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ABSTRACT 
Business processes drive the operations of an enterprise. In the 
past, the focus was primarily on business process design, model-
ing, and automation. Recently, enterprises have realized that they 
can benefit tremendously from analyzing the behavior of their 
business processes with the objective of optimizing or improving 
them. In our research, we address the problem of warehousing 
business process execution data so that we can analyze their be-
havior using the analytic and reporting tools that are available in 
data warehouse environments. We build upon our previous work 
that described the design and implementation of a generic process 
data warehouse for use with any business processes. In this paper, 
we show how to automate the population of the generic process 
warehouse by tracking business events from an application envi-
ronment. Typically, the source data consists of event streams that 
indicate changes in the business process state (i.e., progression of 
the process). The target schema is designed to allow querying of 
task and process execution data. The core of our approach for 
processing progression data relies on the construction of generic 
templates that specify the semantics of the event streams extrac-
tion and the subsequent transformations that translate the underly-
ing IT events into business data changes. Using this extensible 
template mechanism, we show how to automate the construction 
of mappings to populate the generic process warehouse using 
two-levels of mappings that are applied in two-phases. Interes-
tingly, our approach of using ETL technology for warehousing 
process data can be seen the other way around. An arbitrary ETL 
process can be modeled as a business process. Hence, we describe 
the benefit of modeling ETL as a business process and illustrate 
how to use our approach to warehouse ETL execution data, and to 
monitor and analyze the progress of ETL processes. Finally, we 
discuss implementation issues.  

1. INTRODUCTION 
Over the years enterprises have invested in technology to improve 
the business processes underlying their operations. In the nineties, 
the focus was on business process automation, whereas recently 
the focus has shifted towards business process monitoring, report-
ing and optimization via analytics. Business processes typically 
involve a large number of people and systems (applications, data-

base systems, web servers, message brokers, etc.) Events generat-
ed by these systems signal the start or end of steps of the process, 
and hence mark the progression of the process execution. By cap-
turing these events, it is possible to load a data warehouse with 
process progression data derived from the events (see Figure 1). 
Once loaded, progression data can be queried to obtain process 
execution information including measures on the quality, effi-
ciency, and timeliness of process execution, as well as to under-
stand areas for improvements.    

A solution for process warehousing addresses two problems: the 
design of the process data warehouse, and extracting process in-
stance data and loading the process warehouse.  In our previous 
work, we tackled the first problem and described the design of a 
generic process data warehouse that could be used for any busi-
ness process [3]. In this paper, we address the second problem by 
automating the design and implementation of Extract-Transform-
Load (ETL) scenarios to populate the process warehouse. 

In general, ETL design for data warehouses is a time-consuming, 
non-trivial task performed manually by ETL experts who have a 
good understanding of the semantics of the source and target 
schemas. Efforts to automate this task have had limited success, 
since it is difficult to come up with a generic method that works 
for all source and target schemas. However, in the process ware-
house context the target schema can be fixed, since the process 
data warehouse model described in [3] is generic, and the source 
data consists of streams of events that cause changes in the 
process state. Consequently, the automation of the ETL design is 
feasible in the process warehouse context, and in this work, we 
demonstrate how we can achieve that. 

Three notions are central to our approach: data independence, 
genericity and abstraction. Data independence shields the process 
progression from the infrastructure so that changes in the infra-
structure do not impact the mappings to process progression data. 
This is achieved through a level of indirection given by a two-
phase mapping mechanism. Abstraction enables the user to have a 
high level view of the process and specify high level mappings 
without having to know the details of the process or the imple-
mentation details. Genericity is obtained by factoring out the part 
that is common to all processes while leaving room for the part 
that is specific to a particular process. 

The core of our approach relies on the construction of generic 
templates that specify the semantics of the extraction from event 
streams and the required two-phase transformations from the un-
derlying IT events to business data changes to process progression 
data. Our mechanism includes (a) the extraction of stream events 
in a near real time fashion, (b) a two-phase, two-level mapping 
procedure that starts with high level (declarative) mappings and 
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Figure 1. Business process warehousing context 

ends with appropriate executable (prescriptive) ones, and (c) the 
loading of the mapped data into the process warehouse. The 
whole procedure is realized in a streaming fashion, which fits 
with the real-time nature of the business processes environment.  

Contributions. Our main contributions are as follows:  

- We propose a generic approach, based on templates and a 
two-phase, two-level mapping procedure, for automating the 
design and implementation of ETL for business processes. 

- We present a novel mechanism for extracting business events 
from an application environment in near real-time. 

- We describe a template language that includes useful con-
structs for defining appropriate templates.   

- We discuss how our approach can be used for monitoring the 
ETL processes themselves by modeling them as a business 
processes. 

- We present a prototype implementation of our approach. 

Outline. In Section 2, we give some notions relevant to business 
process warehousing and describe our two-phase-transformation, 
two-level-mapping framework. In Section 3, we describe our 
template-based approach for generating mappings, as well as a 
language to define transformation templates. In Section 4, we 
present our prototype implementation. We then adapt these con-
cepts to arbitrary ETL applications. In Section 5, we show how 
ETL itself can be modeled as a process and use our approach to 
warehouse ETL execution data. Finally, we discuss related efforts 
(Section 6) and conclude with future directions (Section 7).  

2. BUSINESS PROCESS WAREHOUSING 
In this section, we present the main concepts related to business 
process warehousing, the existing challenges, and the approach 
we follow for populating a process data warehouse. 

2.1 Challenges 
There are three main challenges in business process warehousing: 
genericity, abstraction, and data independence. 

 
Figure 2. Supply chain process 

Genericity. Developing ad hoc, process-specific solutions for 
warehousing process data is not a sustainable model. Thus, one of 
the main challenges is that of developing a general and reusable 
solution for process data warehousing, applicable to most or all 
the processes in an enterprise. Furthermore, our approach can be 
extended to other applications that have similar characteristics.  

Abstraction. A typical process executed in the underlying IT sys-
tems is very detailed and consists of hundreds of steps, including 
manual operations (e.g., scanning invoices), database transactions, 
and application invocations. However, having visibility (report-
ing, analytics, etc.) at this level of detail is confusing for analysts 
who have a much higher level abstract view of the process. The 
common wisdom is that business analysts and managers perceive 
a process as being composed of approximately 5 to 7 steps. Ser-
vice level agreements (SLA’s) and key performance indicators 
(KPI’s) are also defined on abstracted views of a process. An 
appropriate example is presented in Section 2.2. 

