
Automating the Loading of
Business Process Data Warehouses

Malu Castellanos
HP Labs

Palo Alto, Ca, USA
malu.castellanos@hp.com

 Alkis Simitsis
 HP Labs

 Palo Alto, Ca, USA
 alkis@hp.com

Kevin Wilkinson
HP Labs

Palo Alto, Ca, USA
kevin.wilkinson@hp.com

Umeshwar Dayal
HP Labs

Palo Alto, Ca, USA
umeshwar.dayal@hp.com

ABSTRACT
Business processes drive the operations of an enterprise. In the
past, the focus was primarily on business process design, model-
ing, and automation. Recently, enterprises have realized that they
can benefit tremendously from analyzing the behavior of their
business processes with the objective of optimizing or improving
them. In our research, we address the problem of warehousing
business process execution data so that we can analyze their be-
havior using the analytic and reporting tools that are available in
data warehouse environments. We build upon our previous work
that described the design and implementation of a generic process
data warehouse for use with any business processes. In this paper,
we show how to automate the population of the generic process
warehouse by tracking business events from an application envi-
ronment. Typically, the source data consists of event streams that
indicate changes in the business process state (i.e., progression of
the process). The target schema is designed to allow querying of
task and process execution data. The core of our approach for
processing progression data relies on the construction of generic
templates that specify the semantics of the event streams extrac-
tion and the subsequent transformations that translate the underly-
ing IT events into business data changes. Using this extensible
template mechanism, we show how to automate the construction
of mappings to populate the generic process warehouse using
two-levels of mappings that are applied in two-phases. Interes-
tingly, our approach of using ETL technology for warehousing
process data can be seen the other way around. An arbitrary ETL
process can be modeled as a business process. Hence, we describe
the benefit of modeling ETL as a business process and illustrate
how to use our approach to warehouse ETL execution data, and to
monitor and analyze the progress of ETL processes. Finally, we
discuss implementation issues.

1. INTRODUCTION
Over the years enterprises have invested in technology to improve
the business processes underlying their operations. In the nineties,
the focus was on business process automation, whereas recently
the focus has shifted towards business process monitoring, report-
ing and optimization via analytics. Business processes typically
involve a large number of people and systems (applications, data-

base systems, web servers, message brokers, etc.) Events generat-
ed by these systems signal the start or end of steps of the process,
and hence mark the progression of the process execution. By cap-
turing these events, it is possible to load a data warehouse with
process progression data derived from the events (see Figure 1).
Once loaded, progression data can be queried to obtain process
execution information including measures on the quality, effi-
ciency, and timeliness of process execution, as well as to under-
stand areas for improvements.

A solution for process warehousing addresses two problems: the
design of the process data warehouse, and extracting process in-
stance data and loading the process warehouse. In our previous
work, we tackled the first problem and described the design of a
generic process data warehouse that could be used for any busi-
ness process [3]. In this paper, we address the second problem by
automating the design and implementation of Extract-Transform-
Load (ETL) scenarios to populate the process warehouse.

In general, ETL design for data warehouses is a time-consuming,
non-trivial task performed manually by ETL experts who have a
good understanding of the semantics of the source and target
schemas. Efforts to automate this task have had limited success,
since it is difficult to come up with a generic method that works
for all source and target schemas. However, in the process ware-
house context the target schema can be fixed, since the process
data warehouse model described in [3] is generic, and the source
data consists of streams of events that cause changes in the
process state. Consequently, the automation of the ETL design is
feasible in the process warehouse context, and in this work, we
demonstrate how we can achieve that.

Three notions are central to our approach: data independence,
genericity and abstraction. Data independence shields the process
progression from the infrastructure so that changes in the infra-
structure do not impact the mappings to process progression data.
This is achieved through a level of indirection given by a two-
phase mapping mechanism. Abstraction enables the user to have a
high level view of the process and specify high level mappings
without having to know the details of the process or the imple-
mentation details. Genericity is obtained by factoring out the part
that is common to all processes while leaving room for the part
that is specific to a particular process.

The core of our approach relies on the construction of generic
templates that specify the semantics of the extraction from event
streams and the required two-phase transformations from the un-
derlying IT events to business data changes to process progression
data. Our mechanism includes (a) the extraction of stream events
in a near real time fashion, (b) a two-phase, two-level mapping
procedure that starts with high level (declarative) mappings and

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the ACM. To copy otherwise, or to republish, to post on servers or to
redistribute to lists, requires a fee and/or special permissions from the
publisher, ACM.
EDBT'09, March 24-26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00.

612

Figure 1. Business process warehousing context

ends with appropriate executable (prescriptive) ones, and (c) the
loading of the mapped data into the process warehouse. The
whole procedure is realized in a streaming fashion, which fits
with the real-time nature of the business processes environment.

Contributions. Our main contributions are as follows:

- We propose a generic approach, based on templates and a
two-phase, two-level mapping procedure, for automating the
design and implementation of ETL for business processes.

- We present a novel mechanism for extracting business events
from an application environment in near real-time.

- We describe a template language that includes useful con-
structs for defining appropriate templates.

- We discuss how our approach can be used for monitoring the
ETL processes themselves by modeling them as a business
processes.

- We present a prototype implementation of our approach.

Outline. In Section 2, we give some notions relevant to business
process warehousing and describe our two-phase-transformation,
two-level-mapping framework. In Section 3, we describe our
template-based approach for generating mappings, as well as a
language to define transformation templates. In Section 4, we
present our prototype implementation. We then adapt these con-
cepts to arbitrary ETL applications. In Section 5, we show how
ETL itself can be modeled as a process and use our approach to
warehouse ETL execution data. Finally, we discuss related efforts
(Section 6) and conclude with future directions (Section 7).

2. BUSINESS PROCESS WAREHOUSING
In this section, we present the main concepts related to business
process warehousing, the existing challenges, and the approach
we follow for populating a process data warehouse.

2.1 Challenges
There are three main challenges in business process warehousing:
genericity, abstraction, and data independence.

Figure 2. Supply chain process

Genericity. Developing ad hoc, process-specific solutions for
warehousing process data is not a sustainable model. Thus, one of
the main challenges is that of developing a general and reusable
solution for process data warehousing, applicable to most or all
the processes in an enterprise. Furthermore, our approach can be
extended to other applications that have similar characteristics.

Abstraction. A typical process executed in the underlying IT sys-
tems is very detailed and consists of hundreds of steps, including
manual operations (e.g., scanning invoices), database transactions,
and application invocations. However, having visibility (report-
ing, analytics, etc.) at this level of detail is confusing for analysts
who have a much higher level abstract view of the process. The
common wisdom is that business analysts and managers perceive
a process as being composed of approximately 5 to 7 steps. Ser-
vice level agreements (SLA’s) and key performance indicators
(KPI’s) are also defined on abstracted views of a process. An
appropriate example is presented in Section 2.2.

