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ABSTRACT
In this study, we present experiences of parallelizing XPath queries
using the Xalan XPath engine on shared-address space multi-core
systems. For our evaluation, we consider a scenario where an XPath
processor uses multiple threads to concurrently navigate and exe-
cute individual XPath queries on a shared XML document. Given
the constraints of the XML execution and data models, we propose
three strategies for parallelizing individual XPath queries: Data
partitioning, Query partitioning, and Hybrid (query and data) par-
titioning. We experimentally evaluated these strategies on an x86
Linux multi-core system using a set of XPath queries, invoked on
a variety of XML documents using the Xalan XPath APIs. Experi-
mental results demonstrate that the proposed parallelization strate-
gies work very effectively in practice; for a majority of XPath queries
under evaluation, the execution performance scaled linearly as the
number of threads was increased. Results also revealed the pros and
cons of the different parallelization strategies for different XPath
query patterns.

1. INTRODUCTION
XPath is an expression language used for processing data rep-

resented in XML documents [8]. XPath uses a path notation for
navigating through the hierarchical structure of an XML document.
XPath operates on the XML data model [10] which represents the
abstract, logical structure of an XML document as a rooted tree.
XPath can be embedded in host languages such as XQuery [9],
XSL [11], SQL [2] and it also forms an integral component of var-
ious web services interfaces [4]. XPath is also being used for ex-
pressing constraints in various XML Schema languages [5].

As XPath is a critical component in many XML-based applica-
tions, it is imperative to maximize its performance. While there has
been extensive work on optimizing performance of a single XPath
query by improving its traversal pattern [12], there have been rela-
tively fewer studies to evaluate how the underlying processor archi-
tecture affects XPath performance. This issue has become impor-
tant due to the wide-spread availability of commodity multi-core
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processors. Current desktop machines support 2 quad-core proces-
sors, i.e., 8 cores, each of which can presumably run 2 hardware
threads. Current projections are that by the end of next year, the
desktop machines will have processors that can support upto 32
cores each. While most state-of-the art XPath processors, such
as the Apache Xalan, can supportconcurrent XPaths (i.e., multi-
ple threads issuing XPath queries simultaneously against the same
Xalan instance), each XPath query is still executed serially. While
the concurrent XPath execution improves the overall throughput,
individual query latency can be improved by accelerating individ-
ual XPath queries via parallelization. Further, the performance of
an individual query can degrade due to additional costs due to lock-
ing and increased memory consumption. Parallelization of XPath
queries is also essential for parallelizing host languages, such as
XSL or XQuery.

In this study, we evaluate opportunities for parallelizing a single
XPath query in a shared-address space environment oncommodity
multi-core processors. We assume that the XML document is pre-
parsed and can be concurrently accessed by multiple threads. The
key aim of this study is understanding the challenges in paralleliz-
ing XPath queries using a real production-grade system. Towards
this goal, we are emulating a parallel XPath processor by using the
latest Xalan XPath processor in a multi-threaded environment. Our
parallel XPath processor takes vanilla XPath queries and executes
them in parallel on the underlying multi-core processor.

We propose three new schemes for parallelizing XPath queries:
(1) Data Partitioning, (2) Query Partitioning, and (3) Hybrid parti-
tioning that combines both the data and query partitioning schemes.
These approaches exploit both the read-only nature of XPath pro-
cessing and the intra-step parallelism within every step of an XPath
query. All three approaches achieve parallelism via partitioning
traversals over the XML documents. The data partitioning ap-
proach executes the same (sub)query on different sections of the
same XML document whereas the query partitioning approach ex-
ecutes different (sub)queries on the same XML dataset. We have
implemented these strategies in a multi-threaded driver which first
processes the XPath queries, concurrently invokes the Xalan XPath
processor via the XPath APIs, and merges or joins the intermedi-
ate results to compute the final result set of the query. We have
evaluated our implementation using a set of complex queries over
three large XML documents (XMark, DBLP, and PENN Treebank).
Experimental results demonstrate that our proposed parallelization
schemes work very well in practice. We observed that in many
cases, as the number of threads was increased, we achieved lin-
ear speedup. In some cases, we observed an order-of-magnitude
speedup by executing the modified query in the parallel manner.
We also observed that parallelizationreduced the performance of
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queries with low selectivity or those having structural issues (e.g.,
low fanout).

Our study makes the following contributions:

• To the best of our knowledge, this is the first study to analyze
the parallelization of individual XPath queries. To address
this problem, we have proposed three different paralleliza-
tion strategies.

• We have implemented these strategies using a production-
grade XPath processor and evaluated it using realistic and
complex XPath queries on large, structurally diverse XML
documents. Our experimental evaluation has conclusively
demonstrated the effectiveness of our strategies for achiev-
ing scalable performance from the parallel execution of the
XPath queries.

• Our experiments have identified several key issues that need
to be taken into account while implementing a parallel XPath
processsor. The experiments have also revealed many inter-
esting research issues that need to be investigated.

The rest of the paper is organized as follows: Section 2 briefly re-
views the related work in parallelization of XML and SQL queries.
Section 3 overviews XPath semantics and parallelization strategies.
Section 4 discusses parallelization issues in the context of XPath
processing and presents three new parallelization strategies. Sec-
tion 5 presents results from our experimental evalation and Sec 6
presents conclusions and describes future work.

2. RELATED WORK
Parallelization of SQL queries has been extensively studied in

the context of both distributed and centralized repositories [14, 15,
16]. Most commercial database systems support parallel query pro-
cessing using either the shared-nothing or shared-everything archi-
tectures. Parallelization has been extremely effective in practice,
for both OLTP, OLAP/data warehousing, and web applications.
Parallelization of SQL queries differs from the XPath paralleliza-
tion as follows: (1) The SQL workload supports in-place updates,
while XPath processing is read-only, (2) The relational data has a
regular 2-dimensional structure that is suitable for partitioning ei-
ther along rows or columns. The rooted hierarchical structure of
XML is not inherently suited for balanced data partitioning., (3)
Using hash-partitioning, it is easier to physically distribute rela-
tional data across multiple storage nodes while maintaining data
affinity. For XML documents, it is very difficult to effectively phys-
ically cluster related items, and (4) Unlike relational data, XML can
be accessed and stored in many different ways, e.g., in-memory,
streaming, relational or native storage. Any XPath parallelization
algorithm needs to be tuned to match the XML storage and access
characteristics.

