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ABSTRACT
Twig queries have been extensively studied as a major fragment of
XPATH queries to queryXML data. In this paper, we studyPXML-
RANK query, (Q, k), which is to rank top-kprobabilities of the
answers of a twig queryQ in probabilisticXML (PXML) data. A
new research issue is how to compute top-kprobabilities of an-
swers of a twig queryQ in PXML in the presence of containment
(ancestor/descendant) relationships. In the presence of the ances-
tor/descendant relationships, the existing dynamic programming
approaches to rank top-kprobabilities over a set of tuples cannot be
directly applied, because any node/edge inPXML may have impacts
on the top-kprobabilities of answers. We propose new algorithms
to computePXML-RANK queries efficiently and give conditions un-
der which aPXML-RANK query can be processed efficiently with-
out enumeration of all the possible worlds. We conduct extensive
performance studies using both real and large benchmark datasets,
and confirm the efficiency of our algorithms.

1. INTRODUCTION
ProbabilisticXML (PXML) have been extensively studied recently
[16, 11, 12, 22, 1, 20, 14, 5]. The issues studied widely cover the
PXML models, semantics, data integration, constraints, expressive-
ness, query evaluation, query tractability, and complexity analysis.
In this paper, we study a new research issue, and we studyPXML

rank query,(Q, k), which is to rank top-kprobabilities of the an-
swers of a twig queryQ in PXML data. The new challenging is
how to compute top-kprobabilities of answers of a twig queryQ
in PXML in the presence of containment (ancestor/descendant) re-
lationships, where an answer of a twig query can be judged using
any score function as studied in [7, 19, 2]. In the presence of the
ancestor/descendant relationships, the existing dynamic program-
ming approaches [23, 24, 9, 10] to compute top-kprobabilities over
a set of tuples cannot be directly applied, because in the context of
PXML any node/edge may possibly have impacts on the top-kprob-
abilities of answers. To the best of our knowledge, it is the first
work which studies ranking of twig query results in the context of
PXML.

We study three types ofPXML-RANK queries,(Q, k), whereQ
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can be a node query (//A), a path query (//A//B), or a tree query
(//A[.//C]//B). The main contributions of this work are summa-
rized below. First, we focus on node queries, and propose a new
dynamic programming algorithm which can compute top-k prob-
abilities for the answers of node queries based on the previously
computed results inPXML data. Our algorithm considers the con-
tainment issue (ancestor/descendant) as well as the top-k proba-
bility and the score ranking (score functions) issues. We further
propose optimization techniques to share the computational cost.
Second, we show that our techniques can be used to support any
path queries, and certain tree queries efficiently without enumerat-
ing all the possible worlds. We give conditions on the tree queries,
and discuss our approaches. Third, we conduct extensive perfor-
mance studies using both real and large benchmark datasets, and
confirm the efficiency of our algorithms.

The remainder of the paper is organized as follows. Section 2 re-
views the definition of probabilistic XML, and gives our problem
statement. In Section 3, we discuss the technique details of answer-
ing aPXML-RANK node query, and in Section 4, we discuss how to
extend the algorithms of node query to process all path queries and
certain tree queries. Experimental studies are given in Section 5,
followed by discussions on related work in Section 6. Finally, we
conclude the paper in Section 7.

2. PXML AND PXML-RANK
An XML document can be modeled as a rooted, unordered, and
node-labeled tree,TX(VX , EX), whereVX represents a set ofXML

elements (nodes), andEX represents a set of parent/child relation-
ships (edges) between elements inXML . In anXML tree, a node is
associated with a valuexi which belongs to a type (tag-name)X,
denoted asxi ∈ X. An XML tree is weighted if nodes and edges
in the XML tree,TX(VX , EX), are associated with non-negative
weights, denoted aswv(v) for v ∈ VX andwe(e) for e ∈ EX ,
respectively. In the following, anXML tree is a weightedXML tree
unless otherwise specified.

A probabilisticXML (or PXML for short) defines a probability dis-
tribution overXML trees. Following the model given in [16], which
is thePrXML{ind,mux} model in [14], in this paper, we define aPXML,
TP (VP , EP ), over a weightedXML treeTX(VX , EX). Here,VP

is a set of nodesVP = VX ∪ VD, whereVX is a set of ordinary
nodes that appear in anXML tree, andVD is a set of distribution
nodes (e.g. independent, mutually exclusive). Consider a nodeu,
which has a set of child nodes,Vu, in anXML treeTX . In PXML,
TP , the ordinary node,u, may have several distribution nodes, as
its child nodes, which specify the probability distributions over the
disjoint subsets of the children ofu, Vu. And EP is a set of edges
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Figure 1: XML , PXML, and twig query

EP = EXX ∪EXD ∪EDD ∪EDX whereEXX is a set of edges
that appear inEX , EXD is a set of edges fromVX nodes toVD

nodes,EDD is a set of edges fromVD nodes toVD nodes, and
EDX is a set of edges fromVD nodes toVX nodes. Below, we call
anEXX edge an ordinary edge, and an edge inEXD∪EDD∪EDX

a distribution edge. A positive probability is only associated with
an edge,e ∈ EDD ∪ EDX , denoted asρe(e). Note that a node in
VX has a node-weight, and an edge inEXX ∪ EDX is associated
with an edge weight.1

Example 1: An XML tree,T ′
X , is shown in Fig. 1(a). There is aD-

typed noded, two A-typed nodes (a1 anda2), four B-typed nodes
(bi for 1 ≤ i ≤ 4), and twoC-typed nodes (c1 andc2). A PXML

tree,T ′
P , based on theXML treeT ′

X , is shown in Fig. 1(b). InT ′
P ,

d has an independent distribution node as its child, which specifies
that its two child nodes,a1 anda2 are independent. The proba-
bilities of havinga1 anda2 are 0.3 and 0.2, as indicated in the in-
coming edges toa1 anda2, respectively. In a similar fashion, there
are other four independent distribution nodes. A node-weight, say
wv(d), in T ′

X can be specified as the node-weight associated with
wv(d) in T ′

P , and an edge-weight, saywe(d, a1) can be specified
in the incoming edge toa1 in T ′

P . 2

A PXML tree,TP , is a compact representation of probability dis-
tribution over a collection ofXML trees,TX1

, TX2
, · · · , which is

generated in two steps.

First, we traverse thePXML tree,TP , in a top-down fashion. When
we visit an independent distribution node,indi, which hasl chil-
dren, we divideTP into2l subtrees where each of them has a subset
of the l children. When we visit a mutually exclusive distribution
node,muxi, which hasl children, we divideTP into l subtrees
where each of them has one child. We repeat the same procedure
for each of the divided subtrees recursively, and obtain the set of
PXML subtrees, where every connectedPXML subtree shares the
same root node of thePXML tree. LetT ′

P be onePXML subtree.
The probability ofT ′

P , denoted asPr(T ′
P ), is computed in Eq. (1).

Pr(T ′
P ) =

Q

u∈V ′

P

Pr(u) (1)

Here, if u is an ordinary node,Pr(u) = 1. If u is a distribution
node,Pr(u) is computed as follows. Letu be a mutually exclusive
node, and supposeu hasl children. There are only two cases, se-
lecting one ofl children or none because it is mutually exclusive.
For the former,Pr(u) is the probability associated with its outgo-
ing edge to the selected child node. For the latter, it is one minus
the summation of all thel existence probabilities. Letu be an in-

1For simplicity, we assumed that default weights are zero.
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Figure 2: PXML subtrees

dependent node. Supposeu hasn children,u1, u2, · · ·un, out of l
children in total in thePXML treeTP , u1, u2, · · ·un, un+1, · · ·ul.
Pr(u) is computed by multiplying the existence probability asso-
ciated withui, for 1 ≤ ui ≤ un, and the absence probability (one
minus the existence probability) forui for un < ui ≤ ul.

Following the first step, for thePXML tree (Fig. 1(b)) 4 intermediate
PXML subtrees will be generated when visiting the first independent
distribution node under the root node. Three are shown in Fig. 2 in
addition to thePXML subtree which contains the root noded only.
Then, 6PXML subtrees will be generated from thePXML subtrees
Fig. 2(a)(b), respectively, and 36PXML subtrees will be generated
from thePXML subtree Fig. 2(c). In total, 49PXML subtrees will
be generated.