Data independence. The infrastructure underlying the process
execution is subject to dynamic changes and it is important to
shield the process warehouse from those changes. For example,
the infrastructure that handles the notification of acceptance of an
order could evolve from database technology where a purchase
order record is updated, to a more proactive service-oriented
technology where a message is sent to a web service that handles
the notification. This change should not affect the process ware-
house schema or the mappings to its tables. The challenge is in
developing a solution that provides this kind of independence.

2.2 A Business Process Example
Figure 2 shows an abstracted model of a simple supply chain
process. (Note that we could define the process in a standard
business process language such as BPEL [25]; however, this is
irrelevant to our approach, indeed we do not require a BPEL or
other execution engine to implement the process.) Each node
represents a task (also called step or activity) of the supply chain
process. Clearly, this is not the actual implemented version of the
process since each step in the figure actually corresponds to sev-
eral finer granularity steps. For example, the step CheckGoodsA-
vailabilityWithVendor could correspond to the following sequence
of steps: FillRequestForm, SubmitRequestForm, ReceiveVendor-
Response.

IT events occur when a task starts or ends and cause transitions
among tasks. Therefore, as events happen, process execution
progresses. For example, at the moment a particular web page is
accessed, the task Receive_and_check_PO_request is started,
when the user leaves the page, the task ends. The occurrence of
these two events (web page visit and web page exit) marks the
execution of this task. As tasks are executed, the process
progresses. Typically, events are recorded in logs which can then

613

be queried and mined to monitor and analyze the process flow.
However, when near real-time is desired the events are captured
in a streaming fashion directly from the event sources. These
events are extracted by our ETL process and transformed into
process and task execution data to reflect process progression.

2.3 Process Data Warehouse Model
The process data warehouse model was designed to be generic to
support the analysis of arbitrary business processes, and to sup-
port the computation of a large variety of process metrics [3].

Figure 3 shows the most significant elements of the process data
warehouse model. It consists of two main logical parts that
represent the business data and the process progression data. In
this paper, we focus on the latter part which includes all the tables
in Figure 3 except the business tables Purchase_Order_Data and
Vendor. The main fact table is TaskExecution, which captures the
process progression in terms of the executed tasks (e.g., Receive_
and_check_PO_Request start), and ProcessInstance which is a
fact table that records instances of a process (e.g., each processed
order).These tables are generic in the sense that they apply to any
business process. On the other hand, the part of the data ware-
house responsible for the business data includes process-specific
tables to track business data relevant for each process, e.g Pur-
chase_Order_Data is specific to supply chain processes. Due to
space limitations, we refer the interested reader to [3] for details.

2.4 Population of a Process Warehouse
In this section, we present an overview of our solution to the
problem of warehousing abstracted process representations, which
relies on two main mechanisms.
First, a modeling tool, like HP Business Process Insight (BPI) [1],
is needed for letting the user describe an abstracted (high level)
view of the process as well as how its progression maps to the
underlying IT events. This procedure involves the following
tasks:

− Describing the process flow. For example, the process model
in Figure 2 was defined with the BPI modeler.

− Specifying high level (declarative) mappings between IT
events and business data. For instance, mapping the event
given by the submission of a form on a given URL to the
creation of a new purchase order record.

− Specifying high level (declarative) mappings between
changes in business data and the start and completion of each
process task. For example, a change to the value “accepted”
in the PO_status value of a Purchase_Order_Data instance
is associated with the end of the NotifyAcceptance task.

− Defining the correlation logic to associate (a) events with the
correct business data instance and (b) a change in a business
data instance to the appropriate business process instance.
For the previous example, the correlation logic would indi-
cate that the identifier (PO_number attribute) of the purchase
order instance should be the same as the process instance
identifier (top_work_object_key attribute) of the NotifyAc-
ceptance task instance in the Task_Execution fact table.

− Associating process tasks with human or automated re-
sources. For example, associating a specific web server with
the task Receive_and_check_PO_Request.

Figure 3. Process warehouse model [3]

The ETL mechanism for populating the process data warehouse
with process execution data. is abstractly depicted in Figure 4. It
relies on the abstract process definition and the events occurring
at the different systems. A probing mechanism (e.g., OpenAdap-
tor [12]) is needed for capturing the events from different source
systems (e.g., a web or an application server). The next step is to
gather the events (extraction stage) and then, to perform the ap-
propriate mappings (transformation stage). For the first, we re-
quire a means to gather the events in a streaming fashion. Hence,
we provide an extraction component that has the capability to deal
with streams of events in near real-time.
For the next stage (i.e., transformation), the challenge is to find
means for representing the high level specifications that only
define what are the mappings, as low level ones that describe how
to execute the mappings (i.e., how to interpret them at run-time to
update business and process execution data in the warehouse).
Our approach uses a two-level mapping process that distin-
guishes a logical and a physical level. For the first level, of par-
ticular importance is the template mechanism that automates the
generation of logical mappings with specific types of events,
business data and process data. In the second level a translator
mechanism is used to automatically generate physical (executa-
ble) mappings from the logical ones previously generated.
Logical Mapping. The logical mappings are automatically gener-
ated from the high level (declarative) mappings and the correla-
tion logic defined by the user at modeling time and accessible
from the modeling tool repository. We use a template-based ap-
proach, described in Section 3.2, where the operational semantics
of the mappings, given by high level transformations, are embed-
ded in mapping templates. When a record enters this phase, the
respective mapping template is instantiated and the resulting logi-
cal mapping becomes readily available to feed the next phase.
Logical mappings, although already prescriptive, are not executa-
ble. The idea is to make this mapping level agnostic to any specif-
ic ETL implementation tool or language.

614

Figure 4. Framework for warehousing business processes

Physical Mapping. The physical mappings are expressed in a
specific ETL implementation language and are automatically
generated from the logical ones (specifically, from the instantia-
tedmapping templates which comprise the output of the previous
level) using translators that combine the logical templates with
appropriate physical operators of specific ETL engines (e.g., In-
formatica Power Center, Oracle Warehouse Builder) or imple-
mentation language (e.g., PL-SQL, C) constructs. The process is
described in detail in Section 3.3.
In addition to being a two-level mapping process as depicted in
Figure 4, our approach for automating the design and implementa-
tion of the ETL that populates the business process warehouse is
also a two-phase transformation process. This mechanism ad-
dresses the data independence requirement fulfilled by the intro-
duction of an isolation layer formed by business data. By map-
ping IT events to changes on business data (first phase) we
achieve stability in the process warehouse schema and in the
mappings from this layer to the process progression tables in the
warehouse (second phase). For example, an acceptance notifica-
tion event is mapped to an update on the PO_status attribute of a
Purchase_ Order_Data record rather than to process execution
data. It is then that the business data change is mapped to the
process progression tables. For the same example, the update on
the data record is now mapped to the end of the Noti-
fy_acceptance task. Hence, the need for a two-phased mapping
procedure that requires the specification of two types of declara-
tive mappings as part of the abstracted process model: (a) map-
pings from IT events data to business data changes, and (b) map-
pings from the latter to process progression data. Our approach
deals with both kinds of mappings in a uniform way. First, logical
mappings are generated from thedeclarative ones by using tem-
plates. Second, physical mappings are produced from the logical
ones by specific translators. Note that the two-level mapping
process is orthogonal to the two-phase transformation one: both
levels of mappings (logical and physical) apply to each transfor-
mation phase (from events to business data changes and from the
latter to process progression).

