
A Data Damage Tracking Quarantine and Recovery (DTQR)
Scheme for Mission-Critical Database Systems

Kun Bai, Peng Liu

College of IST
The Pennsylvania State University

University Park, PA 16802
kbai@ist.psu.edu

College of IST
The Pennsylvania State University

University Park, PA 16802
pliu@ist.psu.edu

ABSTRACT
Database security research aims to protect a database from
unintended activities, such as authenticated misuse, mali-
cious attacks. In recent years, surviving DBMS from an at-
tack is becoming even more crucial because networks have
become more open and the increasingly critical role that
database servers are playing nowadays. Unlike the tradi-
tional database failure/attack recovery mechanisms, in this
paper, we propose a light-weight dynamic Data Damage
Tracking, Quarantine, and Recovery (DTQR) solution. We
built the DTQR scheme into the kernel of PostgreSQL. We
comprehensively study this approach from a few aspects
(e.g., system overhead, impact of the intrusion detection sys-
tem), and the experimental results demonstrated that our
DTQR can sustain an excellent data service while healing
the database server when it is under a malicious attack.

1. INTRODUCTION
Database Damage Management (DDM), especially trans-

parent Database Data Damage Tracking, Quarantine and
Recovery (DTQR), is an important problem faced by a great
number of mission/life/business-critical applications. These
applications are the cornerstones of a variety of crucial in-
formation systems (e.g., banking, online stock trading, and
air traffic control, etc) that must manage risk, business con-
tinuity, and data assurance in the presence of severe cyber-
attacks. Today, many of the nation’s critical infrastructures
(e.g., financial services, telecommunication infrastructure,
transportation control) rely on these crucial information sys-
tems to function. Although computer security research has
achieved a significant progress in protecting applications and
systems, mission/life/business-critical applications still ex-
pose a large amount of vulnerabilities to the public, which
eventually leads to severe malicious attacks. Furthermore,
due to data sharing, interdependencies, and interoperabil-
ity between business processes and applications (e.g., the
emerging Web Services), the hit could greatly magnify its

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

damage by causing catastrophic cascading effects, which
may “force” an application to shut down itself for hours or
even days before the application is recovered from the hit.
In addition, because not all intrusions can be prevented,
DTQR is an indispensable part of the corresponding secu-
rity solution, and the quality of DTQR scheme may have
significant impact on risk management, business continuity,
and data assurance. Hence, these mission/life/business crit-
ical applications highly demand a high quality transparent
damage quarantine and recovery scheme.

Existing database security research primarily focuses on
vulnerability assessments against the database (e.g., static
and dynamic identification of vulnerability holes) and multi-
layers of information security (e.g., access control, authen-
tication, integrity constraints, etc). However, since vulnera-
bility cannot be completely removed from a system, success-
ful attacks often occur and cause damage to the database
system. Authorization/authentication based database pro-
tection mechanisms are an effective means to providing safe
data access, but are very limited in dealing with authen-
ticated misuse, malicious attacks or inadvertent mistakes
made by authorized individuals. In addition, such mecha-
nisms cannot handel the data corruption problem and do not
deal with the problem of malicious transactions. Conven-
tional failure recovery mechanisms do not defend the DBMS
against some new threats that have come along with the rise
of Internet, both from external source, e.g., SQL Slammer
Worm [7], SQL Injection [18], as well as from malicious in-
siders. As we will explain shortly in section 3, once a DBMS
is attacked, the damage (data corruption) done by these ma-
licious transactions has severe impact on the DBMS because
not only is the data they write invalid (corrupted), but the
data written by all transactions that read these data may
likewise be invalid. In this way, legitimate transactions can
accidentally spread the damage to other innocent data (e.g.,
the damage spreading example shown in Figure 1).

There are several research projects conducted to tackle the
emerging data corruption threats. However, they are still
quite limited in meeting the following highly desired require-
ments: (R1) near zero run time overhead, (R2) zero system
down time, (R3) non-block for read-only transactions, (R4)
minimal delay time for read-write transactions. As a re-
sult, these proposed approaches introduce three apparent
issues: 1) substantial run time overhead, 2) long system
outage, 3) substantial legitimate work loss. To overcome
the above limitations, we propose TRACE, a zero system
down time database data damage tracking, quarantine, and

720

recovery solution with negligible run time overhead. The
service outage is minimized by (a) cleaning up the compro-
mised data on-the-fly, (b) using multiple versions to avoid
blocking read-only transactions, and (c) doing damage as-
sessment and damage cleansing concurrently to minimize
delay time for read-write transactions. Moreover, TRACE
uses a novel tagging scheme to track causality without the
need to log read operations. In this way, TRACE has near
zero run time overhead. We build TRACE prototype into
the DBMS kernel of PostgreSQL, which is currently the most
advanced open-source DBMS with transaction support, not
layered on top as ITDB[1]. In summary, TRACE is the
first integrated transparent database tracking, quarantine,
and recovery solution that can simultaneously satisfy all the
four highly desired requirements shown above.

The rest of the paper is organized as follows. We de-
scribe in section 2 the related work. Section 3 describes
some threats TRACE intends to handle and the problem
statement. Section 4 overviews the key ideas of TRACE and
introduces how we develop TRACE in PostgreSQL database
system. Section 5 demonstrates the experimental results of
our TRACE system in comparison with current recovery
mechanisms. Finally, section 6 summarizes what we have
done and mentions our future work.

2. RELATED WORK
Fault tolerant approaches are recently proposed to survive

a database from attacks and system flaws. A color scheme
for marking damage and a notion of integrity suitable for
partially damaged databases are proposed in [2] to develop
a mechanism by which databases under attack could still
be safely used. For traditional database systems, Data ori-
ented attack recovery mechanisms [19] recover compromised
data by directly locating the most recent untouched ver-
sion of each corrupted data, and transaction oriented attack
recovery [14] mechanisms do attack recovery by identify-
ing the transactions that are affected by the attack through
read-write dependencies and rolls back those affected trans-
actions. Some work on OS-level database survivability has
recently received much attention. For instance, in [4], check-
sums are smartly used to detect data corruption. Storage
jamming [16] is used to seed a database with dummy val-
ues, access to which indicates the presence of an intruder.

There are fundamental differences between failure recov-
ery and attack recovery. The problem of damage quarantine
and recovery problem cannot be solved by failure recovery
techniques which are mature in handling random failures.
Failure recovery in general assumes the semantics of fail-
stop. When a disk fails (media failure), most traditional
recovery mechanisms (media recovery) focus on recovering
the legitimate state of the database to its most recent state
upon system failure by applying backup load and redo re-
covery [5]. Unlike a media failure, a malicious attack cannot
always be detected immediately. The damage caused by the
malicious/erroneous transactions is pernicious because not
only is the data they touch corrupted, but the data written
by all transactions that read this data is invalid. Failure re-
covery intuitively assumes that all transactional operations
have equal rights to be recovered. Removing inconsistency
induced by malicious transactions is usually based on the re-
covery mechanisms [17], in which a backup is restored, and a
recovery log is used to roll back the current state. The usual
database recovery techniques to deal with such corrupted

data are costly to perform, introducing a long system out-
age while the backup is used to restore the database. Thus it
can seriously impair database availability because not only
the effects of the malicious transaction but all work done by
the transactions committed later than the malicious trans-
action are unwound, e.g., their effects are removed from the
resulting database state. These transactions then need to
be re-submitted in some way (i.e. redo mechanisms) so as
to reduce the impact onto the database. Checkpoint tech-
niques [12] are widely used to preserve the integrity of data
stored in databases by rolling back the whole database sys-
tem to a specific time point. However, all work, done by
both malicious and innocent transactions, will be lost.

