
On Rewriting XPath Queries Using Views

Foto Afrati∗
National Technical University

of Athens,Greece
afrati@softlab.ntua.gr

Rada Chirkova
North Carolina State

University, USA
chirkova@csc.ncsu.edu

Manolis Gergatsoulis
Ionian University, Greece

manolis@ionio.gr

Benny Kimelfeld†‡
IBM Almaden

Research Center
kimelfeld@us.ibm.com

Vassia Pavlaki∗
National Technical University

of Athens, Greece
vpavlaki@softlab.ntua.gr

Yehoshua Sagiv†
The Hebrew University

of Jerusalem, Israel
sagiv@cs.huji.ac.il

ABSTRACT
The problem of rewriting a query using a materialized view
is studied for a well known fragment of XPath that includes
the following three constructs: wildcards, descendant edges
and branches. In earlier work, determining the existence of
a rewriting was shown to be coNP-hard, but no tight com-
plexity bound was given. While it was argued that Σp

3 is
an upper bound, the proof was based on results that have
recently been refuted. Consequently, the exact complex-
ity (and even decidability) of this basic problem has been
unknown, and there have been no practical rewriting algo-
rithms if the query and the view use all the three constructs
mentioned above.

It is shown that under fairly general conditions, there are
only two candidates for rewriting and hence, the problem
can be practically solved by two containment tests. In par-
ticular, under these conditions, determining the existence
of a rewriting is coNP-complete. The proofs utilize various
novel techniques for reasoning about XPath patterns. For
the general case, the exact complexity remains unknown,
but it is shown that the problem is decidable.

1. INTRODUCTION
Rewriting queries using views is one of the fundamen-

tal problems in databases with practical applications in in-
formation integration, data warehousing, Web-site design
and query optimization. For relational databases, there is
an extensive literature that deals with large fragments of
SQL [1, 2, 6, 12, 16] and investigates various issues, includ-

∗The project is co-funded by the European Social Fund
(75%) and National Resources (25%)—Operational Pro-
gram for Educational and Vocational Training II (EPEAEK
II) and particularly the Program PYTHAGORAS.
†This research was supported by The Israel Science Foun-
dation (Grant 893/05).
‡Work was done while the author was at Hebrew University.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

ing the complexity of the problem and efficient techniques
for finding rewritings. However, for XML databases and
XPath queries, there is only preliminary work. A widely
studied practical fragment of XPath is XP{//,[],∗} consisting
of tree patterns with child and descendant edges, branches
and wildcards. This fragment has been recognized as an
important fragment of XPath [8, 10, 14, 17]. The rewriting
problem for this fragment was studied only in [17] where it
was shown to be coNP-hard, but no tight complexity bound
was given. They also argued that Σp

3 is an upper bound,
but their proof was based on results of [8] that have recently
been refuted [10]. Consequently, the exact complexity (and
even decidability) of this basic problem has been unknown.

In this work, we study several sub-fragments of XP{//,[],∗}

with the aim of determining the exact complexity of the
problem and developing practical techniques that apply to
XPath queries and views that are commonly used.

In the case of XP{//,[],∗}, the rewriting problem is quite
challenging. The difficulty arises from the combination of
descendant edges, branches and wildcards which adds a lim-
ited form of disjunction. Even the containment problem
is significantly more complex (i.e., coNP-complete [14]) for

queries of XP{//,[],∗}, compared to the three sub-fragments
that are obtained by not allowing either wildcards, descen-
dant edges or branches. For these three sub-fragments, con-
tainment is in PTIME [14] because it is characterized by
the existence of a homomorphism, which is not true in the
case of XP{//,[],∗}. In fact, [17] showed that the rewriting
problem for those three sub-fragments is in PTIME precisely
because one only has to look for a homomorphism to deter-
mine containment.

It is rather difficult to show that the rewriting problem
is in coNP when the existence of a homomorphism is not a
necessary condition for containment. Yet, we are able to do
that by using the following approach. We define the notion
of natural rewriting candidates, which can be constructed in
linear time, and check (by employing a containment test)
whether one of them is indeed a rewriting. We prove sev-
eral sufficient conditions that guarantee the completeness of
our approach, namely, if a rewriting cannot be found among
the natural candidates, then there is none at all. Moreover,
we also prove that for the (large and practically important)

sub-fragments of XP{//,[],∗} defined by those sufficient con-
ditions, the rewriting problem is coNP-complete. In fact, the
only“inefficient”step of our algorithm is the (generally coNP
complete) test for equivalence of our candidate view-based

168

rewriting to the input query. These results are presented in
Section 4.

The second type of our results is aimed at simplifying the
given instance of the rewriting problem by transforming it
into a new one that could be solved by means of the above
sufficient conditions (or other methods, e.g., those of [17]).
These techniques are presented in Section 5. We actually
show how to get new sufficient conditions (for completeness)
by combining these techniques with the results of Section 4.

The importance of our results is twofold. First, we signifi-
cantly enlarge the sub-fragments of XP{//,[],∗} for which the
rewriting problem can be solved in practice (our algorithms
involve only a few containment tests, which might take ex-
ponential time but only in the size of the query and the
view definition). Second, we develop new proof techniques
for analyzing and reasoning about queries of the fragment
XP{//,[],∗}.

The lack of theoretical foundations on rewriting XPath
queries using views is evident in related works (like [3,5,13,
18]) that use incomplete algorithms (e.g., XPath matching)
for answering XPath queries using cached views. The prob-
lem of finding maximally contained (instead of equivalent)
rewritings, either in the absence or presence of a schema,
is studied in [11] for the fragment XP{//,[]} (i.e., without
wildcards). Query answering using views has been studied
extensively for the class of regular path queries [4,9] and in
semistructured databases [15]. In [7], the problem of query
reformulation for XML publishing is stated and solved in a
general setting that allows both XML and relational storage
for the data. In [10] the notions of redundancy and mini-
mization are explored for the same fragment of XPath we
study in this work. However, unlike the case of conjunctive
queries, results on rewriting XPath queries are not easily
derived from what is known about minimization of those
queries.

2. FORMAL SETTING

2.1 XML Trees and Patterns
A rooted tree t is a directed graph with a designated node,

denoted by root(t), such that every other node of t is reach-
able from root(t) through a unique directed path. In a la-
beled tree, every node n has a label which is denoted by
label(n). We use N (t) and E(t) to denote the set of nodes
and edges respectively, of a tree t.

Consider a tree t and an edge (n1, n2) ∈ E(T). Node n1

is the parent of n2, while n2 is a child of n1. A node n1

is an ancestor of n2 (and n2 is a descendant of n1) if t has
a directed path from n1 to n2. The node n1 is a proper
ancestor of n2 (and n2 is a proper descendant of n1) if, in
addition, n1 6= n2. Given a node n of t, we use tn

∆ to denote
the subtree of t that is rooted at n. The subtree of t that
comprises the node n, one child m of n (including the edge
connecting n to m) and the subtree tm

∆ is called a branch of
n in t. Observe that the number of branches of a node n is
the number of children of n.

We consider two types of rooted, labeled trees that repre-
sent XML documents and queries, respectively. A document
is called an XML tree (or tree for short) and its labels come
from an infinite set Σ. We use TΣ to denote the set of all
the trees with labels from Σ. XPath queries are called pat-
terns and they are different from XML trees in three aspects.
First, the labels of a pattern come from the set Σ ∪ {∗},

where ∗ is the “wildcard” symbol (∗ 6∈ Σ). Second, a pattern
P has two types of edges: E/(P) is the set of child edges and
E//(P) is the set of descendant edges. Third, a pattern P
has an output node that is denoted by out(P). We define
the special empty pattern and denote it by Υ.

As an example, Figure 1 depicts four patterns. Nodes are
denoted as circles with labels inside them. Child edges and
descendant edges are depicted by single and double lines,
respectively. Note that the direction of edges is not explicitly
shown, but is assumed to be from top to bottom. Output
nodes are denoted by thicker circles.

Patterns represent the fragment XP{//,[],∗} of XPath that
was investigated in [8, 10, 14, 17] and is described by the
grammar

q =⇒ q/q | q//q | q[q] | l | ∗
where l is a label in Σ. Next, we consider the result of
applying a pattern to a tree.

Definition 2.1 (Embeddings / Weak Embeddings).
An embedding from a (nonempty) pattern P to a tree t is a
mapping e : N (P) → N (t) with the following properties.

• Root preserving. e(root(P)) = root(t).

• Label preserving. For all nodes n ∈ N (P), either
label(n) = ∗ or label(n) = label(e(n)).

• Child preserving. For all edges (n1, n2) ∈ E/(P), node
e(n2) of t is a child of node e(n1).

• Descendant preserving. For all edges (n1, n2) ∈ E//(P),
node e(n2) is a proper descendant of node e(n1).