The approach presented in this paper is applicable to data ware-
housing in general. The idea of using a two phase, two level map-
ping process, mapping templates and a near real-time extraction
mechanism can be generalized to other data warehouse applica-
tions. As long as appropriate templates capturing the operational
semantics of user specified high level mappings can be pre-
defined (which in turn requires knowledge about the semantics of
the source and target data warehouse schemas), the whole machi-
nery of this approach can be applied to automatically generate the
design and implementation of ETL processes. In addition, we
present a language powerful enough to define templates of any
level of complexity.

3. ETL APPROACH
In this section, we describe the near real-time extraction of stream
events, and we elaborate on how the template and translation
mechanisms cooperate to produce the corresponding mappings.

3.1 Data Extraction
For business process data warehouses, the source data consists of
event streams that cause changes in the process state. We describe
two approaches for extracting event data from the sources: a batch
oriented approach and a near real-time approach.

3.1.1 Batch-oriented approach
Traditionally, ETL processes work in batch mode. Periodically,
usually during the night, they collect data from different hetero-
geneous sources and after massaging –e.g., cleaning and homoge-
nizing– those data, they load them to a target data warehouse.
During the extraction, the source data are extracted from the
sources and are propagated to a data staging area (DSA) [10]. The
propagation of data usually involves several operations like file
transfer, compression, encryption, and so on. Whereas all these
operations are performed in a pipelining fashion, when the data
arrive into the staging area, they are stored into landing tables.
Figure 5(a) depicts a typical extraction scenario.

The data, after their landing in Lnew are compared against a snap-
shot of the previous landing Lold, to discriminate the newly in-
serted, deleted, and updated tuples. This comparison is performed
through a difference operator, Diff, which checks for equality
only on a certain subset of the tuples’ attributes (e.g., the business
keys). Let A be the set of attributes and B a subset of those, con-
sidered for the equality check. For finding the newly inserted
tuples, we use the expression:

ΔB(Lnew,Lold) = {x∈Lnew | ¬ y∈Lold: x[b1]=y[b1]∧...∧x[bn]=y[bn]}

where b1,…,bn∈B. For finding an updated tuple, we consider that
for each such tuple, there already exists a tuple in Lold having the
same values for B with the respective tuple in Lnew and at the
same time, at least one attribute belonging to A\B has a changed
value. (If A=B then we can use the classical relational difference
operator.) By reversing the use of the difference operator, we
obtain the deleted tuples.

After this step, appropriate timestamps are assigned to the data
before their propagation to the upcoming transformation phase.
(Note that another almost equivalent technique, which we won’t
discuss further, is based on the data been time-stamped at the

615

event
Land

L_NEW
Diff

L_OLD

delete
rename

Δ(event)Get_
Timestamp

Figure 5. Extraction phase: (a) batch mode and (b) near real-time mode

source sites.) The last step of this phase is to replace the old snap-
shot Lold with the new one Lnew. Several methods can be used for
that. One method deletes the old snapshot (first a logical deletion
is performed so as not to affect the system’s workload, and then at
a later idle point, the physical deletion is done) and simply renam-
ing the newer to Lold.

The use of landing tables serves a twofold purpose. First, they can
be considered as a back-up solution if anything goes wrong. In
addition, they serve as a staging area (along with several other
temporary and intermediate tables).

3.1.2 Near real-time approach
The disadvantage of the batch approach is that the data warehouse
is not consistently up-to-date. This may be a problem in a busi-
ness process environment – where events happen at all times dur-
ing the day – since information crucial for analytic purposes may
be unavailable. The near real-time approach avoids this problem
by minimizing the latency of the ETL process, and thus increas-
ing the freshness of the information available for analysis [22].

The near real-time approach avoids the use of blocking operations
(or at least, minimizes their use as much as possible). Clearly, for
events that are available only at the time they occur, since all data
are new, there is no need to identify newly inserted, updated, and
deleted records. However, for events that persist for some time,
including manipulation events on business data (e.g., insertion of
a new purchase order record), the use of a landing becomes a
blocking operation. Hence, we describe how we can avoid it,
without losing the benefits previously mentioned.

Let’s consider that as the event data enter the staging area, they
are processed in a streaming fashion. In this phase, the main
blocking operation is the identification of the newly inserted,
updated, and deleted records. In other words, we need to make the
difference operator work as a pipeline operator. The core functio-
nality of this operator is a join between the incoming data and the
snapshot of the previous state. In previous work, we proposed a
specialized join algorithm termed MeshJoin, which efficiently
joins a stream of data with a static disk-based relation [13].

In a nutshell, MeshJoin works as follows. The two inputs are ac-
cessed continuously and are meshed together for generating the
results of the join. Specifically, the algorithm performs a cyclic
scan of the relation and joins its tuples with a sliding window over
the stream. The main idea is that a stream tuple enters the window
when it arrives and is expired from the window after it has been
probed with every tuple in the relation (and hence all of its results

have been computed). In doing so, MeshJoin compensates for the
difference in the access cost of the two join inputs by relying
entirely on fast sequential scans of the static relation, and sharing
the I/O cost of accessing the relation across multiple tuples of the
streaming data. MeshJoin fits perfectly in our case, since it makes
no assumption of any order in either the stream or the relation; no
indices are required; limited memory is used to allow multiple
operations to operate simultaneously; the join condition can be
arbitrary (e.g., equality, similarity, range); the join relationship is
general (i.e., many-to-many, one-to-many, or many-to-one); and
the result is exact. In terms of efficiency, the algorithm can
process approximately 6,000 tuples per second, given a memory
allocation equal to the 1% of the total relation size; still, it can
scale up to 26,000 tuples per sec if more memory is available.
Such throughput is sufficient for our purposes. However, approx-
imate join processing techniques have been studied as well [14].

However, the aforementioned method has an important shortcom-
ing. This join algorithm considers that the relation remains static
during the whole process; i.e., the relation cannot be updated. If
we rely on this operation, we would gain the benefit of the pipe-
line process, but we lose the option of keeping a copy of the event
data in a log relation. Clearly, we can improve this functionality.

Observe the abstract extraction scenario depicted in Figure 5(b),
where the event data are coming in a streaming fashion. Instead of
being landed, the data are compared against a log table L contain-
ing an almost up-to-date image of the source data. This compari-
son is performed via a difference operator, mDiff, having the
same semantics with the corresponding one described for the
traditional case, but its core join operation is performed using
MeshJoin. mDiff outputs the newly inserted, updated or deleted
tuples. If these tuples are marked with a timestamp, then they are
ready for populating the upcoming phase. For maintaining the log
table as up-to-date as possible, we consider a feedback flow that
updates the log table with the already processed streaming data.