Past studies have evaluated XML processing either in distributed
or concurrent scenarios. Most existing XML processing engines
are thread-safe and allow multiple threads to issue concurrent XPath
queries againts an XML document. Distributed XML processing is
discussed in [6, 7]. Boolean XML queries expressed inXBL, a
language containing forward axes, labels, text and the Boolean op-
erators AND, OR and NOT are treated in [6]. The algorithms are
inspired by partial evaluation. In essence, the whole query and all
its sub-queries are evaluated in each distributed fragment. Some-
times, data is unknown (at some leaves) as it resides in another frag-
ment and is replaced by Boolean variables. Therefore, the compu-
tation at a fragment may result in a Boolean expression in terms of
these variables, hence the relationship to partial evaluation. When

all fragments complete computing, the final Boolean result may be
resolved. The main advantage of the scheme is that computation
at various fragments may proceed in parallel and incurs a compu-
tational overall cost similar to that of a centralized mechanism. A
disadvantage is the usage of various vector data structures, on a per
node basis. The work in [7] extends the ideas from Boolean to node
returning queries. The idea is to normalize queries, and to treat sep-
arately the qualifiers in a query and the selection (main skeleton)
part of the query. The various qualifiers are treated using the tech-
niques of [6]. The evaluation of the selection path also uses partial
evaluation ideas to ”transmit” information between fragments.

The overall scheme of [6, 7] is elegant and theoretically effi-
cient, yet space consuming. The scheme may be of interest in par-
allel evaluation, for example by introducing fragments and carrying
the computation in parallel on these fragments. As it stands, these
fragments need be constructed statically. Issues of load balancing
and performing the partition optimally have not been addressed and
may be of interest. The competitiveness of such a scheme may be
hindered by the memory consumption which may turn out to be a
bottleneck.

The work of [21] treats distributed query evaluation on semistruc-
tured data and is applicable to XML query processing as well.
It treats three overlapping querying frameworks. The first is es-
sentially regular expressions. The second is based on an algebra,
C, and is aimed at restructuring. An algebraic approach based
on query decomposition is provided for solvingC queries. Here
a query is rewritten into subqueries implied by the distribution.
These queries are evaluated at the distributed fragments to produce
partial results which are later assembled into a final result. The
third is select-where queries, declarative queries combining pat-
terns, regular expressions and some restructuring. Here, processing
is done in two stages where the first is evaluating a related query
that is expressible inC, and hence parallelizable, which produces
partial results that are then used to form the final result at the client.
The focus is on communication steps.

One may approach the problem of parallelizing XML query pro-
cessing within the general framework of efficiently programming
and coordinating multiprocessor computations, see [13] for a com-
prehensive treatment. Such an approach appears in [18, 19]. Exe-
cution of various XML processing tasks (not including query pro-
cessing) appears in [18] in the context of multicore systems. The
idea is to have a crew of processes each taking tasks out of its own
work queue. Once tasks are exhausted, a process maysteal tasks
off queues of other processes. Tasks are ordered so that process-
ing is done at the top whereas stealing is done at the bottom. This
creates less contention. A scheme is presented for constructing the
final result. The paper presents the idea ofregion-based task par-
titioning to increase task granularity. Parallel XML DOM parsing
is presented in [17, 19]. The first paper uses a dynamic scheme for
load-balancing among cores. The idea in the second paper is to stat-
ically load-balance the work among the cores. This latter work is
targeted at large shallow files containing arrays and does not scale
to many cores (beyond six).

3. PARALLELIZING XPATH: PRELIMINAR-
IES

3.1 Overview of the XPath Processing Model
An XPath expression consists of a sequence of location steps.

Each location step has three components: an axis, a node test, and
a predicate. An XPath expression is evaluated with respect to a
context node. Given a context node of an abstract XML tree, an
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XPath expression uses the specified axis to navigate the XML tree.
The XPath standard specifies 13 axes for navigation. The node
test and the predicate are used to select the nodes specified by the
current axis. The node test can select the node depending on its
type, e.g., attribute. The predicate can further prune the selection
by evaluating various properties (e.g., position) of the navigated
nodes. The XPath expression returns a set of unique nodes (or a null
node set), ordered in either document or reverse document order.

XPath’s execution model is inherently sequential: each location
step operates on the node set returned as a result of evaluating the
previous location step or the starting context. Therefore, in normal
circumstances, execution of location steps can not be reordered.
However, XPath provides significant opportunities for parallelism:
(1) Accesses to the XML documents are read-only, (2) Execution of
a location step can be reordered in any manner as there are no intra-
step dependencies, and (3) Presence of indexes enables the original
XML query to be split into different independent sub-queries that
could be executed in parallel, and the final results computed either
via merging or performing a union of the resultant node sets.

3.2 Overview of Parallelization Issues
The key motivation for parallelizing an application is to improve

its performance by using multiple processors. The behavior of an
application can be characterized by two key attributes: its data and
iteration spaces. The data space captures the structural properties
of the program data structures, e.g., dimensions of an array, and
scope of each dimension, etc., while the iteration space encodes
how these data structures are traversed, e.g., if there are any read-
write dependencies between iterations. The iteration space deter-
mines the portion of the application that can be parallelized.