Data independence. The infrastructure underlying the process 
execution is subject to dynamic changes and it is important to 
shield the process warehouse from those changes.  For example, 
the infrastructure that handles the notification of acceptance of an 
order could evolve from database technology where a purchase 
order record is updated, to a more proactive service-oriented 
technology where a message is sent to a web service that handles 
the notification. This change should not affect the process ware-
house schema or the mappings to its tables. The challenge is in 
developing a solution that provides this kind of independence.  

2.2 A Business Process Example 
Figure 2 shows an abstracted model of a simple supply chain 
process. (Note that we could define the process in a standard 
business process language such as BPEL [25]; however, this is 
irrelevant to our approach, indeed we do not require a BPEL or 
other execution engine to implement the process.) Each node 
represents a task (also called step or activity) of the supply chain 
process. Clearly, this is not the actual implemented version of the 
process since each step in the figure actually corresponds to sev-
eral finer granularity steps. For example, the step CheckGoodsA-
vailabilityWithVendor could correspond to the following sequence 
of steps: FillRequestForm, SubmitRequestForm, ReceiveVendor-
Response. 

IT events occur when a task starts or ends and cause transitions 
among tasks. Therefore, as events happen, process execution 
progresses. For example, at the moment a particular web page is 
accessed, the task Receive_and_check_PO_request is started, 
when the user leaves the page, the task ends. The occurrence of 
these two events (web page visit and web page exit) marks the 
execution of this task. As tasks are executed, the process 
progresses. Typically, events are recorded in logs which can then 
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be queried and mined to monitor and analyze the process flow. 
However, when near real-time is desired the events are captured 
in a streaming fashion directly from the event sources. These 
events are extracted by our ETL process and transformed into 
process and task execution data to reflect process progression. 

2.3 Process Data Warehouse Model 
The process data warehouse model was designed to be generic to 
support the analysis of arbitrary business processes, and to sup-
port the computation of a large variety of process metrics [3]. 

Figure 3 shows the most significant elements of the process data 
warehouse model. It consists of two main logical parts that 
represent the business data and the process progression data. In 
this paper, we focus on the latter part which includes all the tables 
in Figure 3 except the business tables Purchase_Order_Data and 
Vendor.  The main fact table is TaskExecution, which captures the 
process progression in terms of the executed tasks (e.g., Receive_ 
and_check_PO_Request start), and ProcessInstance which is a 
fact table that records instances of a process (e.g., each processed 
order).These tables are generic in the sense that they apply to any 
business process. On the other hand, the part of the data ware-
house responsible for the business data includes process-specific 
tables to track business data relevant for each process, e.g Pur-
chase_Order_Data is specific to supply chain processes. Due to 
space limitations, we refer the interested reader to [3] for details. 

2.4 Population of a Process Warehouse 
In this section, we present an overview of our solution to the 
problem of warehousing abstracted process representations, which 
relies on two main mechanisms. 
First, a modeling tool, like HP Business Process Insight (BPI) [1], 
is needed for letting the user describe an abstracted (high level) 
view of the process as well as how its progression maps to the 
underlying IT events. This procedure involves the following 
tasks: 

− Describing the process flow. For example, the process model 
in Figure 2 was defined with the BPI modeler. 

− Specifying high level (declarative) mappings between IT 
events and business data. For instance, mapping the event 
given by the submission of a form on a given URL to the 
creation of a new purchase order record. 

− Specifying high level (declarative) mappings between 
changes in business data and the start and completion of each 
process task. For example, a change to the value “accepted” 
in the PO_status value of a Purchase_Order_Data instance 
is associated with the end of the NotifyAcceptance task. 

− Defining the correlation logic to associate (a) events with the 
correct business data instance and (b) a change in a business 
data instance to the appropriate business process instance. 
For the previous example, the correlation logic would indi-
cate that the identifier (PO_number attribute) of the purchase 
order instance should be the same as the process instance 
identifier (top_work_object_key attribute) of the NotifyAc-
ceptance task instance in the Task_Execution fact table. 

− Associating process tasks with human or automated re-
sources. For example, associating a specific web server with 
the task Receive_and_check_PO_Request. 

 
Figure 3. Process warehouse model [3] 

The ETL mechanism for populating the process data warehouse 
with process execution data. is abstractly depicted in Figure 4. It 
relies on the abstract process definition and the events occurring 
at the different systems. A probing mechanism (e.g., OpenAdap-
tor [12]) is needed for capturing the events from different source 
systems (e.g., a web or an application server). The next step is to 
gather the events (extraction stage) and then, to perform the ap-
propriate mappings (transformation stage). For the first, we re-
quire a means to gather the events in a streaming fashion. Hence, 
we provide an extraction component that has the capability to deal 
with streams of events in near real-time.  
For the next stage (i.e., transformation), the challenge is to find 
means for representing the high level specifications that only 
define what are the mappings, as low level ones that describe how 
to execute the mappings (i.e., how to interpret them at run-time to 
update business and process execution data in the warehouse). 
Our  approach  uses  a two-level  mapping  process that distin-
guishes a logical and a physical level. For the first level, of par-
ticular importance is the template mechanism that automates the 
generation of logical mappings with specific types of events, 
business data and process data. In the second level a translator 
mechanism is used to automatically generate physical (executa-
ble) mappings from the logical ones previously generated. 
Logical Mapping. The logical mappings are automatically gener-
ated from the high level (declarative) mappings and the correla-
tion logic defined by the user at modeling time and accessible 
from the modeling tool repository. We use a template-based ap-
proach, described in Section 3.2, where the operational semantics 
of the mappings, given by high level transformations, are embed-
ded in mapping templates. When a record enters this phase, the 
respective mapping template is instantiated and the resulting logi-
cal mapping becomes readily available to feed the next phase. 
Logical mappings, although already prescriptive, are not executa-
ble. The idea is to make this mapping level agnostic to any specif-
ic ETL implementation tool or language. 
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Figure 4. Framework for warehousing business processes 

Physical Mapping. The physical mappings are expressed in a 
specific ETL implementation language and are automatically 
generated from the logical ones (specifically, from the instantia-
tedmapping templates which comprise the output of the previous 
level) using translators that combine the logical templates with 
appropriate physical operators of specific ETL engines (e.g., In-
formatica Power Center, Oracle Warehouse Builder) or imple-
mentation language (e.g., PL-SQL, C) constructs. The process is 
described in detail in Section 3.3. 
In addition to being a two-level mapping process as depicted in 
Figure 4, our approach for automating the design and implementa-
tion of the ETL that populates the business process warehouse is 
also a two-phase transformation process. This mechanism ad-
dresses the data independence requirement fulfilled by the intro-
duction of an isolation layer formed by business data. By map-
ping IT events to changes on business data (first phase) we 
achieve stability in the process warehouse schema and in the 
mappings from this layer to the process progression tables in the 
warehouse (second phase). For example, an acceptance notifica-
tion event is mapped to an update on the PO_status attribute of a 
Purchase_ Order_Data record rather than to process execution 
data. It is then that the business data change is mapped to the 
process progression tables. For the same example, the update on 
the data record is now mapped to the end of the Noti-
fy_acceptance task. Hence, the need for a two-phased mapping 
procedure that requires the specification of two types of declara-
tive mappings as part of the abstracted process model: (a) map-
pings from IT events data to business data changes, and (b) map-
pings from the latter to process progression data. Our approach 
deals with both kinds of mappings in a uniform way. First, logical 
mappings are generated from thedeclarative ones by using tem-
plates. Second, physical mappings are produced from the logical 
ones by specific translators. Note that the two-level mapping 
process is orthogonal to the two-phase transformation one: both 
levels of mappings (logical and physical) apply to each transfor-
mation phase (from events to business data changes and from the 
latter to process progression).  