For creating the feedback flow, a composite operation is required.
Naturally, we can achieve the same functionality with two differ-
ent operations as well. First, the processed tuples are duplicated
and then, a splitter operator routes them towards the log table.
(The other output of the splitter operator propagates the deltas to
the next phase.) The writing to the log table imposes an I/O cost
to the whole process. We reduce this cost by delaying it until an
appropriate group of tuples has been gathered, so that the respec-
tive I/O cost is amortized conveniently across all tuples in the
group. For that reason, we consider a buffer mechanism that tem-
porarily stores the tuples of the feedback flow. When the buffer

616

becomes full, the tuples are flushed to the log table by using a
MERGE command supported by all major DBMS systems; this is
a composite DML operation that performs appropriately an insert
or an update operation in a conditional fashion. The correct timing
for flushing the buffer heavily depends on several physical as-
pects, such as the available memory, or design decisions, such as
a decided time threshold. For ensuring the correctness of the dif-
ference operation, we need to join the output of the mDiff (with-
out loss of generality, we can assume that this operator has lower
selectivity since it checks a larger amount of tuples) with the con-
tent of the buffer for checking also those tuples that have not been
written yet to the log table. Since this operation is performed in
memory, several techniques can be used such as the Symmetric
Hash-Join [8], its XJoin variant [24], the Progressive Merge Join
[5] or the more recent Rate-based Progressive Join [19].

The abovementioned extraction streaming process applies to both,
atomic (i.e., simple) and complex events. However, a complex
event signaling the start or end of a task has to wait for the arrival
of all the atomic events that compose it. For instance, the end of
task Replenish_stock_levels could be marked by the composition
of a database update event and the arrival of a confirmation mes-
sage from a supervisor. We consider that a complex event is
formed before it enters the extraction phase and so, this phase
doesn’t need additional mechanisms to handle this kind of events.

3.2 Logical Mapping
A core functionality of our approach involves the construction
and use of templates that specify the semantics of the extraction
from event streams and the required transformations from the
underlying IT events to business data changes to process progres-
sion. After describing our generic mechanism for mapping gener-
ation, we describe a template language extensible to a large varie-
ty of ETL scenarios. We show its application to process data wa-
rehousing. Then, we present a template mechanism for the auto-
matic construction of appropriate logical mappings that drive the
population of the process data warehouse.

3.2.1 Mapping generation
An overview of the mapping generation is depicted in Figure 6.
The tuples –i.e., event streams– coming from the extraction phase
are associated to appropriate declarative mappings (defined dur-
ing the modeling task). The declarative mapping is used for the
automatic identification of an appropriate mapping template. Af-
ter that, the template mechanism, presented next, is used for the
instantiation of the mapping template. The procedure is driven by
the corresponding correlation logic (specified during the modeling
task, see Section 2.4) that indicates how to identify appropriate
the target object of the mapping. For example, the logic specifies
how to identify which Order process instance is progressed when
a Purchase_Order_Data record is updated with ‘accepted’ on its
PO_status attribute. In the rest, we elaborate on these issues.
We stress that the whole procedure is realized in a pipelining
fashion, since the core physical operators are mostly lookup and
join operations, which can be performed analogously with those
described for the extraction phase.
Incoming Streams. As we discussed, the streaming tuples that
enter the logical mapping phase can be of several kinds; e.g., IT
events or business data changes. Our approach abstracts them in a
generic schema with the following elements:

Figure 6. The logical mapping phase

− Category. It describes the category of the incoming tuple;
e.g., IT event or business data change. The category deter-
mines whether the tuple will map to a business data change
or to process progression.

− Type. It characterizes the incoming tuple by indicating what
it is about; e.g., “form submission”, “message”, “update”,
“insert”, and so on.

− Subtype. It specializes the type by indicating the type of the
entity associated with the incoming tuple; e.g., the entity
type “Purchase_Order_Data”. Type and subtype together de-
termine the corresponding declarative mapping, e.g., the
mapping associated to an update on a purchase order record.

− Key. It is an attribute-value pair that represents the identifier
of the entity associated with the incoming tuple; e.g.,
PO_number=123 of an updated purchase order. These iden-
tifiers are used to establish the correlation with the corres-
ponding target objects of the mappings as indicated by the
correlation logic.

− Property. It is an attribute-value pair that specifies the condi-
tion on the Subtype element entity that needs be mapped.;
e.g., PO_status=“accepted”.

Example. Consider the example business data change described in
Section 2.4. The Purchase_Order_Data record may contain sev-
eral attributes but only the one(s) (PO_status) specified in the
input attribute (InAtr) of the declarative mapping and the one(s)
specified in the correlation logic (PO_number) are relevant for
this mapping.

category : business data change
Type update
subtype : Purchase_order_data
Key : PO_number=123
property : PO_status=“accepted”

The above elements are sufficient to identify the corresponding
declarative mapping and instantiate the appropriate template.

Declarative Mappings. These are high level mappings stemming
from the abstract representation of business processes. Usually,
such mappings are captured by design and monitoring tools and
are stored in their repository. For example, the HP BPI tool stores
the abstracted process model (including declarative mappings)
into its repository as XML snippets. When an incoming streaming
tuple is to be processed, the corresponding XML mapping is re-
trieved using an appropriate lookup operation. (Its core functio-
nality is a join between the streaming data and a static relation
containing the declarative mappings, and thus, this operation is
performed in a pipelining fashion resembling the difference op-

617

eration described in the previous section.) The lookup is facili-
tated by using an appropriate index for the mappings, which typi-
cally are indexed by {input object type, input object attribute,
input category}. The elements associated to a mapping depend on
the mapping type. The type is determined by the source and target
types, and thus we get the different mapping types like event to
business data change, business data change to task start, business
data change to task end, business data change to process instance
start and business data change to process instance end. We illu-
strate the concept with a declarative mapping of type business
data change to task end whose elements are the following:

− Input Object Type, (InObjType). This element represents the
name of the business data table where the input record to the
mapping is located. This value is matched to the Subtype
element of the incoming streaming tuple.

− Input Attribute, (InAttr). It represents a list of name(-s) of the
business data attribute(-s) that will be mapped. These names
are matched to the attribute names in the Property element
and the Key element of the incoming streaming tuple.

− Operation, (Operation). It triggers the execution of the map-
ping. Typical values for the business processes domain are
‘insertion’ and ‘update’. (In general, the ‘deletion’ is consi-
dered as well.) The Type element of the incoming streaming
tuple sets this trigger.

− Condition, (Cond). The condition needs to be satisfied for
the mapping to be activated. It is typically a condition on the
value(-s) of one or more attributes of the business data in-
stance, but it could be a more complex condition as well.

− Input Category, (InCateg). This is the category of the input
data to the mapping. In general, it can be an IT event, or a
business data change. The Category element of the incoming
streaming tuple is matched against this element.