Previous work[1, 2, 3, 13, 14, 19] of attack recovery heav-
ily depends on exploiting the system log to find out the
pattern of damage spreading and schedule repair transac-
tions. The analysis of system log is very time consuming
and hard to satisfy the performance requirement of on-line
recovery. The dynamic algorithm proposed in [1] leaks dam-
age to innocent data while repairing the damage on-the-fly.
In addition, these existing DTQR mechanisms are limited
in satisfying the four requirements mentioned in section 1.
Here we briefly summarize some main limitations of three
representative database DTQR solutions [1, 8, 15]. In ITDB
[1], a dynamic damage (data corruption) tracking approach
is proposed to perform on-the-fly repair. However, it needs
to log read operations to keep track of inter-transaction
dependencies, which causes significant run time overhead.
This method may initially mark some benign transactions
as malicious thus preventing normal transactions access the
data modified by them, and it can spread damage to other
innocent data during the on-the-fly repair process. As a re-
sult, requirement R1 cannot be satisfied. In [8], an inter-
transaction dependency graph is maintained at run time
both to determine the exact extent of damage and to ease the
repair process and increase the amount of legitimate work
preserved during an attack. However, it does not support
on-the-fly repair which results in substantial system outage.
As a result, requirement R2 cannot be satisfied. In [15],
another inter-transaction dependency tracking technique is
proposed to identify and isolate ill-effects of the malicious
transactions. In order to maintain the data dependency,
this technique also needs to record a read log, which is not
supported in existing DBMS and will pose a serious per-
formance overhead . Additionally, it only provides off-line
post-corruption database repair.

3. PRELIMINARIES AND PROBLEM
STATEMENT

3.1 The Threat Model
In this paper, we deal with the data corruption prob-

lem caused by transaction level attacks in database systems.
Transaction level attacks are not new. They have been stud-
ied in a good number of researches [2, 8, 22]. Transaction
level attacks can be done through a variety of ways:

• First, the attacks can be done through identity theft
related fraudulent transactions. The fraudulent trans-
action is executed from within a valid user session,
stronger user authentication on its own does not pro-
tect against these forms of attack.

• Second, the attacks can be done through erroneous

721

Tim
e

t0 T(b) commits

t1 T(12) commits

t2 T(23) commits
t3 T(32) commits

H= T(b)...T(12), T(13),…,T(23),...T(32),…...

T(b) : R[x]W[x]
T(12) : R[x]R[y]W[y]
T(23) : R[y]R[z]W[z]
T(32) : R[x]R[u]R[v]W[v]W[u]

Database

T(12)

T(23)

T (3 2)

Transaction read-write set

Transaction history

Corrupted data object set [x, y, z, u, v]

Figure 1: An Example of Damage Spreading

transactions issued by legitimate insiders due to mis-
takes. This kind of human errors can not be avoided
completely because of the human nature.

• Third, the attacks can be done through web applica-
tions. Among the OWASP top ten most critical web
application security vulnerabilities [18], five out of the
top 6 vulnerabilities can directly enable the attacker to
launch a malicious transaction, which can potentially
corrupt the critical data stored in database. We list
three top ranked vulnerabilities as follows.

1. Unvalidated Input - Information from web requests
is not validated before being used by a web ap-
plication. Attackers can use these flaws to at-
tack backend components through a web applica-
tion. Note that a major backend component is
the database server, and a major way to attack a
database server is to launch a malicious transac-
tion.

2. Cross Site Scripting (XSS) Flaws - The attacker
can first do a cross-site-scripting attack; then gain
the user name and password of an account through
the cookies he steals. Next, the attacker logs in
an e-commerce site using the stolen user name
and password; third, the attacker can issue a ma-
licious transaction.

3. Injection Flaws - Through a SQL injection at-
tack, the attacker can easily launch a malicious
transaction.

Note, we use “attack” to denote both the malicious attacks
and human errors.

3.2 Basic Concepts
In this section, we formally describe the problems TRACE

intends to solve. When a database is under an attack,
TRACE needs to do: 1) identify corrupted data objects ac-
cording to the damage causality information maintained at
run time, and 2) carry out cleansing process to “clean up”
the database on-the-fly. Here, the cleansing process includes
damage tracking, quarantine, and repair.

3.2.1 Database Model
A database system is a set of data objects, denoted as

DB={o1, o2, . . . , on}. A transaction Ti is a partial order
with ordering relation ⊳i [5], where

1. Ti ⊆ {(ri[o
x], wi[o

x]) | ox is a data object} ∪(ai, ci);

2. if ri[o
x], wi[o

x] ∈ Ti, then either ri[o
x] ⊳i wi[o

x], or
wi[o

x] ⊳i ri[o
x];

3. ai ∈ Ti iff ci /∈ Ti.

and r,w,a,c relate to the operation of read, write, abort, and
commit, respectively. The (usually concurrent) execution
of a set of transactions is modeled by a structure called a
history (system log). Formally, let T = {T1, T2, . . . , Tn} be
a set of transactions. A complete history H over T is a
partial order with ordering relation ⊳H , where:

1. H = ∪n
i=1Ti;

2. ⊳H⊇ ∪
n
i=1 ⊳i.

3.2.2 Dependency Relations
To accomplish the two tasks, TRACE relies on correctly

analyzing some specific dependency relationships. We first
define the following two relations.

Definition 1. Basic preceding relation: Given two
transaction Ti and Tj , if transaction Ti is executed before
Tj, then Ti precedes Tj, which we denote as Ti ⊳ Tj. Note,
we assume strict 2PL scheme is applied as in most of the
commercial DBMSs.

Definition 2. Data dependency relation: Given any
two transactions Ti ⊳ Tj, if (WTi

−
⋃

Ti⊳Tk⊳Tj
WTk

)∩RTj
6=

∅, then Tj is dependent on Ti, which is denoted as Ti → Tj.
We use RT and WT to denote the read set and the write set
of transaction T . If there exist transactions T1, T2, ..., Tn, n ≥
2, that T1 → T2 →, ..., Tn, then we denote it as T1 →

⋉ Tn.

Now, we give the definition of two types of data corrupting
transaction that are studied in this work.

Definition 3. Malicious transaction: A transaction
T whose write set WT contains invalid data objects due to
malicious intent or bad user inputs is a malicious transac-
tion, denoted as Tb.

Definition 4. Affected transaction: A transaction Tj

that reads data objects updated by a malicious transaction Tb

or by an affected transaction Ti that depends upon the up-
dates of the malicious transaction Tb, formally RTj

∩WTb
6=

∅ or RTj
∩WTi

6= ∅, is an affected transaction.

We denote a data object updated by a malicious trans-
action or an affected transaction as an invalid (corrupted)
data object. Otherwise, it is a valid data object.

Example 1. For example, given the transaction Ti : oc =
oa + ob, RTi

= {oa, ob} and WTi
= {oc}; the transaction Tj:

of = od + oc, RTj
= {oc, od}, WTj

= {of}. Obviously,
we have Ti → Tj because transaction Tj reads the data ob-
ject oc written by transaction Ti. If data objects (e.g., oc)
contained in the write set WTi

are corrupted, write set WTj

is affected because of the dependency relation of Ti and Tj,
RTj
∩WTi

=oc.

If a transaction is malicious and makes the database state in-
valid, the entire effects of the transaction are invalid. There-
fore, all updates to the data objects the transaction is writ-
ing are invalid. Based on above statements, we have, as
shown in Figure 1, Tb → T12 → T23, T12 ⊳ T13, Tb → T32.
If Tb is a malicious transaction, transaction T12 and T32 are
affected directly (T23 is affected indirectly via T12) and the
data objects updated by T12, T23, andT32 are invalid. Trans-
action T12, T23, and T32 are legitimate (good) transactions.

722

3.3 Problem Statement
How to satisfy the four requirements listed in Section 1

without violating the following correctness criteria? To guar-
antee the correctness of TRACE, we define the correctness
criteria.