The most common approach for parallelizing an application is
to partition its parallelizable work by distributing the program data
among the participating processors. There are several ways of dis-
tributing a data set, e.g., partitioning consecutive columns or rows
of an array across multiple processors. In a distributed-memory
machine, each processor stores its assigned data into its own lo-
cal memories, whereas on a shared-memory machine, the data is
logically partitioned. The data distribution strategy determines the
amount of interactions between the participating processors. On
a distributed-memory machine, the processors interact via explicit
messages, and on a shared-memory system, the inter-processor in-
teraction is executed via shared program variables. For an appli-
cation, the amount of inter-processor interaction is decided by its
data partitioning strategy. Further, data partitioning determines if
the workload is equally balanced across the processors. If an ap-
plication’s data partitioning strategy can match its iteration pattern,
it can lead to lowered inter-processor communication and better
load-balancing. This can result in a scalable parallel application,
in particular, for applications whose sequential portion is not dom-
inant.

4. XPATH PARALLELIZATION
In this work, we consider the scenario where an XML document

has been already parsed and the pre-parsed representations allows
applications to traverse the document according to the XML data
model.

4.1 XML Parallelization Issues
For identifying a suitable XPath parallelization strategy, one has

to consider the following key issues:

• Data Partitioning Strategy: As discussed earlier, the data par-
titioning strategy is key to achieving scalable performance

from a parallel application. For XPath processing, the data
space is defined by the abstract tree representation of the
XML document and the iteration space is defined by the
XPath queries. An XPath query navigates the abstract rooted
XML tree using one or more of the XPath axes. To par-
allelize the XPath query execution, one needs to logically
partition the tree as per its traversal pattern. Unlike an ar-
ray, the rooted tree cannot be easily partitioned into distinct
partitions. Therefore, a part of the tree, notably the sec-
tion near the root node, is usually shared and the descendant
subtrees are assigned to different processors. For example,
consider the XML document representing the DBLP dataset
(Figure 1(A)). Figure 1(B) represents the corresponding ab-
stract XML tree. Figure 1(C) presents a partition of the tree,
where the root node and its children are shared by all pro-
cessors and descendants of every child of the root node are
allocated to distinct processors. While the shared section of
the XML tree is traversed by only one processor, different
processors can concurrently traverse their assigned tree sec-
tions. Thus the extent of the shared portion determines the
amount of serial work in the application.

........................

(A) An XML Document

....................

dblp

incollection incollection inproceedings article book book

<dblp>
<incollection> ..... </incollection>
<inproceedings>

<url> ...... </url>
<author> ..... </author>
<author> ..... </author>
.............
<crossref> ....... </crossref>

</inproceedings>
<article> ....... </article>

incollection inproceedings article

dblp

book.......................

authorauthor ...

title

pages

booktitle

url
year crossref

(B) XML Data Model Representation

Shared

Distributed

P0 P1 P2 P0 P1 P2

(C) Shared−Distributed Data Accesses

</dblp>
<book> ...... </book>

Figure 1: Partitioning an XML Document

• Storage Model: There are several ways of storing an XML
document while complying with the XML data model. We
assume that the pre-parsed XML document is stored using
an in-memory, non-relational representation and it can be
accessed concurrently by multiple application threads in a
shared-address space environment. As the data partitioning
is implemented on the logical data model, concurrent ac-
cesses to distinct subtrees result in accessing different por-
tions of the stored data.

• While deciding on the XPath parallelization strategy, one
needs to evaluate the following cost metrics:

– Execution cost: The execution cost of an XPath opera-
tion can be computed in terms of number of traversals
of an XML tree and the amount of temporary space
generated by the operation. Ideally, in a parallel exe-
cution, the total number of traversals by participating
processors should match the number of traversals in
the corresponding serial execution. Similarly, the space
consumption of the parallel implementation should match
the consumption of the original serial program.
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– Locking cost: In a parallel implementation, multiple
processors often use common data structures for man-
aging shared data. Accesses to these data structures
are governed by locks. The locking costs increase sub-
stantially as the number of participating processors in-
creases. Inefficient implementation of locks can lead
to deadlock or livelock scenarios. The parallel algo-
rithm should be designed so that the amount of sharing
among the processors is minimized, thus reducing the
impact of locks on the overall performance.

– Merging cost: In a parallel application, temporary re-
sults computed by different processors must be merged
to compute the final result. Care should be taken that
the merging operation does not become a performance
bottleneck.

• Load balance: Ideal data partitioning results in participating
processors performing equal amounts of work. In practice, it
is often difficult to achieve load balance, in particular, when
there is no prior information on the input dataset and its usage
pattern. In such cases, simple data partitioning heuristics,
e.g., partitioning the input data sets in a round-robin fashion,
are often applied to minimize load imbalance.

4.2 Parallelization Strategies
We now present three strategies for parallelizing an XPath query

in a shared-address space environment: (1) Data partitioning, (2)
Query partitioning, and (3) Hybrid partitioning. All three approaches
exploit the read-only characteristics of XPath processing. These
approaches differ in the way the shared XML data is partitioned
across multiple processors and how the input query is executed on
the partitioned data. As these strategies are defined over the XML
data model, they can be adapted to any XML storage format. All
three approaches require some form of query rewriting.

.//author

(A) Data Partitioning Strategy

.......................

author author

book book bookbook

authorauthorauthor author.... author author........ ....

Processor 0 Processor 1

.......................

author author

book book bookbook

authorauthorauthor author.... author author........ ....

dblp /dblp/book

Processor 0 Processor 1

Sequential

Parallel

.............. ..............

(B) Query Partitioning Strategy

dblp
/dblp/book[position() <101]//author /dblp/book[position() >100]//author

.//author

Figure 2: Parallelization of /dblp/book//author via (A)
Data partitioning and (B) Query partitioning.