− Output Object, (OutObj). It represents the qualified name of
the abstract process step that will progress via the mapping
execution.

− Output Attrbute, (OutAttr). It indicates the logical action on
the process step instance. In this case, its value is task end
(that will evolve to an update to the corresponding tuple). In
the case of a task start a new tuple would be created.

− Output Type, (OutObjType). It is the name of the relation
where the tuple obtained from the mapping is (if the tuple al-
ready exists) or will be located (if it is a new tuple).

Example. The following declarative mapping establishes a corres-
pondence between populating the Result attribute of a Purchase
Order Data instance and the end of the NotifyAcceptance task.
Being a mapping of type Business_Entity_Change_to_End_Step it
contains the following elements:

InObjType : Purchase_Order_Data
InAttr : PO_Status, PO_Number
Operation : Update
InCateg : Business_Data_Change
OutObj : Orderiing.NotifyAcceptance
OutAttr : End
OutObjType : Task_Execution

Mapping Templates. The core of the mapping generation is an
extensible set of mapping templates. The mapping templates are

parameterized logical scripts written in the template language
presented next, and they specifically determine the execution of
mappings. The parameters can be related to events, business enti-
ties or processes. These templates are application specific and in
general, they are designed, possibly once, by the designer or ad-
ministrator of the system. A mapping template defines the opera-
tional semantics of a mapping. It provides a logical specification
of the set of actions that should be performed, in order to apply a
respective mapping. However, such a template does not provide
any means for implementing the corresponding mapping. The
physical execution of a mapping depends on the implementation
language chosen, as we describe in the next section.

Example. Regarding our running example, we present a mapping
template of the type Business_Entity_Change_to_End_Step cor-
responding to the declarative mapping previously described. The
template is parameterized by the business entity type ($BE_T),
the attribute name of the business entity identifier ($BE_I) and the
task type ($TT). The actions prescribed in this template are the
following (we assuming as a target schema, the process ware-
house model presented in Figure 3):

− A lookup operation to obtain the surrogate key of the current
system time in seconds.

− A lookup operation to obtain the business entity surrogate
key for the instance to be mapped.

− A lookup operation to obtain the surrogate key for the given
task type.

− Retrieve the start time of the process step to be updated to
mark its progression.

− A lookup operation to retrieve the surrogate key of the start
time obtained in the previous action.

− Update the end time of the process step instance with the sur-
rogate key of the system time obtained in the first action.

− Update the duration of the process step instance with the
value obtained from the difference of the end timestamp in
seconds minus the start timestamp also in seconds.

The template itself represented in terms of our template language
(described next) follows:

#Business_Entity_Change_to_End_Step($BE_T, $BE_I, $TT)
 ## lookup operations
 #set($SK_T = #lookup($time,#to_time(#sysdate(),’ss’)))
 #set($SK_BEI = #lookup($BE_T,$BE_I))
 #set($SK_TT = #lookup($type,$TT))
 ## retrieve operation, but first construct the condition
 #set($cnd1 = “${entity_data_key}=${SK_BEI} and
 ${task_type_key}=${SK_TT}”)
 #set($ent1 = “task_execution”)
 #set($start_time = #retrieve($time,$ent1,$cond1))
 ## lookup operation
 #set($SK_ST = #lookup($time, $start_time))
 ## update operations
 #update($state_ended_tkey, $SK_ST, $ent1, $cnd1)
 #set($dim = “time”)
 #set($cnd2 = “${tkey}=${SK_ST} and $cnd1”)
 #set($val1 = #retrieve(#to_time($time,’ss’), $dim, $cnd2))
 #update($state_dur, $val1, $ent1, $cnd2)
#end

618

The abovementioned example is a simple one and it is presented
just to give a flavor of the process. In real cases, we face several
mapping types with quite complex execution semantics. For that
reason, we have devised our own template language, which is a
simple but powerful language that covers such complex cases.

3.2.2 Template language
We consider a typical template language supporting constructs
like variables, built-in functions, and macros, customized for the
representation and construction of the mapping templates (e.g., as
the one proposed in [17]).

Variables. A template may contain variables, which are denoted
by their name preceded by the symbol $. When the template is
instantiated, each variable is replaced by a corresponding, pro-
vided, value.

Directives. A set of typical directives is supported, allowing for a
high degree of flexibility in specifying templates. Specifically, the
directives #set, #if - #elseif - #else, and #foreach are provided to
set the value of a parameter, allow conditional output and iterate
through a list of objects, respectively. The standard arithmetic,
logic, and comparison operators are also supported.

Functions. The template language supports the usual arithmetic,
date, and string manipulation functions. In addition, it provides a
set of built-in functions specifically tailored for our environment.
For example the functions: lookup ($type, $instance), re-
trieve($attribute, $entity, $condition), update($attribute, $value,
$entity, $condition) which can be used for finding a value of a
certain type, for retrieving information based on some criteria,
and for updating a certain instance of an entity.
Macros. Macros allow us to encapsulate simple template scripts
and reuse or combine them easily to define more complex ones.
Thus, they significantly facilitate the creation of templates. For
example, the macro LIST(L) is a simple general-purpose macro
used for rendering a list of objects to a textual description.

#macro(LIST $L)
 #set ($size = #SIZE($L))
 #set ($counter = 0)
 #foreach($item in $L)
 #if ($counter == 0) #TEXT($item)
 #else , #TEXT($item)
 #end
 #set ($counter = $counter + 1)
 #end
#end

The result of this macro is a sentence containing the elements of
the list L separated by a comma. The function #TEXT($E) pro-
vides a textual representation (lexicalization) of an entity E, while
the function #SIZE($L) provides the size of a list L. An instance
of the macro, the macro LIST(L,tagname), creates XML snippets
containing the list items. Essentially, this macro resembles the
LIST(L), with the difference that the iterator creates phrases like:

<$tagname>#TEXT($item)</ $tagname>

Hence, it is evident that the designer may customize and extend
the translation mechanism, by modifying these macros or defining
new ones. In addition, we stress that standard programming
knowledge is enough for the macro creation.

Table 1. Example macros used in the ETL environment.

Simple operations:
filter
join
union
sort
group by
diff
function application
Check operations:
key violation
null values
unique values

DW operations:
SK assignment
SCD-1/2/3
row (de-)normalize
pivoting
Flow operations:
splitter
duplicator
merger
Scripting operations:
execute SQL script
execute Java/C++ scrpit

System opera-
tions:
socket reader
socket writer
file reader
file writer
stream lookup
Transfer opera-
tions:
(de-)compress
encrypt/decrypt
file transfer

Apart from such macros that concern generic functionalities, we
do provide as well default macros for representing frequent ETL
operations. Example macros that represent operations frequently
used in an ETL environment are depicted in Table 1.

