML AND PXML-RANK
in PXML in the presence of containment (ancestor/descendant) re-
lationships, where an answer of a twig query can be judged using
any score function as studied in [7, 19, 2]. In the presence of the
ancestor/descendant relationships, the existing dynamic program
ming approaches [23, 24, 9, 10] to compute toprababilities over

a set of tuples cannot be directly applied, because in the context o
PXML any node/edge may possibly have impacts on the tppk-
abilities of answers. To the best of our knowledge, it is the first
work which studies ranking of twig query results in the context of
PXML.

An xML document can be modeled as a rooted, unordered, and
node-labeled tre€x (Vx, Fx ), whereVx represents a set gL
elements (nodes), arfdx represents a set of parent/child relation-
ships (edges) between elementxiL. In anxML tree, a node is
associated with a value; which belongs to a type (tag-namg),
fdenoted agx; € X. An xML tree is weighted if nodes and edges
in the xmL tree, Tx (Vx, Ex), are associated with non-negative
weights, denoted a&, (v) for v € Vx andwe.(e) for e € Ex,
respectively. In the following, arML tree is a weightedML tree
unless otherwise specified.

A probabilisticxmL (or XML for short) defines a probability dis-
tribution overxmL trees. Following the model given in [16], which
is thePrxML {#2¢™%} model in [14], in this paper, we defineamL,
Tp(Vp, Ep), over a weightekmL treeT’x (Vx, Ex). Here,Vp
Permission to copy without fee all or part of this material is granted pro- 1S @ set of node®’» = Vx U Vp, whereVx is a set of ordinary
vided that the copies are not made or distributed for direct commercial ad- nodes that appear in atML tree, andVp is a set of distribution
vantage, the ACM copyright notice and the title of the publication and its nodes (e.g. independent, mutually exclusive). Consider a npde
date appear, and notice is given that copying is by permission of the ACM. which has a set of child nodeE,,, in anxmL treeTx. In PXML,

'I_'o copy oﬁherwise, or to republ_ish, to post on servers or to _redistribute to Tp, the ordinary nodey, may have several distribution nodes, as
lists, requires a fee and/or special permissions from the publisher, ACM. . "' " . o e '
EDBT 2009, March 24-26, 2009, Saint Petersburg, RUSSia. its child nodes, which specify the probability distributions over the

Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00 disjoint subsets of the children af V,,. And Ep is a set of edges

We study three types afXML-RANK queries,(Q, k), where@
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Figure 1: XML, PXML, and twig query

Ep = Exx UFExpUEppU Epx WhereEx x is a set of edges

that appear inEx, Exp is a set of edges frorirx nodes toVp
nodes,Epp is a set of edges frorirp nodes toVp nodes, and
Epx is a set of edges froWip nodes toV’x nodes. Below, we call
anEx x edge an ordinary edge, and an edg€inp UEppUED x

a distribution edge. A positive probability is only associated with
an edgee € Epp U Epx, denoted ag.(e). Note that a node in
Vx has a node-weight, and an edgefiR x U Epx is associated
with an edge weight.

Example 1. An xMmL tree,T%, is shown in Fig. 1(a). There isR-
typed nodel, two A-typed nodes (ganda-), four B-typed nodes

(b; for 1 < 4 < 4), and twoC-typed nodes (candcz). A PXML
tree,Tp, based on th&mL treeT, is shown in Fig. 1(b). I},

d has an independent distribution node as its child, which specifies
that its two child nodesg: anda. are independent. The proba-
bilities of havinga: andas are 0.3 and 0.2, as indicated in the in-
coming edges ta; andas, respectively. In a similar fashion, there
are other four independent distribution nodes. A node-weight, say
wy(d), in T can be specified as the node-weight associated with
wy(d) in Tp, and an edge-weight, say.(d, a1) can be specified

in the incoming edge ta; in Tp. |

A PXML tree,Tp, is a compact representation of probability dis-
tribution over a collection okmL trees, T'x,,Tx,, - - -, which is
generated in two steps.

First, we traverse thexmL tree, T, in a top-down fashion. When
we visit an independent distribution noded;, which hasl chil-
dren, we dividel'» into 2! subtrees where each of them has a subset
of the! children. When we visit a mutually exclusive distribution
node, mux;, which hasl children, we dividelr into | subtrees
where each of them has one child. We repeat the same procedur
for each of the divided subtrees recursively, and obtain the set of
PXML subtrees, where every connectexML subtree shares the
same root node of thexmL tree. LetTy be onePxML subtree.
The probability ofT, denoted a®r (75 ), is computed in Eq. (1).

[ucv, Pr(w) &

Here, ifu is an ordinary nodePr(u) = 1. If u is a distribution
node,Pr(u) is computed as follows. Let be a mutually exclusive
node, and supposehas! children. There are only two cases, se-
lecting one ofl children or none because it is mutually exclusive.
For the formerPr(u) is the probability associated with its outgo-
ing edge to the selected child node. For the latter, it is one minus
the summation of all thé existence probabilities. Let be an in-

Pr(T}) =

Forsimplicity, we assumed that default weights are zero.
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Pr(u) is computed by multiplying the existence probability asso-
ciated withu;, for 1 < u; < u,, and the absence probability (one
minus the existence probability) fas for u,, < u; < ;.

Following the first step, for thexmL tree (Fig. 1(b)) 4 intermediate
PXML subtrees will be generated when visiting the firstindependent
distribution node under the root node. Three are shown in Fig. 2 in
addition to thepxML subtree which contains the root nodlenly.
Then, 6PxML subtrees will be generated from th&mL subtrees
Fig. 2(a)(b), respectively, and 36<ML subtrees will be generated
from the PXML subtree Fig. 2(c). In total, 46xmL subtrees will

be generated.

Second, for each of thexmL subtreesp, wherePr(Tp) > 0,

we construct arxmL tree, denoted asree(Tp), by removing all
distribution nodes/edges and connecting two ordinary nodes if there
are distribution nodes/edges in between. The entire set obguich
trees for aPxML tree is then uniquely identified. We denote it as
pwd(Tp) = {Tx,,Tx,, - }. The probability ofl'x, is given by

> )

tree(ij )=Tx,

Pr(Tx,) = Pr(Tp;)

because the samevL treeTx, can be constructed from several
PXML subtreesTp,. The setpwd(Tp) forms the possible worlds
of the probablllst|o<ML (PxmML), Tp, and it satisfies the condition

thatY s, cpuacry) Pr(Tx,) = 1.

A twig query is a fragment okPATH queries that can be repre-
sented as a query tre@(V, E). Here,V = (V1,Va,--- ,V,) is
a set of nodes representing types (tag-names),famsl a set of

gdges An edge between two typed nodes, for exampknd D,

Is either associated with atPATH axis operatoy/ or / to represent
AJ/D or A/D. Given anxmL treeTx, the former is to retrieve

all A and D typed nodes that satisfy the ancestor/descendant re-
lationships, and the latter is to retrieve alland D typed nodes
that satisfy parent/child relationships. We call the forrjfeedge

and the latter/-edge in short. As a special case, the root node in
the query tree has an incomirfg or /-edge to represent a(PATH
query, /A or /A, suppose the root node istyped. The answer of
an-node twig queryQ(V, E), against arxmL treeTx, is a set of
connected subtrees, where a connected subtree consistooks
(v1,v2, -+ ,vn) INTx, forv; € V; (1 < i < n), that satisfy all

the structural relationships imposed @y and the minimal addi-
tional nodes/edges connecting th@odes as a connected subtree.
An example of arxPATH query isQ = JA./C]/ B (Fig. 1(c)).