In the data partitioning approach, the input query is split into se-
rial and parallel sub-queries. The serial part of the XPath query is
executed by a single processor on the entire document. The result-
ing node set is then distributed across multiple processors, e.g., us-
ing a block-distribution. Each participating processor then uses the
locally assigned node set as the set of the context node set and ex-
ecutes the parallel sub-query on every context node. This approach

achieves parallelism by executing the same XPath query concur-
rently on different sections of the XML document. Thus, this ap-
proach follows the data parallel style of parallel programming. The
scalability of the data partitioning scheme is determined by the se-
rial sub-query; an expensive serial sub-query can degrade the per-
formance of the overall query. Therefore, it is important to effec-
tively partition the query so that the serial portion performs the least
amount of work. Figure 2 (A) illustrates the execution of an XPath
query,/dblp/book//author, using the data partitioning strat-
egy. This query is split into two sub-queries:/dblp/book and
.//author. The sub-query,/dblp/book is executed in a se-
rial manner and the resulting node set ofbook nodes is partitioned
across two processors. Each processor then executes the sub-query,
.//author, on the set ofbook nodes assigned to it. As a result,
each processor concurrently navigates a distinct part of the XML
tree. The result of the original query can be then computed by
merging the local results from the participating processors.

In the query partitioning approach, the input query is rewritten
into a set of sub-queries that can ideally navigate different sections
of the XML tree. The number of sub-queries matches the num-
ber of participating processors. In many cases, each sub-query
is an invocation of the original query using different parameters.
Each processor executes its assigned sub-query on the entire XML
tree. The final result of the query can be then computed using ei-
ther the union or merge of the per-processor node sets. Unlike the
data partitioning approach, this approach achieves parallelism via
exploiting potentially non-overlapping navigational patterns of the
sub-queries. In this approach, the overall scalability is determined
by the range of the parallel sub-queries. If their traversals do not
overlap significantly, the query performance will improve as the
number of processors is increased. Figure 2(B) illustrates the ex-
ecution of the same XPath query,/dblp/book//author, us-
ing the query partitioning approach. In the illustrated scenario, the
original query is rewritten for two processors (assume that there
are 200book children of thedblp node): the first processor exe-
cutes,/dblp/book[position() <101]//author and the
second processor executes
/dblp/book[position() > 100]//author. The final re-
sult, i.e., the set ofauthor nodes, can be computed as a merge of
the two local result sets. The query partitioning approach can be
also applied to XPath queries that contain independent sub-queries
(e.g., path predicates that use absolute paths or multi-attribute pred-
icates) or those queries that can use indexes to execute part of the
navigation.

/dblp/book[position() >100]//author

author author.... author author....author author.... author author....

bookbook

.//author .//author .//author .//author

Processor 0 Processor 1 Processor 2 Processor 3

book book

dblp

Query PartitioningVirtual Processor 0 Virtual Processor 1

Data Partitioning Data Partitioning

/dblp/book[position() <101]//author

Figure 3: Parallelization of /dblp/book/author via Hybrid
partitioning.

The data and query partitioning approaches can be used together
to form a hybrid partitioning approach. In this approach, the input
XPath query is first partitioned into different sub-queries for a set
of virtual processors (query partitioning). Each virtual processor is
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a set of physical processors and it executes its assigned sub-query
using the data partitioning approach. Figure 3 demonstrates the hy-
brid partitioning approach for the XPath query,
/dblp/book//author, on 4 processors. First, the input query
is partitioned into two sub-queries. Each virtual processor then ex-
ecutes part of its query in the serial form
(e.g.,/dblp/book[position() <101] on the virtual pro-
cessor 0), and the remaining (.//author) in the parallel form by
partitioning the intermediate result set of thebook nodes between
2 processors (e.g., on processors 0 and 1 for the group of virtual
processor 0).

5. EXPERIMENTAL EVALUATION

5.1 Experimental Setup
We have evaluated the XPath parallelization strategies using the

latest version of the Xalan XSLT processor (version 1.10 of the
Xalan C++ implementation). The Xalan XSLT processor allowed
us to evaluate complex XPath queries using a state-of-art XPath
processor. For our evaluation, we developed a pthreads-based multi-
threaded driver that simulated a parallel XPath engine. We did not
modify Xalan’s XPath query processor. The driver first processed
the input XPath queries and then concurrently invoked the Xalan
XPath APIs using the different parallelization strategies. The input
XML document was parsed only once and the parsed representa-
tion was shared across multiple threads. Our implementation used
hash-based merge-join to merge temporary result sets from differ-
ent threads. Currently, we are not using any shared updatable data
structures, therefore, our implementation does not incur any lock-
ing costs. While using the data partitioning strategy, we partitioned
the input context node set across the threads using the block distri-
bution pattern. For example, given a context nodeset of size 1024
and 4 application threads, every thread gets 256 nodes: thread 0
gets first 256 nodes, thread 1 gets the next 256 nodes, and so on.

Name Size (MByte) Elements Attributes Depth
XMark.xml 558 8353174 1914186 7
DBLP.xml 442 2164363 0 3

treebank.xml 8.6 2437666 1 7

Table 1: Characteristics of the XML Documents

We tested our implementation on a 2-node dual-core x86/Linux
machine. Each core was a 2-way SMT, hence we were able to run
upto 8 user threads. For our experiments, we used three different
XML datasets: XMark [20], DBLP [1], and the Penn Treebank [3].
XMark is a synthetic dataset that represents auction data, DBLP is a
bibliographical dataset, and the Penn treebank represents linguistic
data. Table 1 presents the structural characteristics of these data
sets. Among the three, the treebank dataset is a deep recursive
dataset, while the DBLP dataset is shallow and wide.

5.2 Evaluation of the XPath Queries
Table 2 presents a set of XPath queries used for the experimen-

tal evaluation. In total, we evaluated 12 queries: 6 for the XMark
document, and 3 each for the DBLP and treebank documents. Our
queries were selected so as to evaluate the three partitioning strate-
gies under different constraints. The queries include those with
long chains of child steps, path predicates, conjunctive and disjunc-
tive predicates, functions such aslast(),name(), andcount(),
different axes (e.g., the “//”, attribute, parent, following-sibling).