Second, for each of thePXML subtrees,T ′
P , wherePr(T ′

P ) > 0,
we construct anXML tree, denoted astree(T ′

P ), by removing all
distribution nodes/edges and connecting two ordinary nodes if there
are distribution nodes/edges in between. The entire set of suchXML

trees for aPXML tree is then uniquely identified. We denote it as
pwd(TP ) = {TX1

, TX2
, · · · }. The probability ofTXi

is given by

Pr(TXi
) =

X

tree(TPj
)=TXi

Pr(TPj
) (2)

because the sameXML treeTXi
can be constructed from several

PXML subtrees,TPj
. The setpwd(TP ) forms the possible worlds

of the probabilisticXML (PXML), TP , and it satisfies the condition
that

P

TXi
∈pwd(TP ) Pr(TXi

) = 1.

A twig query is a fragment ofXPATH queries that can be repre-
sented as a query tree,Q(V, E). Here,V = (V1, V2, · · · , Vn) is
a set of nodes representing types (tag-names), andE is a set of
edges. An edge between two typed nodes, for example,A andD,
is either associated with anXPATH axis operator// or / to represent
A//D or A/D. Given anXML treeTX , the former is to retrieve
all A andD typed nodes that satisfy the ancestor/descendant re-
lationships, and the latter is to retrieve allA andD typed nodes
that satisfy parent/child relationships. We call the former//-edge
and the latter/-edge in short. As a special case, the root node in
the query tree has an incoming//- or /-edge to represent anXPATH

query,//A or /A, suppose the root node isA-typed. The answer of
an-node twig query,Q(V, E), against anXML treeTX , is a set of
connected subtrees, where a connected subtree consists ofn nodes
(v1, v2, · · · , vn) in TX , for vi ∈ Vi (1 ≤ i ≤ n), that satisfy all
the structural relationships imposed byQ, and the minimal addi-
tional nodes/edges connecting then nodes as a connected subtree.
An example of anXPATH query isQ = //A[.//C]//B (Fig. 1(c)).
In this paper, we consider three classes of twig queries: (1) node
query, (2) path query, and (3) tree query. For example,//A, //A//B,
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Algorithm 1 PXML -RANK (TP , Q, k)
Input: a PXML treeTP , a twig queryQ, and an integerk.
Output: XML trees,ϕ1, · · · , ϕM , with top-kprobabilities s.t.

ρ(ϕ1) ≥ · · · ≥ ρ(ϕM ).

1: M ← twigQuery(Q,TP );
2: sortM = {ϕ1, · · · , ϕN} in the non-increasing order of their scores;
3: M← P-RANK (TP , k, M );
4: remove allϕi fromM if ρ(ϕi) = 0;
5: sortM in the non-increasing order of their top-kprobabilities (ρ(ϕi));
6: returnM;

and//A[.//C]//B are examples of node query, path query, and tree
query, respectively.

A twig query, Q, against aPXML tree,TP , can be processed by
ignoring the existence of the distribution nodes/edges inTP . The
result is a set ofXML trees,M(Q, TP ) = {ϕ1, ϕ2, · · · , ϕN}. Let
ϕi be anXML tree in the result for a twig query. The score ofϕi,
denoted asω(ϕi), can be computed using any score function as
studied in [7, 19, 2]. For simplicity we define it as the total sum of
its node/edge weights in this paper, i.e.ω(ϕi) =

P

u∈ϕi
wv(u) +

P

e∈ϕi
we(e). The top-kprobability ofϕi, ρ(ϕi), is given below.

ρ(ϕi) =
X

TXj
∈pwd(TP )

ϕi∈topk(TXj
)

Pr(TXj
) (3)

Here,TXj
is oneXML tree in the possible worlds of thePXML tree

TP (pwd(TP )), and the probability ofTXj
, Pr(TXj

), is computed
using Eq. (2). The probability ofϕi in the possible world,TXj

,
is Pr(TXj

) if ϕi is contained inTXj
and the score ofϕi, ω(ϕi),

is at least thek-th largest value inTXj
(ϕi ∈ topk(TXj

)). It is
important to note that several answers may appear in one possible
world simultaneously. Theρ(ϕi) is defined as the sum of such
probability for every possible world whereϕi is contained.

Problem Statement [Top-k PXML Ranking (PXML-RANK)]: Let
TP be aPXML tree with possible worldspwd(TP ). A PXML-RANK

query,(Q, k), is specified by a twig query,Q, and a positive num-
berk, againstTP . It ranks the top-kprobabilities for the answers,
ϕi, that satisfy the twig queryQ.

The algorithm for processing aPXML-RANK query,(Q, k), is out-
lined in Algorithm 1. First, it obtains a set ofXML trees,M =
{ϕ1, ϕ2, · · · , ϕN}, that satisfyQ, againstTP (line 1). It can be
done over anXML tree which virtually treats every distribution path
between two ordinary nodes inTP as an edge between the two or-
dinary nodes. Any efficient existing algorithms that process twig
query can be adapted [17]. Second, it sortsM in the non-increasing
order using the scores, such asϕi appears beforeϕj on the sorted
M if ω(ϕi) ≥ ω(ϕj) (line 2). Third, it callsP-RANK to compute
the top-kprobabilities for all answers inM (line 3). P-RANK re-
turnsM, which is a set of pairs(ϕi, ρ(ϕi)) for every answerϕi

in M . Finally, it removes all answersϕi from M if their top-k
probabilities are zero (ρ(ϕi) = 0) (line 4), and sortsM in the
non-increasing order of their top-kprobabilities(ρ(ϕi)) (line 5).
SuchM is returned in line 6. It is worth noting thatP-RANK is a
time-consuming task in computingPXML-RANK queries. Given a
set of answers,{ϕ1, ϕ2, · · · , ϕN}, a naive approach needs to com-
puteρ(ϕi) by enumerating all the possible worlds,pwd(TP ), using
Eq. (3).

...

Result with score larger than the current result
Result with score no larger than the current result

The current result

List with Tuples XML Tree with Nodes

Figure 3: List v.s. XM L Tree

Below, we will first discuss how to process node queries (e.g.//A),
and then based on our techniques to process node queries we will
discuss how to process any path queries (e.g.//A//B), and certain
tree queries (e.g.//A[.//C]//B).

3. NODE QUERY
In this section, we discuss processingPXML-RANK queries,(Q, k),
whereQ is a node query in the form of//A. A node query is to find
all A-typed nodes inPXML TP to be ranked. Let the answer setM
beM = {ϕ1, ϕ2, · · · , ϕN} which is processed by twigQuery(Q,
TP ) in line 1 of Algorithm 1. Note that, here, an answerϕi is an
ordinary node inPXML treeTP .

In the following, we first introduce some existing algorithms for
processing ranking queries in a similar but different setting and
discuss their deficiencies for processingPXML-RANK queries, fol-
lowed by discussions of our new approaches.

3.1 New Containment Issues
In [10], Hua et al. discussed how to answer ranking queries in x-
Relation uncertain data. In the x-Relation model, there is a set of
independent x-tuples where an x-tuple consists of a set of mutu-
ally exclusive tuples (called alternatives). Each tuple in an x-tuple
is associated with a score and a probability. A possible world is
generated by choosing at most one tuple from each x-tuple. Un-
der the x-Relation model, to process a ranking query, algorithms
based on dynamic programming are proposed. The main issue
is how to compute the probability that a tuple,ti, to be thej-
th largest ranked tuple in possible worlds, denoted aspi,j . As-
sume all tuples are sorted in the decreasing order based on their
scores,{t1, t2, · · · , tN}. The existing algorithms computepi,j ,
for 1 ≤ i ≤ N and 1 ≤ j ≤ k, wherek is the top-kvalue.
First, consider every x-tuple has exactly one alternative, or equiva-
lently, all the tuples are independent. The probability thatti ranks
j-th in a randomly generated possible world from the sorted tuple
set{t1, · · · , ti} is pi,j = Pr(ti) · ri−1,j−1. Here,Pr(ti) is the
existence probability of tupleti. ri,j is the probability that a ran-
domly generated possible world from the tuple set{t1, · · · , ti} has
exactlyj tuples, and can be computed by the following dynamic
programming equations.

ri,j =

8

<

:

Pr(ti) · ri−1,j−1 + (1− Pr(ti)) · ri−1,j if i ≥ j ≥ 0;
1 if i = j = 0;
0 otherwise.

(4)
With the above equations, allri,j can be computed for1 ≤ i ≤ N
andj = 0, 1, · · · , k − 1, based on the previous values, namely,
ri−1,j−1 andri−1,j . When x-tuples represent multiple alternatives,
the same dynamic programming equations can be applied with ad-
ditional tuple transformations [10].