In this paper, we consider three classes of twig queries: (1) node
query, (2) path query, and (3) tree query. For examfile, /A // B,



Algorithm 1 PXML-RANK (Tp, Q, k)

Input:  aPXML treeT’p, a twig query@, and an integek.

Output: XML treesp1, -+ , @, With top-k probabilities s.t.
plp1) > - > plonr)-

1. M «+ twigQuery(Q,Tp);

2: sortM = {1, , N} in the non-increasing order of their scores;
3. M «— P-RANK (Tp, k, M);

4: remove alkp; from M if p(¢;) = 0;

5: sort.M in the non-increasing order of their toppkobabilities (o(%));

6: return M;

and/A[./C]/ B are examples of node query, path query, and tree

query, respectively.

A twig query, @, against aPxMmL tree, Tp, can be processed by

ignoring the existence of the distribution nodes/edgegn The
result is a set okMmL trees, M (Q,Tp) = {p1,¥2, -+ ,on}. Let
i be anxmL tree in the result for a twig query. The scoref
denoted asv(yp;), can be computed using any score function

as

studied in [7, 19, 2]. For simplicity we define it as the total sum of

its node/edge weights in this paper, up:) = >, c,,, wo(u) +
> cey,; We(e). The top-kprobability ofp;, p(i:), is given below.

ple) = > Pr(Tx,) ®)
Tx; epwd(Tp)
@i Etopk(TXj)

Here,T'x, is onexmL tree in the possible worlds of ttrexmL tree
Tp (pwd(Tp)), and the probability of'x;, Pr(T; ), is computed
using Eq. (2). The probability op; in the possible world7x,
is Pr(Tx;) if ¢, is contained irfl’x; and the score ob;, w(yp:),
is at least thek-th largest value if'x; (p; € topk(Tx;)). Itis

List with Tuples XML Tree with Nodes

O
0 .0 O

@ The current result
@ Result with score larger than the current result
O Result with score no larger than the current result

Figure3: List v.s. XML Tree

Below, we will first discuss how to process node queries (£4),
and then based on our techniques to process node queries we will
discuss how to process any path queries (¢4 B), and certain

tree queries (e.g/A[./C]/ B).

3. NODE QUERY

In this section, we discuss processimgvL-RANK queries(Q, k),
whereQ is a node query in the form gfA. A node query is to find
all A-typed nodes irxmL Tp to be ranked. Let the answer geit
be M = {¢1,p2, - ,pn} which is processed by twigQuery(Q,
Tp) in line 1 of Algorithm 1. Note that, here, an answeris an
ordinary node irPxmL treeTp.

In the following, we first introduce some existing algorithms for
processing ranking queries in a similar but different setting and
discuss their deficiencies for processigML-RANK queries, fol-
lowed by discussions of our new approaches.

3.1 New Containment I ssues

In [10], Hua et al. discussed how to answer ranking queries in x-
Relation uncertain data. In the x-Relation model, there is a set of
independent x-tuples where an x-tuple consists of a set of mutu-
ally exclusive tuples (called alternatives). Each tuple in an x-tuple

important to note that several answers may appear in one possibléis associated with a score and a probability. A possible world is
world simultaneously. The(y;) is defined as the sum of such

probability for every possible world wherg is contained.

Problem Statement [Top-k PXML Ranking PXML-RANK)]: Let
Tp be aPxmML tree with possible worldswd(Tp). A PXML-RANK

query,(Q, k), is specified by a twig querg, and a positive num-
berk, againstl's. It ranks the top-kprobabilities for the answers,

i, that satisfy the twig querg).

The algorithm for processingmXML-RANK query,(Q, k), is out-
lined in Algorithm 1. First, it obtains a set ofML trees,M =
{¢1,92, -+ ,pn}, that satisfyQ, againstl’» (line 1). It can be

done over arxML tree which virtually treats every distribution path
between two ordinary nodes > as an edge between the two or-
dinary nodes. Any efficient existing algorithms that process twig
guery can be adapted [17]. Second, it sditsn the non-increasing

order using the scores, such@sappears before; on the sorted
M if w(pi) > w(g;) (line 2). Third, it callsP-RANK to compute
the top-kprobabilities for all answers i/ (line 3). P-RANK re-
turns M, which is a set of pairép;, p(;)) for every answerp;
in M. Finally, it removes all answerg; from M if their top-k
probabilities are zero (gf;) = 0) (line 4), and sortsM in the
non-increasing order of their topférobabilities(p(y;)) (line 5).
SuchM is returned in line 6. It is worth noting th&RANK is a

time-consuming task in computirgxML-RANK queries. Given a
set of answers,p1, w2, - - - , ©n }, @ Naive approach needs to com-

putep(p;) by enumerating all the possible worlgsyd(7p), using
Eq. (3).
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generated by choosing at most one tuple from each x-tuple. Un-
der the x-Relation model, to process a ranking query, algorithms
based on dynamic programming are proposed. The main issue
is how to compute the probability that a tuplg, to be thej-

th largest ranked tuple in possible worlds, denotegpas As-
sume all tuples are sorted in the decreasing order based on their
scores,{t1,t2, -+ ,tn}. The existing algorithms computg;,

for1 < i < Nandl < j < k, wherek is the top-kvalue.
First, consider every x-tuple has exactly one alternative, or equiva-
lently, all the tuples are independent. The probability thatnks

j-th in a randomly generated possible world from the sorted tuple
Set{lﬁ7 s ,ti} is Pij = Pr(ti) S Ti—1,5—1- Here,Pr(ti) is the
existence probability of tuple;. r; ; is the probability that a ran-
domly generated possible world from the tuplefggt - - - , ¢;} has
exactly j tuples, and can be computed by the following dynamic
programming equations.

{Pr(ti)-r‘il,jl +(17Pr(t¢))-n,1’j ifi>757>0;
rij =41 ifi=j=0;
0 otherwise.

4
With the above equations, al] ; can be computed far < ¢ < N
andj = 0,1,--- ,k — 1, based on the previous values, namely,
ri—1,;—1 andr;_1 ;. When x-tuples represent multiple alternatives,
the same dynamic programming equations can be applied with ad-
ditional tuple transformations [10].

Like the x-Relation model, in oupxmML model, we consider in-
dependent and/or mutually exclusive nodes, as well as the scores
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and top-k probabilities. Unlike the x-Relation model, we con-
sider one additional criterion, containment. In other words, for a
node query, an answes; can be an ancestor/descendant of an-
other answerp; in the PXmML tree Tp. The additional criterion
makes it difficult to apply the existing techniques [24, 10, 25] to
solve the problem in our setting, even for node queries. Fig. 3 il-
lustrates the main differences. First, in an x-Relation model, the
tuples,{t1,t2, -+ ,tn}, themselves are the context in which the
top-k probabilities are computed. The curreny; for the sorted

set of tuples{t1,t2,---ti—1,t;} can be computed by the previ-
ously computedr;—;1 ;1 andr;_1; for the sorted set of tuples
{t1,t2,---t;—1}. Note that all tuples are sorted based on their
scores in a decreasing order. Every time for computing the
algorithm only needs to consider an additional tupleThe tuples
{tit+1,- - ,t~}, which have smaller scores than the current tuple
t;, are not needed in the x-Relation model, because they do not af-
fectr;,; computing. However, in our problem setting, it becomes
invalid that the nodes which have smaller scores than the current
node are not relevant. As shown on the right side of Fig. 3, a node
(“o") with a smaller score than the current node (“®”) under con-
sideration can be an ancestor or descendant of the current node. Th

existence/absence of every node may have impacts on the curren

node.