Definition 5. Correctness Criteria: When TRACE
accomplishes its two tasks, the result is flawless if and only
if the following conditions are satisfied:

1. ∀ identified invalid data object ox ∈ DB are restored to
its latest pre-corruption state, which is a valid state;

2. ∄ invalid data object ox is accessed by normal transac-
tions (no damage leakage).

In particular, while ensuring the correctness, R1 requires
that tracking data dependencies between transactions must
not cause notable run time overhead. R2 indicates that
the system (i.e., the database server) can never be stopped
during damage tracking, quarantine, and repair. R3 indi-
cates that read-only transactions (e.g., database queries)
should not experience noticeable throughput degradation in
the presence of data corruption attacks. R4 indicates that
the damage propagation tracking operations, the damage
quarantine operations, and the damage repair operations
must be concurrently performed and synchronized in a fine-
grained manner. In this way, the waiting time (or delay
time) of read-write transactions may be minimized.

4. THE APPROACH
TRACE has two working modes, the standby mode and

the cleansing mode. If no data corruption is reported by
Intrusion Detection System (IDS), TRACE works in the
standby mode and is invisible to the incoming transactions
which are executed normally. If the IDS raises an alarm,
TRACE will be activated and works in the cleansing mode to
execute quarantine/assessment/cleansing procedures. Fig-
ure 2 illustrates the workflow of TRACE system. We use
“cleansing” rather than “recovering” throughout this paper
to emphasize the additional feature of our approach, which
preserves the legitimate data in the process of restoring the
database back to the consistent status in the recent past.

In the following sections, we overview our approach that
enables TRACE system to meet the desired requirements.
To build the TRACE that offers the feature of identify-
ing/cleansing the corrupted data objects and meets the four
requirements, we make several changes to the source code
of the standard PostgreSQL 8.1 database [21].

4.1 Assumptions
When a DBMS is attacked, data corruption can be de-

tected by a good number of existing intrusion detection (ID)
techniques [6, 9, 11, 20, 23]. Although ID techniques and
tools cannot do the damage tracking/quarantine/cleansing
work, intrusion detection is a basic component of any in-
trusion recovery solution. In TRACE, we adopt the fol-
lowing work [6, 20] into our solution. All these techniques
experience certain false positive rate and detection latency.
Usually, the longer time the IDS spends, the more accu-
racy the IDS can achieve, however, the more damage the
database has to suffer. Additionally, since false positives
can mislead TRACE to revert updates done by innocent
transactions, TRACE may need to get a data corruption

Pa
rs
er QuarantineY e s Audits/Logs

DB

Sc
he

du
le
r

Yes

Online

NO

tra
ns

ac
tio

ns

Intrusion Detection/DBA

Identified malicious transactions

Active Transaction Queue

Assessment/
De-quarantine

Cleansing
Submit undo(T)

Execute

Ready

Causality
Table

Figure 2: The TRACE System Workflow

TAG PIDTSORIGINS
0x0000100100610----

T(12) 0x0000110100710T(b)
...

T(23) 0x0000231200890T(12),T(b)
…

T(32) 0x0000240101102T(b)
T(32) 0x0000240101102T(b)

T(b)

Figure 3: An Example of the Causality Table Con-

struction

alarm verified to avoid unnecessarily cleansing any legiti-
mate data records. Verifying a data corruption alarm is not
always a difficult thing, e.g., by techniques such as storage
jamming [16], checksum based corruption verification [4], or
by a Database Administrator (DBA) who understands the
applications being served by the database [15]. However,
verification of a data corruption alarm can be time consum-
ing. If the reporting delay is significant, more transactions
in the system will be affected, which needs more efforts to
make the cleansing done. We assume no blind write is per-
formed in the database.

4.2 The Standby Mode
In the standby mode, TRACE uses a simple but efficient

tagging scheme to transparently maintain the data depen-
dency information at run time. The tagging idea is that
we construct a one-to-many mapping from a tiny n-bits tag
to a set of data objects. A tag is a unique n bits attached
to a data object to indicate its origin. An origin is a data
object’s ancestor indicating who creates/updates it. In this
work, we set the tag at the record level and use a transac-
tion id as the tag of a data record. We maintain in Causality
Table (CT) (Figure 3) the inter-transaction dependencies to
perform the damage tracing. Figure 3 shows the creation
of Causality Table entries of the damage spreading example
in Figure 1. In each CT entry, the field TAG has transac-
tion id (xid is used in PostgreSQL) as the key of the entry.
The field ORIGINS is a set of tags (xidi) indicating a data
record’s origins. The field TS (timestamp) tells when the
entry (data record) is created (updated). This field is filled
when the corresponding transaction commits. The field PID
(page id) tells where TRACE can look up for the correspond-
ing data record (in memory or in stable storage).

TRACE creates an entry for each created/updated data
record in CT. A data record may have multiple origins (a
origin set) because it can be updated a number of times in its
life time. The basic damage tracing idea is that if a trans-

723

action Ti reads a data record that is created/updated by
transaction Tj , all data records updated by transaction Ti

have tag Tj as one of their origins. If a tag has been identi-
fied as corrupted (or affected), all data records whose origin
set has the tag are also believed as corrupted. Without blind
writes, a data object’s origin set will contain every tag that
has last updated the data object. During the normal trans-
action processing, the origin set of each data object in CT
does not have a complete origins. This will be fulfilled in the
damage assessment procedure, namely origin construction.

Damage
Assessment
Manager

db page table

page table

data pages

pa
ge

 0
pa

ge
 1

pa
ge

 2
pa

ge
 3

pa
ge

 4
pa

ge
 5

…...

Stable storage

Page Cache

Y
origins page id
T1 page 0
T3 page 3

T3,T4 page 4
T6 page 5

…….. ……..

Marked as dirty pageL o a
d

Ti
m
e

null

De
te
ct
io
n
W
in
do

wY1

Y2

Y3

Yi
……..
Y4X

Z

Undo/Redo

calculate corrupted set C in memory

Repair
Manager

Re
do

 lo
g 0

Re
do

 lo
g 1

Re
do

 lo
g 2

…...

Re-compute

Malicious
transaction
commits at
timestamp
TS(B)

Causality Log

Quarantine window

Da
ta

rec
ord

 0
Da

ta
rec

ord
 1

Da
ta

rec
ord

 2
Da

ta
rec

ord
 3

Da
ta

rec
ord

 4
Da

ta
rec

ord
 5

…...

R5 R8

R1
0

Da
ta

rec
ord

 6
Da

ta
rec

ord
 7

Da
ta

rec
ord

 8
Da

ta
rec

ord
 9

 D
ata

 re
co
rd

10
 D
ata

 re
co
rd

11

R5 R
8

 R
10 ...

copy

Repair data set S

Checkpoint, timestamp ts
repair

Clean data

Damaged data

Fixed data

Legend

Unknown data

Corrupted data set C

Figure 4: Identify/Repair Corrupted Data Records

Overview

In Figure 3, we assume that the malicious transaction Tb

has no origin and calculates based on local inputs. The
entry T12 has the tag Tb in its origin field. The complete
origins set of transaction T23 is {T12, Tb} according to the
example in Figure 1. Since T12 and T23 have Tb in their
ORIGINS, data records attached with tag T12 and T23 are
also invalid. Similarly, entries tagged with T32 are invalid
too. TRACE tagging scheme additionally uses eight byte
timestamp to indicate when the transaction last updates the
data record and one extra bit in the record header to denote
a data record dirty/clean status. Thus, we need to modify
the data structure of the data record defined in PostgreSQL.
Each time a data record is updated by a transaction, the
associated tag is accordingly updated.

Causality table process generally has three steps related
to the transaction begin, transaction in process, transaction
commits.