Like the x-Relation model, in ourPXML model, we consider in-
dependent and/or mutually exclusive nodes, as well as the scores
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Figure 4: An Overview of Our Approach

and top-k probabilities. Unlike the x-Relation model, we con-
sider one additional criterion, containment. In other words, for a
node query, an answerϕi can be an ancestor/descendant of an-
other answerϕj in the PXML tree TP . The additional criterion
makes it difficult to apply the existing techniques [24, 10, 25] to
solve the problem in our setting, even for node queries. Fig. 3 il-
lustrates the main differences. First, in an x-Relation model, the
tuples,{t1, t2, · · · , tN}, themselves are the context in which the
top-k probabilities are computed. The currentri,j for the sorted
set of tuples{t1, t2, · · · ti−1, ti} can be computed by the previ-
ously computedri−1,j−1 and ri−1,j for the sorted set of tuples
{t1, t2, · · · ti−1}. Note that all tuples are sorted based on their
scores in a decreasing order. Every time for computingri,j the
algorithm only needs to consider an additional tupleti. The tuples
{ti+1, · · · , tN}, which have smaller scores than the current tuple
ti, are not needed in the x-Relation model, because they do not af-
fect ri,j computing. However, in our problem setting, it becomes
invalid that the nodes which have smaller scores than the current
node are not relevant. As shown on the right side of Fig. 3, a node
(“◦”) with a smaller score than the current node (“⊕”) under con-
sideration can be an ancestor or descendant of the current node. The
existence/absence of every node may have impacts on the current
node.

Remark 1: The top-k probabilities for answers, {ϕ1, ϕ2, · · · , ϕN},
need to be determined in the context of the entire PXML tree. 2

3.2 An Overview of Our Approach
We outline our basic ideas for processing node queries in Fig. 4. We
will discuss how to extend the basic ideas to process path queries
and certain tree queries, and our optimization techniques later. Let
the set of answers,M , beM = {ϕ1, ϕ2, · · · , ϕN} which is pro-
cessed by twigQuery(Q,TP ) in Algorithm 1. All such answers in
M are identified in thePXML treeTP . It is shown in Fig. 4, in
the initial stage, where tree nodes (not answers) and answers inTP

are indicated as “×” and “◦”, respectively. Then, we computepi,j

for every answerϕi ∈ M , for 1 ≤ j ≤ k. The answerϕi to be
computed at an iteration is called the current. For the currentϕi,
we computepi,j in two steps, computing ari,j-like variable (step
1) and computingpi,j (step 2).

In step 1, given the current answerϕi (indicated as “⊕” in Fig. 4),
theri,j-like variable we compute isrω(ϕi)

ϕi,j . There exist main dif-

ferences betweenri,j andr
ω(ϕi)
ϕi,j . Recall thatri,j is the probability

that a randomly generated possible world from the sorted tuple set
{t1, · · · , ti} has exactlyj tuples. In Eq. (4),ri,j is computed for
the current tupleti using the answers that have a larger score than
ti’s by utilizing the sorted tuple set,{t1, · · · , ti−1}, in the decreas-
ing order of the scores. The value ofi in ri,j means the position
of the i-th tuple itself on the sorted tuple set. In our problem set-
ting, there does not exist such a sorted set. In order to simulate the
sorted set, in other words, the set of answers that have a larger score
than the score of the currentϕi (ω(ϕi)), the superscript ofrω(ϕi)

ϕi,j

4

3

3 1

1

2

The path that must appear

Current Result
4

Virtual Ind Node

p2 1.0

p2

Ind

p1
Mux

Ord

Figure 5: Computing pi,j

is introduced. Also, because the sorted tuple set does not exist, the
indicator ofi used inri,j for x-Relation model needs to be recon-
sidered. In our model, instead ofi, we use a subscriptϕi to indicate
a subtree inPXML treeTP rooted at nodeϕi. The meaning ofj in
r

ω(ϕi)
ϕi,j remains unchanged. In summary,r

ω(ϕi)
ϕi,j is the probability

that a randomly generated possible world from the subtree of the
PXML TP rooted atϕi has exactlyj answers whose score is larger
than the score ofϕi, ω(ϕi).

In addition, there is a new issue on containment. For computing
r

ω(ϕi)
ϕi,j , we need compute all nodesv ∈ TP including the answers

in M as well as the current nodeϕi itself. For this purpose, we in-
troduce a general variablerh

v,j wherev is a node in thePXML tree

TP andh is a score. We computerω(ϕi)
v,j for every nodev ∈ TP ,

based on the scoreω(ϕi), using dynamic programming. It is im-
portant to note thatrω(ϕi)

v,j can be computed based on the subtrees
of the subtree rooted atv in TP . Upon completion of the compu-
tation,rω(ϕi)

v,j are known for every node (including the current) and
for 0 ≤ j ≤ k − 1. An answerϕl ∈ M is marked as “•” in Fig. 4,
if it has a larger score than the current’s (ω(ϕl) > ω(ϕi)).

In fact, up to this stage,rω(ϕi)
ϕi,j computed is local, since it is com-

puted based on the subtree rooted atϕi and is not computed in the
entirePXML treeTP globally. Note that there is a path from the root
of PXML treeTP to the currentϕi as indicated by “→⊕” in Fig. 4.
Ther

ω(ϕi)
ϕi,j needs to be computed globally under the condition that

the path “→⊕” must exist. The condition of the existence of such a
path “→⊕” may affect some otherrh

v,j which in turn affectrω(ϕi)
ϕi,j

for the currentϕi.

In step 2, based on the condition that the path “→⊕” must exist, we
compute globalrω(ϕi)

ϕi,j andpi,j for the currentϕi for 1 ≤ j ≤ k.
This is done by condensing the path “→⊕” into a node indicated as
“⊘” in Fig. 4. In other words, thePXML treeTP is virtually trans-
formed into anotherPXML treeTP where the path “→⊕” inTP

becomes a node “⊘” inTP and all nodes that are connected to the
nodes along the path “→⊕” inTP are connected to the node “⊘”
in TP . It is worth noting that the globalrω(ϕi)

ϕi,j and thereforepi,j

can be computed using the same dynamic programming because
the subtree rooted atϕi is the entirePXML tree. Fig. 5 illustrates
the main idea. The left tree isTP where the path “→⊕” consists of
an ordinary node (ord), a mutually exclusive node (mux), an inde-
pendent nodeind, and the current nodeϕi (the root of the subtree
(marked 4)). The right tree isTP . The subtree (marked 2) and its
incoming edge are removed, because themux node implies that
the subtree (marked 2) cannot exist. The subtree (marked 3) inTP

is directly linked to the root node inTP with the same probability.
The ord node is treated as an independent node with probability
one to the subtree (marked 1), which is connected to the root node
in TP .
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Figure 6: An Example

Finally, given pi,j , ρ(ϕi) can be computed using the following
Eq. (5) instead of Eq. (3).

ρ(ϕi) =
Pk

j=1 pi,j (5)

Below, we discuss how to computeρ(ϕi) in a conditional proba-
bility viewpoint. SupposeM ′ is the set of answers where every
ϕl ∈ M ′ has a larger score thanϕi such as (ω(ϕl) > ω(ϕi)).
The probability ofϕi to appear in the top-kanswers,ρ(ϕi), can be
formulated as follows.

Pr(ϕi appears in the top-kanswers)

= Pr(ϕi appears and at mostk-1 answers inM ′)

= Pr(ϕi appears) × Pr(at mostk-1 answers inM ′ | ϕi appears)

In [5] Cohen et al studied probabilisticXML with constraints (con-
straint satisfaction, query evaluation, and sampling), and the com-
putation ofPr(at mostk-1 answers inM ′ |ϕi appears)can be trans-
formed to a constraint satisfaction problem. The constraint satis-
faction problem can be specified by modifying thePXML TP as
follows: along the path from the root toϕi, for each edge(u, v),
(i) if u is a distribution node, then change the probabilityρe(u, v)
to one, (ii) if u is a mutually exclusive node, then remove other
children and the corresponding subtrees. Let the modifiedPXML

beT ′
P . Then,Pr(at mostk-1 answers inM ′ | ϕi appears) is equal

to the probability that a random generatedXML tree fromT ′
P sat-

isfies the constraints that it contains at mostk-1 answers inM ′.
Cohen et al. show that the constraint satisfaction problem is poly-
nomial time solvable, and propose an algorithm to solve it. In this
work, we computeρ(ϕi), for 1 ≤ i ≤ N for the following main
reasons. Although the constraint satisfaction problem is polyno-
mial time solvable, it is proposed for general constraints, and is
still time-consuming. For a differentϕi, there is a differentT ′

P ,
and the algorithm [5] needs to computeρ(ϕi) individually. Instead
we mainly consider how to share the costs of computing different
ρ(ϕi)’s using specific constraints as discussed above.

