
GCIP: Exploiting the Generation and Optimization of
Integration Processes

Matthias Boehm and Uwe Wloka
Dresden University of Applied Sciences

Database Group
01069 Dresden, Germany

mboehm@informatik.htw-dresden.de
wloka@informatik.htw-dresden.de

Dirk Habich and Wolfgang Lehner
Dresden University of Technology

Database Technology Group
01062 Dresden, Germany

dirk.habich@tu-dresden.de
wolfgang.lehner@tu-dresden.de

ABSTRACT
As a result of the changing scope of data management to-
wards the management of highly distributed systems and
applications, integration processes have gained in impor-
tance. Such integration processes represent an abstraction
of workflow-based integration tasks. In practice, integration
processes are pervasive and the performance of complete IT
infrastructures strongly depends on the performance of the
central integration platform that executes the specified in-
tegration processes. In this area, the three major problems
are: (1) significant development efforts, (2) low portability,
and (3) inefficient execution. To overcome those problems,
we follow a model-driven generation approach for integration
processes. In this demo proposal, we want to introduce the
so-called GCIP Framework (Generation of Complex Inte-
gration Processes) which allows the modeling of integration
process and the generation of different concrete integration
tasks. The model-driven approach opens opportunities for
rule-based and workload-based optimization techniques.

1. INTRODUCTION AND MOTIVATION
The scope of data management continuously changes from

the management of locally stored data towards the manage-
ment of highly distributed systems and applications. Here,
integration processes—in the sense of an abstraction of work-
flow-based integration tasks—are increasingly used in EAI
(Enterprise Application Integration) servers, ETL (Extrac-
tion Transformation Loading) tools or WfMS (Workflow man-
agement Systems). Basically, there are the three major
problems: (1) the high development effort, (2) the low degree
of portability and (3) the inefficient processing. In practice,
integration processes are pervasive. Hence, in particular,
we need to overcome the problem of inefficiency because the
performance of complete IT infrastructures strongly depends
on the performance of the central integration platforms.

To overcome the mentioned major problems, we follow
a model-driven generation and optimization approach us-

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

ing our GCIP Framework (Generation of Complex Integra-
tion Processes). Here, integration processes are modeled in
a platform-independent way using existing process descrip-
tion notations and tools, such as UML (Unified Modeling
Language) activity diagrams or BPMN (Business Process
Modeling Notation) process specifications. These models are
used to generate platform-specific integration tasks for dif-
ferent integration systems. Currently, the GCIP Framework
supports the generation of integration processes for the sys-
tem types of Federated DBMS, ETL tools, and EAI servers.
The overall approach [4] and the currently supported prod-
ucts are illustrated in Figure 1. In general, the model-driven
development addresses the problems of high development
effort and low portability. Additionally, this generation ap-
proach opens many optimization opportunities. Here, we
try to overcome the problem of inefficiency using rule-based
and workload-based optimization techniques.

So far, only little work exists on the generation and op-
timization of integration processes. From the generation
perspective, the Orchid project [6] provides significant con-
tributions. In this project, ETL workflows are generated
from declarative mapping specifications. Unfortunately, Or-
chid exclusively covers IBM ETL products. Further, there is
an promising approach [1] that addresses the deployment of
ETL processes. However, all relevant generation approaches
consider ETL tools only. Hence, the significance of our demo
proposal includes the generation of integration processes for
different integration system types (e.g., FDBMS, ETL, and
EAI servers) with completely different execution models.

<<PIM>>
UML

<<PIM>>
BPMN

<<A-PSM>>
MTM

import
import

exportexport

<<PSM>>
ETL

<<DPD>>
Pentaho Data
Integration 3.0

generate
PSM

analyze and optimize
A-PSM

<<PSM>>
EAI

<<PSM>>
FDBMS

generate
DPD

generate
PSM

generate
PSM

<<DPD>>
Sybase
ASE 15

<<DPD>>
IBM WebSphere

Federation Server 9.1

<<DPD>>
SQL GmbH

TransConnect 1.3.6
<<DPD>>

IBM Message
Broker 6.1

generate
DPD generate

DPD

SECTION 4
SECTION 3

Taxonomy:
PIM Platform Independent Model
A-PSM Abstract Platform Specific Model
PSM Platform Specific Model
DPD Declarative Process Description