If e is not root preserving, but satisfies the other three prop-
erties, then it is called a weak embedding.

Given an embedding e : N (P) → N (t), we usually denote
by o the image of the output node, i.e., o = e(out(P)). The
embedding e produces the tree to

∆, that is, the subtree of t
that is rooted at o. We denote by P (t) the result of apply-
ing the pattern P to the tree t. It is naturally defined as
the set of subtrees produced by all embeddings from P to
t. Similarly, P w(t) is the set of all subtrees to

∆, such that
there is a weak embedding e of P in t with o = e(out(P)).
The result of applying the empty pattern Υ to any tree
(under either the regular or weak semantics) is the empty
set. The pattern P can also be applied to a set of trees T
and the result, denoted by P (T) (resp., P w(T)) is ∪t∈T P (t)
(resp., ∪t∈T P w(t)).

If there is an embedding from a pattern P to a tree t,
then t is a model of P . It is often useful to consider canon-
ical models [14] rather than general ones. Next, we define
this type of models. We denote by ⊥ a special label of Σ.
Throughout the paper, we assume that the patterns at hand
do not include ⊥ as a node label. A canonical model for a
pattern P is any tree t that is obtained from P by the follow-
ing two steps. (1) Each occurrence of the label ∗ is replaced
with ⊥, (2) Each descendant edge is replaced by a path of
one or more edges, where all the internal nodes are labeled
with ⊥. We use Mod(P) and CMod(P) to denote the set
of all models and all canonical models of P , respectively.

169

2.2 Containment and Equivalence
Containment and equivalence are defined as usual.

Definition 2.2 (Containment/Equivalence). A pat-
tern P1 is contained in a pattern P2, denoted by P1 v P2, if
P1(t) ⊆ P2(t) for all trees t ∈ TΣ. The patterns P1 and P2

are equivalent, denoted by P1 ≡ P2, if P1 v P2 and P2 v P1,
that is, P1(t) = P2(t) for all trees t ∈ TΣ.

Recall that an embedding is root preserving. Relaxing this
condition leads to the following definition.

Definition 2.3 (Weak Containment/Equivalence).
A pattern P1 is weakly contained in a pattern P2, denoted
by P1 vw P2, if P w

1 (t) ⊆ P w
2 (t) for all t ∈ TΣ. The patterns

P1 and P2 are weakly equivalent, denoted by P1 ≡w P2, if
P1 vw P2 and P2 vw P1, that is, P w

1 (t) = P w
2 (t) for all

t ∈ TΣ.

Containment of P1 in P2 means that if a subtree to
∆ of t

is produced by some embedding of P1 in t, then to
∆ is also

produced by an embedding of P2 in t. In contrast, weak
containment allows to

∆ to be produced by a weak embedding
of P2 in t. Thus, containment implies weak containment,
but the converse is not necessarily true. Moreover, if P1

and P2 are equivalent, then they are also weakly equivalent.
However, the opposite direction does not always hold.

In [14], it is shown that, in order to test containment (and
equivalence) of patterns, it is enough to consider the canoni-
cal models. Formally, for all patterns P1 and P2 it holds that
P1 v P2 if and only if CMod(P1) ⊆ Mod(P2). A similar test
can be used for weak containment [10].

2.3 Pattern Composition
The greatest lower bound of two labels l1 and l2, denoted

by glb(l1, l2), is defined as follows. If l ∈ Σ ∪ {∗}, then
glb(l, l) = glb(l, ∗) = glb(∗, l) = l. If l1, l2 ∈ Σ and l1 6= l2,
then glb(l1, l2) = 3 (where 3 /∈ Σ).

The composition of a pattern R with a pattern V , denoted
by R ◦ V , is obtained as follows. Let lrR be the label of the
root of R and let loV be the label of the output node of V .
If glb(lrR, loV) = 3, then R ◦ V = Υ (the empty pattern).
Otherwise, R ◦ V is obtained by merging the output node
of V with the root of R and assigning the label glb(lrR, loV)
to the merged node. Note that the children of the merged
node are all those of out(V) and root(R). The pattern R◦V
has the same root as V and the same output node as R. As
a special case, if root(R) = out(R), then the merged node is
the output node of R ◦ V .

As an example, Figure 1 shows three patterns: R, V and
their composition R◦V . Note that the merged node of R◦V
is marked as m and its label is ∗, since both the output node
of V and the root of R are labeled with ∗. Had one of these
two nodes been labeled with l ∈ Σ and the other with either
∗ or l, then l would have been the label of m.

In [17], it is shown that applying R ◦ V to a tree is the
same as first applying V and then applying R.

Proposition 2.4. [17] R ◦ V (t) = R(V (t)) holds for all
trees t ∈ TΣ.

Based on Proposition 2.4, the problem of rewriting a query
using a view is defined in the next section.

P

m

R ◦ VRV

*

e ed

*b

*

e d

e*

b de d

* a

b

aa

e

d

Figure 1: A rewriting example

2.4 Rewriting Queries using Views
A materialized view is the result of precomputing a pat-

tern V ; namely, V has already been applied to a tree t and
the result V (t) is available. When a new pattern P is posed
as a query over t, we may want to use the materialized view
instead of applying P directly to t. Therefore, we need to
find a pattern R, such that applying R to V (t) produces
the same result as applying P to t, that is, R(V (t)) = P (t).
Furthermore, this equality should hold for all t ∈ TΣ.

By Proposition 2.4, the problem can be reformulated as
follows. We say that R is an equivalent rewriting (or just
rewriting) of P using V if R ◦ V ≡ P . As an example,
consider the patterns V , P and R of Figure 1. It can be
shown that the composition R◦V is equivalent to P . Thus, R
is a rewriting of P using V . The rewriting-existence problem
is that of determining, for a pattern P and a view V , whether
there is an equivalent rewriting R of P using V .

3. PRELIMINARY TOOLS AND RESULTS
In this section, we present some basic concepts and results

that are later used.

3.1 Selection Paths and Sub-Patterns
The selection path of a nonempty pattern P is the path

from the root to the output node. The nodes on the se-
lection path are called selection nodes, while the edges on
the selection path are called selection edges. The depth of a
selection node v is the distance (i.e., number of edges) from
the root to v. For example, the depth of the root is 0. We
usually denote the depth of the output node by d and we
say that d is also the depth of P . For 0 ≤ k ≤ d, the k-node
is the selection node at depth k. We extend the notion of
depth as follows. For all nodes v of P , the depth of v is that
of its deepest ancestor on the selection path.

Consider a pattern P of a depth d, and let k be an integer
such that 0 ≤ k ≤ d. The k-sub-pattern of P , denoted by
P≥k, consists of all nodes v of P , such that the depth of v
is greater than or equal to k. In other words, P≥k is the
subtree of P that is rooted at the k-node of P . The output
node of P≥k is that of P . The k-upper-pattern of P , denoted
by P≤k, comprises all nodes of P at a depth of no more than
k. That is, P≤k is obtained from P by pruning the subtree
rooted at the (k+1)-node. The output node of P≤k is the
k-node of P . Note that P≥0 and P≤d are the same as P .
We similarly define P >k (0 ≤ k < d) and P <k (0 < k ≤ d).

The next proposition shows some basic properties of k-
sub-patterns of (weakly) equivalent patterns. In the proof
of Proposition 3.1, and in some subsequent proofs, we use a

170

transformation1 τ that constructs a tree τ(P) from a pat-
tern P by replacing each occurrence of ∗ with ⊥ (recall our
assumption that ⊥ does not appear in any of the patterns
at hand). Note that each node of P has exactly one corre-
sponding node in τ(P), and similarly for the edges.

Proposition 3.1. Let P1 and P2 be two weakly equivalent
patterns with depths d1 and d2, respectively. For all k, where
0 ≤ k ≤ d1, the following hold.

1. d1 = d2.

2. The k-sub-patterns of P1 and P2 are weakly equivalent,
i.e., P≥k

1 ≡w P≥k
2 .

3. The k-nodes of P1 and P2 have the same label.

Proof. Part 1. Let t = τ(P1) and let o be the node of
t that corresponds to the output node of P1. Clearly, there
is an embedding e1 of P1 in t that produces the subtree to

∆.
Since P1 vw P2, there is a weak embedding e2 of P2 in t
that produces to

∆. By the construction of t, the depth of o
in t is exactly d1. From the fact that to

∆ is produced by a
weak embedding e2 of P2 in t, we conclude that d1 ≥ d2. By
symmetry, it follows that d1 = d2.