3.3 An Example
In this section, from a different viewpoint (conditional probability
viewpoint), we explain how to computeρ(ϕi) using an example.
Supposeϕi is the current answer andM ′ is the set of answers
where everyϕl ∈ M ′ has a larger score thanϕi such as (ω(ϕl) >
ω(ϕi)). The probability ofϕi to appear in the top-kanswers can
be formulated as follows.

Pr(ϕi appears in the top-kanswers)

= Pr(ϕi appears and at mostk − 1 answers inM ′)

=
Pk−1

j=0 Pr(ϕi appears and exactj answers inM ′)

=
Pk−1

j=0 Pr(ϕi appears)× Pr(exactj answers inM ′ | ϕi appears).

Here,Pr(ϕi appears)can be easily computed by multiplying all
probabilities,ρe(.), along the path from root node of thePXML tree
TP toϕi (“→⊕”). The conditional probability ofPr(exactj answers
in M ′ | ϕi appears)is computed upon the condensed newPXML

treeTP .

Fig. 6(a) shows aPXML T ′
P that specifies the relationships among

E-products (E-typed). There are 7 E-productsei for 1 ≤ i ≤ 7.
An E-product has a score (indicated in the brackets) as its perfor-
mance. There are some uncertainties. The distribution nodeind1

implies thate7 is a part ofe6 with probability0.6 and is a part of
e4 with probability0.7. The two are independent. The distribution
nodemux1 implies that eithere6 is used ine1 with probability
0.4 or is used ine2 with probability 0.5, but cannot be used in
both. The two are mutually exclusive to each other. Suppose a
PXML-RANK query(Q, k) is issued againstT ′

P (Fig. 6(a)), where
Q = //E andk = 1. The set of E-products to be ranked isM =
{e1, e2, e3, e4, e5, e6, e7} which is computed using twigQuery(Q,
T ′

P ) in Algorithm 1. Note thatM is sorted in the decreasing order
of the scores (performance indicators). Next, all E-products inM
will be ranked based on top-kprobabilities,ρ(ei), for 1 ≤ i ≤ 7,
against the possible wordspwd(T ′

P ).

One of the possible worlds (e.g.XML treeT ′
X ) is shown in Fig. 6(b).

T ′
X is with the conditions thate6 ande4 coexist under the indepen-

dent nodeind1, e5 is present alone under the independent node
ind2, ande1 is present under the mutually exclusive nodemux1.
The probability ofT ′

X is Pr(T ′
X) = (0.4 × 0.6) × ((0.9 × (1 −

0.8)) × 0.7) = 0.03024 where0.4 is the probability of the sub-
tree rooted ate6, and(0.9 × (1 − 0.8)) is the probability of the
subtree rooted ate4 in T ′

X , respectively. It is infeasible to com-
puteρ(ei) using Eq. (3) because it needs to enumerate all possible
worlds pwd(T ′

P ) and summarize the top-kprobabilities forei to
be ranked top. Note that the size of possible worlds can be expo-
nential. Instead we efficiently computeρ(ei) using Eq. (5).

There are several obvious cases. (1)e7 has the smallest score (93)
in M . The only possible world fore7 to be ranked top is theXML

tree withe7 only. ρ(e7) = (1−0.6)×(1−0.7) = 0.12. (2)e1 has
the largest score inM . If it appears in a possible world, it will be
ranked topρ(e1) = 0.6 × 0.4 = 0.24. (3) e2 is ranked top if and
only if e1 does not appear in the possible worlds wheree2 appears.
Note thate1 ande2 are mutually exclusive. In other words, ife2

appears, thene1 will not appear.ρ(e2) = 0.6 × 0.5 = 0.3. (4)
e5 can not be ranked top, because its ancestore4 has a higher score
thane5, and whenevere5 appearse4 will always appear.ρ(e5) =
0.

Next consider aPXML-RANK query(Q, k) againstT ′
P (Fig. 6(a))

whereQ is the same//E but k = 3. The set of answers to be
ranked is the sameM = {e1, e2, e3, e4, e5, e6, e7}. We discuss
computation of top-kprobability,ρ(e6), for e6 to be ranked top-k.
Let e6 to be the current withω(e6) = 94. The E-products that
have larger scores thanω(e6) = 94 areMh = {e1, e2, e3, e4, e5}
which we call h-answers.

Considere6. ThePXML treeT ′
P can be divided into several parts,

P , T1, andT2, as shown in Fig. 7. Here,P represents “→⊕” which
must appear becausee6 must appear. Obviously,Pr(e6 appears)=
Pr(P appears) =0.6. We haveρ(e6) = Pr(P appears and at most2
h-answers appear) =

P2
j=0 Pr(P appears and exactj h-answers

appear) =
P2

j=0 Pr(P appears)× Pr(exactj h-answers appear
| P appears). Note thatPr(P appears) = 0.6. We explain how to
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compute

Pr(exactj h-answers appear| P appears) (6)

for 0 ≤ j ≤ 2 below. Recall that, given the currente6, in our
notation, the probability that exactj answers fromMh appear in
the subtree rooted atv is denoted asrω(e6)

v,j = r94
v,j . For simplicity,

we userv,j below.

Case-1 (j = 0): Eq. (6) equals toPr(0 h-answer inT1 appears)×
Pr(0 h-answer inT2 appears). For the first part, it isrmux1,0.
The only situation that0 h-answer appears in the subtree rooted at
mux1 (T1) is that none ofe1 ande2 appears. Sincee1 ande2 are
mutually exclusive, we havermux1,0 = 1.0 − ρe(mux1, e1) −
ρe(mux1, e2) = 1.0 − 0.4 − 0.5 = 0.1. The second part is equal
to Pr(the absence of edge(ind1, e4)) + Pr(the existence of edge
(ind1, e4)) × re4,0 = (1.0 − 0.7) + 0.7 × re4,0. Here,re4,0 = 0
becausee4 must appear when considering the subtree rooted ate4,
so the second part is0.3+0.7×0 = 0.3. Combining the two parts,
Eq. (6), forj = 0, equals to0.1 × 0.3 = 0.03.

Case-2 (j = 1): Eq. (6) equals toPr(0 h-answer inT1 appears)×
Pr(1 h-answers inT2 appear) + Pr(1h-answers inT1 appear)×
Pr(0 h-answer inT2 appears). Note thatPr(0 h-answer inT1

appears) = 0.1andPr(0 h-answer inT2 appears) = 0.3are com-
puted in Case-1.

Here,Pr(1 h-answer inT1 appears) =rmux1,1. The only situa-
tion that1 h-answer in the subtree rooted atmux1 (T1) appears is
that eithere1 appears ore2 appears. Sincee1 ande2 are mutually
exclusive, we havePr(1 h-answer inT2 appears) =rmux1,1 =
ρe(mux1, e1) + ρe(mux1, e2) = 0.4 + 0.5 = 0.9.

Also Pr(1 h-answer inT2 appears) = Pr(the existence of edge
(ind1, e4)) × re4,1 = 0.7 × re4,1. The only situation that1 h-
answer appears in the subtree rooted ate4 (T2) is that0 h-answer
appears in the subtree rooted atind2, i.e.,re4,1 = rind2,0. It means
that neithere5 nore3 appears, i.e.rind2,0 = (1− ρe(ind2, e5))×
(1 − ρe(ind2, e3)) = (1 − 0.9) × (1 − 0.8) = 0.02. Then, we
havePr(1 h-answer inT2 appears) = 0.7× 0.02 = 0.014.

Therefore, Eq. (6), forj = 1, equals to0.1× 0.014 + 0.9× 0.3 =
0.2714.

Case-3 (j = 2): Eq. (6) equals toPr(0 h-answer inT1 appears)×
Pr(2 h-answers inT2 appear) + Pr(1h-answer inT1 appears)×
Pr(1 h-answer inT2 appears) + Pr(2h-answers inT1 appear)×
Pr(0 h-answer inT2 appears) = 0.1× Pr(2 h-answers inT2

appear) + 0.9× 0.014 + Pr(2 h-answers inT1 appear)× 0.3.

Algorithm 2 P-RANK (TP , k, M )
Input: a PXML TP , an integerk, and a sorted set of twig query

answersM = {ϕ1, · · · , ϕN}, s.t.ω(ϕ1) ≥ · · · ≥ ω(ϕN ).
Output: (ϕi, ρ(ϕi)), for 1 ≤ i ≤ N .

1: for i← 1 to N do
2: H-PROB(TP , ϕi, k);
3: P ← path(TP , ϕi);
4: TP ← PATH-CONDENSE(TP , ϕi);
5: v′ ← root(TP );
6: H-TOPK (v′, k, ω(ϕi), children(v′));
7: s← count(P);
8: p←

Q

e∈P ρe(e);
9: pi,j ← 0, for 1 ≤ j ≤ s;

10: pi,j ← p · r
ω(ϕi)
v′,j−s−1

, for s + 1 ≤ j ≤ k;

11: ρ(ϕi)←
Pk

j=1 pi,j ;
12: return {(ϕ1, ρ(ϕ1)), · · · , (ϕN , ρ(ϕN ))};

The probabilities forj < 2 arecomputed already in Case-1 and
Case-2.