The approach presented in this paper is applicable to data ware-
housing in general. The idea of using a two phase, two level map-
ping process, mapping templates and a near real-time extraction 
mechanism can be generalized to other data warehouse applica-
tions. As long as appropriate templates capturing the operational 
semantics of user specified high level mappings can be pre-
defined (which in turn requires knowledge about the semantics of 
the source and target data warehouse schemas), the whole machi-
nery of this approach can be applied to automatically generate the 
design and implementation of ETL processes. In addition, we 
present a language powerful enough to define templates of any 
level of complexity.   

3. ETL APPROACH 
In this section, we describe the near real-time extraction of stream 
events, and we elaborate on how the template and translation 
mechanisms cooperate to produce the corresponding mappings. 

3.1 Data Extraction 
For business process data warehouses, the source data consists of 
event streams that cause changes in the process state. We describe 
two approaches for extracting event data from the sources: a batch 
oriented approach and a near real-time approach. 

3.1.1 Batch-oriented approach 
Traditionally, ETL processes work in batch mode. Periodically, 
usually during the night, they collect data from different hetero-
geneous sources and after massaging –e.g., cleaning and homoge-
nizing– those data, they load them to a target data warehouse. 
During the extraction, the source data are extracted from the 
sources and are propagated to a data staging area (DSA) [10]. The 
propagation of data usually involves several operations like file 
transfer, compression, encryption, and so on. Whereas all these 
operations are performed in a pipelining fashion, when the data 
arrive into the staging area, they are stored into landing tables. 
Figure 5(a) depicts a typical extraction scenario.  

The data, after their landing in Lnew are compared against a snap-
shot of the previous landing Lold, to discriminate the newly in-
serted, deleted, and updated tuples. This comparison is performed 
through a difference operator, Diff, which checks for equality 
only on a certain subset of the tuples’ attributes (e.g., the business 
keys). Let A be the set of attributes and B a subset of those, con-
sidered for the equality check. For finding the newly inserted 
tuples, we use the expression: 

ΔB(Lnew,Lold) = {x∈Lnew | ¬ y∈Lold: x[b1]=y[b1]∧...∧x[bn]=y[bn]} 

where b1,…,bn∈B. For finding an updated tuple, we consider that 
for each such tuple, there already exists a tuple in Lold having the 
same values for B with the respective tuple in Lnew and at the 
same time, at least one attribute belonging to A\B has a changed 
value. (If A=B then we can use the classical relational difference 
operator.) By reversing the use of the difference operator, we 
obtain the deleted tuples. 

After this step, appropriate timestamps are assigned to the data 
before their propagation to the upcoming transformation phase. 
(Note that another almost equivalent technique, which we won’t 
discuss further, is based on the data been time-stamped at the 
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Figure 5. Extraction phase: (a) batch mode and (b) near real-time mode 

source sites.) The last step of this phase is to replace the old snap-
shot Lold with the new one Lnew. Several methods can be used for 
that. One method deletes the old snapshot (first a logical deletion 
is performed so as not to affect the system’s workload, and then at 
a later idle point, the physical deletion is done) and simply renam-
ing the newer to Lold.  

The use of landing tables serves a twofold purpose. First, they can 
be considered as a back-up solution if anything goes wrong. In 
addition, they serve as a staging area (along with several other 
temporary and intermediate tables).   

3.1.2 Near real-time approach 
The disadvantage of the batch approach is that the data warehouse 
is not consistently up-to-date. This may be a problem in a busi-
ness process environment – where events happen at all times dur-
ing the day – since information crucial for analytic purposes may 
be unavailable. The near real-time approach avoids this problem 
by minimizing the latency of the ETL process, and thus increas-
ing the freshness of the information available for analysis [22]. 

The near real-time approach avoids the use of blocking operations 
(or at least, minimizes their use as much as possible). Clearly, for 
events that are available only at the time they occur, since all data 
are new, there is no need to identify newly inserted, updated, and 
deleted records. However, for events that persist for some time, 
including manipulation events on business data (e.g., insertion of 
a new purchase order record), the use of a landing becomes a 
blocking operation. Hence, we describe how we can avoid it, 
without losing the benefits previously mentioned.   

Let’s consider that as the event data enter the staging area, they 
are processed in a streaming fashion. In this phase, the main 
blocking operation is the identification of the newly inserted, 
updated, and deleted records. In other words, we need to make the 
difference operator work as a pipeline operator. The core functio-
nality of this operator is a join between the incoming data and the 
snapshot of the previous state. In previous work, we proposed a 
specialized join algorithm termed MeshJoin, which efficiently 
joins a stream of data with a static disk-based relation [13].  

In a nutshell, MeshJoin works as follows. The two inputs are ac-
cessed continuously and are meshed together for generating the 
results of the join. Specifically, the algorithm performs a cyclic 
scan of the relation and joins its tuples with a sliding window over 
the stream. The main idea is that a stream tuple enters the window 
when it arrives and is expired from the window after it has been 
probed with every tuple in the relation (and hence all of its results 

have been computed). In doing so, MeshJoin compensates for the 
difference in the access cost of the two join inputs by relying 
entirely on fast sequential scans of the static relation, and sharing 
the I/O cost of accessing the relation across multiple tuples of the 
streaming data. MeshJoin fits perfectly in our case, since it makes 
no assumption of any order in either the stream or the relation; no 
indices are required; limited memory is used to allow multiple 
operations to operate simultaneously; the join condition can be 
arbitrary (e.g., equality, similarity, range); the join relationship is 
general (i.e., many-to-many, one-to-many, or many-to-one); and 
the result is exact. In terms of efficiency, the algorithm can 
process approximately 6,000 tuples per second, given a memory 
allocation equal to the 1% of the total relation size; still, it can 
scale up to 26,000 tuples per sec if more memory is available. 
Such throughput is sufficient for our purposes. However, approx-
imate join processing techniques have been studied as well [14].  