We also computed the number of unique absolute paths in each doc-
ument and used the path statistics to rewrite the original queries.
We did not use path indexes for query execution. For each query,
we hand-modified the driver code to use either the data or query
partitioning. We have applied query partitioning for two cases: (1)
when we can partition predicate computations and (2) when we can
partition range computations. We have applied hybrid partitioning
to cases involving range partitions.

For each query, we present three sets of results (Table 3). First,
we present the sequential execution time of the original query, the
best total time for the split queries in the data partitioning strategy
(including the corresponding serial and parallel execution times,
and the number of threads used in that parallel execution), and the
best time for the query modified according to the query partitioning
strategy, along with the number of threads. Second, we present
performance of the split queries in the data partitioning strategy as
the number of threads is increased from 1 to 8. It is important to
note that the performance of the split queries differs from that of the
original query, even for the single processor, as the Xalan XPath
processor optimizes the split queries differently than the original
query.

Therefore, for the data partitioning strategy, we reportabsolute
scaleup numbers using the performance of the split queries on a
single processor (the serial and parallel queries, one by one, are ex-
ecuted in a sequence by the same processor) as the baseline (i.e.,
absolute scaleup=(serial time for the split query)/(best total time
for the split query)). We also reportrelative scaleup numbers using
the performance of the original query as the baseline (i.e., relative
scaleup=(serial time for theoriginal query)/(best total time for the
split query)). Finally, we present scaleup numbers for the query
partitioning strategy. In all cases, the queries rewritten using the
query partitioning strategy were a version of the original query with
different input parameter values. Therefore, we used the sequen-
tial execution time of the original unmodified query as the baseline
performance number to computeabsolute scaleup. The bold-faced
query keys in Table 3 represent cases that experience slowdown af-
ter parallelization. Note that in many cases, the performance does
not improve when the number of threads is increased above 4. This
is because we are running our experiments on a 4-core machine.

The XM1 query (Table 2) selects a set of nodes with specified
names using a disjunctive predicate and thename() function. This
query can be executed using both the data and query partitioning
approaches. In the data partitioning strategy, original query is split
into two subqueries:/site/* (serial), and
self::*//*[name(.)...] (parallel). In the query partition-
ing approach, the original query gets partitioned into three separate
queries, each checking for a single predicate. These three queries
are then invoked on the entire document and the resultant node set
is unioned to obtain the final result. Figure 4 illustrates the perfor-
mance of data partitioning strategy as the number of threads is in-
creased from 1 to 8. As the Figure illustrates, in all cases, the serial
portion is not the bottleneck and the parallel performance improves
as the number of threads is increased (i.e., absolute scaleup of 1.93
and relative scaleup of 16.05).

The XM2 query (Table 2) returns values of theid attributes
of all items of the category,category52. This query exhibits
traversals on the//, parent, and attribute axes and a value predi-
cate. This query can be parallelized using both data and query par-
titioning as follows: In the data partitioning strategy, the original
query can be split via two ways. In the first approach (XM2(A)),
the original query gets partitioned into the serial sub-query,
//incategory, and a parallel sub-query,
self::*[..]/parent::item/@id. The second appraoch,
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Key XPath Query
XMark.xml

XM1 /site//*[name(.)=’’emailaddress’’ or name(.)=’’annotation’’ or name(.)=’’description’’]
XM2 /site//incategory[./@category=’’category52’’]/parent::item/@id

XM3(A) /site//open auction/bidder[last()]
XM3(B) /site/open auctions/open auction/bidder[last()]

XM4 /site/regions/*/item[./location=’’United States’’ and ./quantity > 0
and ./payment=’’Creditcard’’ and ./description and ./name]

XM5 /site/open auction/open auctions/bidder/increase
XM6 /site/regions/*[name(.)=’’africa’’ or name(.)=’’asia’’]/item/description/parlist/listitem

DBLP.xml
DB1 /dblp/article/author
DB2 /dblp//title
DB3 /dblp/book[(count(./following-sibling::book/author) < count(./author))]

treebank.xml
TB1 /FILE/EMPTY//NP
TB2 /FILE/EMPTY/S//VP[count(.//NP) > 1]
TB3 /FILE/EMPTY/S/NP/NP//NN

Table 2: XPath Queries used for Experimental Evaluation

Query Original Data Partitioning Query Partitioning
Key Serial Serial Parallel Total Absolute Relative Total Absolute

(sec) (sec) (sec) (sec) # Threads Scaleup Scaleup (sec) # Threads Scaleup
XM1 494.82 0.0003 30.82 30.82 7 1.93 16.05 145.75 3 3.39

XM2(A) 6.70 360.53 6.29 366.82 7 1.05 0.01 12.52 2 0.53
XM2(B) 0.0001 2.87 2.87 3 2.20 2.33 - - -
XM3(A) 10.58 5.29 0.55 5.82 4 1.22 1.82 - - -
XM3(B) 5.72 0.03 0.52 0.55 4 3.55 10.4 1.49 4 3.83
XM4(A) 1.06 0.001 0.49 0.49 7 2.13 2.16 - - -
XM4(B) 20.67 2.82 23.49 7 1.31 0.045 28.17 4 0.04
XM5(A) 192.67 0.03 0.49 .52 8 3.61 370.51 7.09 4 27.17
XM5(B) 217.29 1.47 218.77 8 1.02 0.88 - - -

XM6 0.32 0.000085 0.14 0.14 6 1.14 2.28 0.088 4 3.63
DB1 1972.76 0.29 2.05 2.34 4 3.24 842.73 202.46 4 9.74
DB2 2785.58 0.15 5.15 5.30 4 3.59 525.58 1042.09 8 2.67
DB3 299.01 0.24 77.24 77.48 4 3.59 3.87 84.78 6 3.52
TB1 425.64 0.028 0.70 0.73 4 3.61 583.06 12.5 8 33.99

TB2(A) 14.75 0.028 1.55 1.57 4 3.73 9.39 2.70 4 5.46
TB2(B) 3.72 1.49 5.21 4 1.73 2.83 - - -

TB3 0.25 0.028 0.43 0.46 8 3.89 0.54 0.87 8 0.28

Table 3: Summary of Performance Evaluation of Data and Query Partitioning on the XPath Queries
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Figure 4: Data Partitioning of the query XM1. The
sub-query /site/* is executed serially and the sub-query
self::*//*[name(.)..] is executed in parallel. The se-
rial execution cost is too small to be represented.