Here, Pr(2 h-answers inT1 appear) =rmux1,2. To have2 h-
answers appear in the subtree rooted atmux1, bothe1 ande2 must
appear. This is impossible becausee1 ande2 are mutually exclu-
sive. We havePr(2 h-answers inT1 appear) =rmux1,2 = 0.

On the other hand,Pr(2 h-answers inT2 appear) = Pr(existence
of edge(ind1, e4)) × re4,2 = 0.7 × re4,2. The only situation that
2 h-answers appear in the subtree rooted ate4 is that1 h-answer
appears in the subtree rooted atind2, i.e.,re4,2 = rind2,1. It means
that either (a)e5 appears bute3 does not appear or (b)e5 does not
appear bute3 appears. We haverind2,1 = ρe(ind2, e3) × (1 −
ρe(ind2, e5)) + (1 − ρe(ind2, e3)) × ρe(ind2, e5) = 0.9 × (1 −
0.8) + (1 − 0.9) × 0.8 = 0.26. We havePr(2 h-answers inT2

appear) = 0.7× 0.26 = 0.182. Therefore, Eq. (6), forj = 2,
equals to0.1 × 0.182 + 0.9 × 0.014 + 0 × 0.3 = 0.0308.

With all the three cases,ρ(e6) = Pr(P appears)×
P2

j=0 Pr(exact
j h-answers appear| P appears) = 0.6× (0.03 + 0.2714 +
0.0308) = 0.19932. For thePXML-RANK query(//E, 3) against
T ′

P (Fig. 6(a)), the ranking is shown below.

ρ(e4) ρ(e3) ρ(e7) ρ(e5) ρ(e2) ρ(e1) ρ(e6)
0.7 0.56 0.37924 0.35784 0.3 0.24 0.19932

3.4 Algorithms
Thealgorithm to computeP-RANK for node queries is given in Al-
gorithm 2. It takes three inputs. ThePXML treeTP , the top-kvalue
k, and a set of answersM = {ϕ1, ϕ2, · · · , ϕN} which is sorted in
the decreasing order of their scoresω(·). For eachϕi (the current),
in a for-loop, it processes the following tasks. It computes its local
r

ω(ϕi)
ϕi,j using dynamic programming (line 2). It identifies the path

from the root ofTP to the currentϕi (“→⊕”), and assigns it toP
(line 3). Then, it virtually reconstructsTP to TP by condensing the
pathP into a node which is the root ofTP , v′ (line 4-5). It com-
putes the globalrω(ϕi)

ϕi,j in line 6 using dynamic programming where
children(v′) indicates the children of the root nodev′. In order to
computepi,j wherei impliesϕi, it counts how many nodes on the
pathP (“→⊕”) that are with a score greater thanω(ϕi) (line 7).
The algorithm computespi,j (line 8-10), and then computesρ(ϕi)
in line 11.
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Algorithm 3 H-PROB (TP , ϕ, k)
Input: a PXML TP (VP , EP ), an answerϕ, and an integerk.

Output: r
ω(ϕ)
v,j , for v ∈ VP and0 ≤ j ≤ k − 1.

1: h← ω(ϕ);
2: for everyv ∈ VP in the post-order traversing orderdo
3: if v is a leaf nodethen
4: rh

v,j ← 0, for 0 ≤ j ≤ k − 1;
5: if v is an answer withω(v) > h then
6: rh

v,1 ← 1;
7: else
8: rh

v,0 ← 1;
9: else

10: let {v1, · · · , vl} be the set of children ofv in TP ;
11: H-TOPK (v, k, h, {v1, · · · , vl});

12: return r
ω(ϕ)
v,j ;

1 v2

v

v
(a) 2 chil-
dren

vl

u1 v3

v1 v2

v
...

v1 v2 vl...

v

(b) l children

Figure 8: Computing rh
v,j

We explainH-PROB (used in line 2, Algorithm 2). TheH-PROBal-
gorithm is given in Algorithm 3. It takes three inputs, thePXML

treeTP , the current answerϕ, and the value ofk. The main task of
H-PROB is to compute localrh

v,j whereh = ω(ϕ) in a bottom-
up fashion. For non-leaf nodes, it further callsH-TOPK (Algo-
rithm 4) to compute using dynamic programming. TheH-TOPK

algorithm takes four inputs to computerh
v,j , for 0 ≤ j < k. Here,

h is the score of the currentϕ, v is the non-leaf node in ques-
tion, {v1, · · · , vl} are the children ofv. It assumes thatrh

vi,j , for
1 ≤ i ≤ l, have already been computed. (Note that theH-PROBal-
gorithm uses a bottom-up traversal to compute.) There are several
cases handled in theH-TOPK algorithm: (1)v is a mutually exclu-
sive distribution node (line 1-3), (2)v is an independent distribution
node (line 4-11), and (3)v is an ordinary node (line 12-20).

Below, we explain the case whenv has 2 children (l= 2): {v1, v2}
(Fig. 8(a)). Note that bothrh

v1,j andrh
v2,j have been computed.

If v is a mutually exclusive node, forj > 0, v1 andv2 can not
appear simultaneously.rh

v,j can be computed in two cases, either
with the subtree rooted atv1 or with the subtree rooted atv2. That
is, rh

v,j = ρe(v, v1) · r
h
v1,j + ρe(v, v2) · r

h
v2,j . Forj = 0, it needs

to consider an additional case that none of the two subtrees are
selected.rh

v,0 is computed as follows.rh
v,0 = ρe(v, v1) · rh

v1,0 +

ρe(v, v2) · r
h
v2,0 + (1 − ρe(v, v1) − ρe(v, v2)).

If v is an independent node, the existence ofvi is independent
from each other wherei = 1, 2. v chooses eitherv1, or v2, or
both, or none. LetBh

vi,j be the probability that a randomly gener-
atedXML tree, from the branch(v, vi) which consists of the edge
(v, vi) and the subtree rooted atvi, contains exactlyj answers with
score greater thanh. Whenj > 0, Bh

vi,j = ρe(v, vi) · r
h
vi,j , and,

whenj = 0, Bh
vi,0 = ρe(v, vi) · rh

vi,0 + (1 − ρe(v, vi)). Then,
rh

v,j includes the cases that, in a randomly generatedXML tree,
one branch, say(v, v1), contains exactlys (≤ j) answers with
a score greater thanh, and the other branch, say(v, v2), contains

Algorithm 4 H-TOPK (v, k, h, {v1, · · · , vl})

Input: a nodev ∈ TP , an integerk, a weighth, and the children
set ofv, {v1, · · · , vl}, with rh

vi,j values computed.
Output: rh

v,0, · · · , rh
v,k−1.

1: if v is mutually exclusivethen
2: rh

v,j ←
Pl

i=1 ρe(v, vi) · r
h
vi,j , for 0 ≤ j ≤ k − 1;

3: rh
v,0 ← rh

v,0 + (1−
Pl

i=1 ρe(v, vi));
4: if v is independentthen
5: for i← 1 to l do
6: Bh

vi,j ← ρe(v, vi) · r
h
vi,j , for 0 ≤ j ≤ k − 1;

7: Bh
vi,0 ← Bh

vi,0 + (1− ρe(v, vi));

8: rh
u0,j ← Bh

v1,j , for 0 ≤ j ≤ k − 1;
9: for i← 1 to l − 1 do

10: rh
ui,j ←

Pj
s=0 rh

ui−1,s ·B
h
vi+1,j−s, for 0 ≤ j ≤ k − 1;

11: rh
v,j ← rh

ul−1,j , for 0 ≤ j ≤ k − 1;

12: if v is ordinarythen
13: rh

u0,j ← rh
v1,j , for 0 ≤ j ≤ k − 1;

14: for i← 1 to l− 1 do
15: rh

ui,j ←
Pj

s=0 rh
ui−1,s · r

h
vi+1,j−s, for 0 ≤ j ≤ k − 1;

16: if v is an answer withω(v) > h then
17: rh

v,j ← rh
ul−1,j−1, for 1 ≤ j ≤ k − 1;

18: rh
v,0 ← 0;

19: else
20: rh

v,j ← rh
ul−1,j , for 0 ≤ j ≤ k − 1;

21: return rh
v,0, · · · , rh

v,k−1;
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Figure 9: Computing H-PROB (TP , ϕi+1, k)

exactlyj − s answers with a score greater thanh, and is computed
asrh

v,j =
Pj

s=0 Bh
v1,s · B

h
v2,j−s, for 0 ≤ j ≤ k − 1.