However, the aforementioned method has an important shortcom-
ing. This join algorithm considers that the relation remains static 
during the whole process; i.e., the relation cannot be updated. If 
we rely on this operation, we would gain the benefit of the pipe-
line process, but we lose the option of keeping a copy of the event 
data in a log relation. Clearly, we can improve this functionality. 

Observe the abstract extraction scenario depicted in Figure 5(b), 
where the event data are coming in a streaming fashion. Instead of 
being landed, the data are compared against a log table L contain-
ing an almost up-to-date image of the source data. This compari-
son is performed via a difference operator, mDiff, having the 
same semantics with the corresponding one described for the 
traditional case, but its core join operation is performed using 
MeshJoin. mDiff outputs the newly inserted, updated or deleted 
tuples. If these tuples are marked with a timestamp, then they are 
ready for populating the upcoming phase. For maintaining the log 
table as up-to-date as possible, we consider a feedback flow that 
updates the log table with the already processed streaming data.  

For creating the feedback flow, a composite operation is required. 
Naturally, we can achieve the same functionality with two differ-
ent operations as well. First, the processed tuples are duplicated 
and then, a splitter operator routes them towards the log table. 
(The other output of the splitter operator propagates the deltas to 
the next phase.) The writing to the log table imposes an I/O cost 
to the whole process. We reduce this cost by delaying it until an 
appropriate group of tuples has been gathered, so that the respec-
tive I/O cost is amortized conveniently across all tuples in the 
group. For that reason, we consider a buffer mechanism that tem-
porarily stores the tuples of the feedback flow. When the buffer 
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becomes full, the tuples are flushed to the log table by using a 
MERGE command supported by all major DBMS systems; this is 
a composite DML operation that performs appropriately an insert 
or an update operation in a conditional fashion. The correct timing 
for flushing the buffer heavily depends on several physical as-
pects, such as the available memory, or design decisions, such as 
a decided time threshold. For ensuring the correctness of the dif-
ference operation, we need to join the output of the mDiff (with-
out loss of generality, we can assume that this operator has lower 
selectivity since it checks a larger amount of tuples) with the con-
tent of the buffer for checking also those tuples that have not been 
written yet to the log table. Since this operation is performed in 
memory, several techniques can be used such as the Symmetric 
Hash-Join [8], its XJoin variant [24], the Progressive Merge Join 
[5] or the more recent Rate-based Progressive Join [19]. 

The abovementioned extraction streaming process applies to both, 
atomic (i.e., simple) and complex events. However, a complex 
event signaling the start or end of a task has to wait for the arrival 
of all the atomic events that compose it. For instance, the end of 
task Replenish_stock_levels could be marked by the composition 
of a database update event and the arrival of a confirmation mes-
sage from a supervisor. We consider that a complex event is 
formed before it enters the extraction phase and so, this phase 
doesn’t need additional mechanisms to handle this kind of events.  

3.2 Logical Mapping 
A core functionality of our approach involves the construction 
and use of templates that specify the semantics of the extraction 
from event streams and the required transformations from the 
underlying IT events to business data changes to process progres-
sion. After describing our generic mechanism for mapping gener-
ation, we describe a template language extensible to a large varie-
ty of ETL scenarios. We show its application to process data wa-
rehousing. Then, we present a template mechanism for the auto-
matic construction of appropriate logical mappings that drive the 
population of the process data warehouse.  

3.2.1 Mapping generation 
An overview of the mapping generation is depicted in Figure 6. 
The tuples –i.e., event streams– coming from the extraction phase 
are associated to appropriate declarative mappings (defined dur-
ing the modeling task). The declarative mapping is used for the 
automatic identification of an appropriate mapping template. Af-
ter that, the template mechanism, presented next, is used for the 
instantiation of the mapping template. The procedure is driven by 
the corresponding correlation logic (specified during the modeling 
task, see Section 2.4) that indicates how to identify appropriate 
the target object of the mapping. For example, the logic specifies 
how to identify which Order process instance is progressed when 
a Purchase_Order_Data record is updated with ‘accepted’ on its 
PO_status attribute. In the rest, we elaborate on these issues. 
We stress that the whole procedure is realized in a pipelining 
fashion, since the core physical operators are mostly lookup and 
join operations, which can be performed analogously with those 
described for the extraction phase. 
Incoming Streams. As we discussed, the streaming tuples that 
enter the logical mapping phase can be of several kinds; e.g., IT 
events or business data changes. Our approach abstracts them in a 
generic schema with the following elements: 

 
Figure 6. The logical mapping phase 

− Category. It describes the category of the incoming tuple; 
e.g., IT event or business data change. The category deter-
mines whether the tuple will map to a business data change 
or to process progression. 

− Type. It characterizes the incoming tuple by indicating what 
it is about; e.g., “form submission”, “message”, “update”, 
“insert”, and so on. 

− Subtype. It specializes the type by indicating the type of the 
entity associated with the incoming tuple; e.g., the entity 
type “Purchase_Order_Data”. Type and subtype together de-
termine the corresponding declarative mapping, e.g., the 
mapping associated to an update on a purchase order record. 

− Key. It is an attribute-value pair that represents the identifier 
of the entity associated with the incoming tuple; e.g., 
PO_number=123 of an updated purchase order. These iden-
tifiers are used to establish the correlation with the corres-
ponding target objects of the mappings as indicated by the 
correlation logic. 

− Property. It is an attribute-value pair that specifies the condi-
tion on the Subtype element entity that needs be mapped.; 
e.g., PO_status=“accepted”. 

Example. Consider the example business data change described in 
Section 2.4. The Purchase_Order_Data record may contain sev-
eral attributes but only the one(s) (PO_status) specified in the 
input attribute (InAtr) of the declarative mapping and the one(s) 
specified in the correlation logic (PO_number) are relevant for 
this mapping.   

category : business data change 
Type  update 
subtype : Purchase_order_data 
Key : PO_number=123 
property : PO_status=“accepted” 

The above elements are sufficient to identify the corresponding 
declarative mapping and instantiate the appropriate template.  