Figure 1: GCIP Generation Approach

1128

Furthermore, there is only little work on the optimization
of integration processes. First results have been published
for critical path optimization of workflows [8] and the opti-
mization of queries over Web services [10]. These techniques
mainly try to use parallelism in awareness of data dependen-
cies. More sophisticated approaches have been published in
the fields of ETL process optimization [9], self-optimization
of message transformation processes [5], and BPEL process
optimization [11]. The major challenge in distributed en-
vironments is the missing knowledge of data properties [7].
Further, all of those solutions are platform-specific. Ad-
ditionally, those solutions use only rule-based optimization
techniques, which can lead to inefficiency in the presence of
workload shifts. Hence, the significance of our approach in-
cludes the cost-based optimization of integration processes,
where we use workload characteristics and execution statis-
tics in order to decide on optimality conditions. For integra-
tion processes this has not been considered elsewhere.

The contribution of this paper includes the following three
aspects that also reflect the structure of the paper:

• We introduce our GCIP Framework and its macro-
architecture in Section 2.

• Then, we explain the generation of integration pro-
cesses for different target integration systems (of dif-
ferent system types) in Section 3.

• Further, we discuss the rule-based and the workload-
based optimization of integration processes—including
applicable optimization techniques—in Section 4.

Subsequently, in Section 5, we summarize our main re-
search contributions, open challenges and demonstration de-
tails that will be up for discussion at the EDBT demonstra-
tion desk. Finally, in Section 6, we conclude the paper.

2. GCIP FRAMEWORK ARCHITECTURE
In this section, we describe the GCIP Framework architec-

ture and its main concepts. Figure 2 illustrates the macro-
architecture of the GCIP Framework. The core implements
the defined API and uses the subcomponents Transformer

(realizes model transformations for the supported target in-
tegration systems), Optimizer (rewrites process plans us-
ing rule-based and workload-based optimization techniques),
Dispatcher (decides on the most efficient target integra-
tion system), and Deployer (deploys generated process de-
scriptions into the target integration systems). Finally, the
framework comprises a Repository component that is used
as a system dictionary. Hence, it handles configuration man-
agement, meta data management, model repository func-
tionalities and persistence. In the following, we focus only
on the Transformer (generation perspective) and the Opti-

mizer (optimization perspective).
The Transformer subcomponent is responsible for model-

model transformations (e.g., A-PSM to ETL PSM), model-
DPD unparsing (generation of product-specific description)
and DPD-model parsing (reverse engineering). The model-
model transformations are bidirectionally realized with triple
graph grammars, where a correspondence graph is modeled
between two meta models. The model-DPD transforma-
tions are realized using platform-specific and dialect-specific
text templates, which contain placeholders for structured
and atomic values. In order to generate a DPD, the algo-
rithm iterates over the PSM XML representation, and for

repos

api GCIPFactoryIModelManager

GCIP GUI Commandline External
applications

store Config Store Meta Store Model Store

core

GCIPGenerator

Transformer DispatcherOptimizer

configuration
properties PSMA-

PSMPIM DPD

a) platform models
b) transformation

stylesheets
c) DPD templates concrete model instances

ConfigManager Registry / Metadata
Management Model Repository

System Dictionary

Deployer

Figure 2: GCIP Framework Macro-Architecture

each element, the correlated templates are loaded, place-
holders are recursively replaced, and finally, the root tem-
plate is stored as DPD. In contrast to this, the platform-
and dialect-specific DPD parser has been generated with
the JavaCC tool (based on supplied grammars). It allows
parsing text-based DPDs to the structured models.