Part 2. We prove that P≥k
1 vw P≥k

2 (the other direction

is symmetric). Suppose that ek
1 is an embedding of P≥k

1 in
a tree t, such that ek

1 produces to
∆. We have to prove the

existence of a weak embedding ek
2 of P≥k

2 in t, such that ek
2

produces to
∆. Let t1 = τ(P <k

1) and let mk−1 be the node of t1
that corresponds to the (k−1)-node of P <k

1 . We combine t1
and t into a tree t′ by adding an edge from mk−1 to the root
of t. Then, ek

1 can be naturally extended to an embedding e1

of P1 in t′, such that e1 produces to
∆. Since P1 ≡w P2, there

is a weak embedding e2 of P2 in t′ that produces to
∆. The

embedding e2 maps the k-node nk of P2 to a node e2(nk)
in t′, such that the depth of e2(nk) is at least k. It follows
that e2(nk) is a descendant of root(t), because the distance
from root(t′) to root(t) is k. So, the restriction of e2 to the

nodes of P≥k
2 is the required embedding ek

2 .
Part 3. From Part 1, we know that P1 and P2 have

the same depth d. Consider an embedding e1 that maps
each node of P1 to its corresponding node in t = τ(P1).
Clearly, the depth of o = e1(out(P1)) is d. Let nk be the
k-node of P1 (0 ≤ k ≤ d) and let mk = e1(nk). Note
that mk is on the path from root(t) to o. Since P1 ≡w P2,
there is a weak embedding e2 of P2 in t that produces to

∆.
Since the depth of P2 is d, the embedding e2 maps root(P2)
to root(t), and it maps the k-node of P2 to node mk of t.
Therefore, if the k-node of P2 has a label l 6= ∗, then the
k-node of P1 must have the same label (recall that in the
construction of t, occurrences of ∗ were replaced with ⊥).
A symmetric argument shows that the same holds in the
opposite direction.

We combine a pattern P1 with a pattern P2 by choosing
a k-node of P1 and introducing a descendant edge from that
node to the root of P2. The combined pattern, denoted by

P1
k

=⇒ P2, has the same root as P1 while its output node
is that of P2. For example, if in a pattern P a descendant

edge enters the k-node, then P <k k−1
=⇒ P≥k is the same as

the pattern P .

1Essentially, τ generates the minimal canonical model.

The following proposition shows that if a descendant edge
enters the k-node of a pattern P , then the k-sub-pattern
P≥k can be replaced with any weakly equivalent pattern Q
while preserving equivalence to the original pattern P .

Proposition 3.2. Let P be a pattern of depth d. Let
1 ≤ k ≤ d and suppose that the k-sub-pattern P≥k is weakly
equivalent to a pattern Q. If a descendant edge enters the

k-node of P , then P ≡ (P <k k−1
=⇒ Q).

Proof. We show that P v (P <k k−1
=⇒ Q); the other di-

rection is proved similarly. Let e be an embedding of P in
a tree t that produces the subtree to

∆. Let e1 be the restric-
tion of e to P <k. Suppose that e maps the k-node of P to
node m of t. Since Q is weakly equivalent to P≥k, there is
a weak embedding e2 of Q in tm

∆ that produces to
∆. Observe

that m is a proper descendant of e1(nk−1), where nk−1 is
the (k − 1)-node of P ; hence, so is e2(root(Q)). It follows
that the mapping ê that maps the nodes of P <k as e1 and

the nodes of Q as e2 is an embedding of P <k k−1
=⇒ Q in t

that produces the same subtree of t as e2, namely, to
∆. This

completes the proof.

Propositions 3.1(2) and 3.2 imply that if the patterns P1

and P2 are equivalent and a descendant edge enters the k-
node of P1, then the k-sub-pattern P≥k

1 can be replaced with

the k-sub-pattern P≥k
2 while preserving equivalence.

Corollary 3.3. Suppose that P1 ≡ P2 and both patterns
are of depth d. If a descendant edge enters the k-node of P1

(1 ≤ k ≤ d), then (P <k
1

k−1
=⇒ P≥k

2) ≡ P1.

3.2 Preliminary Results on Rewriting
In [17], it was shown that the rewriting-existence problem

is coNP-hard. They also argued that this problem is in Σp
3,

but their proof was based on the results of [8], which have
recently been refuted in [10]. The next proposition shows
that this problem is decidable.

Proposition 3.4. The rewriting-existence problem is de-
cidable.

Proof. (Sketch) Consider a pattern P and a view V , and
suppose that R is a rewriting of P using V . Let k be the
depth of V . The height of a pattern is the maximal number
of edges on any path from the root to a leaf.

Part 2 of Proposition 3.1 shows that (R ◦ V)≥k is weakly
equivalent to P≥k. It is easy to show that weakly equivalent
patterns have the same height and the same set of labels.
Consequently, the height of R is at most that of P≥k and
its set of labels is contained in that of P≥k. Furthermore,
without loss of generality (abbr. w.l.o.g.), we can assume
that R is non-redundant [10]. Let R be a maximal set of
patterns R′ with the above three properties of R, such that
R does not include isomorphic patterns (where the meaning
of isomorphism is the obvious one, e.g., as defined in [10]). It
is easy to show (e.g., by induction on the height of P≥k) that
R is finite and, moreover, can be constructed by a Turing
machine. So, to determine whether there is a rewriting of P
using V , it is enough to test for all R′ ∈ R, whether R′ ◦ V
is equivalent to P (which is a coNP-complete problem [14]).

171

The above proof implies an algorithm for finding a rewrit-
ing, and it can be shown that the running time is at most
double exponential. The next proposition discusses a special
type of rewriting, namely, when the output node of the view
V is its root.

Proposition 3.5. Let P and R be patterns. Consider a
view V , such that root(V) = out(V). If R ◦ V ≡ P , then
R ◦ V ≡ P ◦ V .

Proof. Observe that the root of P ◦V is also the root of
both P and V . Moreover, the selection path of P ◦ V is the
same as that of P . Consequently, if there is an embedding e
from P ◦V to a tree t, then the restriction of e to the nodes
of P is an embedding from P to t that produces the same
output as e. It thus follows that P ◦ V v P .

For the other direction, we need to show that P v P ◦ V .
Suppose that e1 is an embedding of P in a tree t. The
equivalence R ◦ V ≡ P implies that there is an embedding
e2 of R ◦V in t, such that e1(out(P)) = e2(out(R ◦V)). Let
e be the embedding from P ◦V to t that maps every node of
P as e1 and every node of V as e2. Since P and P ◦ V have
the same output node, e1(out(P)) = e(out(P ◦ V)), i.e., e
generates the same output as e1. We also need to show that
e is a well-defined embedding of P ◦ V in t. Since P ◦ V is
obtained by merging the roots of P and V , we should prove
that e1(root(P)) = root(t) = e2(root(V)). The first equality
holds, because e1 is an embedding from P to t. The second
follows from the fact that root(V) is the root of R ◦ V and
e2 is an embedding of R ◦ V in t. Thus, the existence of e
implies that P v P ◦ V .

The above proposition remains correct even if equivalence
is replaced with weak equivalence. Before showing that, we
need to prove the following proposition.

Proposition 3.6. Let P1 and P2 be weakly equivalent pat-
terns. Suppose that e′ is an embedding of P1 in a tree t.
Then there are weak embeddings e1 and e2 of P1 and P2,
respectively, in t such that

• e1(root(P1)) = e2(root(P2)), and

• e1(out(P1)) = e′(out(P1)) = e2(out(P2)).

Proof. Consider the set of all the embeddings of P1 in t
that produce to

∆, where o = e′(out(P1)). Let e1 be an em-
bedding from this set, such that the depth of the image of
root(P1) is maximal. We similarly choose e2 from the set of
all embeddings of P2 in t that produce to

∆. Suppose, by way
of contradiction, that e1(root(P1)) 6= e2(root(P2)). Note
that both images are on the path from root(t) to o. W.l.o.g.,
suppose that e1(root(P1)) is deeper than e2(root(P2)). Since
P1 ≡w P2, there exists a weak embedding of P2 in the sub-
tree of t that is rooted at e1(root(P1)), such that the output
is to

∆. This contradicts the choice of e2.

Now we can prove Proposition 3.7 that corresponds to
Proposition 3.5 and considers the case of weak equivalence.

Proposition 3.7. Let P and R be patterns. Consider a
view V , such that root(V) = out(V). If R ◦ V ≡w P , then
R ◦ V ≡w P ◦ V .

Proof. The first part of the proof of Proposition 3.5 does
not assume that R ◦ V ≡ P . Thus, P ◦ V v P always holds
provided that root(V) = out(V), and so does P ◦ V vw P .