(XM2(b)), splits the original query into a serial sub-query,/site/*
and a parallel sub-query,
.//incategory[..]/parent::item/@id. In the query
partitioning strategy, we re-write the original query into the fol-
lowing two sub-queries://item[./incategory/
@category=’’category52’’], and//item[./@id]. These
two queries are executed in parallel by two different threads; the
local results are then merged by the driver thread, and the corre-
sponding attributes are returned.

Table 3 presents, among other things, the evaluation of these ap-
proaches for the query XM2. The performance of the two data
partitioning approaches varies substantially; the cost of the queries
generated in the XM2(A) approach is substantially more than that
of the ones generated in XM2(B). Figure 5 presents a more detailed
performance evaluation of the two approaches for a varying num-
ber of threads. As Figure 5 illustrates, in XM2(A), even though
the parallel execution time improves as the number of threads is
increased, the overall performance gets affected by the serial sub-
query. This sub-query does far more work than the correspond-
ing serial sub-query in XM2(B) (//incategory returns 411658
nodes whereas/site/* returns only 6 nodes.). Further, the av-
erage cost of the parallel sub-query in XM2(A) is more than that
in XM2(B). As a result, implementation of the query XM2 using
the XM2(A) approach degrades the performance. The XM2(B) ap-
proach, on the other hand, results in an absolute scaleup of 2.20
and relative scaleup of 2.33. In the query partitioning approach, the
two new queries do more work than the original query, thus leading
to reduced performance (i.e., 12.52 seconds vs. 6.7 seconds for the
original query).

The queries in XM3(A) and XM3(B) (Table 2) are equivalent as
there is only anopen auctions child of thesite node, and the
open auction nodes are children only of theopen auctions
node. Like the query XM2, the performance of XM3(A) and XM3(B)
approaches differs significantly due to the amount of time spent by
their serial sub-queries (Figure 6). XM3(A) executes
//open auction serially on the entire document in 5.29 sec-
onds, where as XM3(B) executes
/site/open auctions/open auction on the same docu-
ment in 0.03 seconds. Although the parallel sub-queries in both ap-
proaches perform similarly, the XM3(B) approach provides better
scaleup than XM3(A), both absolute (3.55 over 1.44) and relative
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Figure 5: Data Partitioning of the query XM2. The left bar in
every cluster represents the results for the XM2(A) approach,
the right bar represents the results for the XML2(B) approach.
In XM2(A), the overall performance is affected by the serial
execution costs.

# of Threads (Time in seconds)
1 2 4 6 8

Query XM3
Total 5.72 2.37 1.49 1.85 2.41

Scaleup 1 2.41 3.83 3.09 2.37
Query XM5

Total 192.67 49.96 12.83 10.02 7.09
Scaleup 1 3.85 15.01 19.22 27.17

Query XM6
Total 0.32 0.15 0.088 0.13 0.13

Scaleup 1 2.13 3.64 2.46 2.28

Table 4: Performance of the queries XM3, XM5, and XM6 us-
ing query partitioning.
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Figure 6: Data Partitioning of the query XM3 for two different
queries: XM3(A), and XM3(B). The serial execution costs of
the query XM3(B) are significantly lower than that of XM3(A).

(10.4 over 1.82) (Table 3).
For the query XM3, the query partitioning approach distributes

the work by partitioning the range of theopen auction nodes.
If there aren open auction nodes, each of thep threads would
get n

p
nodes. To achieve such distribution, the original query gets

rewritten to use theposition() function as follows:
/site/open auctions/open auction
[position() < n

p
+ 1], and

/site/open auctions/open auction
[position() > n

p
and position() < 2 ∗ n

p
+ 1]. The

results of each sub-query are then unioned to compute the final re-
sult. Table 4 shows the performance of the query partitioning strat-
egy when the number of threads was increased from 2 to 8. When
the number of threads was 6 and 8, we used the hybrid approach
with 2 and 4 virtual processor groups with 2 and 3 members, re-
spectively. As shown in Table 4, the performance of the queries
scales as the number of threads is increased.

The query XM4 (Table 2) is an example of an XPath expres-
sion with a conjuctive predicate. Like the previous examples, XM4
can also be parallelized in two ways using the data partitioning ap-
proach, XM4(A), and XM4(B) (Table 3). XM4(A) uses
/site/regions/* as the serial sub-query, whereas XM4(B)
uses
/site/regions/*/item as its serial sub-query. As shown in
Figure 7, the execution time of the serial sub-query for XM4(B)
is significantly larger than that for XM4(A). The expensive serial
sub-query not only reduces the scalability in the data partitioning
solutions, it also affects the performance of the parallel query. The
XM4(A) approach has to make additional redundant traversals of
theitem nodes as its parallel sub-query is
self::*[./location=..]. As shown in Figure 7, in all cases,
the execution time of the parallel sub-query for XM4(B) is much
more than that of XM4(A). As a result, the XM4(B) causes the
performance to degrade as compared to the serial case (23.49 sec-
onds against 1.06 seconds for the serial execution). In contrast, the
XM4(A) approach improves the performance by a factor of 2.

The parallelization of XM4 using the query partitioning approach
involves rewriting the original query into four different sub-queries,
each with a different predicate on the item nodes. These four queries
are then executed in parallel on 4 threads and their results are then
merge-joined to compute the final result. As Table 3 illustrates,
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Figure 7: Data Partitioning of the query XM4 using two differ-
ent partitioning strategies. The left stacked-bar represents the
performance of XM4(A), the right stacked bar represents the
performance of XM4(B).