Furthermore, the Optimizer allows for process plan rewrit-
ing on A-PSM level, which can be influenced with hints,
policies and given workload and execution statistics. Ba-
sically, a process plan P can be rewritten to a more effi-
cient process plan P ′. Therefore, the Optimizer first exe-
cutes a preprocessing chain including control flow analysis,
data flow analysis and the successive dependency analysis.
Here, the A-PSM is transformed into a process plan (spe-
cialized node) using the Processplan Parser. There, also a
dependency graph is generated. Then, the Core Optimizer

uses the rule-based and workload-based optimizer in order
to apply the defined optimization techniques (see Figure 4).
Those techniques use the Processplan Rewriter—which is
aware of the created dependency graph—to rewrite the given
process plan. While the rule-based techniques use defined
triples (search pattern, anomaly definition, rewrite pattern),
the workload-based techniques are more complex. Here, the
Estimator component predicts the costs of a process plan
and its nodes. Therefore, we use our defined cost and work-
load model. Note that we provide an interface for workload
statistics propagation by the target integration system. Fur-
ther, the Optimizer periodically re-optimizes the given pro-
cess plans, with the aim of adapting to changing workload
characteristics. Finally, the Processplan Unparser serial-
izes the rewritten process plan in order to deploy it into the
target integration system.

In conclusion, the GCIP Framework allows the generation
of complex integration processes for the specific platform
models of FDBMS, ETL tools and EAI servers. During this
generation, integration processes can be optimized with dif-
ferent optimization techniques. Furthermore, the framework
can be extended in order to support new integration system
types or DPD dialects. However, further research work is
required to realize full round-trip engineering capabilities
and to ensure the creation of robust integration processes
(functional as well as performance aspects).

1129

(a) UML PIM

Invoke (cs1)

Assign

Assign

Assign

Invoke (cs2)

Invoke (cs3)

[out: msg1]

[in: msg1
out: msg2]

[in: msg2
out: msg3]

[in: msg3]

[in: msg2
out: msg4]

[in: msg4]

(b) APSM

Invoke (cs1)

Fork

Assign Assign

Assign

Invoke (cs2) Invoke (cs3)

[in: msg1
out: msg2]

[out: msg1]

[in: msg2
out: msg4]

[in: msg2
out: msg3]

[in: msg4][in: msg3]

(c) Optimized A-PSM

Copy

Step

[type: table input]

StepStep

[type: table output][type: table output]

(d) ETL PSM (e) PDI DPD

Figure 3: Generation and Optimization Example (PIM, APSM, Optimized APSM, PSM, DPD)

3. GENERATION APPROACH
The main generation approach comprises four different

levels of abstraction. At the highest abstraction level, inte-
gration processes are represented with platform-independent
models (PIM) specified with graphical process description
languages like UML activity diagrams or BPMN diagrams.
These models can be imported into the GCIP Framework.
During this import, the PIM is transformed into an ab-
stract platform-specific model (A-PSM). This model is the
normalized representation for further generation and opti-
mization. The concrete A-PSM models are visualized using
the Graphviz DOT language. Note that such a central rep-
resentation reduces the transformation complexity between
different platform-independent representations and different
platform-specific representations. From this central repre-
sentation, several platform-specific models (PSM) can be
generated (system-type-specific) using the defined platform
models (PM). Currently, the GCIP Framework supports the
generation of integration processes for the system types Fed-
erated DBMS, ETL tools, and EAI servers. For instance, in
the case of the PSM for Federated DBMS, an XML represen-
tation of a stored procedure is created. The major challenge
when doing so lies in the structural changes (due to differ-
ent execution models) between the A-PSM and the different
PSMs. Based on the generated PSM (for an integration sys-
tem type category), different declarative process descriptions
(DPD) can be generated, which are system-specific represen-
tations of an integration process. Here, for instance, SQL-
server-specific stored procedures using the specific TSQL di-
alect are generated. Finally, the model-driven generation
overcomes the problems of high development effort and low
portability of integration processes.

In order to make this generation approach more under-
standable let us assume a concrete example.

Example 1. Figure 3 illustrate an example platform-in-
dependent integration processes using a UML activity dia-
gram. Here, orders are extracted from a data warehouse and
inserted into two physical separated data marts without any
schema mapping. Then the PIM is imported into the GCIP
Framework, where the central A-PSM (see Figure 3(b)) is
created. From this model, we generate a platform-specific
model for ETL (see Figure 3(d)). Clearly, this model is
platform-specific (ETL, in this case) but not system-specific.
Note the structural difference between the instance-based ab-
stract PSM (A-PSM) and the pipes and filter model used
for the ETL PSM. Finally, we can generate the declarative
process description for the concrete ETL tool Pentaho Data
Integration (PDI) (see Figure 3(e) for a screenshot).