3.2.3 Template mechanism
After having defined the mapping templates needed for the popu-
lation of the process warehouse, an appropriate template mechan-
ism is needed for the creation of their logical instances. This pro-
cedure is performed by a template engine, and it requires that the
template is used in synergy with the information carried by the
stream events. The template is instantiated by expanding any
contained macros, evaluating any contained functions and direc-
tives, and assigning concrete values to its parameters. Thus, the
template instantiation is realized in the following order. Macros
are expanded first, in order to produce all the necessary expres-
sions. Then, before executing any loop, we have to evaluate its
boundaries. For doing the latter, we have first to instantiate the
variables appearing in loop boundaries, and setting the counters
(often by evaluating a function that defines them). Next, all the
loops should be expanded for producing the appropriate lists of
variables, and afterwards, the rest variables are instantiated.

For our running example, the instantiated mapping template is an
instance of the Business_Data_Change_to_End_Step mapping
template, where all parameters have assigned values. The business
entity type parameter ($BE_T) obtains its value from the InObj-
Type attribute of the declarative mapping. The attribute name
parameter of the business entity identifier ($BE_I) gets its value-
from the correlation logic. Finally, the task type parameter ($TT)
obtains its value from the OutObj attribute of the declarative
mapping. Let’s say that the incoming event is an update of a Pur-
chaseOrderData instance to set its PO_status to ‘accept’ and that
this event marks the end of the NotifyAcceptance task in the
processing of an order. Then, it should be mapped to an update of
this task for the corresponding Order process instance. The values
of the parameters would be as follows: $BE_T = PurchaseOrder-
Data, $BE_ID = 123, $TT = NotifyAcceptance.

3.3 Physical Mapping
After generating the logical instance of a mapping, the actual
execution of the mapping is performed. This step involves the
translation of the logical mapping to a specific implementation
called physical mapping, which is responsible for the actual popu-
lation of the process warehouse.

619

Figure 7. Physical mapping generation

A generic overview of this phase is illustrated in Figure 7. In
brief, the logical mappings generated in the previous step are
translated to their physical implementations. For doing this, it is
essential to choose a language, such as SQL, PL/SQL, C++, Java
or any other procedural or scripting language. An alternative
would be to import the ETL scenario composed by the logical
templates into an ETL engine, and execute it there. For example,
there exist both commercial (e.g., Informatica’s Powercenter) and
open source ETL tools (e.g., Pentaho’s Kettle or PDI) that support
the representation of an ETL scenario as an XML file, which can
be imported in or exported from the repository of the ETL tool. In
general, as one can easily understand, the physical mapping is
dependent on the choice of technology used to implement the
population of the process warehouse.

However, in our solution we consider a fairly abstract method that
is agnostic to specific ETL implementations. This is accomplished
by considering a repository that stores different implementation
methods based on different languages for each mapping template.

A high level overview of the procedure is as follows: (a) an im-
plementation method is chosen (i.e., an executable method or a
physical language); (b) each logical mapping is translated into the
selected language, by using a library of suitable physical imple-
mentations for each operator; (c) the physical mapping (i.e., ex-
ecutable script) is created; (d) the physical mapping is executed.

During the latter step, a crucial issue in terms of performance is
the loading of the data warehouse. Traditional ETL processes load
the data in a batch mode. However, in order to cope with the rate
of the stream events, we need to perform the loading in a pipelin-
ing fashion. For doing this, we customized a previously proposed
method called RiTE, which uses a memory-based catalyst for
providing fast temporal storage and concurrency control [20].
RiTE allows INSERT-like loading in bulk load speeds and im-
proves the real-time loading in a data warehouse.

An obvious issue that characterizes this process is its optimiza-
tion. There are several cases, where different physical methods
expressed in the same implementation language, may exist for
expressing the same logical operation. For example considering
that we have to execute a logical join operator, this can be trans-
lated to a number of different implementation choices, e.g.,
merge-join, hash-join, nested-loops, and so on. The final choice
among them comprises an additional optimization challenge.
Some preliminary steps have already been done in this context
[21], but still, this topic is open to further exploration.

4. SYSTEM DESCRIPTION
The generic architecture of our proof of concept is illustrated in
Figure 8. Business processes are modeled using HP Business
Process Insight (BPI), ver. 2.20 [1]. BPI is used as a simple
process modeler tool to extend or define new process models,
such as service desk incidents, help-desk service calls, change
processes, problem calls, work orders, and so on. It can provide
real-time process visibility and process-based threshold and alert-
ing, including e-mail alerts. The stream events are captured by
deploying a probing mechanism that monitors source systems for
events of interest. When an event occurs, it is propagated to the
ETL process as described in Section 3.1. For probing, we used a
third party tool, the Openadaptor, ver. 3.4.2 [12]. This is a Java
based toolkit, suitable for rapid business system integration with
little or no custom programming. It provides several connectors
(e.g., JDBC, IBM MQ Series, TCP/IP Sockets, HTTP and Files)
and scriptable components for data filtering, transformation, and
validation.

The stream events are represented as XML snippets and are prop-
agated to the next phase using appropriate SQL statements. For
the creation and execution of the ETL scenario we used Pentaho
Data Integration (PDI), a.k.a. Kettle, ver 3.1 [9]. Kettle is an open
source ETL tool that supports import and export of ETL designs
as XML files. We exploited that feature for creating, modifying,
and instantiating our own template ETL scenarios or equivalently,
the respective XML files. (Note, that this feature is supported by a
plethora of commercial ETL tools, and thus, with an appropriate
parsing method our approach can be applied in those tools as
well.) The ETL tool provides the execution engine and the physi
cal implementation for the operators needed in our mapping tem-
plates. As an example, consider the simplified case of the differ-
ence operation. Figure 9(a) depicts the instantiated template,
which is represented in XML, while Figure 9(b) depicts a part of
the Java code that implements this transformation (essentially, the
latter corresponds to the physical operator mentioned in Figure 7).
As one can understand, the abstract (logical) representation of
Figure 9(a) can be applied to other implementation methods too.

For the creation of the mapping templates and the implementation
of the template mechanism, we used Apache’s Velocity template
engine, ver. 1.5 [23]. Velocity provides an elegant mechanism for
generating code. It supports macros, a.k.a. velocimacros, that
cordially matches with our environment.

Figure 8. System architecture

620

<step>
<name>mDiff</name>
<type>MrgRows</type>
<keys>
<key>PID</key>
<key>PNAME</key>
</keys>
<values>
<value>PID</value>
<value>PNAME</value>
</values>
<flag_field>Type</flag_field>
<reference>Log</reference>
<compare>SourceStream</compare>

</step>
(a) (b)

Table 2. Example measures for a process DW

measures avg cnt min max
Processes
No Processes x x
No Active x x
No Terminated x x
Duration x x x
Duration to Cmpl x x x
Steps
No Steps x x x x
No Active x x x x
No Terminated x x x x
Duration x x x
Duration to Cmpl x x x

Figure 9. Example (a) logical and (b) physical representation for a template operation

The metadata needed for the whole process are stored in a com-
mercial DBMS. We use the DBMS for storing the repository that
contains the mapping templates, the declarative mappings, and the
PL/SQL code that implements the correlation logic. The process
data warehouse is located there as well.