Remark 1. Thetop-k probabilitiesfor answers, {¢1, @2, , o~ },
need to be determined in the context of the entire PXML tree. O

3.2 An Overview of Our Approach

We outline our basic ideas for processing node queries in Fig. 4. We

Virtu§I Ind Node

KZ’Z A

O Current Result

S The path that must appear

Figure5: Computing p; ;

is introduced. Also, because the sorted tuple set does not exist, the
indicator ofi used inr;,; for x-Relation model needs to be recon-
sidered. In our model, instead @fiwe use a subscrigt; to indicate

a subtree irrxMmL treeT'r rooted at node;. The meaning of in
rgffj’?) remains unchanged. In summanﬂgif;.i) is the probability

that a randomly generated possible world from the subtree of the
PXML Tp rooted atp; has exactlyj answers whose score is larger
than the score ap;, w(y;).

In addition, there is a new issue on containment. For computing
rg(ﬁ) we need compute all nodesc T including the answers
in M as well as the current node itself. For this purpose, we in-
troduce a general variab}é‘,j wherev is a node in thexmL tree

Tp andh is a score. We compubé,jfj*"i’ for every nodev € Tp,
based on the score(y;), using dynamic programming. It is im-
portant to note tha;t;”g“"” can be computed based on the subtrees
8f the subtree rooted atin 7T». Upon completion of the compu-
fation,r;“g.‘“) are known for every node (including the current) and
for0 < j < k — 1. An answerp; € M is marked as “e” in Fig. 4,

if it has a larger score than the current's{ay) > w((;)).

In fact, up to this stageﬂ,:fjpj” computed is local, since it is com-
puted based on the subtree rootegpatind is not computed in the
entirepPxML treeTr globally. Note that there is a path from the root
of PXML treeT'r to the currentp; as indicated by “—®” in Fig. 4.

Ther:f“}“ needs to be computed globally under the condition that

will discuss how to extend the basic ideas to process path queriesthe path “—” must exist. The condition of the existence of such a

and certain tree queries, and our optimization techniques later. Let
the set of answers\f, be M = {1, ¢2,- -, pn } Which is pro-
cessed by twigQuery(Q'p) in Algorithm 1. All such answers in

M are identified in theexmL treeTp. It is shown in Fig. 4, in

the initial stage, where tree nodes (not answers) and answeés in
are indicated as “%and “o”, respectively. Then, we compuig ;

for every answerp; € M, for1 < j < k. The answelp; to be
computed at an iteration is called the current. For the curgent

we computep; ; in two steps, computing 8;_;-like variable (step

1) and computing;_; (step 2).

In step 1, given the current answgy (indicated as “®” in Fig. 4),
ther; ;-like variable we compute is:ff‘}i). There exist main dif-

ferences between ; andrgff‘;’). Recall that; ; is the probability

that a randomly generated possible world from the sorted tuple set
{t1, - ,t;} has exactlyj tuples. In Eq. (4)r;,; is computed for

the current tuple; using the answers that have a larger score than
t;’s by utilizing the sorted tuple sef¢1, - - - , ti—1}, in the decreas-

ing order of the scores. The value ©in r; ; means the position

of the i-th tuple itself on the sorted tuple set. In our problem set-

path “—@" may affect some othet, ; which in turn affecw:ff‘;")

for the currentp;.

In step 2, based on the condition that the path “—@” must exist, we
compute globasz’“;i) andp;_; for the currentp; for 1 < j < k.
This is done by condensing the path “—@" into a node indicated as
“@" in Fig. 4. In other words, theexmL treeTp is virtually trans-
formed into anotherxMmL tree 7p where the path “—®” inTp
becomes a node “©” ifp and all nodes that are connected to the
nodes along the path “—@” iff’p are connected to the node “©”

in 7p. It is worth noting that the global:fj‘}i) and thereforep; ;

can be computed using the same dynamic programming because
the subtree rooted at; is the entirePxmL tree. Fig. 5 illustrates
the main idea. The left tree B where the path “—®" consists of
an ordinary node (or)J a mutually exclusive node (muzx), an inde-
pendent nodénd, and the current nodg; (the root of the subtree
(marked 4)). The right tree i§p. The subtree (marked 2) and its
incoming edge are removed, because theer node implies that
the subtree (marked 2) cannot exist. The subtree (markedZ3) in

is directly linked to the root node ifip with the same probability.

ting, there does not exist such a sorted set. In order to simulate theThe ord node is treated as an independent node with probability
sorted set, in other words, the set of answers that have a larger scorgne to the subtree (marked 1), which is connected to the root node

than the score of the currept (w(y;)), the superscript of:(“?)
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Figure 6: An Example

Finally, givenp; ;, p(¢:) can be computed using the following
Eq. (5) instead of Eq. (3).

®)

Below, we discuss how to computéy;) in a conditional proba-
bility viewpoint. Supposel!’ is the set of answers where every
@1 € M’ has a larger score thap; such as (@) > w(p;:)).
The probability ofp; to appear in the top-answersp(p;), can be
formulated as follows.

plpi) = 35y pis

Pr(y; appears in the top-&nswer$
Pr(y; appears and at mokt1 answers inV/")
Pr(y; appears x Pr(at mostk-1 answers inM’ | ¢, appears)

In [5] Cohen et al studied probabilistiavL with constraints (con-

straint satisfaction, query evaluation, and sampling), and the com-

putation ofPr(at mostk-1 answers il | ¢, appearsgan be trans-
formed to a constraint satisfaction problem. The constraint satis-
faction problem can be specified by modifying themL Tp as
follows: along the path from the root tg;, for each edgéu, v),

(i) if w is a distribution node, then change the probabjityu, v)

to one, (ii) if u is a mutually exclusive node, then remove other
children and the corresponding subtrees. Let the modiiedL
beTp. Then,Pr(at mostk-1 answers inM’ | ¢; appearsis equal

to the probability that a random generatedL tree fromT, sat-
isfies the constraints that it contains at mbst answers inM’.
Cohen et al. show that the constraint satisfaction problem is poly-
nomial time solvable, and propose an algorithm to solve it. In this
work, we computep(p;), for 1 < ¢ < N for the following main
reasons. Although the constraint satisfaction problem is polyno-
mial time solvable, it is proposed for general constraints, and is
still time-consuming. For a differeng;, there is a differeny,

and the algorithm [5] needs to computep; ) individually. Instead

we mainly consider how to share the costs of computing different
p(¢i)’s using specific constraints as discussed above.

3.3 An Example

In this section, from a different viewpoint (conditional probability
viewpoint), we explain how to compuig¢;) using an example.
Supposeyp; is the current answer andll’ is the set of answers
where everyp; € M’ has a larger score than such as () >
w(p;)). The probability ofy; to appear in the top-Answers can
be formulated as follows.

Pr(p; appears in the top-&nswery
Pr(p; appears and at mokt— 1 answers inV")

Z?;é Pr(p; appears and exagtanswers inV”)

3-FZ) Pr(y: appeary x Pr(exactj answers inM’ | o; appear
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Here, Pr(p; appearsxan be easily computed by multiplying all
probabilities,p. (.), along the path from root node of thexmL tree
Tp top; (“—@"). The conditional probability ofPr(exact;j answers
in M’ | p; appears)s computed upon the condensed nexmL
tree7p.

Fig. 6(a) shows &xML T that specifies the relationships among
E-products (Ftyped). There are 7 E-produatsfor 1 < i < 7.