4. OPTIMIZATION APPROACH
Similar to declarative expressions, the model-driven gen-

eration opens several opportunities for integration process
optimization. Here, we apply rule-based and workload-based
optimization techniques on the A-PSM level. This is advan-
tageous due to a single point of normalization and optimiza-
tion. An overview of these optimization techniques is illus-
trated in Figure 4. In general, some techniques have been
adapted from the areas of database systems and compiler
construction and some are specific to the context of inte-
gration processes. While the rule-based optimization tech-
niques are only applied during the initial optimization, the
numerous workload-based optimization techniques are based
on monitored workload and execution statistics (execution
times, cardinalities). Hence, those are applied during peri-
odical re-optimization within a feedback loop between our
GCIP Framework and the used integration system.

With the aim to make this optimization approach more
understandable we revisit our used generation example.

Example 2. The initially created A-PSM P from Fig-
ure 3(b) can be optimized to a more efficient A-PSM P ′

that is illustrated in Figure 3(c). This decision is made
based on monitored workload statistics W (P), the defined
cost model and estimated workload statistics W (P ′) with

W (P ′) = C(P ′)
C(P)

·W (P). Here, the techniques WC2: Rewrit-

ing Sequences to Parallel Flows, and WC1: Rescheduling
Start of Parallel Flows are used. We can rewrite the se-
quence of operators to two concurrent subflows because there
is no data dependency between subsets of those operators.

Finally, the GCIP Framework supports the visualization
of estimated costs and applied optimization techniques. Thus,
our demo will include a detailed presentation of the integra-
tion process optimization approach.

Workload-based Techniques

Rule-based Techniques

Data Flow Control Flow

Reordering of Switch-Paths (WD1)
Merging of Switch-Paths (WD2)

Execution Pushdown to Extern Systems (WD3)
Early Selection Application (WD4)

Early Projection Application (WD5)
Early GroupBy Application (WD6)

Materialization Point Insertion (WD7)
Orderby Removal (WD8)

Join-Type Selection (WD9)
Join Enumeration (WD10)

Setoperation-Type Selection (WD11)
Spliting / Merging of Operators (WD12)

Precomputation of Values (WD13)
Early Translation Application (WD14)

(WC1) Rescheduling Start of Parallel Flows
(WC2) Rewriting Sequences to Parallel Flows
(WC3) Rewriting Iterations to Parallel Flows
(WC4) Rewriting Parallel Flows to Sequences

(WM1) Access to Extracted Single Values
(WM2) Reuse of Locally Created Static Content
(WM3) Reuse of Externally Loaded Content

Double Variable Assignment Removal (RD1)
Unnecessary Variable Assignment Removal (RD2)
Unnecessary Variable Declaration Removal (RD3)

Two sibling Translation Operation Merging (RD4)
Two Sibling Validation Merging (RD5)

Unnecessary Switch-Path Elimination (RD6)

(RC1) Redundant Control Flow Rewriting
(RC2) Unreachable Subgraph Elimination
(RC3) Local Subprocess Invocation Elimination
(RC4) Static Node Compilation

Figure 4: Available Optimization Techniques

1130

Figure 5: GCIP Framework GUI Screenshot

5. DEMONSTRATION DETAILS
Basically, we will demonstrate two perspectives of our

GCIP Framework—the generation and the optimization (see
Figure 5 for a screenshot of the A-PSM from the previous
examples)—using the defined DIPBench process types [2,
3] as example process types. Here, we will use specific in-
tegration systems from the categories of Federated DBMS,
ETL tools and EAI servers. In general, we want to discuss
benefits and problems that arise in the context of the gener-
ating and optimizing integration processes. Therefore, our
demonstration will include the following issues in the form
of an interactive example scenario:

A) Introduction to the research area of integra-
tion processes: First, we will briefly discuss the evolving
research area of integration processes, including typical pro-
cess types. There, we will emphasize the specific character-
istics and major research challenges of this field with regard
to modeling as well as execution.

B) Explanation of platform-independent model-
ing: Then, we will explain the platform-independent mod-
eling of integration processes with UML activity diagrams
(see Figure3(a)) and BPMN process specifications. This will
include pre-defined integration processes as well as live mod-
eling from scratch.