For monitoring, analyzing, and visualizing the contents of the
process data warehouse, we have relied on Pentaho’s Mondrian
[11], which is an open source OLAP server. In Mondrian, the data
warehouse schema is described in an XML file, containing infor-
mation about the cubes, (shared) dimensions, hierarchies, meas-
ures, and so on. A nice feature is that it supports virtual cubes (or
multi-cubes) that can be used for exploring different cubes at the
same time [16]. Such feature works seamlessly in our environ-
ment for navigating through process progression data and busi-
ness data at the same time. Mondrian runs on top of Apache Tom-
cat and uses JSP and JPivot for rendering the warehouse informa-
tion into tables and graphs in HTML pages.

Having OLAP functionality on top of the process warehouse pro-
vides us with interactive capabilities to navigate through the
schema and perform operations like roll-up or drill down into
individual process instances (see for example Figure 10), to have
timeline view of individual process instances (see Figure 11), and
to monitor the process progression using a series of charts and

Figure 10. Drill-down into a process instance

Figure 11. Top-10 processes w.r.t. their duration

graphs. As a data warehouse model, we used the full-blown ver-
sion of the one depicted in Figure 3. Table 2 demonstrates exam-
ple measures used for studying the process progression.

5. MODELING ETL WORKFLOWS AS
BUSINESS PROCESSES
So far, we have shown how to model and populate a process data
warehouse for monitoring and analyzing business processes.
Here, we make an interesting observation: ETL flows can them-
selves be treated as a type of process. This has several benefits.

First, we can create a high-level, abstract view of an ETL flow
and map it to the detailed ETL implementation. Current ETL tools
provide no abstract view of ETL flows. Instead, they provide a
physical view of the processes to load data warehouse objects
based on changes to OLTP databases. These views specify ETL
in terms of IT events and actions. The business view is absent.
This is unfortunate since business managers and analysts need to
understand, monitor and tune ETL flows to improve operational
effectiveness. Treating ETL flows as processes enables us to use
process modeling tools to create an abstract high-level view of the
ETL flow. This view hides low-level IT events and consequently
is more comprehensible to business analysts and managers and
facilitates the specification of SLAs and performance metrics.

Second, we can monitor and report on the ETL flow in terms of
this abstract view. And we can load a generic process warehouse
with data for the ETL and use it for ETL process analysis. In con-
trast, the monitoring and reporting facilities of current ETL tools

621

provide only a low-level view intended for ETL developers, but
not suitable for business analysts.

In the rest, we sketch how to use the techniques we have de-
scribed so far to model and analyze ETL flows.

Each ETL flow can be considered a separate business process. An
operator in an ETL flow corresponds to a task (step) in a business
process. A set of ETL flows with interdependencies (e.g., flow A
must finish before flow B starts) could also be modeled as a high-
er-level business process workflow.

We propose the use of an existing tool for business process mod-
eling, such as HP BPI, to specify a high-level view of an ETL
flow. Then, we can use correlation techniques as described earlier
to link the abstract view to events in the ETL execution. We can
trace the execution of an ETL flow by monitoring log and table
activity. As with an arbitrary business process, these events are
used to update “business data” for the ETL flow. The business
data is then used to update the ETL process progression fact
tables in the warehouse. The logical and physical mappings are
generated from templates that are derived using declarative map-
pings and correlation logic. By doing this, we obtain a real-time,
business view of ETL processes that can be leveraged for moni-
toring, analysis and reporting.

In order to track the ETL flow, we augment the ETL operators to
emit step events to a separate log. The basic step events include
operator start, operator end, operator error, operator checkpoint,
and operator statistics but there may be operator-specific events
as well. The step events can then be extracted and processed to
update the generic process warehouse just as any other business
process. An elegant means for augmenting the ETL operators is
depicted in Figure 12. Although there is no standard representa-
tion of ETL flows, in general, both the research and the commer-
cial approaches use the same logical representation for ETL oper-
ators: each transformation has one or more input and output
schemata, a mapping among them, along with the operational
semantics that describe its functionality. Our approach is to add
one more level of abstraction, in which we consider one addition-
al schema, called the event schema. The attributes of this schema
represent the events previously mentioned.

Note that a major difference between conventional ETL and busi-
ness processes is that ETL is batch-oriented. In ETL, pipeline
parallelism is typically used to improve performance by streaming
data among operators. Thus, many operators are active concur-
rently. Business processes are event-oriented. Generally only one
or a few actions are active concurrently and any single action is
active only for processing a single event. Consequently, the active
(or idle) time of an activity in a business process has a different
meaning than the active time of an ETL operator. Similarly, the
processing rate of an operator might be of interest in ETL but of
less interest for a business process.

We note that as enterprises move toward operational business
intelligence (BI), there will be reduced latency between OLTP
events and warehouse loads. Consequently, we expect the batch
size for ETL will shrink and, in the limit, perhaps be a single
tuple. In other words, a stream-based approach using a workflow
paradigm may be more appropriate for operational BI rather than
today's conventional BI approach uses periodic batch loads.

Figure 12. An additional level of abstraction for ETL

Therefore, in the future, the batch-oriented vs. event-oriented
difference may not be relevant.

Example. Consider the ETL flow that loads a purchase order to a
warehouse order fact table. It might comprise three dependent
ETL flows: (a) Extract: OLTP purchase order (PO) extract
landing table; (b) Transform: extract landing table order land-
ing table; (c) Load: order landing table load order fact table.

The Extract and Load flows are relatively simple and comprise a
few ETL operators. However, the Transform flow would presum-
ably be more complicated and include operators for validation
checks, some surrogate key generation and retrieval, perhaps
some banding and/or summarization. However, the business view
could be as simple as Extract, Transform, Load. Alternatively,
depending on business need, the Transform ETL flow could be
viewed at a more detailed level, e.g., validation key lookup
PO key generation. Of course, these steps could in turn be viewed
at any even more detailed level if necessary, e.g., key lookup
retrieves surrogate keys for a number of different dimensional
tables.

Once the desired business view is established, correlation logic
and declarative mappings can be used to convert the operator
events into process progression data using mappings generated
from the transformation language. The generic process warehouse
can then be loaded and analysis and reporting can be performed
on the ETL for the order fact table.

6. RELATED WORK
The population of the data warehouses, so called the back stage of
the data warehouse, has been studied in several research works
during the last decade. The extract-transform-load (ETL)
processes, which are responsible for this task, have two main
challenges: the determination of their design and the optimization
of their execution. For the first, several modeling solutions have
been proposed at both the conceptual and the logical level [e.g.,
10]. On the other hand, the existing commercial ETL tools only
support the implementation of ETL flows given an existing de-
sign. Regarding the optimization of ETL processes, despite its
importance, less efforts have been proposed at both the logical
[e.g., 18] and the physical [e.g., 21] level. More recently, several
works have dealt with the novel trend of the (near) real-time data
warehouse population, either by studying generic architectural
issues [e.g., 22] or by proposing specialized operations for such
cases [e.g., 13, 14, 20].