Next, we show that P vw P ◦ V . Suppose that ê1 is an
embedding of P in a tree t. The weak equivalence R ◦V ≡w

P and Proposition 3.6 imply that there are weak embeddings
e1 and e2 of P and R ◦ V , respectively, in t such that the
following equalities hold.

e2(root(R ◦ V)) = e1(root(P)) (1)

e2(out(R ◦ V)) = e1(out(P)) = ê1(out(P)) (2)

Let e be the weak embedding of P ◦ V in t that maps ev-
ery node of P as e1 and every node of V as e2. Clearly,
e(out(P ◦V)) = e1(out(P)), since P and P ◦V have the same
output node. So, Equation (2) implies that e(out(P ◦V)) =
ê1(out(P)), i.e., e produces the same output as ê1. The fact
that e is a well-defined weak embedding of P ◦V in t follows
immediately from Equation (1).

4. NATURAL REWRITING CANDIDATES
Consider a pattern P and a view V with depths d and

k, respectively. By Proposition 3.1, if R is a rewriting of
P using V , then R′ ≡w P≥k, where k is the depth of V
and R′ = (R ◦ V)≥k. Intuitively, it may seem that P≥k is
the only possible candidate for a rewriting. This intuition,
however, is misleadingly narrow. As an example, consider
again the patterns P , V and R of Figure 1. Although R
is a rewriting, P≥1 is not. Nevertheless, in this case, we
can obtain a rewriting from P≥1 by relaxing the edges that
emanate from its root, namely, replacing all of them with
descendant edges. This example leads us to the definition
of natural candidates.

Let Q be a pattern. We use Qr// to denote the pattern
that is obtained by relaxing the edges that emanate from the
root of Q. Observe that Q v Qr//. Now, consider a pattern
P and a view V with depths d and k, respectively. The
pattern R′ is a natural rewriting candidate (or just natural

candidate) w.r.t. P and V if R′ is either P≥k or P≥k
r// . As

an example, the middle part of Figure 2 depicts the natural
candidates w.r.t. the patterns P and V of Figure 1. When
P and V are clear from the context, we may simply say that
R′ is a natural candidate.

Our approach to the rewriting problem is, usually, to test
whether one of the natural candidates is a solution. This can
be done by checking equivalence, which is a coNP-complete
problem [14]. In the remainder of this paper, we give con-
ditions that guarantee the completeness of this approach,
namely, if we do not find a rewriting, then one does not
exist. First, we define some terminology.

The pattern R′ is a potential rewriting w.r.t. P and V
when the following condition holds: If there is some rewrit-
ing, then R′ is also a rewriting; in other words, if R′ is not
a rewriting, then one does not exist. Again, when P and V
are clear from the context, we just say that R′ is a poten-
tial rewriting. Our results provide conditions that guarantee
the existence of a potential rewriting among the two natural
candidates. One may ponder whether it could be that some
rewriting exists even when none of the natural candidates is
one. This problem is still open.

Let P be a pattern and V be a view. In the sequel, d and k
denote the depths of P and V respectively. Proposition 3.1
implies that if k > d, then there is no rewriting of P using V .

172

P≥1 ◦ V P≥1
r// ◦ VV P

P≥1
r//P≥1

e

*e

d *b

d ee

a a

**

*b*b

e d eeed

* ee*

d *bdb *

a a

d eeed

*

Figure 2: Patterns P and V , the natural candidates and their compositions with V

If k = d, then it is rather straightforward to show that every
rewriting R satisfies P≥k ≡ (R ◦ V)≥k, which implies that
P≥k is a rewriting. So, if k = d then a natural candidate
is a potential rewriting (moreover, the rewriting-existence
problem is coNP-complete under the assumption of d = k).
Therefore, in the sequel we assume that k < d.

4.1 Guaranteeing Completeness
In this section, we prove that some common properties of

patterns guarantee that at least one natural candidate is a
potential rewriting. Recall that d and k are the depths of
the query pattern P and the view pattern V , respectively.

4.1.1 Properties of the Query
First, we consider properties of the query pattern P that

guarantee the existence of a potential rewriting among the
two natural candidates. For that, we need the notion of sta-
bility [10]. We say that a pattern Q is stable if the following
holds. For all patterns Q′, if Q′ ≡w Q, then Q′ ≡ Q; that is,
weak equivalence to Q is the same as ordinary equivalence
to Q. The next proposition follows from the results of [10].

Proposition 4.1. A pattern Q is stable in each of the
following cases.

• The label of root(Q) is not ∗.
• The depth of Q is 0.

• The depth of Q is at least 1 and Q contains a label of
Σ that does not appear in Q≥1.

Note that the third condition above means that one of the
branches that emanate from the root has a label of Σ that
does not appear in Q≥1. The next proposition is rather
straightforward.

Proposition 4.2. Let R be a rewriting of P using V . If
(R ◦ V)≥k ≡ P≥k, then P≥k is a rewriting of P using V .

Part 2 of Proposition 3.1 and Proposition 4.2 imply the
following sufficient condition for one of the natural candi-
dates to be a rewriting provided that there is one.

Theorem 4.3. If P≥k is stable, then it is a potential
rewriting.

As a special case, Theorem 4.3 and Proposition 4.1 show
that if ∗ is not the label of the k-node of P , then a rewriting
exists if and only if P≥k is one. Observe that if the label
of the k-node of P is ∗ and that of out(V) is not, then a
rewriting does not exist (by Part 3 of Proposition 3.1).

The following theorem considers the case where no de-
scendant edge appears on the path from the root of P to
the k-node.

Theorem 4.4. If the selection path of P≤k has only child
edges, then P≥k is a potential rewriting.

In the remainder of this section, we prove Theorem 4.4.
We assume that R is an equivalent rewriting of P using V ,
and we will show that P≥k is also such a rewriting. The
following proposition is rather straightforward and its proof
is omitted.

Proposition 4.5. Let Q and Q′ be equivalent patterns.
Suppose that the first i edges in the selection paths of both
Q and Q′ are child edges. Then the i-sub-patterns of Q and
Q′ are equivalent.

If the selection path of V consists of only child edges, then
by Proposition 4.5, P≥k ≡ (R ◦ V)≥k. Furthermore, from
Proposition 4.2, it follows that P≥k is a rewriting of P using
V . So, in the remainder of this proof, we assume that the
selection path of V contains at least one descendant edge.

Consider a pattern Q and let n be a node that is not in Q.
Let n/Q and n//Q be the patterns obtained by connecting
n to root(Q) with a child and descendant edge, respectively.
Note that n is the root of both n/Q and n//Q. The next
lemma can be proved by a straightforward adaptation of the
proof of Lemma 4.7 in [10].

Lemma 4.6. Let Q and Q′ be patterns, and let n be a node
of neither Q nor Q′. If n//Q ≡ n/Q′, then n//Q ≡ n//Qr//

and n//Qr// ≡ n/Qr//.

Consider V and the minimal i, such that a descendant
edge connects the i-node to the (i + 1)-node. Let nv

i and np
i

denote the i-nodes of V and P , respectively. By the choice of
i, the selection path of V has only child edges above nv

i . This
implies that P≥i ≡ (R ◦ V)≥i. By this equivalence and the
fact that a child edge and a descendant edge connect nv

i and
np

i , respectively, to the next node on their selection paths,
it follows that np

i /P≥i+1 ≡ nv
i //(R ◦ V)≥i+1. Lemma 4.6

implies that nv
i //(R◦V)≥i+1 ≡ nv

i /Q′, where Q′ is obtained
from (R ◦ V)≥i+1 by replacing the outgoing edges of the
root with descendant edges. Therefore, in R◦V , the branch
of nv

i that includes the (i + 1)-node can be replaced with
nv

i /Q′ while preserving equivalence. After this replacement,
a descendant edge connects the (i+1)-node and the (i+2)-
node. So, we can continue this replacement repeatedly until
we finish at the k-node. Let Q be the result. Then the
following hold for Q. (1) Q ≡ R◦V ; (2) The first k selection
edges of Q are child edges; (3) For i < j < k, all the outgoing
edges of the j-node of Q are descendant edges, except the
one that leads to the (j + 1)-node; and (4) All the outgoing
edges of the k-node of Q are descendant edges.

173

Observe that all of the selection nodes of P at depths
i + 1, . . . , k are necessarily wildcard nodes. Otherwise, one
can easily construct a model of R ◦ V that is not one of
P . By Part 3 of Proposition 3.1, we conclude that this is
also the case for Q. Consequently, one can get an equivalent
pattern by transforming the incoming edge of the k-node of
Q into a descendant edge (since all the outgoing edges of the
k-node are descendants). Furthermore, by using the same
argument, this can also be done with the incoming edge of
the (k−1)-node and so on, until the (i+1)-node. So, let Qw

be the equivalent pattern that is obtained by this process.
That is, Qw is identical to Q, except that the edges between
the i-node to the k-node are all descendant edges. Observe
that Qw can be formulated as the composition Rr// ◦ Vw,
where Vw is obtained from V by transforming some child
edges to descendant ones (hence V v Vw). To conclude the
proof, we show that the following proposition holds. Recall
that Rr// ◦ Vw is equivalent to Q and, hence, it is equivalent
to R ◦ V and P .