• Transaction Begin. A Causality table entry is gener-
ated for a data record when a transaction starts. Ini-
tially, the transaction identifier is assigned and entered
into the TAG and TS fields.

• Transaction In Process. New versions of data records
are generated during this period of time. When the
transaction reads a database record ox, it gets the
transaction id that last updated the data record and

obtains the page id. We add both of them into the
ORIGINS and PID in CT, respectively.

• Transaction Commit. At commit, we determine a times-
tamp for the transaction and store in the TS field in
CT. We then revisit updated data records and perform
a timestamping on each of the data records within the
transaction.

4.3 The Cleansing Mode
In the cleansing mode, TRACE uses the causality infor-

mation obtained in standby mode to identify and selectively
repair only the data corrupted by the malicious/affected
transactions on-the-fly. If the components doing damage
quarantine, damage assessment, valid data de-quarantine and
repairing on-the-fly are not well coordinated, then substan-
tial availability loss or deny-of-service can be experienced.
In the following, we overview how each cleansing operation
functions with the focus on how they coordinate with one
another to minimize the availability loss.

4.3.1 Damage Quarantine
Damage Quarantine is to prevent the normal transactions

from accessing any invalid data objects, and then stop dam-
age spreading and further reduce the repairing cost. When
malicious transactions are detected by IDS, TRACE imme-
diately sets up a time-based quarantine window qw (a time
interval between tsb and tsd). Here, tsb indicates the time
when the malicious transaction commits, and tsd indicates
the time when the data corruption is detected. TRACE
blocks an incoming transaction Ti if any data object’s times-
tamp tsoi

in the read set RTi
are contained in qw (shown in

Algorithm 1). Access to the data objects updated/created
earlier than the tsb will still be allowed. In general, after a
DBMS is attacked, majority data objects are still valid and
available. As a result, requirement R2 can be satisfied.

Algorithm 1: Damage Quarantine Pseudo Code

Input: tsb, tsd, Ti

begin1

qws ← tsb; qwe ← tsd;2

while oi ∈ RTi
do3

if tsoi
∈ [qws,qwe] then4

Deny the access of transaction Ti;5

else6

Grant the access of transaction Ti;7

end8

To implement the damage quarantine in PostgreSQL, we
modify the executor module source code. The plan tree of
PostgreSQL is created to have an optimal execution plan,
which consists of a list of nodes as a pipeline. Normally,
each time a node is called, it returns a data record. Starting
from the root node, upper level nodes call the lower level
nodes. Nodes at the bottom level perform either sequential
scan or index scan. We make changes to the function of the
bottom level nodes as well as the return results from the
root node. By default, the executor module of PostgreSQL
executes a sequential scan to open a relation, iterates over
all data records. We change the executor module to check
the timestamp attached to each data record while scanning
the data records in the quarantine phase. If a data record
satisfies the query condition and its timestamp is later than

724

the timestamp tsb, the executor knows the incoming trans-
action requests a corrupted data record. Therefore, it either
discards the return result from the root node or asks the
damage assessment and de-quarantine modules for further
investigation, and then puts the transaction to active trans-
action queue to wait.

4.3.2 Damage Assessment
Damage Assessment is to identify every corrupted data

contained in the quarantine window qw. When malicious
transactions are detected, TRACE starts scanning the causal-
ity table from the first entry whose tag (transaction id) is
the detected malicious transaction Tb, and then calculates
the corrupted data set C(Ti) up to the transaction Ti.

The abstract damage assessment algorithm (Algorithm 2)
includes two steps: 1) the IDS reports a malicious transac-
tion. The malicious transaction identifier (Tb) is the initial
tag of damaged data records. During scanning the causal-
ity table, TRACE knows it has found all data records cor-
rupted by the malicious transaction Tb when it encounters
an entry whose tag (tid) has an associated timestamp later
than the malicious transaction timestamp tsb. At this point,
TRACE obtains the initial corrupted data set C(Tb). 2)
Then, TRACE processes the causality table starting from
the entries whose origins set O contains the tag Tb. In gen-
eral, for each entry (a data record) in CT tagged with Tj

(transaction id tidj), if the entry’s origins set OTj
∩ CTi

6=
∅ (CTi

stands for the known corrupted transactions tids in
C up to Ti), TRACE puts the data records tagged with Tj

(tidj) into corrupted set C(Tj), and then adds Ti’s origins
set OTi

into Tj ’s origins set OTj
in CT (origin construction).

TRACE stops the assessment process when any one of the
following two conditions is true: a.) TRACE reaches the last
entry of CT; b.) TRACE reaches an entry whose timestamp
is equal to the time point when TRACE starts quarantine
procedure. For condition 2, any entry in CT beyond this
time point is valid because only transactions request access-
ing to valid data are allowed to execute after the quarantine
window is set up.

Algorithm 2: Damage Assessment Pseudo Code

Input: Tb, qwe

begin1

/*calculate the initial corrupted data object set
C(Tb) */

while oi ∈ CT do2

if (oi.ts < tsb) && (oi.mark==Tb) then3

oi → C(Tb);4

else5

break;6

/*calculate the corrupted data object set C(Ti) */
forall oj ∈ CT do7

if O
oj

Tj
∩ CTi

6= ∅ then8

oj → C(Tj);9

update OTj
with OTi

;10

if (∄ oj+1 ∈ CT) ‖ (tsoj+1
≥ qwe) then11

break;12

end13

We now describe how we modify PostgreSQL to achieve
damage assessment. We first review a feature of PostgreSQL,
namely multi-versioning system. When a data record is up-

dated the old versions are not removed immediately. In-
stead, PostgreSQL implements a versioning system by keep-
ing different versions of data records in the same tablespace
(e.g. in the same data page). Each version of a data record
has several hidden attributes, such as Xmin (the transaction
id xid of the transaction that generates the record version)
and Xmax (the xid of the transaction that either generates
a new version of this record or deletes the record). For ex-
ample, when a transaction Ti performs an update on a data
record ox, it takes the valid version v of ox, and makes a
copy vc of v. Then, it sets v’s Xmax and vc’s Xmin to the
transaction id xidi. A data record is visible by a transac-
tion if Xmin is valid and Xmax is not. Different versions
of the same data record are chained by a hidden pointer as
shown in Figure 4. TRACE uses these chained ‘before’ im-
ages to perform the calculation of the corrupted data record
set and online repair (addressed in section 4.3.4). To make
the hidden versions visible, we modify the index scan and
sequential scan functions in executor module of PostgreSQL
to identify the xid of transactions that generate (or delete)
data record versions which match our needs. Then TRACE
can go through the multi-version chain to find every histor-
ical version of a data record. In normal PostgreSQL opera-
tion, an update/delete of a data record does not immediately
remove the old version of the data record. A data record
may exist in multiple versions simultaneously. But eventu-
ally, when the disk space increasingly grows and outdated
data records are no longer of interest of any transaction,
the space they occupies must be reclaimed for reuse. Post-
greSQL deals with it by VACCUM function. To support
TRACE utilizing the multi-version data tuples, we set the
PostgreSQL to non-VACCUM database system.

To assess the damage, TRACE locates the data record
by the information stored in PID field in CT (for the de-
tails of page layout of PostgreSQL, we refer the reader to
[21]). If a data page is not in memory, TRACE loads the
data page containing the corrupted data record back into
the memory (as shown in Figure 4). Then, TRACE tra-
verses the associated data record version chain backwards
in time to identify every invalid data record version and the
valid data record version. As TRACE traverses the multi-
version chain, it marks every invalid version by setting the
dirty bit until it finds a data record version whose timestamp
is less than the malicious timestamp tsb. This version-data-
status-identification scheme is a simple but effective solution
to mark corrupted version data. We assume that all data
versions of the corrupted data records in the quarantine win-
dow are suspicious. Thus, these versions cannot be trusted
if there is no finer grained version-data-status-identification
scheme provided. We will address a finer grained scheme
in another paper. TRACE does not keep all invalid data
record versions in the corrupted data set C(Ti) and the re-
pair set Sr (on top of the Sr, we implemented a bloom filter
to do the member checking, which will facilitate the de-
quarantine procedure). For example, in Figure 4, the data
record Y3 is invalid because of malicious transactions and
then the version Y2 and Y1 are invalid. Thus, to identify
corrupt versions of data records, TRACE needs merely keep
the invalid version Y1 in Sr. The rest invalid data records
will be discarded.