Declarative Mappings. These are high level mappings stemming 
from the abstract representation of business processes. Usually, 
such mappings are captured by design and monitoring tools and 
are stored in their repository. For example, the HP BPI tool stores 
the abstracted process model (including declarative mappings) 
into its repository as XML snippets. When an incoming streaming 
tuple is to be processed, the corresponding XML mapping is re-
trieved using an appropriate lookup operation. (Its core functio-
nality is a join between the streaming data and a static relation 
containing the declarative mappings, and thus, this operation is 
performed in a pipelining fashion resembling the difference op-
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eration described in the previous section.) The lookup is facili-
tated by using an appropriate index for the mappings, which typi-
cally are indexed by {input object type, input object attribute, 
input category}. The elements associated to a mapping depend on 
the mapping type. The type is determined by the source and target 
types, and thus we get the different mapping types like event to 
business data change, business data change to task start, business 
data change to task end, business data change to process instance 
start and business data change to process instance end. We illu-
strate the concept with a declarative mapping of type business 
data change to task end whose elements are the following:  

− Input Object Type, (InObjType). This element represents the 
name of the business data table where the input record to the 
mapping is located. This value is matched to the Subtype 
element of the incoming streaming tuple. 

− Input Attribute, (InAttr). It represents a list of name(-s) of the 
business data attribute(-s) that will be mapped. These names 
are matched to the attribute names in the Property element 
and the Key element of the incoming streaming tuple. 

− Operation, (Operation). It triggers the execution of the map-
ping. Typical values for the business processes domain are 
‘insertion’ and ‘update’. (In general, the ‘deletion’ is consi-
dered as well.) The Type element of the incoming streaming 
tuple sets this trigger. 

− Condition, (Cond). The condition needs to be satisfied for 
the mapping to be activated. It is typically a condition on the 
value(-s) of one or more attributes of the business data in-
stance, but it could be a more complex condition as well. 

− Input Category, (InCateg). This is the category of the input 
data to the mapping. In general, it can be an IT event, or a 
business data change. The Category element of the incoming 
streaming tuple is matched against this element. 

− Output Object, (OutObj). It represents the qualified name of 
the abstract process step that will progress via the mapping 
execution. 

− Output Attrbute, (OutAttr). It indicates the logical action on 
the process step instance. In this case, its value is task end 
(that will evolve to an update to the corresponding tuple). In 
the case of a task start a new tuple would be created. 

− Output Type, (OutObjType). It is the name of the relation 
where the tuple obtained from the mapping is (if the tuple al-
ready exists) or will be located (if it is a new tuple). 

Example. The following declarative mapping establishes a corres-
pondence between populating the Result attribute of a Purchase 
Order Data instance and the end of the NotifyAcceptance task. 
Being a mapping of type Business_Entity_Change_to_End_Step it 
contains the following elements:  

InObjType : Purchase_Order_Data 
InAttr : PO_Status, PO_Number 
Operation : Update 
InCateg : Business_Data_Change 
OutObj : Orderiing.NotifyAcceptance 
OutAttr : End 
OutObjType : Task_Execution 

Mapping Templates. The core of the mapping generation is an 
extensible set of mapping templates. The mapping templates are 

parameterized logical scripts written in the template language 
presented next, and they specifically determine the execution of 
mappings. The parameters can be related to events, business enti-
ties or processes. These templates are application specific and in 
general, they are designed, possibly once, by the designer or ad-
ministrator of the system. A mapping template defines the opera-
tional semantics of a mapping. It provides a logical specification 
of the set of actions that should be performed, in order to apply a 
respective mapping. However, such a template does not provide 
any means for implementing the corresponding mapping. The 
physical execution of a mapping depends on the implementation 
language chosen, as we describe in the next section.  

Example. Regarding our running example, we present a mapping 
template of the type Business_Entity_Change_to_End_Step cor-
responding to the declarative mapping previously described. The 
template is parameterized by the business entity type ($BE_T), 
the attribute name of the business entity identifier ($BE_I) and the 
task type ($TT). The actions prescribed in this template are the 
following (we assuming as a target schema, the process ware-
house model presented in Figure 3): 

− A lookup operation to obtain the surrogate key of the current 
system time in seconds. 

− A lookup operation to obtain the business entity surrogate 
key for the instance to be mapped. 

− A lookup operation to obtain the surrogate key for the given 
task type. 

− Retrieve the start time of the process step to be updated to 
mark its progression. 

− A lookup operation to retrieve the surrogate key of the start 
time obtained in the previous action. 

− Update the end time of the process step instance with the sur-
rogate key of the system time obtained in the first action. 

− Update the duration of the process step instance with the 
value obtained from the difference of the end timestamp in 
seconds minus the start timestamp also in seconds. 

The template itself represented in terms of our template language 
(described next) follows: 

#Business_Entity_Change_to_End_Step($BE_T, $BE_I, $TT) 
     ## lookup operations 
     #set( $SK_T = #lookup($time,#to_time(#sysdate(),’ss’)) ) 
     #set( $SK_BEI = #lookup($BE_T,$BE_I) ) 
     #set( $SK_TT = #lookup($type,$TT) ) 
     ## retrieve operation, but first construct the condition 
     #set( $cnd1 = “${entity_data_key}=${SK_BEI} and 
                             ${task_type_key}=${SK_TT}”  ) 
     #set( $ent1 = “task_execution” ) 
     #set( $start_time = #retrieve($time,$ent1,$cond1) ) 
     ## lookup operation 
     #set( $SK_ST = #lookup($time, $start_time) ) 
     ## update operations 
     #update($state_ended_tkey, $SK_ST, $ent1, $cnd1) 
     #set( $dim = “time” ) 
     #set( $cnd2 = “${tkey}=${SK_ST} and $cnd1” ) 
     #set( $val1 = #retrieve(#to_time($time,’ss’), $dim, $cnd2) ) 
     #update($state_dur, $val1, $ent1, $cnd2) 
#end      
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The abovementioned example is a simple one and it is presented 
just to give a flavor of the process. In real cases, we face several 
mapping types with quite complex execution semantics. For that 
reason, we have devised our own template language, which is a 
simple but powerful language that covers such complex cases. 

3.2.2 Template language 
We consider a typical template language supporting constructs 
like variables, built-in functions, and macros, customized for the 
representation and construction of the mapping templates (e.g., as 
the one proposed in [17]).  

Variables. A template may contain variables, which are denoted 
by their name preceded by the symbol $. When the template is 
instantiated, each variable is replaced by a corresponding, pro-
vided, value.  

Directives. A set of typical directives is supported, allowing for a 
high degree of flexibility in specifying templates. Specifically, the 
directives #set, #if - #elseif - #else, and #foreach are provided to 
set the value of a parameter, allow conditional output and iterate 
through a list of objects, respectively. The standard arithmetic, 
logic, and comparison operators are also supported. 