1 2 3 4 5 6 7 8
Number of Threads

0

50

100

150

200

250

300

T
im

e 
in

 s
ec

on
ds

Serial Execution Time
Parallel Execution Time

Performance of Data Partitioning for the Query XM5
Comparison of Two Data Partitioning Strategies

XM5(a)

XM5(b)

0.49 0.03
Parallel Serial

1.47
Parallel

Figure 8: Data Partitioning of the query XM5 using two dif-
ferent partitioning strategies.XM5(B) suffers from large serial
component.

this strategy does not perform as well as the XM4(A) approach. In
fact, this approach slows down the query execution substantially.
This is mainly due to the larger number of nodes traversed by the
sub-queries, as each of them operate on the entire document.

The XM5 query (Table 2) is an example of a relatively long query
of parent-child traversals. Like the previous queries, XM5 can also
be executed in two ways using the data partitioning approach. One
approach, XM5(B) suffers from a large serial cost as its serial sub-
query traverses a far larger number of nodes than the equivalent
serial sub-query from XM5(A). Figure 8 presents the detailed per-
formance comparison.

Using query partitioning, the XM5 query is parallelized by the
range partitioning approach (like the query XM3). Similar to query
XM3, the query XM5 scales well when parallelized using query
partitioning (Table 4).

The query XM6 (Table 2) is interesting as it is the only query
where query partitioning performs better than data partitioning
(scaleup of 3.83 versus scaleup of 2.28). In the query partitioning
approach, the original query is rewritten into two queries without
predicates, one forafrica, and one forasia
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Figure 9: Data Partitioning of the query XM6.

# of Threads (Time in seconds)
1 2 4 6 8

Query DB1
Total 1972.76 670.94 202.46 - -

Scaleup 1 2.94 9.74 - -
Query DB3

Total 299.01 164.70 85.15 84.78 84.91
Scaleup 1 1.81 3.51 3.52 3.52

Table 5: Performance of the queries DB1, and DB3 using query
partitioning.

(e.g.,/site/regions/africa/item/..). Further, the traver-
sal on the item nodes is distributed using range partitioning (i.e., we
employ hybrid partitioning). Table 4 presents the performance of
the XM6 query using query partitioning as the number of threads
is increased from 2 to 8. In the data partitioning approach, we use
/site/region as the serial sub-query (Figure 9), partition the
resultantregion node set over a set of processors and then invoke
the parallel sub-query on every local node set. However, data par-
titioning still performs more work than query partitioning as it still
needs to evaluates the disjunctive predicate over the children of the
region nodes.

We now discuss the performance of the XPath queries on the
DBLP dataset. The DBLP document is a shallow, but very wide
document. The first query, DB1 (Table 2), findsauthor children
of article elements. Table 5 presents the performance of the
query when it was parallelized using the query partitioning strat-
egy. The query partitioning strategy used range partitioning on the
article child. Thus, every thread invoked a modified query with
a positional predicate. As shown in Table 5, this approach scaled
up very well for 2 and 4 threads. For 6, and 8 threads, we were
not able to run the query due to memory comsumption issues in
the Xalan processor. In the data partitioning strategy, the original
query is split into two simple queries with parent-child traversals:
/dblp/article and./author. In this case, the serial com-
ponent was not dominant and the parallel sub-query scaled very
well (absolute scaleup of 3.24 for 4 threads) (Figure 10). The data
partitioning implementation did not suffer from high memory con-
sumption, resulting in significant relative scaleup (842.73).

For the DB2 query (Table 2), we parallelized the equivalent query,
/dblp/*/title. In the data partitioning approach, the query
was split into/dblp/* (serial) and./title (parallel) sub-queries.
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Figure 10: Data partitioning of the query DB1. The serial exe-
cution costs are dominant. The overall performance scales up
as the number of threads is increased. The maximum absolute
scaleup observed is 3.24 for 4 threads.
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Figure 11: Data partitioning of the query DB2. The overall
performance scales up as the number of threads is increased.
The maximum absolute scaleup observed is 3.49 for 4 threads.

Performance of the modified query was not affected by the serial
component, and it scaled very well (absolute scalability of 3.59)
(Figure 11). In the query partitioning approach, we rewrote the
original query into eight sub-queries, each for a child of thedblp
node. Like in DB1, the query partitioning approach also suffered
from excessive memory usage, and we obtained an absolute speedup
of only 2.67 over the original query. In contrast, the data partition-
ing approach improved the performance over the original query by
525.58. The query DB3 (Table 2) is an interesting query as it gen-
erates significant overlapping accesses from the
following-siblingaxis. The query partitioning strategy used
the range-partitioning on thebook element. The data partitioning
strategy split the original query into/dblp/book and
self::*[..] sub-queries. Both approaches scaled well with
absolute speedups of 3.87 (for data partitioning) and 3.52 (for query
partitioning). However, none of the approaches were able to elimi-
nate redundant traversals caused by the
following-sibling axis. Section 5.3 outlines a possible op-
timization to address this problem.

The PENN treebank is a relatively small (8 MB) but highly re-
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Figure 12: Data partitioning of the query DB3. The overall
performance scales up as the number of threads is increased.
The maximum absolute scaleup observed is 3.89 for 4 threads.
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Figure 13: Data partitioning of the query TB1. The overall
performance scales up as the number of threads is increased.
The maximum absolute scaleup observed is 3.61 for 4 threads.