If v is an ordinary node, it can be computed by treatingv as an
independent node, i.e.v has two independent childrenv1 andv2,
with probability ρe(v, v1) = 1 andρe(v, v2) = 1, which means
that both edges must exist with probability one. First computer̃h

v,j

by treatingv as an independent node, i.e.̃rh
v,j =

Pj

i=0 rh
v1,i ·

rh
v2,j−i. Note that in this caseBh

vi,s = rh
vi,s. If v itself is an answer

with score greater thanh, thenrh
v,j = r̃h

v,j−1 for 0 < j ≤ k − 1

andrh
v,0 = 0, otherwiserh

v,j = r̃h
v,j for 0 ≤ j ≤ k − 1.

We design our algorithm for handling generall children of a given
nodev. If v is an independent node or an ordinary node, in or-
der to computerh

v,j , we need to consider how many exact an-
swers out ofj answers are from which subtrees by enumerating
all the sequences,i1, · · · , il, such that

Pl

s=1 is = j for any fixed
j ∈ {0, · · · , k − 1}. We handlel children of a given nodev, if it
is an independent/ordinary node, by transforming the nodev with
l children into a left-deep binary subtree, as shown in Fig. 8(b).
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rh
v,j for h = ω(e4) rh

v,j for h = ω(e5)

node (v) j = 0 j = 1 j = 2 j = 0 j = 1 j = 2

e1 0 1.0 0 0 1.0 0
e2 0 1.0 0 0 1.0 0
e3 0 1.0 0 0 1.0 0
e4 0.2 0.8 0 0 0.2 0.8
e5 1.0 0 0 1.0 0 0
e6 0.1 0.9 0 0.1 0.9 0
e7 0.2024 0.4952 0.3024 0.138 0.2264 0.3332

mux1 0.1 0.9 0 0.1 0.9 0
ind1 0.2024 0.4952 0.3024 0.138 0.2264 0.3332
ind2 0.2 0.8 0 0.2 0.8 0

Table 1: Consecutive computing rh
v,j for h = ω(e4), ω(e5)

v2 v3 vlv1

v1 v2v3 vl
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...
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Figure 10: Convert a node with l children to a complete binary
tree

There are2l − 1 nodes in the transformed binary tree in total,
{v1, · · · , vl, u1, · · · , ul−2, v}. Here,v1, · · · , vl are leaf nodes,u1

has two children (v1 andv2), ui, for i > 1, has two children (ui−1

andvi+1), for 2 ≤ i ≤ l−2. The nodev has two childrenul−2 and
vl. If v is an ordinary node, thenu1, · · · , ul−2 are ordinary nodes
with weight 0. Ifv is an independent node, thenu1, · · · , ul−2 also
are independent nodes, the probabilityρe(v, vi) is specified on the
incoming edge tovi. All other edges have probability one. It can
be verified that the transformed left-deep tree will give the same
result. TheH-TOPK algorithm (Algorithm 4) is designed using the
left-deep binary tree, wherev1 is treated asu0 andv is treated as
ul−1.

Optimization-I: As indicated in theP-RANK algorithm, it needs to
call theH-PROB algorithm for every answerϕi in M = {ϕ1, ϕ2,
· · · , ϕN}, which is sorted in the decreasing order of the scores.
The cost of computing using dynamic programming is costly. In
fact, the cost can be shared between successive calls ofH-PROB,
e.g., H-PROB (TP , ϕi, k) and H-PROB (TP , ϕi+1, k). Consider
the samePXML-RANK query (//E, 3) against thePXML treeT ′

P

(Fig. 6(a)). Table 1 shows the results ofrh
v,j when computing the

two consecutive answers,e4 ande5. It shows that most values when
computingrh

v,j for e5 remain unchanged, givenrh
v,j computed for

e4. The possible change part is highlighted in the dot rectangles in
Fig. 9, which is along the path from the root to the previous answer.
A lemma is given below.

Lemma 1: Let H-PROB (TP , ϕi, k) and H-PROB (TP , ϕi+1, k) be
two consecutive executions, for two answers, ϕi and ϕi+1 in the
sorted answer set M . When ω(ϕi) 6= ω(ϕi+1), the values r

ω(ϕi)
v,j

and r
ω(ϕi+1)

v,j are identical for the nodes that are not on the path
from the root of TP to the node ϕi. When ω(ϕi) = ω(ϕi+1), for

all nodes, r
ω(ϕi)
v,j = r

ω(ϕi+1)

v,j . 2

Due to space limit, we omit the proof. TheP-RANK andH-PROBal-
gorithms only need to be slightly changed to adapt the optimization-
I.
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Figure 11: Handling Multiple Path Results in a Single Node

Optimization-II: As stated in Optimization-I, for two successive
H-PROB (TP , ϕi, k) and H-PROB (TP , ϕi+1, k), only the r

ω(ϕi)
v,j

values for those nodesv on a certain path change. For each such a
nodev, suppose it hasl childrenv1, v2, · · · , vl, if v is an indepen-
dent node or an ordinary node, we have to spendO(k2 · l) time to
computerh

v,j usingH-TOPK. Whenl is large, the cost can be large.
In the following, we show that we can reduce it toO(k2 · log(l)).
We construct a complete binary treeB with d = ⌈log2 l⌉ + 1 lev-
els, where the root is at level0 and thep-th level has2p nodes for
0 ≤ p < d. The root ofB is v, the non-leaf nodes are independent
nodes markedui, and the leaf nodes arev1, v2, · · · , vl under nodes
in leveld − 1 as shown in Fig. 10. The probability associated with
the edge betweenv andvi is reserved for the edges incomingvi in
B. Other newly added edges have probability1. It can be proved
that rω(ϕi)

v,j on the new tree is equal to those on the original tree.
Utilizing the complete binary tree, we only needO(k2 · log(l)) to
computev without affecting other nodes because the depth of the
new tree isO(log(l)) and in the path fromv to vi, the degree of
each node is at most2.

4. PATH QUERY AND TREE QUERY
In this section, we discuss other twig queries, namely, path queries,
//A//B, and tree queries//A[.//C]//B. Our techniques can effi-
ciently process any path queries. Consider aPXML-RANK query
(//A//B, k), against thePXML treeTP (Fig. 1(b)). The answers are
a set of paths,M = {a1 → b1, a1 → b1 → b2, a2 → b3, a2 →
b3 → b4}. In our problem setting, the existence probability of a
node is equal to the probability of the path from the root to the
node, because the existence of a node depends on the existence of
its ancestors. Therefore, we can compute the top-kprobability for
an answer of a path query, as to compute the last node of the an-
swer. Takena1 → b1 → b2 as an example, we can compute its
top-k probability as to compute the top-k probability for b2. Our
techniques can be used for processing anyPXML-RANK queries
(Q, k), whereQ is a path query.

We further explain how to process when several answers that have
the same lowest node, using an example. Suppose that there are
four answers to be ranked,M = {ϕ1, ϕ2, ϕ3, ϕ4}, where an an-
swerϕi is shown in the rectangle in Fig. 11 over the data path in
PXML tree on the left side in Fig. 11. Here, the two answers,ϕ1

andϕ2, share the same lowest nodeb1, and the other two answers,
ϕ3 andϕ4, share the same lowest nodeb2. When processing top-k
probabilities for the four (path) answers, we virtually add four addi-
tional nodes to represent the four (path) answers as indicated along
the path on the left side in Fig. 11. Here,b1 has two additional
virtual children indicatedϕ1 andϕ2, andb2 has two additional vir-
tual childrenϕ3 andϕ4. With the additional virtual nodes, we can
process top-kprobabilities using the same techniques we discussed
for processing top-kprobabilities for node queries.

4.1 Discussions on tree query
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Figure 12: A PXML tree

However, it is difficult to efficiently compute anyPXML-RANK

queries(Q, k), whereQ is an arbitrary tree query, even fork = 1.
We explain it using an example. Consider thePXML tree in Fig. 12,
and aPXML-RANK query,(Q, k) whereQ = //A[.//B]//C, and
k = 1. There are 10 answers. For simplicity, we use a3-tuple
to indicate a resulting subtree for thePXML-RANK query. One re-
sulting subtree isr1 = (a1, b1, c1). There are other 9 resulting
subtrees rooted ata2 with any one of the threebi, for 2 ≤ i ≤ 4,
and any one of the threecj , for 2 ≤ j ≤ 4. As one example, con-
siderr2 = (a2, b2, c3) wherea2 has three children{b2, b3, b4}, b2

is in the subtree rooted atb2 andc3 is in the subtree rooted atb3.
The fact states that our dynamic programming techniques cannot
be used to efficiently compute top-kprobabilities even forr1 over
the 10 subtrees. It is because that we cannot computerh

a2,j based
on the values ofrh

bi,j , for 2 ≤ i ≤ 4, that are obtained for the chil-
dren. Any combinations are possible, and we need to enumerate all
possible worlds.