Functions. The template language supports the usual arithmetic, 
date, and string manipulation functions. In addition, it provides a 
set of built-in functions specifically tailored for our environment. 
For example the functions: lookup ($type, $instance), re-
trieve($attribute, $entity, $condition), update($attribute, $value, 
$entity, $condition) which can be used for finding a value of a 
certain type, for retrieving information based on some criteria, 
and for updating a certain instance of an entity. 
Macros. Macros allow us to encapsulate simple template scripts 
and reuse or combine them easily to define more complex ones. 
Thus, they significantly facilitate the creation of templates. For 
example, the macro LIST(L) is a simple general-purpose macro 
used for rendering a list of objects to a textual description.  

#macro( LIST $L ) 
   #set ( $size = #SIZE($L) ) 
   #set ( $counter = 0 ) 
   #foreach( $item in $L ) 
      #if ( $counter == 0 ) #TEXT($item) 
      #else , #TEXT($item) 
      #end 
      #set ( $counter = $counter + 1 ) 
   #end 
#end 

The result of this macro is a sentence containing the elements of 
the list L separated by a comma. The function #TEXT($E) pro-
vides a textual representation (lexicalization) of an entity E, while 
the function #SIZE($L) provides the size of a list L. An instance 
of the macro, the macro LIST(L,tagname), creates XML snippets 
containing the list items. Essentially, this macro resembles the 
LIST(L), with the difference that the iterator creates phrases like:  

<$tagname>#TEXT($item)</ $tagname> 

Hence, it is evident that the designer may customize and extend 
the translation mechanism, by modifying these macros or defining 
new ones. In addition, we stress that standard programming 
knowledge is enough for the macro creation.  

Table 1. Example macros used in the ETL environment. 

Simple operations:
filter 
join 
union 
sort 
group by 
diff 
function application
Check operations:
key violation 
null values 
unique values 

DW operations: 
SK assignment 
SCD-1/2/3 
row (de-)normalize 
pivoting  
Flow operations: 
splitter 
duplicator 
merger 
Scripting operations:  
execute SQL script 
execute Java/C++ scrpit 

System opera-
tions: 
socket reader 
socket writer 
file reader 
file writer 
stream lookup 
Transfer opera-
tions: 
(de-)compress 
encrypt/decrypt 
file transfer 

Apart from such macros that concern generic functionalities, we 
do provide as well default macros for representing frequent ETL 
operations. Example macros that represent operations frequently 
used in an ETL environment are depicted in Table 1. 

3.2.3 Template mechanism 
After having defined the mapping templates needed for the popu-
lation of the process warehouse, an appropriate template mechan-
ism is needed for the creation of their logical instances. This pro-
cedure is performed by a template engine, and it requires that the 
template is used in synergy with the information carried by the 
stream events. The template is instantiated by expanding any 
contained macros, evaluating any contained functions and direc-
tives, and assigning concrete values to its parameters. Thus, the 
template instantiation is realized in the following order. Macros 
are expanded first, in order to produce all the necessary expres-
sions. Then, before executing any loop, we have to evaluate its 
boundaries. For doing the latter, we have first to instantiate the 
variables appearing in loop boundaries, and setting the counters 
(often by evaluating a function that defines them). Next, all the 
loops should be expanded for producing the appropriate lists of 
variables, and afterwards, the rest variables are instantiated. 

For our running example, the instantiated mapping template is an 
instance of the Business_Data_Change_to_End_Step mapping 
template, where all parameters have assigned values. The business 
entity type parameter ($BE_T) obtains its value from the InObj-
Type attribute of the declarative mapping. The attribute name 
parameter of the business entity identifier ($BE_I) gets its value-
from the correlation logic. Finally, the task type parameter ($TT) 
obtains its value from the OutObj attribute of the declarative 
mapping. Let’s say that the incoming event is an update of a Pur-
chaseOrderData instance to set its PO_status to ‘accept’ and that 
this event marks the end of the NotifyAcceptance task in the 
processing of an order. Then, it should be mapped to an update of 
this task for the corresponding Order process instance. The values 
of the parameters would be as follows: $BE_T = PurchaseOrder-
Data, $BE_ID = 123, $TT = NotifyAcceptance.  

3.3 Physical Mapping 
After generating the logical instance of a mapping, the actual 
execution of the mapping is performed. This step involves the 
translation of the logical mapping to a specific implementation 
called physical mapping, which is responsible for the actual popu-
lation of the process warehouse. 
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Figure 7. Physical mapping generation 

A generic overview of this phase is illustrated in Figure 7. In 
brief, the logical mappings generated in the previous step are 
translated to their physical implementations. For doing this, it is 
essential to choose a language, such as SQL, PL/SQL, C++, Java 
or any other procedural or scripting language. An alternative 
would be to import the ETL scenario composed by the logical 
templates into an ETL engine, and execute it there. For example, 
there exist both commercial (e.g., Informatica’s Powercenter) and 
open source ETL tools (e.g., Pentaho’s Kettle or PDI) that support 
the representation of an ETL scenario as an XML file, which can 
be imported in or exported from the repository of the ETL tool. In 
general, as one can easily understand, the physical mapping is 
dependent on the choice of technology used to implement the 
population of the process warehouse.  

However, in our solution we consider a fairly abstract method that 
is agnostic to specific ETL implementations. This is accomplished 
by considering a repository that stores different implementation 
methods based on different languages for each mapping template.  

A high level overview of the procedure is as follows: (a) an im-
plementation method is chosen (i.e., an executable method or a 
physical language); (b) each logical mapping is translated into the 
selected language, by using a library of suitable physical imple-
mentations for each operator; (c) the physical mapping (i.e., ex-
ecutable script) is created; (d) the physical mapping is executed. 

During the latter step, a crucial issue in terms of performance is 
the loading of the data warehouse. Traditional ETL processes load 
the data in a batch mode. However, in order to cope with the rate 
of the stream events, we need to perform the loading in a pipelin-
ing fashion. For doing this, we customized a previously proposed 
method called RiTE, which uses a memory-based catalyst for 
providing fast temporal storage and concurrency control [20]. 
RiTE allows INSERT-like loading in bulk load speeds and im-
proves the real-time loading in a data warehouse.  

An obvious issue that characterizes this process is its optimiza-
tion. There are several cases, where different physical methods 
expressed in the same implementation language, may exist for 
expressing the same logical operation. For example considering 
that we have to execute a logical join operator, this can be trans-
lated to a number of different implementation choices, e.g., 
merge-join, hash-join, nested-loops, and so on. The final choice 
among them comprises an additional optimization challenge. 
Some preliminary steps have already been done in this context 
[21], but still, this topic is open to further exploration. 