An E-product has a score (indicated in the brackets) as its perfor-
mance. There are some uncertainties. The distribution hode
implies thate; is a part ofes with probability 0.6 and is a part of

e4 With probability0.7. The two are independent. The distribution
nodemuxz; implies that eithefes is used ine; with probability

0.4 or is used inex with probability 0.5, but cannot be used in
both. The two are mutually exclusive to each other. Suppose a
PXML-RANK query(Q, k) is issued againsty (Fig. 6(a)), where

@ = JE andk = 1. The set of E-products to be rankedji =

{e1, ez, e3, eq, €5, €6, e7 } Which is computed using twigQuery(Q,
Tp) in Algorithm 1. Note thatM is sorted in the decreasing order
of the scores (performance indicators). Next, all E-product&/in
will be ranked based on top{irobabilities,p(e;), for1 < i < 7,
against the possible worgsvd(Tp).

One of the possible worlds (e.gML treeT%) is shown in Fig. 6(b).

T% is with the conditions thats ande, coexist under the indepen-
dent nodeind;, es is present alone under the independent node
indz, ande; is present under the mutually exclusive nodex;.

The probability of T’y is Pr(T%) = (0.4 x 0.6) x ((0.9 x (1 —

0.8)) x 0.7) = 0.03024 where0.4 is the probability of the sub-
tree rooted ats, and (0.9 x (1 — 0.8)) is the probability of the
subtree rooted aty in T%, respectively. It is infeasible to com-
putep(e;) using Eq. (3) because it needs to enumerate all possible
worlds pwd(Tp) and summarize the topsrobabilities fore; to

be ranked top. Note that the size of possible worlds can be expo-
nential. Instead we efficiently compuytée;) using Eg. (5).

There are several obvious cases. ¢Ahas the smallest score (93)
in M. The only possible world fo¢7 to be ranked top is themL
tree withez only. p(e7) = (1—0.6) x (1—0.7) = 0.12. (2) e has
the largest score in/. If it appears in a possible world, it will be
ranked topp(e1) = 0.6 x 0.4 = 0.24. (3) e is ranked top if and
only if e; does not appear in the possible worlds wherappears.
Note thate; andes are mutually exclusive. In other words,d$
appears, thema; will not appear.p(e2) = 0.6 x 0.5 = 0.3. (4)
es can not be ranked top, because its ancestdras a higher score
thanes, and whenevees appears:. will always appearp(es)
0.

Next consider @xML-RANK query(Q, k) againstT; (Fig. 6(a))
where( is the same/E but k = 3. The set of answers to be
ranked is the sam@/ = {e1,e2,e3,¢4,¢5,€6,e7}. We discuss
computation of top-#probability, p(es ), for e¢ to be ranked top-%
Let es to be the current withu(es) = 94. The E-products that
have larger scores than(es) = 94 are M), = {e1, e2,€3,€e4, €5}
which we call h-answers.

Considereg. ThePxmL treeT can be divided into several parts,
P, Ty, andT», as shown in Fig. 7. Herd? represents “—®” which
must appear becausg must appear. Obviousl¥r(es appears)=
Pr(P appears) 9.6. We havep(es) = Pr(P appears and at mast
h-answers appear) {]2.:0 Pr(P appears and exagth-answers

appear) 223:0 Pr(P appears)x Pr(exactj h-answers appear
| P appears,) Note thatPr(P appears) = 0.6. We explain how to
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Figure 7: Cut thetreeinto several parts

compute

Pr(exactj h-answers apped&rP appears (6)
for 0 < j < 2 below. Recall that, given the curreag, in our
notation, the probability that exagtanswers from\;, appear in
the subtree rooted atis denoted asj&eﬁ) = r)%. For simplicity,
we user,, ; below.

Case-1 (5 = 0): Eq. (6) equals t@r(0 h-answer inl, appears)x
Pr(0 h-answer inT, appears) For the first part, it iSmue, ,0-
The only situation thab h-answer appears in the subtree rooted at
muz (T1) is that none ok, andes appears. Since; ande; are
mutually exclusive, we have,uz,,0 = 1.0 — pe(muxi,er) —
pe(muzxi,e2) = 1.0 — 0.4 — 0.5 = 0.1. The second part is equal
to Pr(the absence of edgéndi, es)) + Pr(the existence of edge
(indl,e4)) X Tey,0 = (1.0 — 0.7) + 0.7 x Tey,0- Here,re4,o =0
because, must appear when considering the subtree rooted, at
so the second part®3+0.7 x 0 = 0.3. Combining the two parts,
Eq. (6), forj = 0, equals td.1 x 0.3 = 0.03.

Case-2 (j = 1): Eq. (6) equals t@r(0 h-answer inl; appears)x
Pr(1 h-answers ifl; appear) + Pr(lh-answers iril; appear)x
Pr(0 h-answer inT> appears) Note thatPr(0 h-answer inT}
appears) = 0..andPr(0 h-answer irl> appears) = 0.&re com-
puted in Case-1.

Here,Pr(1 h-answer inl; appears) =rmuz,,1. The only situa-
tion that1 h-answer in the subtree rootedratiz, (71) appears is
that eithere; appears oe, appears. Since; ande; are mutually
exclusive, we hav@r(1 h-answer inT> appears) =rmue,,1 =
pe(muzxi,er) + pe(muzi,e2) = 0.4+ 0.5=0.9.

Also Pr(1 h-answer inT> appears) = Pr(the existence of edge
(indi,e4)) X Tey,1 = 0.7 X 1e,,1. The only situation that h-
answer appears in the subtree rooted,afTs) is that0 h-answer
appears in the subtree rootedwadls, i.€.,7¢,,1 = Tind,,0. ltMeans
that neitheles nores appears, i.erind,,0 = (1 — pe(indz, es)) x

(1 = pe(indz2,e3)) = (1 —0.9) x (1 — 0.8) = 0.02. Then, we
havePr(1 h-answer iril> appears) = 0.7% 0.02 = 0.014.

Therefore, Eq. (6), fof = 1, equals td).1 x 0.014 4+ 0.9 x 0.3 =
0.2714.

Case-3(j = 2): Eq. (6) equals t@r(0 h-answer inl} appears)x
Pr(2 h-answers ifl; appear) + Pr(lh-answer inl; appears)x
Pr(1 h-answer il appears) + Pr(h-answers iril; appear)x
Pr(0 h-answer inT, appears) = 0.1x Pr(2 h-answers inl%
appear) + 0.9x 0.014 + Pr(2 h-answers irll1 appear)x 0.3.
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Algorithm 2 P-RANK (T'p, k, M)

apPxMmL T'p, an integetk, and a sorted set of twig query
answersM = {1, ,pn}, Stw(p1) 2 -+ > w(en).
Output: (i, p(p;)), forl < < N.

Input:

1: for i — 1toN do
I H-PROB(Tp, pi, k);
P« path(Tp, ¢;);
Tp < PATH-CONDENSE(Tp, ©;);
v’ — root(Tp);
H-TOPK (v/, k, w(¢;), children(d));
s « count(B);
p— HEEP pe(e);
pij < 0,for1 <j<s;

Pij < p-rfj,(ﬁfi_)s_l,forer 1<j<k
ppi) — Z§:1 Pijs
12: return {(¢1, p(1)), -+ (o, p(on))};

CoNoaRwN

el
= o

The probabilities forj < 2 arecomputed already in Case-1 and
Case-2.

Here, Pr(2 h-answers irll1 appear) =rmuz,,2. 10 have2 h-

answers appear in the subtree rootechate,, bothe; andes, must
appear. This is impossible becauseande, are mutually exclu-
sive. We havéPr(2 h-answers irf1 appear) =rmuz,,2 = 0.