We give conditions. A generalPXML-RANK tree query,(Q, k),
can be computed in polynomial time if one of the conditions are
satisfied. The conditions are imposed on the set of answers,M =
{ϕ1, ϕ2, · · · , ϕN}, to be ranked, which is generated by twigQuery(Q,
TP ) in Algorithm 1. The conditions can be checked when process-
ing twig queries without high overhead. Below, for a given tree
queryQ, we call a path inQ a primary path and denote it asPQ.
For example,//A//B is a primary path of//A[.//C]//B. Note that
an answerϕi can be a subtree.

1. The edges of results do not overlap with each other.ϕi ∩
ϕj = ∅ for i ≤ j.

2. Every edge,e′, of every answerϕi ∈ M , which is not on the
primary pathPQ, must be associated withρe(e

′) = 1. (An
ordinary edge,e′, is considered as an edge withρe(e

′) = 1).

3. Letϕi andϕj be two different answers. Supposeβi andβj

are the paths inϕi andϕj that matchPQ, respectively. There
exist two subtreesγi = ϕi − βi andγj = ϕj − βj where
ϕi = βi ∪ γi andϕj = βj ∪ γj . If there exist a nodevi on
the pathβi that is a descendant of a nodevj on the pathβj ,
thenγi andγj must be identical.

As an example, consider thePXML tree,T ′
P in Fig. 1(b), and the

twig queryQ = //A[.//C]//B (Fig. 1(c)). The answer setM =
{ϕ1, ϕ2, ϕ3, ϕ4} whereϕ1 = {(a1, b1), (a1, c1)}, ϕ2 = {(a1,
b1), (b1, b2), (a1, c1)}, ϕ3 = {(a2, b3), (a2, c2)}, andϕ4 = {(a2,
b3), (b3, b4), (a2, c2)}. Let PQ = //A//B. The four answers,ϕi,
for 1 ≤ i ≤ 4, do not satisfy the first and the second condition. But
they satisfy the third condition. For example, considerϕ1 andϕ2,
β1 = (a1, b1) andβ2 = (a1, b1)(b1, b2); andγ1 = (a1, c1) and
γ2 = (a1, c1). There existb1 on β1 that is a descendant of a node
a1 onβ2. γ1 = γ2.

v
v’

Figure 13: Compute top-k probabilities for a subtree answer

The conditions allow us to compute aPXML-RANK tree query us-
ing our dynamic programming techniques. In brief, when either
the second or the third condition is satisfied, we can compute top-
k probabilities for a subtreeϕi as to compute top-kprobabilities
for the lowest node ofϕi on the primary pathPQ in the same way
of processing path queries. Processing a tree query, when the first
condition is satisified, is complicated, because some nodes of a sub-
tree answerϕi can be ancestors of another subtree answerϕj . We
discuss our main ideas below, due to the space limit.

Let M = {ϕ1, ϕ2, · · · } be a set of the subtree answers to be
ranked, and letϕ be the current subtree. We call a subtree an-
swerϕi a h-answer if it has a larger score than the current’s. For
eachϕi, we useroot(ϕi) to denote the root ofϕi, Pϕi

to denote
the path from the root node in thePXML tree toroot(ϕi), and
Prϕi

= Πe∈ϕi
ρe(e) if there are no mutually exclusive nodes in

ϕi, otherwisePrϕi
= 0. We userv,j instead ofrω(ϕ)

v,j for short
below. First, for computing the probabilityPr(j h-answers appear
| ϕ appears), we set allρe() = 1 for the edges inPϕ ∪ ϕ, and
remove the branches which are mutually exclusive with any nodes
in Pϕ ∪ ϕ. We cannot simply condensePϕ to a node, becausePϕ

may contain some part of other h-answers. The process of setting
ρe() = 1 serves the same purpose of condensing a path into a node.
Second, we computerv,j where a subtree answerϕi is rooted on
v. Note thatv is an ordinary node. We condenseϕi to a virtual
nodev′ and remove the branches that are mutually exclusive with
any nodes inϕi (see Fig. 13). The truerv,j is computed as follows:
rv,j = rv,j − Prϕi

× rv′,j + Prϕi
× rv′,j−1, where therv,j ap-

pears on the right side is computed on the left tree in Fig. 13 where
every node/edge inϕi is considered separately. The existence of
the entireϕi is ensured on the right tree in Fig. 13. It can be easily
handled when multiple subtree answers are rooted at the same node
v.

5. EXPERIMENTAL STUDIES
We conduct extensive experiments to test the performance of our
algorithms. We have implemented ourPXML-RANK algorithm.
The main algorithm to be tested isP-RANK. We have implemented
P-RANK without Optimization-I and Optimization-II, theP-RANK

algorithm using Optimization-I, and theP-RANK algorithm using
both Optimization-I and Optimization-II. We denote them aspRank,
pRank-I andpRank-II, respectively. All algorithms were imple-
mented in C++. We conducted all the experiments on a 2.8GHz
CUP and 2GB memory PC running XP.

We use two real datasets, DBLP (http://dblp.uni-trier.de/
xml/) and Mondial (http://www.informatik.uni-freiburg.
de/~may/lopix/lopix-mondial.html), and the syntheticXML

benchmark dataset XMark (http://monetdb.cwi.nl/xml/) for
testing. For XMark, we also generate many datasets with different
sizes. For eachXML dataset used, we generate the correspond-
ing PXML tree, using the same method as used in [14]. We visit
the nodes in the original XML tree from top to bottom. For each
nodev visited, we randomly choose some distribution nodes with
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ID Query Result

D1 dblp//book[.//author]/key 1, 684

D2 dblp//article[.//title//sub]/key 2, 928

D3 dblp//proceedings[key]//series[href] 5, 909

D4 dblp//incollection[key]//author 8, 842

D5 dblp/article[.//cite[label]]//key 13, 785

M1 mondial//river[.//located[country]/province][id]/name 237

M2 mondial//city[country][.//population/year][latitude]//province 705

M3 //country[.//province[name][population]/city[id]][capital]/total_area 2, 595

M4 mondial/organization[established][headq]/members[type] 5, 226

M5 mondial//organization[.//members[type]/country][name]/abbrev 7, 505

X1 site//category[.//text/bold]//id 712

X2 site//description//keyword/emph 1824

X3 //namerica//item[.//parlist//listitem//listitem]/id 3, 043

X4 //closed_auctions/closed_auction//itemref[item] 5, 850

X5 //open_auctions/open_auction[id]//author[person] 7, 200

Table 2: Queries used for all datasets

randomtypes and probability distributions to be the children ofv,
then for the original children ofv, we choose some of them to be
the children of the new generated distribution nodes. We control
the percentage of the distribution nodes to generate differentPXML

trees for each dataset.

In answering aPXML-RANK query, we first compute all answers
using a modified twig pattern matching algorithm based on [17].
The algorithm we use can process the entirePXML tree in a stream-
ing manner, and therefore does not need to keep the entirePXML

tree in memory. Then we prune nodes,v, on thePXML tree if the
subtree rooted atv dose not effect the ranking, and get another pro-
jectedPXML tree. We run our three algorithmspRank, pRank-I and
pRank-II, to compute top-kprobabilities for all results over the pro-
jectedPXML tree if they satisfy one of our conditions. For each test,
we record the time and space consumption of all algorithms. The
time consumption consists the query processing time to generate
all the results, the projection time and the time for computing top-k
probabilities for all results. The main space consumption is caused
by maintainingrh

v,j values. ForpRank, rω(ϕi)
vi,j values for a nodevi

can be released whenrω(ϕi)
v,j has been computed wherev is the par-

ent ofvi. ForpRank-I andpRank-II, in order to share the computa-

tional cost,rω(ϕi)
v,j values need to be kept for computingr

ω(ϕi+1)

v,j .
pRank-II consumes more memory because Optimization-II needs
to maintain complete binary trees.