4. SYSTEM DESCRIPTION 
The generic architecture of our proof of concept is illustrated in 
Figure 8. Business processes are modeled using HP Business 
Process Insight (BPI), ver. 2.20 [1]. BPI is used as a simple 
process modeler tool to extend or define new process models, 
such as service desk incidents, help-desk service calls, change 
processes, problem calls, work orders, and so on. It can provide 
real-time process visibility and process-based threshold and alert-
ing, including e-mail alerts. The stream events are captured by 
deploying a probing mechanism that monitors source systems for 
events of interest. When an event occurs, it is propagated to the 
ETL process as described in Section 3.1. For probing, we used a 
third party tool, the Openadaptor, ver. 3.4.2 [12]. This is a Java 
based toolkit, suitable for rapid business system integration with 
little or no custom programming. It provides several connectors 
(e.g., JDBC, IBM MQ Series, TCP/IP Sockets, HTTP and Files) 
and scriptable components for data filtering, transformation, and 
validation. 

The stream events are represented as XML snippets and are prop-
agated to the next phase using appropriate SQL statements. For 
the creation and execution of the ETL scenario we used Pentaho 
Data Integration (PDI), a.k.a. Kettle, ver 3.1 [9]. Kettle is an open 
source ETL tool that supports import and export of ETL designs 
as XML files. We exploited that feature for creating, modifying, 
and instantiating our own template ETL scenarios or equivalently, 
the respective XML files. (Note, that this feature is supported by a 
plethora of commercial ETL tools, and thus, with an appropriate 
parsing method our approach can be applied in those tools as 
well.) The ETL tool provides the execution engine and the physi 
cal implementation for the operators needed in our mapping tem-
plates. As an example, consider the simplified case of the differ-
ence operation. Figure 9(a) depicts the instantiated template, 
which is represented in XML, while Figure 9(b) depicts a part of 
the Java code that implements this transformation (essentially, the 
latter corresponds to the physical operator mentioned in Figure 7). 
As one can understand, the abstract (logical) representation of 
Figure 9(a) can be applied to other implementation methods too. 

For the creation of the mapping templates and the implementation 
of the template mechanism, we used Apache’s Velocity template 
engine, ver. 1.5 [23]. Velocity provides an elegant mechanism for 
generating code. It supports macros, a.k.a. velocimacros, that 
cordially matches with our environment.  

 
Figure 8. System architecture 
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<step> 
<name>mDiff</name> 
<type>MrgRows</type> 
<keys> 
<key>PID</key> 
<key>PNAME</key> 
</keys> 
<values> 
<value>PID</value> 
<value>PNAME</value> 
</values> 
<flag_field>Type</flag_field> 
<reference>Log</reference> 
<compare>SourceStream</compare> 

</step> 
(a) (b) 

Table 2. Example measures for a process DW

measures avg cnt min max
Processes     
No Processes x x   
No Active x x   
No Terminated x x   
Duration x  x x 
Duration to Cmpl x  x x 
Steps     
No Steps x x x x 
No Active x x x x 
No Terminated x x x x 
Duration x  x x 
Duration to Cmpl x  x x 

Figure 9. Example (a) logical and (b) physical representation for a template operation  
 

 

The metadata needed for the whole process are stored in a com-
mercial DBMS. We use the DBMS for storing the repository that 
contains the mapping templates, the declarative mappings, and the 
PL/SQL code that implements the correlation logic. The process 
data warehouse is located there as well. 

For monitoring, analyzing, and visualizing the contents of the 
process data warehouse, we have relied on Pentaho’s Mondrian 
[11], which is an open source OLAP server. In Mondrian, the data 
warehouse schema is described in an XML file, containing infor-
mation about the cubes, (shared) dimensions, hierarchies, meas-
ures, and so on. A nice feature is that it supports virtual cubes (or 
multi-cubes) that can be used for exploring different cubes at the 
same time [16]. Such feature works seamlessly in our environ-
ment for navigating through process progression data and busi-
ness data at the same time. Mondrian runs on top of Apache Tom-
cat and uses JSP and JPivot for rendering the warehouse informa-
tion into tables and graphs in HTML pages.  

Having OLAP functionality on top of the process warehouse pro-
vides us with interactive capabilities to navigate through the 
schema and perform operations like roll-up or drill down into 
individual process instances (see for example Figure 10), to have 
timeline view of individual process instances (see Figure 11), and 
to monitor  the  process  progression  using  a  series of charts and 

 

 
Figure 10. Drill-down into a process instance 

 

 

 
Figure 11. Top-10 processes w.r.t. their duration 

graphs. As a data warehouse model, we used the full-blown ver-
sion of the one depicted in Figure 3. Table 2 demonstrates exam-
ple measures used for studying the process progression. 

5. MODELING ETL WORKFLOWS AS 
BUSINESS PROCESSES 
So far, we have shown how to model and populate a process data 
warehouse for monitoring and analyzing business processes. 
Here, we make an interesting observation: ETL flows can them-
selves be treated as a type of process. This has several benefits. 

First, we can create a high-level, abstract view of an ETL flow 
and map it to the detailed ETL implementation. Current ETL tools 
provide no abstract view of ETL flows. Instead, they provide a 
physical view of the processes to load data warehouse objects 
based on changes to OLTP databases.  These views specify ETL 
in terms of IT events and actions. The business view is absent. 
This is unfortunate since business managers and analysts need to 
understand, monitor and tune ETL flows to improve operational 
effectiveness. Treating ETL flows as processes enables us to use 
process modeling tools to create an abstract high-level view of the 
ETL flow. This view hides low-level IT events and consequently 
is more comprehensible to business analysts and managers and 
facilitates the specification of SLAs and performance metrics. 

Second, we can monitor and report on the ETL flow in terms of 
this abstract view. And we can load a generic process warehouse 
with data for the ETL and use it for ETL process analysis. In con-
trast, the monitoring and reporting facilities of current ETL tools 
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provide only a low-level view intended for ETL developers, but 
not suitable for business analysts. 

In the rest, we sketch how to use the techniques we have de-
scribed so far to model and analyze ETL flows.  

Each ETL flow can be considered a separate business process. An 
operator in an ETL flow corresponds to a task (step) in a business 
process. A set of ETL flows with interdependencies (e.g., flow A 
must finish before flow B starts) could also be modeled as a high-
er-level business process workflow.   

We propose the use of an existing tool for business process mod-
eling, such as HP BPI, to specify a high-level view of an ETL 
flow. Then, we can use correlation techniques as described earlier 
to link the abstract view to events in the ETL execution. We can 
trace the execution of an ETL flow by monitoring log and table 
activity. As with an arbitrary business process, these events are 
used to update “business data” for the ETL flow. The business 
data is then used to update the ETL process progression fact 
tables in the warehouse. The logical and physical mappings are 
generated from templates that are derived using declarative map-
pings and correlation logic. By doing this, we obtain a real-time, 
business view of ETL processes that can be leveraged for moni-
toring, analysis and reporting. 