On the other hand?r(2 h-answers irfl; appear) = Pr(existence
of edge(indi, e4)) X re,,2 = 0.7 X 7¢, 2. The only situation that
2 h-answers appear in the subtree rooted,ais that1 h-answer
appears in the subtree rootedmadls, i.€.,7¢,,2 = Tind,,1. It Means
that either (a5 appears buts does not appear or (I8} does not
appear bues appears. We havei,a,,1 = pe(inda,es3) x (1 —
pe(indz,es5)) + (1 — pe(indz, e3)) X pe(indz,es) = 0.9 x (1 —
0.8) + (1 — 0.9) x 0.8 = 0.26. We havePr(2 h-answers il
appear) = 0.7x 0.26 = 0.182. Therefore, Eq. (6), foj = 2,
equals td.1 x 0.182 4 0.9 x 0.014 4+ 0 x 0.3 = 0.0308.

With all the three casepes) = Pr(P appearsk 3__, Pr(exact
j h-answers appedr P appears) 0.6x (0.03 + 0.2714 +

0.0308) = 0.19932. For thePxMmL-RANK query(/ E, 3) against
T4 (Fig. 6(a)), the ranking is shown below.

p(es)
0.19932

ple1)
0.24

p(ez2)
0.3

p(es)
0.35784

pler)
0.37924

p(es)
0.56

ples)
0.7

3.4 Algorithms

Thealgorithm to compute-RANK for node queries is given in Al-
gorithm 2. It takes three inputs. TieML treeT’p, the top-kvalue

k, and a set of answerd = {1, 2, -+ , o~} Whichis sorted in
the decreasing order of their scotes). For eachp; (the current),

in a for-loop, it processes the following tasks. It computes its local
r:(ﬁ) using dynamic programming (line 2). It identifies the path
from the root ofT'» to the currentp; (“—®"), and assigns it taP
(line 3). Then, it virtually reconstructBp to 7p by condensing the
path P into a node which is the root &fp, v’ (line 4-5). It com-
putes the gIobaI:fj'j.” in line 6 using dynamic programming where
children(v) indicates the children of the root nodé In order to
computep; ; wherei implies y;, it counts how many nodes on the
path P (“—@") that are with a score greater thany;) (line 7).
The algorithm computes; ; (line 8-10), and then computes$y; )
inline 11.



Algorithm 3 H-PROB (T, ¢, k)
Input: apxmL Tp(Vp, Ep), an answerp, and an integek.
Output: r:’ff), forv € Vpando < j <k — 1.

1 h— w(yp);
2: for everyv € Vp in the post-order traversing ordeo
if v is a leaf nodehen

rg,j —0,for0<j<k-—1;
if visan answer witlv(v) > h then

Tﬁ,l — 1;
else

7‘7}}70 — 1;
ese

let {vy,--

11: H-TOPK (v, k, h, {v1,- - -
12: return r:’g.‘p);

Soo~Nou aw

,u1 } be the set of children of in T'p;
» Ul }):

AA

N N e

U Vs
\
Vi

/
Vi Ve Y Vi vy
(@ 2 chil- (b) I children
dren

Figure 8: Computing r ;

We explainH-PROB (used in line 2, Algorithm 2). The-ProBal-
gorithm is given in Algorithm 3. It takes three inputs, tAgML
treeTp, the current answep, and the value of. The main task of
H-PROBIs to compute locat” ; whereh = w(¢p) in a bottom-
up fashion. For non-leaf nodes, it further callstopk (Algo-
rithm 4) to compute using dynamic programming. TiaoPK
algorithm takes four inputs to computg ;, for 0 < j < k. Here,
h is the score of the currens, v is the non-leaf node in ques-
tion, {v1,--- , v} are the children of. It assumes that!!, ;, for
1 <4 < I, have already been computed. (Note thattheroBal-

gorithm uses a bottom-up traversal to compute.) There are several

cases handled in the-ToPK algorithm: (1)v is a mutually exclu-
sive distribution node (line 1-3), (2)is an independent distribution
node (line 4-11), and (3) is an ordinary node (line 12-20).

Below, we explain the case wherhas 2 children (& 2): {v1, v2}
(Fig. 8(a)). Note that both!}, ; andr}, ; have been computed.

If v is a mutually exclusive node, fgr > 0, v; andwvs can not
appear simultaneously:l’},j can be computed in two cases, either
with the subtree rooted at or with the subtree rooted at. That

is,rf}’j = pe(v,v1) -rf}l,j + pe(v,v2) -rf}z’j. Forj = 0, it needs

Algorithm 4 H-TOPK (v, k, h, {v1,--- ,u})

anodev € Tp, an integerk, a weighth, and the children
set ofv, {v1,--- , v}, with Tl]}i j values computed.
Output: 7, - -

Input:

h
’rv,k—l'

1. if vis mutually exclusivehen

20 b pevvi) rh L fOr0<j<k—1;
3 Tﬁ,o ‘_7’5,0‘*‘(1—22:1 pe(v,v;));

4: if visindependenthen

5. for i~ 1tol do

6: iji’j<—pe(v,vi)-rffhj,for[)gjgk—l;
7: Bj o« Bl o+ (1= pe(v,vi));

8 b e Bh L for0<j<k-—1;

9: for i+ 1tol—1 do

10: g & ShooTh_ys Bl s fOr0<j <k -1,
11: rmj<—rul_l’j,f0r0§j§k’—l,

12: if v is ordinarythen

13: oo rvl,j,forogg <k-1;

14: for i« 1tol—1 do

. h i . h R
15: Tug,j < 24s=0Tu;_1,5  Tw;iq,j—s

16: if vis an answer withu(v) > h then

foro<j<k-1;

17: TULJ<—r;171’j71,f0r1§]§k—1,
18: 7{;0 — 0;
19: dse
20: rv,j<—7““L_1’j,f0r0§]§k:—1,
21:returnel o oo e, s
' e7(93),
= f 777777 . Previous Result
‘ ;o
N N - ]
0.6
e6(94)
0.4 0.5

e1(99) e2(98) es5(95) e3(97)

| | Nodes changed

Figure 9: Computing H-PROB (TP, pit+1, k)

exactlyj — s answers with a score greater thiarand is computed
asry ;=37 _ Bl . -Bl, i . for0<j<k-1.

If v is an ordinary node, it can be computed by treatings an
independent node, i.e: has two independent children andwv.,
with probability pe(v,v1) = 1 andpe(v,v2) = 1, which means

to consider an additional case that none of the two subtrees arethat both edges must exist with probability one. First complite

selected.r)) o is computed as followsr! o = pe(v,v1) - 75, 0 +
pe(v,v2) - 74y 0 + (1= pe(v,01) = pe(v,v2)).

If v is an independent node, the existencevpfs independent
from each other wheré = 1,2. v chooses either;, or vs, or
both, or none. LeB!, ; be the probability that a randomly gener-
atedxmL tree, from the branckw, v;) which consists of the edge
(v, v;) and the subtree rootedat contains exactly answers with
score greater thah. Whenj > 0, B, ; = pe(v,v;) - 70, 5, and,
whenj = 0, Bffi,o = pe(v,vi) - rf,‘i,o + (1 = pe(v,v;)). Then,
rf},j includes the cases that, in a randomly generatad tree,
one branch, sayv,v1), contains exactly (< j) answers with
a score greater thaln, and the other branch, sdy, v2), contains
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by treatingv as an independent node, i.€!;, = >7_ rh -
i, ;. Note thatin this casB!. . = r}. .. If vitselfis an answer
with score greater thah, thenr! ; = 7, for0 < j < k-1

andr!', = 0, otherwiser}) ; = 7 ; for0 < j < k — 1.