4.3.3 Release the Valid Data
This procedure is to release the valid data records con-

725

tained in the quarantine window qw. The abstract algorithm
is listed in Algorithm 3. In parallel to damage assessment,
de-quarantine procedure starts to function as soon as either
over-contained valid data objects are identified or repaired
invalid data objects are available.

TRACE needs to gradually filter out real invalid data for
repairing and release valid data according to the following
rules. When a data record is requested by a newly submit-
ted transaction, 1) if the data record’s timestamp is later
than the malicious transaction timestamp tsb and this data
record is not included in repair set Sr, the access to it is de-
nied. In this situation, whether the data record is invalid or
valid remains unknown. The submitted transaction is put
into active transaction queue to wait until the data record’s
status is clear (e.g. the data record 11 in Figure 4). 2) If
the requested data record is in the repair set Sr and the
status is invalid (e.g., the data record 8, 10 (R8, R10) in
Figure 4), the access is not allowed. 3) If the data record is
in Sr and the status is valid (e.g., the data record 5 (R5)),
the data record has been fixed and is free to access. To
guarantee the correctness of condition 1), we introduce a
‘checkpoint ’ to the repair set Sr. Each time TRACE copies
the newly identified corrupted data records in the corrupted
data set C to the repair set Sr, TRACE sets a ‘checkpoint’
in Sr. Among the data records in Sr, there is a data record
whose timestamp tsi is greater than others, but smaller than
the ‘checkpoint’. If an incoming transaction requests a data
record whose timestamp is smaller than tsi and the data ob-
ject is not included in the repair set Sr at this ‘checkpoint’,
the data record is clean and is allowed to access. This is be-
cause TRACE ensures all corrupted data records before this
‘checkpoint’ have been identified and copied into Sr. After
a corrupted data object is fixed, the data object’s status is
reset to clean.

Algorithm 3: De-quarantine Valid Data Objects
Pseudo Code
Input: Ti, tsb

begin1

forall oi ∈ Ti do2

if (tsoi
≥ tsb) && (oi /∈ Sr) then3

Deny the access of transaction Ti; break;4

else if (oi ∈ Sr) && (oi.status == invalid)5

then
Deny the access of transaction Ti; break;6

else if (oi ∈ Sr) && (oi.status == valid) then7

continue;8

Grant the access of transaction Ti;9

end10

In de-quarantine phase, we modify the executor function
to check whether each scanned data record from the se-
quential scan is already in the repair set Sr or not. A
similar change has been introduced for B-tree index scan
nodes. During the normal database time, this procedure
is transparent and bypassed without affecting performance.
We maintain the repair set Sr as a mirror of the corrupted
data set C is to enable damage assessment, de-quarantine
and repairing modules run concurrently without the access
conflict.

4.3.4 Repairing On-The-Fly

This module is to remove only the ill-effects without stop-
ing the DBMS services. A repairing transaction undo(Ti)is
implemented as removing all specific version data objects
written by malicious/affected transaction Ti as the transac-
tion Ti has never been executed. To avoid the serialization
violation, we must be aware that there exist some sched-
uled preceding relations between the undo transactions and
the normal transactions. This is handled by submitting the
undo transactions to the scheduler.

TRACE uses the multi-versioning system to look up ‘be-
fore/after’ images of damaged data objects without consult-
ing the system log. Each data object ox has multi-version
records with the form < ox(v1), ox(v2), ..., ox(vn) >, where
each vi, (1 ≤ i ≤ n) is a version number of the data record
ox. When TRACE identifies an invalid data record ox, if
the data record has been corrupted multiple times, TRACE
will locate a correct version of the data record and per-
forms the undo transaction only once to remove the invalid
data record. A normal transaction that needs to read/write

the data record ox(vk) must wait until the correct value of
ox(vk) is restored by undo transaction. For a normal trans-
action that only needs to read the data record ox(vk), multi-
version data records break the dependency relations between
the undo transactions and the normal transactions by pro-
viding an earlier valid version of the data object instead.
Thus, it enables TRACE to execute the repairing and nor-
mal transactions concurrently and achieve minimal delay re-
quirements.

Algorithm 4: On-the-fly Repair Pseudo Code

Input: Ti, tsb

begin1

forall oi ∈ Sr do2

forall oj ∈ Tj do3

while ovn

j .ts ≥ tsb do4

ovn

j .dirty = 1;5

n++;6

undo(Tj) ← on
j ;7

submit undo(Tj) to scheduler;8

end9

We now present how we implement the repairing method
for the identified corrupted data records in PostgreSQL. For
each data record ox in the repair set Sr, TRACE traverses
backwards the hidden multi-version chain to the version
whose timestamp tsox is immediately earlier than the ma-
licious transaction’s timestamp tsb (e.g., Y4 in Figure 4).
This version of data record is the correct ’before-image’ of
the data record ox. Only this version can be used to con-
struct the undo transaction and eliminate the negative ef-
fects. To undo a damaged data record, repairing module
simply restores the ‘before-image’ of this data record to its
next version (e.g., restore version Y4 to version Y1 because
Y4 is Y1’s correct ‘before-image’, and then get rid of the
version Y3, Y2, set the dirty mark of Y1 to 0).

For an identified corrupted data record ox, if TRACE no-
tices that ox’s timestamp is equal to the malicious trans-
action’s timestamp tsb, it knows that this corrupted data
record is created by Insert operation by the malicious trans-
action. Then, TRACE removes the data record permanently
from the database. If TRACE reads a “DEAD TUPLE”

726

mark attached on an invalid data record, TRACE knows
the data record is removed by a delete operation by the
malicious transaction. TRACE will unmark it and restores
it with its right ‘before-image’. This mechanism provides
the TRACE system the ability to selectively restore a ta-
ble or a set of data records to a specified time point in the
past very quickly, easily and without taking any part of the
database offline. One correctness concern with the on-the-fly
repair scheme is whether it will compromise serializability.
TRACE guarantees serializability because of the following
reasons: a) all repairs are done within the quarantined area,
so the repairs will not interfere the execution of new transac-
tions; b) our de-quarantine operations ensure serializability
by doing atomic per-transitive-closure de-quarantine.

4.3.5 Garbage collection
Causality Table is a disk table that has the format <TAG,

ORIGINS, TS, PID>. We build a B-tree kind index ordered
by TAG (transaction id xid) on top of the causality table
and maintain in the main memory, which permits fast access
to the related information to assess the damage. However, if
we do not remove historical entries from the causality table,
it intends to become very large and the index maintained
in main memory accordingly become hideous. To keep the
causality table relatively small, high performance, and with-
out losing the track of cascading effect, we garbage collect
the causality table entries which are no longer of an interest
of the damage assessment.