Proposition 4.7. P≥k ◦ V ≡ Rr// ◦ Vw.

Proof. Observe that the k-sub-pattern of Rr// ◦ Vw is
the k-sub-pattern of Q. Since the first k selection edges of
Q are child edges, we conclude from Proposition 4.5 that
P≥k ≡ (Rr// ◦ Vw)≥k. To prove that P≥k ◦ V v Rr// ◦ Vw,
recall that V v Vw. So, from P≥k ≡ (Rr// ◦Vw)≥k it follows
that P≥k ◦ V v Rr// ◦ Vw, as claimed.

To prove the other direction, Rr// ◦ Vw v P≥k ◦ V , recall
that Rr// ◦Vw ≡ R◦V . Note that (R◦V)≥k v (Rr// ◦Vw)≥k

(since the latter is obtained from the former by transforming
the child edges emanating from the root to descendant ones)
and, as shown above, (Rr// ◦Vw)≥k ≡ P≥k. So, (R◦V)≥k v
P≥k. It follows that R ◦ V v P≥k ◦ V and, consequently,
Rr// ◦ Vw v P≥k ◦ V , as claimed.

The following corollary of Theorems 4.3 and 4.4 shows
that the rewriting-existence problem is coNP-complete in
the cases considered in this section. Observe that mem-
bership in coNP follows from the theorems, while coNP-
hardness is obtained by rather straightforward reductions
from the problem of testing containment of patterns [14].

Corollary 4.8. Under each of the following assumptions,
the rewriting-existence problem is coNP-complete.

1. P≥k satisfies one or more of the properties of Q in
Proposition 4.1.

2. The selection path of P≤k has only child edges.

4.1.2 Properties of the View
We now consider properties of the view pattern V . The

following theorem shows that one of the natural candidates is
a potential rewriting provided that a descendant edge enters
the output node of V .

Theorem 4.9. If a descendant edge enters the output node
of V , then P≥k is a potential rewriting.

Proof. Suppose that there is a rewriting R of P using V .
We show that P≥k is such a rewriting. Since R◦V ≡ P and
a descendant edge enters the output node of V , Corollary 3.3
implies that the k-sub-pattern of R◦V can be replaced with
the k-sub-pattern of P , i.e., the following holds.

(R ◦ V) ≡ `(R ◦ V)<k k−1
=⇒ P≥k´ (3)

By Proposition 3.1, the two equivalent patterns of (3) have
k-sub-patterns that are weakly equivalent. Thus,

(R ◦ V)≥k ≡w P≥k.

By definition, (R ◦V)≥k and R ◦ (V ≥k) are the same. Thus,

R ◦ (V ≥k) ≡w P≥k

and since root(V ≥k) = out(V ≥k), Proposition 3.7 implies
that

R ◦ (V ≥k) ≡w P≥k ◦ (V ≥k). (4)

As noted above, the left-hand side of (4) is the same as
(R ◦ V)≥k and, similarly, the right-hand side is identical to
(P≥k ◦ V)≥k. Hence, we get the following:

(R ◦ V)≥k ≡w (P≥k ◦ V)≥k. (5)

We use (5) and Proposition 3.2 to replace, in R ◦ V , the
k-sub-pattern (R ◦ V)≥k with (P≥k ◦ V)≥k. The result is
P≥k ◦ V and, so, P ≡ R ◦ V ≡ P≥k ◦ V , as required.

The following theorem considers the case where the selec-
tion path of V does not contain descendant edges.

Theorem 4.10. If the selection path of V has only child
edges, then at least one of the natural candidates is a poten-
tial rewriting.

As an example, consider again the patterns of Figure 2.
Observe that V has only one selection edge, which is a child
edge. As mentioned earlier, P≥1 is not a rewriting of P
using V . However, we prove later that, in this case, the
natural candidate P≥1

r// is a potential rewriting and, indeed,
the reader can verify that it is actually a rewriting of P using
V .

In the remainder of this section, we prove Theorem 4.10.
By Theorem 4.4, if the first k selection edges of P are child
edges, then P≥k is a potential rewriting. So, to prove Theo-
rem 4.10, it suffices to consider the case where the selection
path of V comprises only child edges and at least one of the
first k selection edges of P is a descendant edge.

We assume that R is a rewriting of P using V and that
(ni, ni+1) is a descendant edge among the first k edges of P .
The following holds.

Lemma 4.11. If p is a directed path of R ◦ V that starts
at out(V) and consists of only child edges, then p has only
wildcard labels and it does not contain out(R).

Proof. If p contains out(R), then the selection path of
R ◦ V consists of only child edges while that of P does not.
Hence, it is easy to come up with a tree t, such that P (t) con-
tains a subtree that cannot be produced by any embedding
of R ◦ V in t.

Suppose, by way of contradiction, that p contains a node
n labeled with l 6= ∗. Then, every embedding of R ◦ V in
some tree maps n to a node v labeled with l, such that the
distance from e(out(V)) to v is at most |p| (i.e., the number
of edges of p). Now, consider the canonical model t of P that
is obtained by replacing (ni, ni+1) with a long path (e.g., of
a length twice the height of R◦V), such that all the interior
nodes on that path have a new label. Let o be the node of
t that corresponds to out(P). An embedding of R ◦ V that
maps out(R) to o must map out(V) and n to two of the new
nodes. Thus, we obtain a contradiction.

174

B B′ Br//

*

a b * a

*

*

*

b * a b

**

*

*

*

*

*

*

*

Figure 3:

By using Lemma 4.11, the following is shown.

Lemma 4.12. The following hold.

1. Rr// ≡ R.

2. V ≥k
r// ≡ V ≥k.

3. P≥k
r// ◦ V ≥k

r// ≡ P≥k
r// ◦ V ≥k.

4. Rr// ◦ V ≥k
r// ≡ R ◦ V ≥k.

Proof. Let B be a branch of R. We prove that B ≡
Br//. We assume that the outgoing edge of the root of B
is a child edge (otherwise the claim is trivial). Let p be a
maximal path of B that starts at root(B) and visits only
child edges. Suppose that p ends at node n. Lemma 4.11
implies that the label of n is ∗ and n 6= out(R). Besides, as
p is maximal, n is either a leaf or all the outgoing edges of n
are descendant. In either case, we can replace the incoming
edge of n with a descendant edge. Continuing this process,
we will end up replacing the outgoing edge of root(B) with
a descendant one. Let B′ be B after that last replacement.
For illustration, Figure 3 contains examples of B, B′ and
Br//. Clearly, B v Br// v B′ ≡ B. Thus B ≡ Br//, as
claimed. A similar argument shows that every branch of
V ≥k remains equivalent if its uppermost edge is replaced
with a descendant edge. This proves Parts 1 and 2. From
these two parts, we easily get Parts 3 and 4.

We also need the following lemma.

Lemma 4.13. Rr// ◦ V ≥k
r// ≡ P≥k

r// ◦ V ≥k
r// .

Proof. We first show that Rr// ◦ V ≥k
r// v P≥k

r// ◦ V ≥k
r// .

Let e be an embedding of Rr// ◦ V ≥k
r// in a tree t, such that

e(out(R)) = o. It is enough to show an embedding ẽ of P≥k
r//

in t, such that ẽ(out(P)) = o. From Part 4 of Lemma 4.12,
we conclude that there exists an embedding e′ of R ◦ V ≥k

in t, such that e′(out(R)) = o. Since P≥k ≡w R ◦ V ≥k, it
follows that there is a weak embedding e′′ of P≥k in t, such
that e′′(out(P)) = o. Thus, we obtain ẽ from e′′ by simply
mapping root(P≥k) to root(t). ẽ is a legal embedding since

all the outgoing edges of root(P≥k
r//) are of descendant type.

We now prove that P≥k
r// ◦ V ≥k

r// v Rr// ◦ V ≥k
r// . Let t be a

canonical model of P≥k
r// ◦ V ≥k

r// and o be the node of t that
corresponds to the output node of P . We need to find an
embedding e of Rr//◦V ≥k

r// in t, such that e(out(R)) = o. Let
ts be obtained from t by shortening each of the paths that
correspond to the outgoing edges of the root of P≥k

r// ◦ V ≥k
r//

to one edge. Thus, we obtain a canonical model of P≥k ◦
V ≥k. In particular, there is an embedding e′ of P≥k in ts,
such that e′(out(P)) = o. It follows that there is a weak
embedding e′′ of R ◦ V ≥k in ts, such that e′′(out(R)) = o.