For the DBLP dataset, the originalXML tree has13, 318, 516 nodes
with 41 different tags and the maximum depth of6. We range the
percentage of distribution node from10% to 50% and generate5
different PXML trees. The queries used for the DBLP dataset are
listed in Table 2 from D1 to D5, with combination of both// and/
operators. We list them in increasing order of result size. The pa-
rameters used for testing DBLP dataset are listed in Table 3, where
DistNode means the percentage of distribution node. For the Mon-
dial dataset, the originalXML tree has70, 459 nodes with51 dif-
ferent tags and the maximum depth of5. The queries used and
parameters with default values are listed in Table 2 from M1 to M5
and Table 3 respectively. For the XMark datasets, we generate5
different datasets with different sizes for testing. There are77 dif-
ferent tags with the maximum depth of12 for each of the generated
XML trees. We set the percentage of distribution node to be30%
and convert them to the correspondingPXML tree. The number of
nodes for eachPXML tree is shown in the last row of Table 3. The
queries used and parameters with default values are listed in Table 2
from X1 to X5 and Table 3 respectively.

Parameter Range Default
DistNode(All) 10%, 20%, 30%, 40%, 50% 30%
Top-k (All) 10, 20, 30, 40, 50 30
Query(DBLP) D1, D2, D3, D4, D5 D3
Query(Mondial) M1, M2, M3, M4, M5 M3
Query(XMark) X1, X2, X3, X4, X5 X3
Node Number(XMark) 0.5, 1, 1.5, 2, 2.5 (×106) 1.5

Table 3: Parameters used for testing

5.1 Test-DBLP
Fig. 14 shows the testing results over DBLP datasets. From Fig. 14(a)
and 14(b), we know that when the percentage of distribution nodes
increases, both the time and memory consumption for the three al-
gorithms marginally increase.pRank-II is more than300 times
faster thanpRank although cost about three times more memory
thanpRank. pRank-I is more than10 times faster thanpRank al-
though cost about2 times more memory thanpRank. Fig. 14(c)
and Fig. 14(d) show that when the number of results increases, the
time and memory used for the three algorithms do not necessarily
increase. It is because the increasing of the number of results dose
not mean that the size of the projectedPXML tree to be tested also
increases. The time for all the three algorithm is influenced by both
the number of results and the size of the projectedPXML tree. The
memory consumption for all the three algorithms reflects the size
of the projected tree. In Fig. 14(e) and Fig. 14(f), we can see that,
whenk increases, the time for all the three algorithms will increase.
The memory consumption forpRank-I andpRank-II will increase
linearly with k, while the memory consumption forpRank is not
influenced byk. pRank-II is also much more faster (about100
times faster) thanpRank although cost some more memory (not
larger than8 times more). The performance ofpRank-I is between
the other two algorithms.

5.2 Test-Mondial
Fig. 15 shows the performance of the three algorithms over the
Mondial dataset. Fig. 15(a) and Fig. 15(b) show that when the
percentage of distribution nodes increases, the time and memory
consumption for all the three algorithms will increase.pRank-II is
more than100 times faster thanpRank, and is2 times faster than
pRank-I. The memory consumption ofpRank-II andpRank-I are
almost the same and are3 times more thanpRank. In Fig. 15(c)
and Fig. 15(d), when the number of results increases in the Mon-
dial dataset, the size of the projected tree will also increase (which
is reflected by the increasing of memory consumption), so the time
for all the three algorithms will increase. Fig. 15(e) and Fig. 15(f)
show that whenk increases, the time for all the three algorithms
will increase. The memory consumption forpRank-I andpRank-II
will increase linearly while the the memory consumption forpRank

remains the same. Comparing to the DBLP dataset, in the Mondial
dataset, the time forpRank-I is more similar topRank-II, because
in the DBLP dataset, we can always find nodes with very large
number of children in the projectedPXML tree, for example the root
node tagged "DBLP", which will decrease the efficiency ofpRank-
I, whereas, in the Mondial dataset, the degree of each node is not
large which makes the advantages of optimization-II less obvious.

5.3 Test-XMark
Fig. 16 shows the performance of the algorithms on the XMark
datasets. Fig. 16(a) and Fig. 16(b) show that when the number
of distribution nodes increases, the time and memory consump-
tion for all the three algorithms will also increase. Fig. 16(c) and
Fig. 16(d) show that when the number of result increases, the time
for all the three algorithms will increase if the size of the projected
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Figure 14: Testing DBLP dataset

PXML tree (memory consumption) increases. Otherwise, the time
is influenced by the size of the projectedPXML tree. Fig. 16(e)
and Fig. 16(f) show the performance of the three algorithms when
increasingk, which are similar to that in the DBLP dataset. In
Fig. 16(g) and Fig. 16(h), when the size of the data (Node Num-
ber) increases, the time and memory consumption for all the three
algorithms will increase, because when the size of the data in-
creases, both the number of result and the size of the projected
PXML tree will increase. The time used forpRank-II is about100
times faster thanpRank, and the time used forpRank-I is about30
times faster thanpRank for all experiments on the XMark datasets.
The memory consumption forpRank-I is similar to the memory
cost forpRank-II, and is at most5 times the memory consumption
for pRank for all experiments on the XMark datasets.

6. RELATED WORK
Ranking Results in XML: XML twig queries have been exten-
sively studied [4]. The result of a twig query over anXML tree
is a set of answers. In [7, 19, 2], the authors integrate IR strate-
gies to rank the results of twig queries. The scores of answers are
computed using IR models, incorporating with other factors. In [6,
8], the authors retrieve the top-kresults of a keyword search over
XML tree. In [3, 15], the authors treatXML trees asXML graphs,
and assign weights to the nodes and edges ofXML graphs, where
the weight of a node indicates its importance and the weight of an
edge represents the strength of its semantic connection in theXML

tree. The uncertainty and probability are not addressed.

Probabilistic XML: The topic of probabilisticXML (PXML) has
been studied recently. Many models have been proposed, together
with the complexity analysis of query evaluations. Nierman et
al. [16] first introduce a simple probabilisticXML model, ProTDB,
which is a probabilistic tree database. Hung et al. [11, 12] model
the probabilisticXML as directed acyclic graphs, with probabilities
defined on sets of children. Keulen et al. [22] use a probabilistic
tree approach for data integration. Abiteboul et al. [1] propose a
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Figure 15: Testing Mondial dataset

“fuzzy trees” model, where nodes are associated with conjunctions
of probabilistic event variables, they also give a full complexity
analysis of query and update on the “fuzzy tree” in [20]. Cohen
et al. [5] incorporate a set of constraints to express more complex
dependencies among the probabilistic data. They also propose ef-
ficient algorithms to solve the constraint-satisfaction, query eval-
uation, and sampling problem under a set of constraints. In [14],
Kimelfeld et al. summarize and extend the probabilisticXML mod-
els previously proposed, the expressiveness and tractability of queries
on different models are discussed. The ranking issues are not ad-
dressed in their work.

Top-k Queries in Probabilistic Data: Uncertain databases have
received increasing attention recently. Apart from the works on dif-
ferent models of uncertain relational database, some recent works
concern on answering top-kqueries in uncertain database. There
are two scenarios in ranking the query results, [18] or [21]. In [18],
Re et al. find thek most probable answers for a given generalSQL

query. In this scenario, each answer has a probability instead of a
score, which intuitively represents the confidence of its existence,
ranking is only based on probabilities. They use Monte Carlo sim-
ulations to get the top-kresults efficiently. Another definition is
ranking the results by the interplay between score and uncertainty.
In the setting of [21, 23, 9, 25, 24, 10], each result is a tuple, asso-
ciated with both a score and a probability. U-TopK and U-kRanks
queries are first proposed in [21], Yi et al. [23, 24] improve the
performance of the two queries using a dynamic programming ap-
proach. Hua et al. [9, 10] define the PT-k query, and proposed three
approaches to answer the PT-k query, which are, dynamic program-
ming method, sampling method, and Poisson approximation based
method. Zhang et al. propose a Global-Topk definition in [25]. Jin
et al. [13] adapt the U-TopK/U-kRanks/PT-k/Global-Topk (Where
Global-Topk is the same as Pk-topk in [13]) queries in a uncertain
stream environment with sliding-window, and design both space-
and time-efficient synopses to continuously monitor the top-k re-
sults. The works do not consider the containment issues and rank
in XML trees.
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Figure 16: Testing XMark datasets

In our study, we consider all the three issues, namely, ranking,
probability, and structures.

7. CONCLUSION
In this paper, we studied ranking twig queries in probabilisticXML

(PXML) data, calledPXML-RANK query,(Q, k), whereQ is a twig
query, which can be node queries, path queries, and tree queries.
We proposed dynamic programming algorithms with optimization
techniques to efficiently rank answers of node queries, and showed
that our techniques can be used to efficiently rank answers of path
queries. For tree queries, we gave conditions under which we gave
our solutions to rank answers of such tree queries without enumer-
ating all the possible worlds. Our extensive experimental studies
confirmed the efficiency of our approaches.
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