We design our algorithm for handling genefahildren of a given
nodew. If v is an independent node or an ordinary node, in or-
der to compute«f},j, we need to consider how many exact an-
swers out ofj answers are from which subtrees by enumerating
all the sequences;, - - - ,i;, such thatzls:1 is = j for any fixed

j €{0,---,k—1}. We handld children of a given node, if it

is an independent/ordinary node, by transforming the nodéth

[ children into a left-deep binary subtree, as shown in Fig. 8(b).



rh ;forh = w(es) rh ; forh = w(es)
node(9 || 7=0 [57=1 ] =2 1=01],7=1 ]=2
el 0 1.0 0 0 1.0 0
e 0 1.0 0 0 1.0 0
e3 0 1.0 0 0 1.0 0
eq 0.2 0.8 0 0 0.2 0.8
es 1.0 0 0 1.0 0 0
ee 0.1 0.9 0 0.1 0.9 0
er 0.2024 | 0.4952 | 0.3024 || 0.138 | 0.2264 | 0.3332
muxy 0.1 0.9 0 0.1 0.9 0
indy 0.2024 | 0.4952 | 0.3024 || 0.138 | 0.2264 | 0.3332
inda 0.2 0.8 0 0.2 0.8 0

h

Table 1: Consecutive computing r, ; for b = w(es), w(es)

V /V\ level 0
SN @ AR

AAR

ViVvavg -y

level 1

level log,ll

Figure 10: Convert a node with [ children to a complete binary
tree

There are2l — 1 nodes in the transformed binary tree in total,
{v1,-+ ,u,u1, -+ ,u—2,v}. Herewn, -+ ,v; are leaf nodesy,
has two children (v andvs), u;, fori > 1, has two children (31
andv;1), for2 < ¢ < 1—2. The nodes has two children;; > and

v;. If v is an ordinary node, thet , - - - , u;—» are ordinary nodes
with weight 0. Ifv is an independent node, then, - - - , u;_2 also
are independent nodes, the probabilityv, v;) is specified on the
incoming edge ta;. All other edges have probability one. It can
be verified that the transformed left-deep tree will give the same
result. Thed-TopPK algorithm (Algorithm 4) is designed using the
left-deep binary tree, wheng is treated as,o andwv is treated as
Ur—1-

Optimization-I: As indicated in the>-RANK algorithm, it needs to
call theH-PrROB algorithm for every answep; in M = {1, ¢2,

.-+, N}, which is sorted in the decreasing order of the scores.
The cost of computing using dynamic programming is costly. In
fact, the cost can be shared between successive callsrefos
e.g.,H-PROB (T, ¢;, k) andH-PROB (T, wi+1, k). Consider
the samerPxML-RANK query (/E,3) against theexmL tree Th
(Fig. 6(a)). Table 1 shows the resultsidf, when computing the
two consecutive answers, andes. It shows that most values when
computingrf}’j for e5; remain unchanged, giverjf,j computed for

es. The possible change part is highlighted in the dot rectangles in
Fig. 9, which is along the path from the root to the previous answer.
A lemma is given below.

Lemma 1: Let H-PROB (Tp, ¢, k) and H-PROB (Tp, wi+1, k) be
two consecutive executions, for two answers, ¢; and ;11 in the
sorted answer set M. When w(ip;) # w(wit1), the values & (#*)

and r;”g.‘”” V) are identical for the nodes that are not on the path

from the root of 7' to the node ;. When w(y;) = w(pi11), for
all nodes, 7(#) = ¥+, O

v,J

Due to space limit, we omit the proof. TReRANK andH-PROBal-
gorithms only need to be slightly changed to adapt the optimization-
l.
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Figure 11: Handling Multiple Path Resultsin a Single Node

Optimization-I1: As stated in Optimization-I, for two successive
H-PROB (T, ;, k) and H-PROB (T, pi+1, k), only the rf’(fi)
values for those nodason a certain path change. For each such a
nodev, suppose it haschildrenvy, vo, - - - , vy, if v is an indepen-
dent node or an ordinary node, we have to sp@ii&® - 1) time to
computer) ; usingH-TOPK. Whenl is large, the cost can be large.
In the following, we show that we can reduce it@gk? - log(1)).

We construct a complete binary tr8ewith d = [log, [] + 1 lev-

els, where the root is at levéland thep-th level ha2? nodes for

0 < p < d. The root ofB is v, the non-leaf nodes are independent
nodes marked;, and the leaf nodes ate, v, - - - , v; under nodes

in leveld — 1 as shown in Fig. 10. The probability associated with
the edge betweemandu; is reserved for the edges incomingin

B. Other newly added edges have probabilitylt can be proved
that r;(;"i) on the new tree is equal to those on the original tree.

Utilizing the complete binary tree, we only ne€dk? - log(1)) to
computev without affecting other nodes because the depth of the
new tree isO(log(l)) and in the path from to v;, the degree of
each node is at mo&t

4. PATH QUERY AND TREE QUERY

In this section, we discuss other twig queries, namely, path queries,
/A B, and tree querieg A[./C]/B. Our techniques can effi-
ciently process any path queries. ConsiderxaiL-RANK query
(/A B, k), against thexmL treeTp (Fig. 1(b)). The answers are

a set of pathsM = {a1 — bl,al — b — bg,az — bg,az —

bs — ba}. In our problem setting, the existence probability of a
node is equal to the probability of the path from the root to the
node, because the existence of a node depends on the existence of
its ancestors. Therefore, we can compute the tgpebability for

an answer of a path query, as to compute the last node of the an-
swer. Takerm; — by — bz as an example, we can compute its
top-k probability as to compute the tdpprobability forb,. Our
techniques can be used for processing BRYIL-RANK queries

(Q, k), whereQ is a path query.

We further explain how to process when several answers that have
the same lowest node, using an example. Suppose that there are
four answers to be ranked/ = {1, 2, @3, p4}, Where an an-
swerp; is shown in the rectangle in Fig. 11 over the data path in
PXML tree on the left side in Fig. 11. Here, the two answers,
andy2, share the same lowest nolde and the other two answers,

3 andypy, share the same lowest nolile When processing top-k
probabilities for the four (path) answers, we virtually add four addi-
tional nodes to represent the four (path) answers as indicated along
the path on the left side in Fig. 11. Herg, has two additional
virtual children indicated>; andy2, andb, has two additional vir-

tual childrenyps andp4. With the additional virtual nodes, we can
process top-frobabilities using the same techniques we discussed
for processing top-probabilities for node queries.

4.1 Discussionson treequery
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Figure12: A PXML tree

However, it is difficult to efficiently compute angXML-RANK
queries(@, k), whereQ is an arbitrary tree query, even fbr= 1
We explain it using an example. Consider thevL tree in Fig. 12,
and aPXML-RANK query, (Q, k) whereQ = JA[./B]/C, and
k = 1. There are 10 answers. For simplicity, we usg-tuple
to indicate a resulting subtree for thRgML-RANK query. One re-
sulting subtree is1 = (a1,b1,c1). There are other 9 resulting
subtrees rooted at; with any one of the threg;, for2 < i < 4,
and any one of the threg, for 2 < j < 4. As one example, con-
siderrs = (a2, b2, c3) whereas has three childrefibs, bs, ba}, b2
is in the subtree rooted &t andcs is in the subtree rooted &t.

Vi

Figure 13: Computetop-k probabilities for a subtree answer

The conditions allow us to computePxML-RANK tree query us-

ing our dynamic programming techniques. In brief, when either
the second or the third condition is satisfied, we can compute top-
k probabilities for a subtree; as to compute top-probabilities

for the lowest node op; on the primary pattPg in the same way

of processing path queries. Processing a tree query, when the first
condition is satisified, is complicated, because some nodes of a sub-
tree answelp; can be ancestors of another subtree answyeiWe
discuss our main ideas below, due to the space limit.