Hence, there is an embedding e of Rr// ◦V ≥k
r// in ts, such that

e(out(R)) = o. Obviously, e is an embedding of Rr// ◦ V ≥k
r//

in t (since all the outgoing edges of the root are descendant),
as required.

Finally, the following lemma completes the proof of The-
orem 4.10.

Lemma 4.14. P≥k
r// is a potential rewriting.

Proof. We need to show that R◦V ≡ P≥k
r// ◦V . For that,

we prove that R ◦V ≥k ≡ P≥k
r// ◦V ≥k. Part 4 of Lemma 4.12

shows that R ◦ V ≥k ≡ Rr// ◦ V ≥k
r// . Then, from Lemma 4.13,

we get that Rr// ◦V ≥k
r// ≡ P≥k

r// ◦V ≥k
r// . Finally, from Part 3 of

Lemma 4.12 we have P≥k
r// ◦V ≥k

r// ≡ P≥k
r// ◦V ≥k. We conclude

that R ◦ V ≥k ≡ P≥k
r// ◦ V ≥k, as claimed.

We conclude this section with the following corollary of
Theorems 4.9 and 4.10.

Corollary 4.15. The rewriting-existence problem is coNP-
complete under each of the following assumptions.

1. A descendant edge enters the output node of V .

2. The selection path of V does not have descendant edges.

4.1.3 Correlation Between the Query and the View
We have shown that there is a potential rewriting among

the natural candidates in each of the following cases. First,
the selection path of either P≤k or V has only child edges.
Second, a descendant edge enters the output node of V . If
neither case holds, then we can still get a sufficient condition
for completeness by considering the last descendant edge on
the selection path of P , namely, the one that is closest to
the output node.

Consider two edges e1 and e2 that appear on the selection
paths of P and V , respectively. We say that e1 and e2 are
corresponding selection edges if they appear at the same
depth, namely, for some 1 ≤ i ≤ k, both connect the (i−1)-
node to the i-node.

The following theorem shows that P≥k is a potential rewrit-
ing if the last descendant edge on the selection path of P
corresponds to a descendant edge of V . This result is the
basis of an extension that is described in the next section.
An important element in the proof is showing that if the
rewriting R has a descendant edge e on the selection path,
then the following holds. Consider the part of the selection
path of R◦V between the edge of V that corresponds to the
last descendant edge of P and the edge e. All the branches
of R ◦ V that emanate from this part of the selection path
are redundant.

Theorem 4.16. Let P be a pattern and let V be a view,
such that the last descendant edge on the selection path of P
corresponds to a descendant edge on the selection path of V .
Then, the following hold.

• P≥k is a potential rewriting.

175

• The rewriting-existence problem is coNP-complete.

Proof. Suppose that R is a rewriting of P using V . Let j
be the depth of the node of P into which the last descendant
edge of the selection path of P enters. Observe that if j = k,
then this case has been previously solved (a descendant edge
enters the output node of V). So, we assume that j < k.
The node at depth j of P is denoted by np

j and that at depth
j of V is denoted by nv

j .

We first prove that R◦V v P≥k◦V . Consider a tree t and
let e be an embedding of R ◦ V in t, such that e(out(R)) =
o (i.e., e produces to

∆). Furthermore, assume that e is an
embedding that maps nv

j to the deepest node of t, among
all the embeddings that produce to

∆. Let vj = e(nv
j) and

vr = e(root(R)). We denote by tj and tr the subtrees of t
that are rooted at vj and vr, respectively. To show that an
embedding of P≥k ◦V in t produces to

∆, it is enough to prove
that an embedding of P≥k in tr produces tr

o
∆. Since P≥j ≡w

(R ◦ V)≥j , there is a weak embedding e′ of P≥j in tj , such
that e′(out(P)) = o. However, e′ must be an embedding
of P≥j in tj , namely, e′ maps root(P≥j) to root(tj), or else
e does not satisfy the condition that it maps nv

j as deeply

as possible. Since P≥j has only child edges on its selection
path, we conclude that the depth of o in tj is d−j. Therefore,
e maps each edge of the selection path of (R ◦ V)≥j to a
single edge of tj . So, the path from vj to vr has k− j edges.
It follows that e′ induces an embedding of P≥k in tr that
produces tr

o
∆, as required.

We now prove that P≥k ◦V v R◦V . If all of the selection
edges of R are child edges, then the claim is obvious, as
(P≥k◦V)≥k ≡ (R◦V)≥k. So assume that R has a descendant
edge connecting uq−1 to uq, where ui is the i-node of R ◦V .
Consider a canonical model t of P≥k◦V and let o be the node
of t that corresponds to out(P). Let tj and tq be the subtrees
of t that are rooted at the nodes that correspond to the j-
node and q-node of P≥k ◦ V , respectively. To complete the
proof, we next show that some weak embedding of (R◦V)≥j

in tj produces to
∆.

Let t′ be the subtree that is constructed by placing above
tq a canonical model t̂ of (R ◦ V)≤q−1. Moreover, the node
of t̂ corresponding to the (q− 1)-node of R ◦ V is connected
to the root of tq by a long (e.g., of length 2d) path of nodes
that have a new label. Since there is a weak embedding
of (R ◦ V)≥q in tq, it follows that to

∆ ∈ (R ◦ V)(t′). Now
consider the subtree t′′ of t′ that is induced by the q − j
suffix of the long path and tq. Since P ≡ R ◦ V , there
is an embedding of P≥j in t′′ and, consequently, a weak
embedding of (R ◦ V)≥j in t′′ (both embeddings produce
to
∆). But t′′ can be obtained from a subtree of tj by removing

branches and changing labels to the new one. It follows that
there is a weak embedding e of (R ◦ V)≥j in tj such that e
produces to

∆, as claimed.

As an example, consider the patterns V , P1 and P2 of
Figure 4. The condition of Theorem 4.16 is satisfied by V
and P1 since the last descendant edge on the selection path
of P1 is the second, and the second selection edge of V is
also descendant. Observe that this condition is not satisfied
in the case of V and P3 since the first selection edge of V is
a child edge. Also note that the last descendant edge in the
selection path of P2 is the fifth, so there is no corresponding
edge of V . In the following section, we extend Theorem 4.16
to accommodate both P2 and P3.

5. REWRITING TECHNIQUES
In this section, we describe several techniques that can

be used for extending results on rewriting, e.g., either those
of [17] or the ones given in the previous section. These tech-
niques are based on the following approach. Given a pattern
P and a view V , we create a new pattern P ′ and a new view
V ′. We show that if a rewriting of P using V exists, then a
rewriting of P ′ using V ′ can be transformed into a rewriting
of P using V and vice versa. This is useful, because P ′ and
V ′ are more likely to fall in the resolved cases. In addition,
if P ′ and V ′ satisfy one of the conditions of the previous
section and none of the natural candidates w.r.t. P ′ and V ′

is a rewriting, then there is no rewriting of P using V .
We actually show how to bring about new, easily-described

syntactic conditions, which guarantee that at least one nat-
ural candidates is a potential rewriting. This is done by
combining the techniques of this section with results of the
previous section. As usual, the pattern P and the view V
have depths d and k, respectively, and d > k.

5.1 Utilizing Stability
The first technique is a reduction of the original P to a

stable sub-pattern of P . More precisely, the following propo-
sition shows that it is enough to solve the problem for a sta-
ble sub-pattern of P and the corresponding sub-pattern of
V (provided that both exist).

Proposition 5.1. Suppose that there is a rewriting of P
using V , and that P≥i is stable for some 0 ≤ i ≤ k. Then a
pattern R′ is a rewriting of P using V if and only if it is a
rewriting of P≥i using V ≥i.

Proof. Suppose that R′ is a rewriting of P using V . By
Part 2 of Proposition 3.1, the patterns (R′ ◦ V)≥i and P≥i

are weakly equivalent. Hence, they are equivalent, because
the latter is stable. Since (R′ ◦V)≥i ≡ R′ ◦ (V ≥i) holds, the
claim follows.

Now, suppose that R′ ◦ V ≥i ≡ P≥i. Let R be a rewriting
of P using V , that is, P ≡ R ◦ V . Part 2 of Proposition 3.1
and the stability of P≥i imply that (R ◦ V)≥i ≡ P≥i. Con-
sequently, (R ◦ V)≥i ≡ R′ ◦ V ≥i. This means that in R ◦ V ,
we can replace the sub-pattern (R◦V)≥i with R′◦V ≥i while
preserving equivalence. In this way we get R′◦V . Therefore,
R′ is a rewriting of P using V , as claimed.

By combining Proposition 5.1, Theorem 4.4, Theorem 4.10
and Proposition 4.1, we get the following corollary.

Corollary 5.2. Let 0 ≤ i ≤ k. If the i-node on the
selection path of P (resp. V) is not labeled with ∗ and only
child edges connect it to the k-node of P (resp. V), then at
least one of the natural candidates is a potential rewriting.
Furthermore, in this case the rewriting-existence problem is
coNP-complete.