Query TB1
Total 425.644 114.86 27.97 20.83 12.52

Scaleup 1 3.70 15.21 20.43 33.99
Query TB2

Total 14.75 6.26 2.70 2.79 2.98
Scaleup 1 2.35 5.46 5.28 4.94

Query TB3
Total 0.25 0.90 0.87 1.34 1.76

Scaleup 1 0.27 0.28 0.18 0.14

Table 6: Performance of the queries TB1, TB2, and TB3 using
query partitioning.
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Figure 14: Data partitioning of the query TB2. The left
stacked-bar represents the performance of TB2(A), whereas
the right stacked-bar illustrates the TB2(B) performance. The
TB2(B) performance gets affected by the large serial costs, re-
ducing its scalability (1.73 for 4 threads). TB2(A) results in a
scaleup of 3.73 for 4 threads.

cursive document. The first query, TB1, finds all instances of a
recursive elementNP. Both the query and the data partitioning ap-
proaches achieve parallelism by partitioning the traversals from the
EMPTY elements. As Table 6 and Figure 13 illustrate, both ap-
proaches scale very well, resulting in significant performance im-
provements (absolute scaleup of 33.99 for the query partitioning
and 3.61 for data partitioning.) Due to its small size, queries on
the treebank document do not suffer from memory consumption
issues. The query TB2 is another example of a case where bad
query splitting leads to performance degradation. As illustrated in
Figure 14, the TB2(B) approach has a large serial component that
reduces its scalability (1.73). In contrast, the TB2(A) approach has
a smaller serial component, improving both the absolute (3.73) and
relative scaleups (9.39). The final query, TB3, is an example of
when not to parallelize. Naive execution of the original query is
very efficient and does not traverse a large number of nodes. In this
case, although the parallelization strategies are effective (i.e., both
scale linearly (Table 6 and Figure 15)), the cost of parallelization
degrades the overall performance.

5.3 Discussion
As demonstrated in Section 5, all three data partitioning approaches

are able to scale performance of a majority of XPath queries. These
results conclusively illustrate that it is possible to accelerate XPath
processing effectively using multiple cores of a multi-core proces-
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Figure 15: Data partitioning of the query TB3. Even though the
performance scales up (3.89) for 8 threads, the modified query
runs slower than the original query.

sor. However, a number of key issues need to be addressed before
implementing these approached in a parallel XPath processor.

First, given an XPath query, it is not obvious if data or query
partitioning would be beneficial. As a rule of thumb, query par-
titioning is suitable for queries that involve predicates or for those
queries that could be rewritten using range partititioning. For queries
with predicates, data partitioning often results in traversing the same
node twice (once in the serial code and once by theself::* step
in the parallel code), thus degrading the performance. In the query
partitioning strategy, range partitioning needs cardinality informa-
tion to be effective. Running concurrent queries on the same dataset
can also increase the memory usage of the XPath processor, lead-
ing to performance degradation and even failure to execute (as we
have observed in the query DB1). For a general XPath query, it is
not clear how to automatically determine the best partitioning strat-
egy. We believe a comprehensive parallel cost model could help in
addressing this issue.

Second, the performance of a query parallelized using the data
partitioning strategy depends on how the query was split. In our ex-
periments, we had access to path statistics of the input documents.
Without such statistics, it is not clear how one can split a query
effectively.

Third, we are currently using a small number of threads for par-
allelizing the XPath queries. In our experiments, we are using a
simple processor allocation to process different sub-queries. How-
ever, as the number of available threads increases, the processor al-
location becomes very critical to achieve load balance and increase
processor utilization. However, an effective processor allocation
requires XML document statistics and XPath traversal information.
Further, our experiments use simple block distribution to partition
the input context nodeset for parallel sub-query execution. It is not
yet clear if the block partitioning strategy is the most suitable strat-
egy for the general class of XPath queries.

Fourth, we are currently rewriting the input XPath queries by
hand. Auto-parallelization of XPath queries by a compiler is cur-
rently an open problem. Such a compiler would need to integrate
smoothly with the existing XPath optimizations. Further, the com-
piler needs to address various semantic issues such as maintaining
document order, executing XPath functions in the parallel environ-
ment, etc. It is also not clear yet how a parallelizing compiler would
use auxiliary information such as XML path statistics and indexes.

Finally, we are using a pre-parsed XML document in an in mem-

ory configuration. In reality, XML is processed and stored in dif-
ferent forms, e.g., XML streams, native XML storage or relational
storage. Since our parallelization models are defined over the XML
data model, they can be adapted to any XML storage layout.

Our experiments have revealed several interesting query opti-
mization problems in XPath parallelization. For example,

• Consider again the query DB3. This query traverses allbook
node siblings and for everybook node, computes its follow-
ing book siblings. It is immediately obvious that there are
lots of overlapping accesses leading to redundant traversals
of thebook nodes. In fact, given a set ofbook siblings, the
result of executing the queryfollowing-sibling::book
on the firstbook node generates the answers of executing
the same query on all otherbook nodes. We can extend
this idea to the parallel domain: First, partition thebook
nodes using the data partitioning strategy in the document
order. In every partition, for every firstbook element select
thefollowing-sibling nodes that lie in itslocal node-
set. Then, store the local results into a shared data structure
to generate the final result. This strategy avoids redundant
traversals and accelerates the most expensive traversal by ex-
ecuting it in the parallel fashion. This approach, however,
consumes a significant amount of memory. It is an inter-
esting problem to balance parallelism, shared resources, and
memory consumption.

• Consider the problem of parallelizing the following DBLP
query: (//book)[10] (i.e., find the tenth book from the
document in the global document order). Consider the exe-
cution of this query using the data partitioning strategy. As-
sume that there is a shared list that stores thebook elements
in a sorted order using their document numbering. As soon
as a processor stores the tenth book in the shared sorted list, it
can inform the other processors and prevent redundant traver-
sals of the XML document.

6. CONCLUSIONS
In this paper, we evaluated the problem of parallelizing XPath

processing using commodity multi-core processors. We examine
three novel parallelization schemes and evaluated them on a set
of realistic documents using a production-grade XPath Processor
(Xalan). Our experimental results demonstrate that our proposed
strategies work very well in practice. In most cases, we were able to
improve the query performance significantly. Our experiments also
revealed various optimization and infrastructure issues that need to
be addressed for implementing a scalable parallel XPath processor.
We plan to explore these issues in detail in our future work.
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