As we discussed in section 4, the Intrusion Detection Sys-
tem (IDS) has detection latency (or detection window), which
has influence on when to collect the garbage. We therefore
need to study the impact of the detection deficiencies. In
this work, we assume that the detection delay is normally
distributed with parameter T (detection latency) and the
standard deviation σ. The expected value of the detection
delay is:

E(x) =
1

√
2πσ

∞
∫

−∞

e−(x−T)
2/2σ2

dx = T (1)

and the variation of the detection delay is:

V ar(X) = E[(X − T)2] = σ2 (2)

Thus, we have the cumulative distribution function

F (α) = Φ(
α− T

σ
) (3)

where Φ(x) = 1
√

2π

x
∫

−∞

e−y2/2 dy is the cumulative distribu-

tion of a standard normal distribution. Hence, if there are
no malicious transactions reported during a processing win-
dow t = k × T and we only keep entries in the causality
table within the time window t, the probability that the
causality table does not contain an entry related to the ma-
licious transactions is 1 − F (t). We define 1 − F (t) as the
missing probability. The missing probability does not nec-
essarily indicate that we will miss processing anything but
tells the probability that we need to scan the system logs to
reconstruct the entries instead of obtaining them from the
causality table directly. For example, given the detection
delay is normally distributed with parameter T = 3s and
σ2 = 9. If we wait for t = 4 × T = 12s and no malicious
transaction has been reported, then the missing probability

3 4 5 6 7 8 9 10 11 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (in seconds)

P
ro

ba
bi

lit
y

Missing probability (T=3, σ=3)

Figure 5: An Example of the relationship between

the process window and the missing probability

is 0.0013 based on the above analysis (as shown in figure 5).
According to the analysis, to garbage collect the causality
table entries without missing the track of the cascading ef-
fects by malicious transactions, it will be safe to garbage
collect those marked entries that stay in the causality table
longer than a selected kT because the probability that the
marked entry is involved in a recent negative impact to the
database is small enough. In practice, for the sake of the
simplicity, in our experiments we assume that the detection
latency is normally distributed with parameter T = 3s (de-
tection latency) and standard deviation σ = 9s, and we set
the processing window t = 100 × T = 300 seconds. Thus,
we have a very small probability that garbage collection will
harm the causality tracing once an attack is reported.

5. EXPERIMENTAL RESULTS
We implement TRACE as a subsystem in PostgreSQL

database system, and evaluate the performance of TRACE
based on TPC-C benchmark [10]. We present the exper-
imental results based on the following evaluation metrics.
First, we demonstrate the system run time overhead im-
posed by TRACE, and the comparison of TRACE and peer
work [15] on the run time overhead. Second, we demon-
strate the comparison of TRACE and traditional ‘point-in-
time’ (PIT) failure recovery method. Additionally, we show
how the IDS detection latency and false positive rate impact
TRACE.

We construct a database application based on the TPC-
C benchmark. Transaction workloads are generated based
on the application. For more detailed description of TPC-
C benchmark, we refer the reader to [10]. A transaction
includes both read and write operations. The experiments
conducted in this paper run on Debian GNU/Linux with In-
tel Core Due Processors 2400GHz, 1GB of RAM. We choose
PostgreSQL 8.1 as the host database system and compile it
with GCC 4.1.2. The TRACE subsystem is implemented
using C.

5.1 Run Time Overhead
We evaluate the system run time overhead of transactions

with update statements because only when a data record
is updated a tag is attached and generates a small piece
of overhead. We use the application built up based on
TPC-C benchmark. Up to 20,000 transactions execute on

727

0

20

40

60

80

100

120

140

160

5000 7500 10000 12500 15000 17500 20000

Number of Transactions

R
u

n
n

in
g

 T
im

e
(s

)

PostgreSQL
PostgreSQL+TRACE
Lomet[15]

(a) Run Time Overhead

0

10

20

30

40

50

60

5000 7500 10000 12500 15000 17500 20000

Number of Transactions

P
ro

ce
ss

in
g

 T
im

e
(s

)

TRACE+1 update
TRACE+5 updates
PIT+1 update
PIT+5 updates

(b) TRACE vs. PIT Recovery, d=10%

0

5

10

15

20

25

30

35

40

45

50

5000 7500 10000 12500 15000 17500 20000

Number of Transaction

P
ro

ce
ss

in
g

 T
im

e
(s

)

TRACE+1 update
TRACE+5 updates
PIT+1 update
PIT+5 updates

(c) TRACE vs. PIT Recovery, d=25%

0

2

4

6

8

10

12

14

16

5000 10000 15000 20000 30000

Number of Transactions

E
xe

cu
ti

o
n

 T
im

e
(s

)

Qurantine
Release
Repair
Assessment

(d) CPU Time, d=10%

0

5

10

15

20

25

5000 10000 15000 20000 30000

Number of Transactions
E

xe
cu

ti
o

n
 T

im
e

(s
)

Quarantine
Release
Repair
Assessment

(e) CPU Time, d=25%

63

64

65

66

67

68

69

70

71

5 10 15 20 25 30

Detection Latency (m)

S
ys

te
m

 T
h

ro
u

g
h

p
u

t
(T

/s
)

Attacking Density d = 10%
Attacking Density d = 25%
Attacking Density d = 40%

(f) DL on Read-Only Transaction

62

62.5

63

63.5

64

64.5

65

65.5

66

66.5

67

2 4 6 8 10

False Positive Rate (%)

S
ys

te
m

 T
h

ro
u

g
h

p
u

t
(T

/s
)

Attacking Density d = 10%

Attacking Density d = 25%

Attacking Density d = 40%

(g) FPR on Read-Only Transaction

20

25

30

35

40

45

5 10 15 20 25 30

Detection Latency (m)

S
ys

te
m

 T
h

ro
u

g
h

p
u

t
(T

/s
)

Attacking Density d = 10%

Attacking Density d = 25%

Attacking Density d = 40%

(h) DL on Read-Write Transaction

20

22

24

26

28

30

32

34

36

38

40

2 4 6 8 10

False Positive Rate (%)

S
ys

te
m

 T
h

ro
u

g
h

p
u

t
(T

/s
)

Attacking Density d = 10%

Attacking Density d = 25%

Attacking Density d = 40%

(i) FPR on Read-Write Transaction

0

10

20

30

40

50

60

70

50 100 150 200 250

Throughput of Transactions

R
ed

u
ce

d
 S

ys
te

m
 D

el
ay

 T
im

e
(s

)

Attacking Density d = 10%

Attacking Density d = 25%

Attacking Density d = 40%

(j) Reduced System Service Delay Time

0

5000

10000

15000

20000

25000

30000

35000

40000

50 125 225 275 300

Throughput of Transactions

S
av

ed
 L

eg
it

im
at

ed
 T

ra
n

sa
ct

io
n

s

Attacking Density d = 10%
Attacking Density d = 25%
Attacking Density d = 40%

(k) Saved Legitimate Transactions

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (x3), Attack Density=25%

S
ys

te
m

 T
h

ro
u

g
h

p
u

t
(T

/s
)

PostgreSQL

PostgreSQL+TRACE

(l) Throughput of TRACE vs. PIT

Figure 6: Evaluation of TRACE System

each application. For TPC-C application, we set up each
transaction containing no more than 5 update statements.
Figure 6(a) shows the comparison of system overhead of
TRACE and the raw PostgreSQL system on TPC-C based
application. Because TRACE provides additional function-
alities, it has system overhead on the PostgreSQL by the
size of transaction in terms of the number of update state-
ments. The overhead introduced by TRACE comes from
the following possible reasons: 1) for every insert/update
operation, TRACE needs to create a CT entry and updates
the timestamp field in CT. 2) To identify the invalid data
records, TRACE maintains a causality table, which needs
to allocate and access more disk storage when storing the
causality information. For the TPC-C case of 20K trans-
actions, we run the experiment 50 times and the average
time of executing a transaction is 7.1 ms. Additional 0.58
ms is added to each transaction (8% on average) to support
causality tracking. We also implement the tagging method
proposed in the work [15]. The results shown in the Fig-

ure 6(a) demonstrate that two methods are comparable and
do not cause significant system overhead. In comparison
with [1], which adds approximate 25%-35% run time over-
head to the system, TRACE achieves a great improvement.