Next, we use Proposition 5.1 in proving that some natural
candidate is a potential rewriting if the pattern P is in the
normal form GNF/∗, which is a generalization of the normal
form NF/∗ introduced in [10] (in particular, every pattern
in NF/∗ is also in GNF/∗, but not necessarily vice versa).
In the following definition of GNF/∗, note that a pattern is
linear if it forms a path; that is, each node has at most one
child.

176

Definition 5.3 (Generalized Normal Form-GNF).
Consider a pattern Q of depth d. We say that Q is in GNF/∗
if for all 1 ≤ i ≤ d, at least one of the following holds.

1. A child edge enters the i-node of Q.

2. Q≥i is stable.

3. Q≥i is linear.

Theorem 5.4. If P is in GNF/∗, then at least one of the
natural candidates is a potential rewriting.

Proof. Consider the maximal 1 ≤ i ≤ k, such that P≥i

is stable; if there is no such i, then let i = 0. If i = k,
then the claim follows immediately from Theorem 4.3. So,
we assume that i < k. If the selection path of P has only
child edges between the i-node and the k-node, then Propo-
sition 5.1 and Theorem 4.4 imply the claim. It remains to
deal with the case that for some i < j ≤ k, a descendant
edge enters the j-node of P . We consider the smallest j
that has this property. By Proposition 4.1, the maximal-
ity of i implies that ∗ is the only label that appears on the
path from the j-node to the k-node. By the definition of
GNF/∗ and the properties of i and j, we get that P≥j is
linear. Consequently, applying the following transformation
to P produces an equivalent pattern P ′. We replace all the
descendant edges between the (j − 1)-node and the k-node
with child edges, and relax the outgoing edge of the k-node
(namely, it becomes a descendent edge). Note that the k-
node has a single outgoing edge, because P≥j is linear. This
transformation preserves also the equivalence of P≥i and
P ′≥i. Hence, P ′≥i is stable. In addition, the selection path
of P ′≥i has only child edges. Thus, the claim is proven by
Proposition 5.1, Theorem 4.4, the equivalence of P and P ′,
and the fact that the natural candidate P ′≥k of P ′ is the
same as the natural candidate P≥k

r// of P .

5.2 Ignoring All-But-Last Descendant Edges
Thus far we have dealt with descendant edges on the se-

lection path of V if one of those either enters the output
node of V or corresponds to the last descendent edge on the
selection path of P . In this section, we show how to ignore
the part of V (and the corresponding part of P) above the
last descendant edge on the selection path of V . First, we
give a few definitions.

Consider a pattern Q. The depth of a selection edge (m, n)
of Q is the same as that of n. Now, let l be a label. We
construct the pattern l//Q by creating a new root r that
is labeled with l, and connecting r to the root of Q with a
descendant edge. The following proposition is quite straight-
forward.

Proposition 5.5. Let P1 and P2 be two patterns such
that P1 ≡w P2. Then l//P1 ≡ l//P2 for all l ∈ Σ ∪ {∗}.

Using Proposition 5.5, the following is shown.

Proposition 5.6. Let i be the maximal depth of a de-
scendant edge on the selection path of V . Then:

1. If R is a rewriting of P using V , then R is a rewriting
of ∗//P≥i using ∗//V ≥i.

2. If R′ is a rewriting of ∗//P≥i using ∗//V ≥i, then R′

is a potential rewriting w.r.t. P and V (i.e., it is a
rewriting if there is one).

Proof. (Proof of 1.) From R ◦ V ≡ P and Proposi-
tion 3.1(2) we get (R ◦V)≥i ≡w P≥i. Since (R ◦V)≥i is the
same as R ◦V ≥i, we get R ◦V ≥i ≡w P≥i. Now from Propo-
sition 5.5 we know that ∗//(R ◦ V ≥i) ≡ ∗//P≥i. Note that
the left part of this equivalence is the same as R ◦ (∗//V ≥i).
Therefore, we get that R is a rewriting of ∗//P≥i using
∗//V ≥i.

(Proof of 2.) Since R′ is a rewriting of ∗//P≥i using
∗//V ≥i, then R′ ◦ (∗//V ≥i) ≡ ∗//P≥i. Note that R′ ◦
(∗//V ≥i) can be written as ∗//(R′ ◦ V ≥i). Therefore, we
conclude that ∗//(R′ ◦ V ≥i) ≡ ∗//P≥i. Applying Proposi-
tion 3.1(2) to this equivalence we get

(R′ ◦ V ≥i) ≡w P≥i. (6)

Since the edge that enters the i-th node of V is a descendant

edge, V can be written as V <i i−1
=⇒ V ≥i. Combining this

with R ◦ V ≡ P , we get R ◦ (V <i i−1
=⇒ V ≥i) ≡ P . It is,

however, easy to see that the left part of the equivalence is

identical to V <i i−1
=⇒ (R ◦ V ≥i); hence

V <i i−1
=⇒ (R ◦ V ≥i) ≡ P. (7)

Now, by applying Proposition 3.1(2) to (7) we get (V <i i−1
=⇒

(R ◦ V ≥i))≥i ≡w P≥i and because the left part of this weak
equivalence is identical to R ◦ V ≥i, we get

R ◦ V ≥i ≡w P≥i. (8)

Because of (8) and by using Proposition 3.2, we can replace
R ◦ V ≥i by P≥i in the left side of (7) and obtain the equiv-

alent pattern V <i i−1
=⇒ P≥i. Therefore, (7) becomes:

V <i i−1
=⇒ P≥i ≡ P. (9)

Because of (6), by applying Proposition 3.2 on (9) we can
replace P≥i by R′ ◦ V ≥i obtaining the equivalent pattern

V <i i−1
=⇒ (R′ ◦ V ≥i) ≡ P. (10)

Since V <i i−1
=⇒ (R′ ◦ V ≥i) can be rewritten as R′ ◦ (V <i i−1

=⇒
V ≥i) or equivalently as R′ ◦ V , we derive R′ ◦ V ≡ P .

Proposition 5.6 and Theorem 4.16 immediately imply the
following extension of the latter.

Corollary 5.7. If the deepest descendant edge on the
selection path of V is at least as deep as the deepest descen-
dant edge on the selection path of P , then P≥k is a potential
rewriting. Furthermore, in this case the rewriting-existence
problem is coNP-complete.

As an example, V and P3 (but not P2) of Figure 4 satisfy the

conditions of Corollary 5.7. Consequently, P≥3
3 is a potential

rewriting.

5.3 Pattern Extension and Output Lifting
Consider a pattern Q and let l be a label. The l-extension

of Q, denoted by Q+l, is obtained by adding new nodes that
are connected by child edges as follows. We add a child
labeled with l to out(Q), and a child labeled with ∗ to each
leaf of Q; if out(Q) is a leaf, it only gets the child labeled
with l. For example, see the patterns V , P2, V +∗ and P+µ

2

of Figure 4. Now, suppose that the depth of Q is h. For
0 ≤ j ≤ h, the pattern Qj→ is the same as Q, except that

177

P1 P+µ
2 P3P2V V +∗ (P+µ

2)4→

c

*

b e *

**

*ee

*

*e

*

*

*

a

e *

*

c c c

*

a

*

cb

**

b c

*

e

*

*

a

**

b

**

aa

*e

* **

*

**

b

*

a

*

*

b

a

*

b

*

µ µ

c

*

Figure 4: Correlation, label extension and output lifting

the output node is the j-node (instead of the h-node). For

example, Qh→ is Q itself, and in Q(h−1)→ the output node is
the parent of out(Q). As another example, see the pattern
(P+µ

2)4→ of Figure 4. In the remainder of this section, we
assume that µ is a label that appears in none of the patterns
at hand; in particular, in neither P nor V . The following
proposition is rather straightforward.

Proposition 5.8. Let P1 and P2 be two patterns. Then,
P1 ≡ P2 if and only if P+µ

1 ≡ P+µ
2 .

We now consider the following transformation that is ap-
plicable if for some k ≤ j ≤ d, the j-node of P has a
non-∗ label. If so, we first extend P and V with the la-
bels µ and ∗, respectively, and then define the j-node as the
new output node. Thus, we actually generate a new pat-
tern P ′ = (P+µ)j→ and a new view V ′ = V +∗. The next
theorem shows that this transformation preserves existence
(and nonexistence) of rewritings. Moreover, it shows that a
rewriting R of P using V can be easily obtained from the
one found for P ′ and V ′.

Theorem 5.9. Let P , V and R be patterns. Suppose
that for some k ≤ j ≤ d, the label of the j-node of P is
not ∗. Then, R is a rewriting of P using V if and only if
(R+µ)(j−k)→ is a rewriting of (P+µ)j→ using V +∗.