C)Explanation of the model-driven generation: Af-
terwards, we will present our overall model-driven gener-
ation approach including our developed GCIP Framework
architecture. We will show (similar to Example 1) how
to transform an interactively modeled platform indepen-
dent model (PIM) to an abstract platform-specific model
(A-PSM), how to create subsequently the platform-specific
models (PSM), and how to finally generate the declarative
process descriptions (DPD).

D) Discussion of optimization aspects: Subsequently,
we will discuss (1) how traditional techniques of distributed
query optimization were adapted to the context of integra-
tion processes, (2) which optimization techniques are specific
to the characteristics of integration processes (different oper-
ators, different execution models, and separation in control
flow and data flow), and (3) the application of optimization
techniques and the evaluation using the DIPBench toolsuite
and its monitoring component [3]. This will demonstrate
the benefit of the available optimization techniques.

E) Description of open research challenges: Aside
from the demonstration of our approach and the GCIP Frame-

work, we want to point out open research challenges and
want to discuss how these could be addressed. From our
point of view, open research challenges are (a) the selection
of the optimal integration system (invisible deployment), (b)
the throughput maximization (vectorization, multi-process
optimization), and (c) the multi-dimensional optimization
(including dimensions such as performance and quality).

6. SUMMARY AND CONCLUSION
The three major problems within the area of integra-

tion processes are high development effort, low portabil-
ity, and, particularly important, inefficiency. To overcome
these problems, we have introduced our GCIP Framework
(Generation of Complex Integration Processes), employing
the model-driven generation and optimization of integration
processes for different integration systems. Moreover, we
have introduced our rule-based and workload-based opti-
mization techniques. The significance of the proposed GCIP
Framework is based on the fact that it is the first compre-
hensive solution addressing the generation and optimization
of integration processes for different types of integration sys-
tems (FDBMS, ETL, EAI). In general, we want to use the
EDBT demonstration desk as a forum to discuss the chal-
lenging research area of integration processes.

Our vision of invisible deployment is based on the hy-
pothesis that a typical IT infrastructure comprises many
integration systems with overlapping functionalities. Thus,
the goal is to determine the most efficient integration system
for a given process plan P . Here, we want to achieve trans-
parency of the used integration systems, providing central
deployment capabilities. For that vision, the generation and
optimization perspectives are preconditions but many other
challenging research issues and problems still exist.

7. REFERENCES
[1] A. Albrecht and F. Naumann. Managing etl processes. In

Workshop New Trends in Information Integration (NTII),
2008.

[2] M. Böhm, D. Habich, W. Lehner, and U. Wloka. Dipbench:
An independent benchmark for data intensive integration
processes. In IIMAS, 2008.

[3] M. Böhm, D. Habich, W. Lehner, and U. Wloka. Dipbench
toolsuite: A framework for benchmarking integration
systems. In ICDE, 2008.

[4] M. Böhm, D. Habich, W. Lehner, and U. Wloka.
Model-driven generation and optimization of complex
integration processes. In ICEIS, 2008.

[5] M. Böhm, D. Habich, U. Wloka, J. Bittner, and W. Lehner.
Towards self-optimization of message transformation
processes. In ADBIS, 2007.

[6] S. Dessloch, M. A. Hernandez, R. Wisnesky, A. Radwan,
and J. Zhou. Orchid: Integrating schema mapping and etl.
In ICDE, 2008.

[7] Z. G. Ives, A. Y. Halevy, and D. S. Weld. Adapting to
source properties in processing data integration queries. In
SIGMOD, 2004.

[8] H. Li and D. Zhan. Workflow timed critical path
optimization. Nature and Science, 3(2), 2005.

[9] A. Simitsis, P. Vassiliadis, and T. Sellis. Optimizing etl
processes in data warehouses. In ICDE, 2005.

[10] U. Srivastava, K. Munagala, J. Widom, and R. Motwani.
Query optimization over web services. In VLDB, 2006.

[11] M. Vrhovnik, H. Schwarz, O. Suhre, B. Mitschang,
V. Markl, A. Maier, and T. Kraft. An approach to optimize
data processing in business processes. In VLDB, 2007.

1131

	Introduction and Motivation
	GCIP Framework Architecture
	Generation Approach
	Optimization Approach
	Demonstration Details
	Summary and Conclusion
	References