5.2 TRACE vs. ‘PIT’ on Cleansing Time
Next, we evaluate the performance of TRACE cleansing

procedure and the ordinary PostgreSQL ‘point-in-time’ re-
covery procedure. We perform two experiments with 20,000
transactions having different ratios of corrupted data records
within the database system, lightly damaged (15% of the to-
tal data records), heavily damaged (35% of the total data
records).

We restrict the number of transactions to be equal for
each experiment. For the first 1500 (3000) transactions of
the light (heavy) damage experiment, they only contain in-
sert statements. The rest of the transactions have update
statements. Thus, each data record will be at least up-
dated for multiple times. Each version of the data record

728

is kept in stable storage. To compare the TRACE recov-
ery to the ordinary PostgreSQL ‘point-in-time’ recovery, we
pre-process the database system when we apply PostgreSQL
recovery because the typical procedure is to stop postmaster
and execute recovery.conf file with appropriated settings.
We choose recovery target xid() to indicate up to where the
‘point-in-time’ recovery procedure should perform. After
this pre-processing, we re-start postmaster which will go into
recovery mode and proceed to read through the archived
WAL file it needs. Normally, PostgreSQL recovery will pro-
ceed through all available WAL segments, thereby restoring
the database to the current point in time or to some previ-
ous point in time. Upon completion of the recovery process,
the postmaster will rename the recovery file recovery.conf
to recovery.done to avoid unnecessary re-entry of recovery
mode. Figure 6(b) and Figure 6(c) show the experimental
results to indicate that TRACE uses much less time to re-
store the damaged database back to the consistent state in
its recent past. Compared to the ‘point-in-time’, which in-
stalls a backup and unwinds all legitimated results since the
time point, TRACE only removes the negative effects caused
by malicious transactions and the affected transactions, and
then de-commits much less transactions than the standard
recovery procedure applied in PostgreSQL. Thus, TRACE
recovery mechanism saves a great amount of system down
time (up to 80% of the system down time is saved).

5.3 System CPU Time Distribution
To understand how well each key component of TRACE

collaborate with others, we evaluate the TRACE compo-
nents by studying the CPU time occupied by each compo-
nent. We run the experiment 5 times with the attacking
density d=10% (25%), and 5000, 10000, 15000, 20000, and
30000 transactions, respectively. We demonstrate in Fig-
ure 6(d) the CPU time consumed by each of the key compo-
nents when the database system is lightly damaged (15% of
the total data records). We see that the damage assessment
component approximately consumes 60% of the total execu-
tion time, and the damage repair component occupies 25%
of the total execution time. The damage quarantine and the
damage release components take a small piece of CPU time.
When the database is lightly damaged, the workload of dam-
age quarantine, repair, and release is relatively light. Most
of the time is spent on the damage assessment because this
component will identify the corrupted data (causality table
analysis), access the storage (I/O operations), and flush the
memory (loading data records). We demonstrate in Fig-
ure 6(e) the CPU time taken by each component when the
database system is heavily damaged (35% of the total data
records). We see that the damage assessment component
still dominate the CPU time (approximate 50% of the total).
The time spent by the damage repair component roughly in-
creases by 10% because there are more damage data records
to repair (submission of undo transaction). The results show
that the damage assessment and damage repair components
should be investigated more in order to achieve better per-
formance in terms of consuming CPU time. We will study
this in our future work.

5.4 Zero System Down Time
To evaluate the performance of TRACE on sustaining a

good data service while recovering, we demonstrate in Fig-
ure 6(l) the system throughput of the PostgreSQL with/without

TRACE based on the TPC-C application. To filter out po-
tential damage spreading transactions, we assume the trans-
action dependence is tight. For example, if a transaction Tx

does not access compromised data but rely on the result of a
transaction Ty, transaction Tx will still be filtered out (held
in the active transaction queue) if transaction Ty is filtered
out due to accessing compromised data because the result di-
rectly from transaction Ty is dirty. In Figure 6(l), we present
an approximate 40 seconds system running-time window.
Until the time point 11, the database system runs normally.
During this partial time window, on average the throughput
of PostgreSQL is slightly higher than the PostgreSQL with
TRACE because TRACE will add system overhead into the
system. At time point 11 (around 33 sec), a malicious trans-
action is identified. For traditional PostgreSQL system, the
system shutdowns itself and stops providing service. For the
PostgreSQL with TRACE, the system enables TRACE to
carry out the damage quarantine/assessment/cleansing pro-
cedure. However, the database service is not harmed and
the database system continues providing data access to new
transactions while TRACE functions. During this partial
time window (point 11 to point 16), the database armed
with TRACE can still achieve near 57 T/s system through-
put. In the worst time point, the throughput degradation
ratio of TRACE is less than 40%, and the degradation ra-
tio is quickly improved to 20% within 3 seconds. Overall,
the goal of continuing providing service when the system is
under an attack is met with satisfactory system throughput
performance. Hence, the requirement R2 is achieved.

5.5 Service Delay Time and
Saved Legitimate Transactions

We define the service delay time as the delay time experi-
enced by a transaction Ti, denoted as (tn− tm)Ti , where tm

is the time point the transaction Ti requests a data record,
and tn is the time point the transaction gets served. The
average system outage time for n transactions is denoted as
∑

n

i=1(tn−tm)
Ti

n
. For example, if the database system with

PIT recovery needs 10s to restore and back to service, and
during the time of recovery 100 transactions are submitted
to the server, the average service delay for a transaction is
10s. For the database with TRACE, the average service de-

lay is
∑100

i=1(tn−tm)
Ti

100
. Then, the reduced service delay time

is 10−
∑100

i=1(tn−tm)
Ti

100
for this case. We define the attacking

density d = b

t
, where b and t are the throughput of malicious

transactions within t and the total throughput of transac-
tions, respectively. For example, if the total throughput of
the system is 500 transaction per second, where there are
100 malicious transactions per second, the attacking den-
sity is 0.2. We run each setting 300 seconds on the TPC-C
application to obtain stable results.

The experimental results are shown in Figure 6(j) and
Figure 6(k). Figure 6(j) shows the reduced system service
delay time w.r.t. different attacking density and through-
put. We observe that, with TRACE component, the re-
duced system delay time is significant. The percentage of
reduced service delay time decreases as the system through-
put increases, and it decreases sharply (down to 15%) as
the attacking density d increases. The reason is when the
attacking density and throughput is light, TRACE spends
less time to analyze the causality table and has much less
corrupted data records to repair. As the d and throughput

729

increase, TRACE causes the database system running busy
in identifying the corrupted data records. However, even the
percentage decreases, TRACE still saves a great amount of
system outage time and makes the system stay online. Fig-
ure 6(k) shows the reduced de-committed transactions w.r.t.
different attacking density and throughput. We observe that
TRACE can save a large amount of innocent transactions,
and then avoids re-submitting these transactions. This re-
duces the processing cost because the re-submitting process
is very labor intensive and re-executing some of these trans-
actions may generate different results than their original ex-
ecution.

5.6 IDS Impacts on TRACE System
When we evaluate the performance of TRACE on the re-

quirement R3 and R4, we also consider the impact of the
detection latency and the false positive rate of the IDS. To
study the IDS impact on TRACE, we implement the system
proposed in [11]. We demonstrate in Figure 6(f) and 6(h)
the detection latency impact on TRACE, in Figure 6(g) and
6(i) the false positive rate impact on TRACE, respectively.
Figure 6(f) shows the influence of the IDS detection latency
on read-only transactions in terms of transaction through-
put. It is clear that the read-only transaction throughput is
not affected much as the detection latency increases. As
long as the incoming transactions are read-only transac-
tions, TRACE simply responses as the database normally
operates if the data records requested by the transactions
are not quarantined. If the data records requested by the
transactions are quarantined, TRACE provides an old but
valid version of the corresponding data record. Thus, the in-
coming read-only transactions are not blocked in the active
transaction queue. As the damage rate increases along the
X-axis of the Figure 6(f), we can see that read-only transac-
tions also experience a little delay because of the following
reasons: 1) TRACE consumes CPU time to do damage as-
sessment and cleansing, 2) Detection latency causes more
data records affected. Figure 6(g) shows the influence of
false positive rate of IDS on processing read-only transac-
tions. We set the false positive rate at 2%-10%. As the
the false positive rate increases, the transaction throughput
is approximately steady at the same level. Thus, the ex-
perimental results verify that the non-block for read-only
transaction is satisfied.