Proof. Let R′ = (R+µ)(j−k)→, P ′ = (P+µ)j→ and V ′ =
V +∗. We start with the “only if” direction. We assume that
R is a rewriting of P using V and we need to prove that
R′ ◦ V ′ ≡ P ′. We first prove that R′ ◦ V ′ v P ′. Consider a
canonical model t′ of R′ ◦ V ′. Let t be obtained from t′ by
pruning the leaves. Clearly, t is a canonical model of R ◦ V .
We denote by vi the node of t that corresponds to the i-
node of R ◦ V ; in particular, vd corresponds to out(R). The
equivalence R◦V ≡ P implies that there is an embedding e of
P in t that maps out(P) to vd. By Part 3 of Proposition 3.1,
R ◦ V and P have the same number of nodes with non-∗
labels on their selection paths. Therefore, the embedding e
must map the j-node of P to vj (recall that the j-node has
a non-∗ label). Thus, we can extend e to an embedding e′

of P ′ in t′, such that e′ maps the j-node to vj , as required.
The proof for the other direction, P ′ v R′ ◦ V ′, is similar.

We now prove the “if” direction. For that, we assume that
R′ is a rewriting of P ′ using V ′ and we need to show that

R ◦ V ≡ P . We first prove that R ◦ V v P . Consider a
canonical model t of R ◦ V , and let or and ov be the nodes
of t that correspond to out(R) and out(V), respectively. Let
t′ be obtained from t by adding a child with the label ⊥ to ov

and to each leaf (other than or), and a child with the label µ
to or. Then t′ is a canonical model of R′ ◦V ′. Consequently,
there is an embedding e′ of P ′ in t′. The embedding e′ must
map out(P) to or, because or is the only node having a child
labeled with µ. The embedding e′ induces a mapping e of
P in t, such that e produces tor

∆ . The proof of P v R ◦ V is
similar.

Theorem 5.9 shows that if a label of Σ appears on the
selection path of P between depth k and depth d, then the
following can be done. In order to find a rewriting of P using
V (or deciding that none exists), it is sufficient to look for
a rewriting R′ of (P+µ)j→ using V +∗, such that R′ has the

form (R+µ)(j−k)→ for some pattern R. If such R′ is found,
then the pattern R is a rewriting of P using V . The next
proposition shows that R is a natural candidate if and only
if (R+µ)(j−k)→ is so. The proof is rather straightforward
and therefore omitted.

Proposition 5.10. Let P , V and R be patterns and sup-
pose that for some k ≤ j ≤ d, the j-node of P has a non-∗
label. Then, R is a natural candidate w.r.t. P and V if and
only if (R+µ)(j−k)→ is a natural candidate w.r.t. (P+µ)j→

and V +∗.

From Theorem 5.9 and Proposition 5.10, we conclude the
following corollary.

Corollary 5.11. Let P and V be patterns and suppose
that for some k ≤ j ≤ d, the j-node of P has a non-∗ label.
Then the following hold.

• There is a rewriting of P using V if and only if there
is a rewriting of (P+µ)j→ using V +∗.

• (P+µ)j→ and V +∗ have a rewriting among the natural
candidates if and only if so do P and V .

From Corollary 5.11, we conclude that the technique of
this section is useful not just for finding a rewriting R, but
also to prove that the natural candidates w.r.t. P and V

178

contain a potential rewriting. In particular, if the results of
the previous sections are applicable to (P+µ)j→ and V +∗,
then we can use them for P and V . As an example, we
can generalize Corollary 5.7 as follows. For the purpose of
deciding whether the condition of the corollary holds, we can
ignore every descendant edge e = (m, n) on the selection
path of P below the k-node, provided that a label other
than ∗ appears (at least once) between the k-node and m.
Consider, for instance, the patterns V and P2 of Figure 4.
By ignoring the descendant edge of P2 below the label c, we
get that P≥3

2 is a potential rewriting.

6. CONCLUSION
In this work, we have studied the rewriting problem in a

widely used fragment of XPath. The problem was known
to be coNP-hard, but there was no upper bound. We have
shown that for large sub-fragments, the problem is coNP-
complete. These are practical results because the input size
is typically very small. Moreover, our results cover most of
the queries and views that are used in real-world scenarios.
To be convinced of this point, one should realize that it is
not easy to contrive meaningful queries and views that can
“beat” all our methods.

To prove our results, we have developed new techniques
for reasoning about patterns of XP{//,[],∗}. We believe that
these techniques will be useful for investigating other prob-
lems pertaining to XP{//,[],∗}. These techniques are not
based on query minimization and furthermore they do not
get an inspiration from techniques in [10]. In particular,
it is not known whether a non-redundant XPath query in
XP{//,[],∗} is also minimal. The work in [10] shows that
for two normal forms, this property holds (namely, a non-
redundant query is also minimal). But even when this prop-
erty holds, it only yields a Σp

2 upper bound for the rewrit-
ing problem, while in this work we give coNP-complete re-
sults. Moreover, the generalized normal form presented in
Section 5.1 covers a much larger class of queries than the
corresponding normal forms presented in [10] because it is
based only on properties of the selection path (rather than
the whole query); hence, the generalized normal form covers
many queries for which it is not known whether minimiza-
tion is the same as non-redundancy.

Quite a few problems remain open. First, finding the ex-
act complexity of the general case or, at least, a better upper
bound than our plain decidability result. Second, is there
an example where none of the possible rewritings is a nat-
ural candidate? Third, is it possible to extend our results
to the problem of maximally contained rewritings? Fourth,
given a set of queries that are frequently asked, what is an
optimal set of views that should be maintained so that the
queries could be evaluated as quickly as possible? Naturally,
this problem is inherently related to caching on the World-
Wide Web. Fifth, formulating and solving the problem of
rewriting a query using multiple views.

Acknowledgments
We thank the anonymous referees for valuable comments.

7. REFERENCES
[1] F. N. Afrati, C. Li, and P. Mitra. Rewriting queries

using views in the presence of arithmetic comparisons.
Theor. Comput. Sci., 368(1-2):88–123, 2006.

[2] F. N. Afrati, C. Li, and J. D. Ullman. Using views to
generate efficient evaluation plans for queries. J.
Comput. Syst. Sci., 73(5):703–724, 2007.

[3] A. Balmin, F. Özcan, K. S. Beyer, R. Cochrane, and
H. Pirahesh. A framework for using materialized
XPath views in XML query processing. In VLDB,
pages 60–71. Morgan Kaufmann, 2004.

[4] D. Calvanese, G. D. Giacomo, M. Lenzerini, and
M. Y. Vardi. Answering regular path queries using
views. In ICDE, pages 389–398, 2000.

[5] L. Chen and E. A. Rundensteiner. XCache:
XQuery-based caching system. In WebDB, pages
31–36, 2002.

[6] S. Cohen, W. Nutt, and A. Serebrenik. Rewriting
aggregate queries using views. In PODS, pages
155–166. ACM, 1999.

[7] A. Deutsch and V. Tannen. Reformulation of XML
queries and constraints. In ICDT, pages 225–241.
Springer, 2003.

[8] S. Flesca, F. Furfaro, and E. Masciari. On the
minimization of Xpath queries. In VLDB, pages
153–164, 2003.

[9] G. Grahne and A. Thomo. Query containment and
rewriting using views for regular path queries under
constraints. In PODS, pages 111–122. ACM, 2003.

[10] B. Kimelfeld and Y. Sagiv. Revisiting redundancy and
minimization in an XPath fragment. In EDBT, pages
61–72. ACM, 2008.

[11] L. V. S. Lakshmanan, H. Wang, and Z. Zhao.
Answering tree pattern queries using views. In VLDB,
pages 571–582. ACM, 2006.

[12] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and
D. Srivastava. Answering queries using views. In
PODS, pages 95–104. ACM, 1995.

[13] B. Mandhani and D. Suciu. Query caching and view
selection for XML databases. In VLDB, pages
469–480. ACM, 2005.

[14] G. Miklau and D. Suciu. Containment and equivalence
for a fragment of XPath. J. ACM, 51(1):2–45, 2004.

[15] Y. Papakonstantinou and V. Vassalos. Query
rewriting for semistructured data. In SIGMOD
Conference, pages 455–466. ACM, 1999.

[16] J. D. Ullman. Information integration using logical
views. Theor. Comput. Sci., 239(2):189–210, 2000.

[17] W. Xu and Z. M. Özsoyoglu. Rewriting XPath queries
using materialized views. In VLDB, pages 121–132,
2005.

[18] L. H. Yang, M. L. Lee, and W. Hsu. Efficient mining
of XML query patterns for caching. In VLDB, pages
69–80, 2003.

179