Let M = {p1,p2, - -} be a set of the subtree answers to be
ranked, and letp be the current subtree. We call a subtree an-
swerp; a h-answer if it has a larger score than the current’s. For

The fact states that our dynamic programming techniques cannot€achy;, we useroot(y;) to denote the root op;, P, to denote

be used to efficiently compute topptobabilities even for, over
the 10 subtrees. It is because that we cannot comgyte based
on the values ofb j» for2 <4 < 4, that are obtained for the chil-

the path from the root node in thexmL tree toroot(y;), and
Pr,, = ey, pe(e) if there are no mutually exclusive nodes in

i, otherwisePr,, = 0. We user, ; instead ofr“g"’ for short

dren. Any combinations are possible, and we need to enumerate allbelow. First, for computing the probabiliyr(j h-answers appear

possible worlds.

We give conditions. A generaXML-RANK tree query,(Q, k),

can be computed in polynomial time if one of the conditions are
satisfied. The conditions are imposed on the set of answérs;
{¢1,p2, -+, pn}, toberanked, which is generated by twigQuély(
Tp) in Algorithm 1. The conditions can be checked when process-
ing twig queries without high overhead. Below, for a given tree
query @, we call a path inQ a primary path and denote it &%,.

For example/A/ B is a primary path of/A[./C]/B. Note that

an answelp; can be a subtree.

1. The edges of results do not overlap with each othern
p; =0fori <j.

. Every edgeg’, of every answep; € M, which is not on the
primary pathPg, must be associated wih (e') = 1. (An
ordinary edge¢’, is considered as an edge wjth(e') = 1).

. Lety; andy; be two different answers. SuppoSgandj3;
are the paths ip; andy; that matchPg, respectively. There
exist two subtrees; = ¢; — 5; andvy; = ¢; — B; where
p; = Bi Uy andp; = B; U ~;. If there exist a node; on
the pathg; that is a descendant of a nodgon the path3;,
then~; and~; must be identical.

As an example, consider tlexmL tree, T in Fig. 1(b), and the
twig query@ = JA[./C]/B (Fig. 1(c)). The answer set/ =
{1, 2, p3, 04} Wherepr = {(a1,b1), (a1, 1)}, w2 = {(a1,
b1), (b1, 2), (a1, 1)}, 3 = {(az, bs), (a2, c2)}, andps = {(az,
b3), (b3, ba), (az,c2)}. Let Pop = JJA/B. The four answersp;,

for 1 <4 < 4, do not satisfy the first and the second condition. But
they satisfy the third condition. For example, consigerand s,

ﬂ1 = (a1,b1) andﬁg = (a1,b1)(b1,b2); andfyl = (al,cl) and

~v2 = (a1, c1). There exisb; on 3 that is a descendant of a node
al OI"IBQ. Y1 = V2.
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| ¢ appears)we set allp.() = 1 for the edges inP, U ¢, and
remove the branches which are mutually exclusive with any nodes
in P, U ¢. We cannot simply condend®, to a node, because,

may contain some part of other h-answers. The process of setting
pe() = 1 serves the same purpose of condensing a path into a node.
Second, we compute, ; where a subtree answey; is rooted on

v. Note thatv is an ordinary node. We condenge to a virtual
nodev’ and remove the branches that are mutually exclusive with
any nodes irp; (see Fig. 13). The true, ; is computed as follows:

Tu,j =Tu,j — Pry, X Ty ; + Pry, X 1y j_1, Where ther, ; ap-
pears on the right side is computed on the left tree in Fig. 13 where
every node/edge i, is considered separately. The existence of
the entirep; is ensured on the right tree in Fig. 13. It can be easily
handled when multiple subtree answers are rooted at the same node
V.

5. EXPERIMENTAL STUDIES

We conduct extensive experiments to test the performance of our
algorithms. We have implemented oBKML-RANK algorithm.

The main algorithm to be tested#sRANK. We have implemented
P-RANK without Optimization-I and Optimization-Il, the-RANK
algorithm using Optimization-I, and theRANK algorithm using
both Optimization-1 and Optimization-Il. We denote thenp&ank,
pRank-1 and pRank-Il, respectively. All algorithms were imple-
mented in C++. We conducted all the experiments on a 2.8GHz
CUP and 2GB memory PC running XP.

We use two real datasets, DBLP (http://dbl p. uni-trier.de/
xm /) and Mondial (ht t p: / / www. i nf or mati k. uni - frei burg.

de/ ~may/ | opi x/ | opi x- nondi al . ht m ), and the synthetigmL
benchmark dataset XMark (ht t p: / / nonet db. cwi . nl / xni /) for
testing. For XMark, we also generate many datasets with different
sizes. For eackkmL dataset used, we generate the correspond-
ing PXML tree, using the same method as used in [14]. We visit
the nodes in the original XML tree from top to bottom. For each
nodew visited, we randomly choose some distribution nodes with



Table 2: Queriesused for all datasets

randomtypes and probability distributions to be the childrervof
then for the original children of, we choose some of them to be
the children of the new generated distribution nodes. We control
the percentage of the distribution nodes to generate different.
trees for each dataset.

In answering aPXML-RANK query, we first compute all answers
using a modified twig pattern matching algorithm based on [17].
The algorithm we use can process the errixelL tree in a stream-

ing manner, and therefore does not need to keep the entive

tree in memory. Then we prune nodes,on thepxmL tree if the
subtree rooted at dose not effect the ranking, and get another pro-
jectedpxmML tree. We run our three algorithrpRank, pRank-1 and
pRank-11, to compute top-frobabilities for all results over the pro-
jectedrxmL tree if they satisfy one of our conditions. For each test,
we record the time and space consumption of all algorithms. The

ID | Query Result Parameter Range Default
D1 [ dblp//book[./fauthor]ikey 1,684 DistNode(All) 10%, 20%, 30%, 40%, 50% 30%
D2 | dblp//article[.//title//sub]/key 2,928 Top-k (All) 10, 20, 30, 40, 50 30
D3 | dblp//proceedings[key]//series[href] 5,909 Query(DBLP) D1. D2. D3, D4, D5 D3
D4 | dblp//incollection[key]//author 8,842 < s
D5 | dblp/article[/citelabelkey 13,785 gﬂzg%&gﬂg') )hfll )':"22 'X'\gss('f“)’(g"f’ ';?33,
M1 [ mondial//river[.//located[country]/province][id]/name 237 Node Number(XMark)| 0 5’ 1 ’1 5 ‘2 2 ,5 (x105) 1.5
M2 | mondial//city[country][.//population/year][latitude]//province 705 S B Ht R .
M3 | //country[.//province[name][population]/city[id]][capital]/total_area 2, 595 . .
M4 | mondial/organization[established][headq]/members[type] 5, 226 Table 3: Parameters used for testing
M5 | mondial//organization[.//members[type]/country][name]/abbrev | 7,505 51 T
. . est-DBLP
X1 | site//category[.//text/bold]//id 712 : . .
X2 | site/ldescription//keyword/emph 1824 | Fig. 14 shows the testing results over DBLP datasets. From Fig. 14(a)
X3 | /Inamerica/fitem[.//parlist//listitem//listitem]/id 3,043 | and 14(b), we know that when the percentage of distribution nodes
X4 | llclosed auctions/closed_auction//itemref{item] 5,850 | jncreases, both the time and memory consumption for the three al-
X5 | /lopen_auctions/open_auction[id]//author[person] 7,200

gorithms marginally increasepRank-1l is more than300 times
faster thanpRank although cost about three times more memory
thanpRank. pRank-I is more thanl0 times faster thapRank al-
though cost abow2 times more memory thapRank. Fig. 14(c)

and Fig. 14(d) show that when the number of results increases, the
time and memory used for the three algorithms do not necessarily
increase. It is because the increasing of the number of results dose
not mean that the size of the projectexiML tree to be tested also
increases. The time for all the three algorithm is influenced by both
the number of results and the size of the projectrsiL tree. The
memory consumption for all the three algorithms reflects the size
of the projected tree. In Fig. 14(e) and Fig. 14(f), we can see that,
whenk increases, the time for all the three algorithms will increase.
The memory consumption f@Rank-I andpRank-11 will increase
linearly with k, while the memory consumption f@Rank is not
influenced byk. pRank-Il is also much more faster (abol®0
times faster) thampRank although cost some more memory (not
larger thar8 times more). The performance plRank-I is between

the other two algorithms.