Figure 6(h) shows the impact of the IDS detection latency
on read-write transactions. The figure clearly shows that the
read-write transactions are severely impacted by the IDS
detection latency. As the detection latency increases along
the X-axis, the system experiences a dramatic throughput
downgrade. In addition, when the system is under the heavy
data corruption circumstance (e.g., attack density d=25%),
the system suffers even more throughput downgrade. This
is because long detection latency imposes more corrupted
data records on the database system due to the damage
spreading. TRACE then needs to put more effort into the
work of analyzing damage, repairing corrupted data records,
and de-quarantining the fixed data records to the suspended
transactions. Figure 6(i) presents the impact of the IDS
false positive rate on read-write transactions. As expected,
the false positive rate of IDS impairs the system through-
put and causes delays to the newly incoming transactions
as the detection latency does. As the IDS false positive rate
increases, the delay to the incoming read-write transactions

ascends. This is because the false alarm from IDS enforces
TRACE to act upon the alarm signal. TRACE then mistak-
enly quarantines legitimate work and rolls back the work it
thinks as corrupted. Since TRACE has no pre-knowledge of
whether the raised false alarm is true alarm or not, but only
carries on what it has to do. Thus, TRACE causes the newly
incoming read-write transactions to experience delays.

5.7 Discussion
The experimental results have shown that TRACE can

achieve the goal of satisfying all four requirements. How-
ever, TRACE also has its limitations due to the impact of
the false positive alerts of IDS. First, the false positive alerts
can mistakenly force TRACE to act on innocent data ob-
jects and then cause undesired denial of service. Second, the
false positive alerts can force TRACE to mistakenly repair
uncorrupted data objects and then cause undesired perfor-
mance degraded. As we mentioned in Section 4.1, the im-
pact of false positive alerts can be effectively mitigated by
data corruption verification techniques such as storage jam-
ming and checkpoint based corruption verification. In fact,
such negative impact is fundamentally caused by the need
of online intrusion recovery instead of any specific recovery
technique. Offline intrusion recovery, in which the database
server is taken down until the repairs are done, will not suf-
fer from such impact. However, the availability or business
continuity loss caused by offline recovery can cost several
magnitudes more than such impact.

6. CONCLUSION
We have dealt with the problem of malicious transactions

that result in corrupted data. TRACE identifies the in-
valid data records and all subsequent data submitted by
legitimated transactions affected by the malicious transac-
tions directly or indirectly. Our marking scheme used in
damage assessment enables us only de-commit the effects
from affected transactions. Working with multi-version data
records makes it unnecessary to restore a backup which is
always online. Overall, our system removes far fewer trans-
actions than the conventional recovery mechanisms and in
turn provides the capability to achieve the aforementioned
four requirements.

Acknowledgement.
This work was supported by NSF CNS-0716479, AFOSR

MURI: Autonomic Recovery of Enterprise-wide Systems Af-
ter Attack or Failure with Forward Correction, and AFRL
award FA8750-08-C-0137.

7. REFERENCES
[1] P. Ammann, S. Jajodia, and P. Liu. Recovery from

malicious transactions. IEEE Transaction on
Knowledge and Data Engineering, 14(5):1167–1185,
2002.

[2] P. Ammann, S. Jajodia, C. McCollum, and
B. Blaustein. Surviving information warfare attacks
on databases. In the IEEE Symposium on Security
and Privacy, pages 164–174, Oakland, CA, May 1997.

[3] K. Bai and P. Liu. Towards database firewall: Mining
the damage spreading patterns. In 22nd Annual
Computer Security Applications Conference (ACSAC
2006), pages 449–462, 2006.

730

[4] D. Barbara, R. Goel, and S. Jajodia. Using checksums
to detect data corruption. In Int’l Conf. on Extending
Data Base Technology, Mar 2000.

[5] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency control and recovery in database systems.
Addison-Wesley Publishing Company, Reading,
Massachusetts, 1987. ISBN 0-201-10715-5.

[6] E. Bertino, A. Kamra, E. Terzi, and A. Vakali.
Intrusion detection in rbac-administered databases. In
ACSAC, 2005.

[7] CERT. Cert advisory ca-2003-04 ms-sql server worm.
http://www.cert.org/advisories/CA-2003-04.html,
January, 25 2003.

[8] T. Chiueh and D. Pilania. Design, implementation,
and evaluation of an intrusion resilient database
system. In Proc. International Conference on Data
Engineering, pages 1024–1035, April 2005.

[9] P. Fogla and W. Lee. Evading network anomaly
detection systems: formal reasoning and practical
techniques. In CCS ’06: Proceedings of the 13th ACM
conference on Computer and communications security,
pages 59–68. ACM Press, New York, NY, USA, 2006.

[10] http://www.tpc.org/tpcc/. TPC-C Benchmark.

[11] S. Y. Lee, W. L. Low, and P. Y. Wong. Learning
fingerprints for a database intrusion detection system.
In ESORICS, 2002.

[12] J.-L. Lin and M. H. Dunham. A survey of distributed
database checkpointing. Distributed and Parallel
Databases, 5(3):289–319, 1997.

[13] P. Liu. Architectures for intrusion tolerant database
systems. In The 18th Annual Computer Security
Applications Conference, pages 311–320, 9-13 Dec.
2002.

[14] P. Liu, P. Ammann, and S. Jajodia. Rewriting
histories: Recovery from malicious transactions.
Distributed and Parallel Databases, 8(1):7–40, 2000.

[15] D. Lomet, Z. Vagena, and R. Barga. Recovery from
”bad” user transactions. In SIGMOD ’06: Proceedings
of the 2006 ACM SIGMOD international conference
on Management of data, pages 337–346, New York,
NY, USA, 2006. ACM Press.

[16] J. McDermott and D. Goldschlag. Towards a model of
storage jamming. In the IEEE Computer Security
Foundations Workshop, pages 176–185, Kenmare,
Ireland, June 1996.

[17] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. Aries: a transaction recovery method
supporting fine-granularity locking and partial
rollbacks using write-ahead logging. ACM Trans.
Database Syst., 17(1):94–162, 1992.

[18] OWASP. Owasp top ten most critical web application
security vulnerabilities.
http://www.owasp.org/documentation/topten.html,
January, 27 2004.

[19] B. Panda and J. Giordano. Reconstructing the
database after electronic attacks. In the 12th IFIP
11.3 Working Conference on Database Security,
Greece, Italy, July 1998.

[20] R. Perdisci, G. Gu, and W. Lee. Using an ensemble of
one-class svm classifiers to harden payload-based
anomaly detection systems. In ICDM, pages 488–498,

2006.

[21] Postgresql. http://www.postgresql.org/.

[22] R. Sobhan and B. Panda. Reorganization of the
database log for information warfare data recovery. In
Proceedings of the fifteenth annual working conference
on Database and application security, pages 121–134,
Niagara, Ontario, Canada, July 15-18 2001.

[23] F. Valeur, D. Mutz, and G. Vigna. A learning-based
approach to the detection of sql attacks. In Conference
on Detection of Intrusions and Malware Vulnerability
Assessment (DIMVA), pages 123–140, 2005.

731