622

However, as far as we are aware, the issue of warehousing
process data has not been studied earlier. In addition, the idea of
leveraging business process models for representing ETL activi-
ties and of populating a data warehouse with the metadata of their
execution for analyzing their progression is novel as well. Any
concepts stemming from the research on optimizing ETL
processes (either traditional or real-time) are of great interest and
can fit seamlessly in our approach.

There are some efforts sharing similar motives and techniques in
the area of workflow analysis systems, e.g., Filenet [6]. Still, such
systems provide a data warehouse model that depends on the
process meta-model, as it is built into the workflow engine. In
addition, there is no specific capability for collecting and aggre-
gating source data that are not coming from the workflow engine.
Finally, such systems do not support process abstraction, and it is
not publicly known how they realize the ETL process.

Many research efforts have tackled the issue of automating the
mapping generation [e.g., 7, 15]. Although, some of the proposed
ideas can be considered in our approach as well, our work differs
since it does not produce logical mappings according to user spe-
cified correspondences. Instead, it captures correspondences that
are part of the execution semantics of abstract process progression
by factoring out commonalities derived from the predefined struc-
ture and semantics of the process warehouse model and of the
types of mappings specific to the process warehousing domain.
We are not aware of any work done in this direction.

7. CONCLUSIONS
In this paper, we have proposed a method for the automatic popu-
lation of a process data warehouse. We have demonstrated how
the whole approach can be realized in a near real-time fashion.
We have presented an extensible and generic template mechanism
that drives the ETL of stream events, using two-levels of map-
pings that are applied in two-phases. We have presented a proof-
of-concept that validates our approach. The feedback we have got
from customers signifies that the process warehouse and the anal-
ysis of process progression are of great interest, especially in
business process outsourcing (BPO) environments. In addition,
we have taken a further step, and shown that the same approach
can be used for warehousing ETL execution data, which is useful
for (a) representing ETL processes at the business level, (b) moni-
toring ETL processes, and (c) analyzing results and statistics re-
garding the execution of ETL processes. Finally, although we
describe our approach in the context of process data warehousing,
we believe that it can be generalized to generic real-time data
warehousing scenarios in which incoming streams are captured,
transformed, and integrated into a data warehouse.

For the future, we consider the following challenges. First, tuning
the real-time mechanism is a topic for future work. Although the
MeshJoin operator can handle 20k tuples per second, which is
sufficient for BPO environments, we will explore how to scale
these rates. We plan to incorporate our method into the HP Busi-
ness Cockpit [4], a platform for intelligence business processes
analysis and optimization. Finally, we will work further on the
promising idea of representing ETL flows as business processes.

8. REFERENCES
1. BPI. HP Business Process Insight software. Available at:

http://www.managementsoftware.hp.com/products/bpi, 2008.
2. F. Casati, M. Castellanos, U. Dayal, M.C. Shan. A Metric Definition,

Computation & Reporting Model for Business Operations Analysis. In
EDBT, 2006.

3. F. Casati, M. Castellanos, U. Dayal, N. Salazar. A Generic solution for
Warehousing Business Process Data. In VLDB, pp. 1128-1137, 2007.

4. M. Castellanos, F. Casati, M.-C. Shan, U. Dayal. iBOM: A Platform for
Intelligent Business Operation Management. In ICDE, pp. 1084-1095,

2005.
5. J.-P. Dittrich, B. Seeger, D. S. Taylor, P. Widmayer: Progressive

Merge Join: A Generic and Non-blocking Sort-based Join Algorithm.
In VLDB, pp. 299-310, 2002.

6. Filenet. IBM FileNet Business Activity Monitor. Available at:
http://www-01.ibm.com/software/data/content-management/filenet-
business-activity-monitor/

7. L. M. Haas, M. A. Hernández, H. Ho, L. Popa, M. Roth. Clio Grows
up: From Research Prototype to Industrial Tool. In SIGMOD, pp. 805-
810, 2005.

8. W. Hong, M. Stonebraker. Optimization of Parallel Query Execution
Plans in XPRS. In Distributed and Parallel Databases 1(1), pp. 9-32, 1993.

9. Kettle. Pentaho Data Integration. Available at:
http://kettle.pentaho.org/, 2008.

10. R. Kimball, et al. The Data Warehouse Lifecycle Toolkit. John Wiley
& Sons, 1998.

11. Mondrian. Pentaho’s Mondrian Project. Available at:
http://mondrian.pentaho.org/, 2008.

12. Openadaptor. Available at: https://www.openadaptor.org/, 2008.
13. N. Polyzotis, S. Skiadopoulos, P. Vassiliadis, A. Simitsis, N.-E. Frant-

zell. Supporting Streaming Updates in an Active Data Warehouse. In
ICDE, pp. 476-485, 2007.

14. N. Polyzotis, S. Skiadopoulos, P. Vassiliadis, A. Simitsis, N.-E. Frant-
zell. Meshing Streaming Updates with Persistent Data in an Active
Data Warehouse. In IEEE TKDE 20(7), pp. 976-991, 2008.

15. E. Rahm, P. A. Bernstein. A Survey of Approaches to Automatic
Schema Matching. In VLDB J. 10(4), pp. 334-350, 2001.

16. A. Simitsis, A. Baid, Y. Sismanis, B. Reinwald. Multidimensional
Content Exploration. In PVLDB 1(1), pp. 660-671, 2008.

17. A. Simitsis, D. Skoutas, M. Castellanos. Natural language reporting
for ETL processes. In DOLAP, pp. 65-72, 2008.

18. A. Simitsis, P. Vassiliadis, T. K. Sellis. State-Space Optimization of
ETL Workflows. In IEEE TKDE 17(10), pp. 1404-1419, 2005.

19. Y. Tao, M. L. Yiu, D. Papadias, M. Hadjieleftheriou, N. Mamoulis:
RPJ: Producing Fast Join Results on Streams through Rate-based Op-
timization. In SIGMOD, pp. 371-382, 2005.

20. C. Thomsen, T. B. Pedersen, W. Lehner. RiTE: Providing On-Demand
Data for Right-Time Data Warehousing. In ICDE, pp. 456-465, 2008.

21. V. Tziovara, P. Vassiliadis, A. Simitsis. Deciding the Physical Imple-
mentation of ETL Workflows. In DOLAP, pp. 49-56, 2007.

22. P. Vassiliadis, A. Simitsis. Near Real Time ETL. In Springer journal
Annals of Information Systems, Volume 3, Special issue on "New
Trends in Data Warehousing and Data Analysis", 2008.

23. Velocity. The Apache Velocity Project. Available at:
http://velocity.apache.org/, 2008.

24. T. Urhan, M. J. Franklin: XJoin: A Reactively-Scheduled Pipelined
Join Operator. In IEEE Data Eng. Bull. 23(2), pp. 27-33, 2000.

25. WS-BPEL Version 2.0, Oasis.. Available at: http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.pdf

623