In order to track the ETL flow, we augment the ETL operators to 
emit step events to a separate log. The basic step events include 
operator start, operator end, operator error, operator checkpoint, 
and operator statistics but there may be operator-specific events 
as well. The step events can then be extracted and processed to 
update the generic process warehouse just as any other business 
process. An elegant means for augmenting the ETL operators is 
depicted in Figure 12. Although there is no standard representa-
tion of ETL flows, in general, both the research and the commer-
cial approaches use the same logical representation for ETL oper-
ators: each transformation has one or more input and output 
schemata, a mapping among them, along with the operational 
semantics that describe its functionality. Our approach is to add 
one more level of abstraction, in which we consider one addition-
al schema, called the event schema. The attributes of this schema 
represent the events previously mentioned.  

Note that a major difference between conventional ETL and busi-
ness processes is that ETL is batch-oriented. In ETL, pipeline 
parallelism is typically used to improve performance by streaming 
data among operators. Thus, many operators are active concur-
rently. Business processes are event-oriented. Generally only one 
or a few actions are active concurrently and any single action is 
active only for processing a single event. Consequently, the active 
(or idle) time of an activity in a business process has a different 
meaning than the active time of an ETL operator. Similarly, the 
processing rate of an operator might be of interest in ETL but of 
less interest for a business process. 

We note that as enterprises move toward operational business 
intelligence (BI), there will be reduced latency between OLTP 
events and warehouse loads. Consequently, we expect the batch 
size for ETL will shrink and, in the limit, perhaps be a single 
tuple. In other words, a stream-based approach using a workflow 
paradigm may be more appropriate for operational BI rather than 
today's conventional BI approach uses periodic batch loads.  

 

 
Figure 12. An additional level of abstraction for ETL 

Therefore, in the future, the batch-oriented vs. event-oriented 
difference may not be relevant. 

Example. Consider the ETL flow that loads a purchase order to a 
warehouse order fact table. It might comprise three dependent 
ETL flows: (a) Extract: OLTP purchase order (PO)  extract 
landing table; (b) Transform: extract landing table  order land-
ing table; (c) Load: order landing table  load order fact table.  

The Extract and Load flows are relatively simple and comprise a 
few ETL operators. However, the Transform flow would presum-
ably be more complicated and include operators for validation 
checks, some surrogate key generation and retrieval, perhaps 
some banding and/or summarization. However, the business view 
could be as simple as Extract, Transform, Load. Alternatively, 
depending on business need, the Transform ETL flow could be 
viewed at a more detailed level, e.g., validation  key lookup  
PO key generation. Of course, these steps could in turn be viewed 
at any even more detailed level if necessary, e.g., key lookup 
retrieves surrogate keys for a number of different dimensional 
tables.  

Once the desired business view is established, correlation logic 
and declarative mappings can be used to convert the operator 
events into process progression data using mappings generated 
from the transformation language. The generic process warehouse 
can then be loaded and analysis and reporting can be performed 
on the ETL for the order fact table. 

6. RELATED WORK 
The population of the data warehouses, so called the back stage of 
the data warehouse, has been studied in several research works 
during the last decade. The extract-transform-load (ETL) 
processes, which are responsible for this task, have two main 
challenges: the determination of their design and the optimization 
of their execution. For the first, several modeling solutions have 
been proposed at both the conceptual and the logical level [e.g., 
10]. On the other hand, the existing commercial ETL tools only 
support the implementation of ETL flows given an existing de-
sign. Regarding the optimization of ETL processes, despite its 
importance, less efforts have been proposed at both the logical 
[e.g., 18] and the physical [e.g., 21] level. More recently, several 
works have dealt with the novel trend of the (near) real-time data 
warehouse population, either by studying generic architectural 
issues [e.g., 22] or by proposing specialized operations for such 
cases [e.g., 13, 14, 20]. 
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However, as far as we are aware, the issue of warehousing 
process data has not been studied earlier. In addition, the idea of 
leveraging business process models for representing ETL activi-
ties and of populating a data warehouse with the metadata of their 
execution for analyzing their progression is novel as well. Any 
concepts stemming from the research on optimizing ETL 
processes (either traditional or real-time) are of great interest and 
can fit seamlessly in our approach. 

There are some efforts sharing similar motives and techniques in 
the area of workflow analysis systems, e.g., Filenet [6]. Still, such 
systems provide a data warehouse model that depends on the 
process meta-model, as it is built into the workflow engine. In 
addition, there is no specific capability for collecting and aggre-
gating source data that are not coming from the workflow engine. 
Finally, such systems do not support process abstraction, and it is 
not publicly known how they realize the ETL process.  

Many research efforts have tackled the issue of automating the 
mapping generation [e.g., 7, 15]. Although, some of the proposed 
ideas can be considered in our approach as well, our work differs 
since it does not produce logical mappings according to user spe-
cified correspondences. Instead, it captures correspondences that 
are part of the execution semantics of abstract process progression 
by factoring out commonalities derived from the predefined struc-
ture and semantics of the process warehouse model and of the 
types of mappings specific to the process warehousing domain. 
We are not aware of any work done in this direction. 

7. CONCLUSIONS 
In this paper, we have proposed a method for the automatic popu-
lation of a process data warehouse. We have demonstrated how 
the whole approach can be realized in a near real-time fashion. 
We have presented an extensible and generic template mechanism 
that drives the ETL of stream events, using two-levels of map-
pings that are applied in two-phases. We have presented a proof-
of-concept that validates our approach. The feedback we have got 
from customers signifies that the process warehouse and the anal-
ysis of process progression are of great interest, especially in 
business process outsourcing (BPO) environments. In addition, 
we have taken a further step, and shown that the same approach 
can be used for warehousing ETL execution data, which is useful 
for (a) representing ETL processes at the business level, (b) moni-
toring ETL processes, and (c) analyzing results and statistics re-
garding the execution of ETL processes. Finally, although we 
describe our approach in the context of process data warehousing, 
we believe that it can be generalized to generic real-time data 
warehousing scenarios in which incoming streams are captured, 
transformed, and integrated into a data warehouse. 

For the future, we consider the following challenges. First, tuning 
the real-time mechanism is a topic for future work. Although the 
MeshJoin operator can handle 20k tuples per second, which is 
sufficient for BPO environments, we will explore how to scale 
these rates. We plan to incorporate our method into the HP Busi-
ness Cockpit [4], a platform for intelligence business processes 
analysis and optimization. Finally, we will work further on the 
promising idea of representing ETL flows as business processes. 
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