5.2 Test-Mondial

time consumption consists the query processing time to generatejy 15 shows the performance of the three algorithms over the

all the results, the projection time and the time for computingkop-

probabilities for all results. The main space consumption is caused

by maintainingrf},j values. FopRank, rfji(f.") values for a node;

can be released Wheﬁ‘)’g”i) has been computed wherés the par-
ent ofv;. ForpRank-1 andpRank-Il, in order to share the computa-
tional cost,r;(j‘“) values need to be kept for computinﬁ&fﬁ'*l).
pRank-1I consumes more memory because Optimization-Il needs

to maintain complete binary trees.

For the DBLP dataset, the originaliL tree had 3, 318, 516 nodes
with 41 different tags and the maximum depth@fWe range the
percentage of distribution node frob0% to 50% and generaté
differentPXmML trees. The queries used for the DBLP dataset are
listed in Table 2 from D1 to D5, with combination of bofhand/
operators. We list them in increasing order of result size. The pa-

Mondial dataset. Fig. 15(a) and Fig. 15(b) show that when the
percentage of distribution nodes increases, the time and memory
consumption for all the three algorithms will increap®ank-I1 is
more thanl100 times faster thapRank, and is2 times faster than
pRank-1. The memory consumption @Rank-11 andpRank-1 are
almost the same and agetimes more thampRank. In Fig. 15(c)

and Fig. 15(d), when the number of results increases in the Mon-
dial dataset, the size of the projected tree will also increase (which
is reflected by the increasing of memory consumption), so the time
for all the three algorithms will increase. Fig. 15(e) and Fig. 15(f)
show that wherk increases, the time for all the three algorithms
will increase. The memory consumption fsiRank-1 andpRank-I1
willincrease linearly while the the memory consumptiong8ank
remains the same. Comparing to the DBLP dataset, in the Mondial
dataset, the time fgsRank-I is more similar topRank-1I, because

rameters used for testing DBLP dataset are listed in Table 3, wherein the DBLP dataset, we can always find nodes with very large

DistNode means the percentage of distribution node. For the Mon-

dial dataset, the originadML tree hasr0, 459 nodes with51 dif-
ferent tags and the maximum depth %of The queries used and
parameters with default values are listed in Table 2 from M1 to M5
and Table 3 respectively. For the XMark datasets, we genérate
different datasets with different sizes for testing. There7ardif-
ferent tags with the maximum depth tif for each of the generated
XML trees. We set the percentage of distribution node t8(5%
and convert them to the correspondimgmL tree. The number of
nodes for eaclpxML tree is shown in the last row of Table 3. The

number of children in the projectedkML tree, for example the root
node tagged "DBLP", which will decrease the efficiencyBank-

I, whereas, in the Mondial dataset, the degree of each node is not
large which makes the advantages of optimization-1l less obvious.

53 Test-XMark

Fig. 16 shows the performance of the algorithms on the XMark

datasets. Fig. 16(a) and Fig. 16(b) show that when the number
of distribution nodes increases, the time and memory consump-
tion for all the three algorithms will also increase. Fig. 16(c) and

queries used and parameters with default values are listed in Table ZFig. 16(d) show that when the number of result increases, the time

from X1 to X5 and Table 3 respectively.

165

for all the three algorithms will increase if the size of the projected
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PXML tree (memory consumption) increases. Otherwise, the time “fuzzy trees” model, where nodes are associated with conjunctions

is influenced by the size of the projectedmL tree. Fig. 16(e) of probabilistic event variables, they also give a full complexity
and Fig. 16(f) show the performance of the three algorithms when analysis of query and update on the “fuzzy tree” in [20]. Cohen
increasingk, which are similar to that in the DBLP dataset. In et al. [5] incorporate a set of constraints to express more complex
Fig. 16(g) and Fig. 16(h), when the size of the data (Node Num- dependencies among the probabilistic data. They also propose ef-
ber) increases, the time and memory consumption for all the threeficient algorithms to solve the constraint-satisfaction, query eval-
algorithms will increase, because when the size of the data in- yation, and sampling problem under a set of constraints. In [14],
creases, both the number of result and the size of the projectedkimelfeld et al. summarize and extend the probabilistic. mod-

PXML tree will increase. The time used fpRank-Il is about100 els previously proposed, the expressiveness and tractability of queries
times faster thapRank, and the time used fqrRank-I is about30 on different models are discussed. The ranking issues are not ad-
times faster thapRank for all experiments on the XMark datasets. dressed in their work.

The memory consumption fqsRank-1 is similar to the memory
cost forpRank-11, and is at mos’ times the memory consumption

for pRank for all experiments on the XMark datasets. Top-k Queriesin Probabilistic Data: Uncertain databases have

received increasing attention recently. Apart from the works on dif-
ferent models of uncertain relational database, some recent works
6. RELATED WORK concern on answering top-gueries in uncertain database. There
are two scenarios in ranking the query results, [18] or [21]. In [18],
Re et al. find thé: most probable answers for a given general
query. In this scenario, each answer has a probability instead of a
score, which intuitively represents the confidence of its existence,
ranking is only based on probabilities. They use Monte Carlo sim-

' ulations to get the top-kesults efficiently. Another definition is
ranking the results by the interplay between score and uncertainty.
In the setting of [21, 23, 9, 25, 24, 10], each result is a tuple, asso-
ciated with both a score and a probability. U-TopK and U-kRanks
queries are first proposed in [21], Yi et al. [23, 24] improve the
performance of the two queries using a dynamic programming ap-
proach. Hua et al. [9, 10] define the PT-k query, and proposed three
approaches to answer the PT-k query, which are, dynamic program-
Probabilistic XML: The topic of probabilisticxmL (PXML) has ming method, sampling method, and Poisson approximation based
been studied recently. Many models have been proposed, togethemethod. Zhang et al. propose a Global-Topk definition in [25]. Jin
with the complexity analysis of query evaluations. Nierman et et al. [13] adapt the U-TopK/U-kRanks/PT-k/Global-Topk (Where
al. [16] first introduce a simple probabilistiovL. model, ProTDB, Global-Topk is the same as Pk-topk in [13]) queries in a uncertain
which is a probabilistic tree database. Hung et al. [11, 12] model stream environment with sliding-window, and design both space-
the probabilisticxmL as directed acyclic graphs, with probabilities and time-efficient synopses to continuously monitor the top-k re-
defined on sets of children. Keulen et al. [22] use a probabilistic sults. The works do not consider the containment issues and rank
tree approach for data integration. Abiteboul et al. [1] propose a in XML trees.

Ranking Results in XML: XML twig queries have been exten-
sively studied [4]. The result of a twig query over aniL tree

is a set of answers. In [7, 19, 2], the authors integrate IR strate-
gies to rank the results of twig queries. The scores of answers are
computed using IR models, incorporating with other factors. In [6
8], the authors retrieve the topfesults of a keyword search over
XML tree. In [3, 15], the authors treamL trees asxmL graphs,
and assign weights to the nodes and edgeswvaf graphs, where
the weight of a node indicates its importance and the weight of an
edge represents the strength of its semantic connection mhe
tree. The uncertainty and probability are not addressed.
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