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ABSTRACT
Retrieving related graphs containing a query graph from a
large graph database is a key issue in many graph-based
applications, such as drug discovery and structural pattern
recognition. Because sub-graph isomorphism is a NP-complete
problem [4], we have to employ a filter-and-verification frame-
work to speed up the search efficiency, that is, using an effec-
tive and efficient pruning strategy to filter out the false pos-
itives (graphs that are not possible in the results) as many
as possible first, then validating the remaining candidates
by subgraph isomorphism checking. In this paper, we pro-
pose a novel filtering method, a spectral encoding method,
i.e. GCoding. Specifically, we assign a signature to each
vertex based on its local structures. Then, we generate a
spectral graph code by combining all vertex signatures in a
graph. Based on spectral graph codes, we derive a necessary
condition for sub-graph isomorphism. Then we propose two
pruning rules for sub-graph search problem, and prove that
they satisfy the no-false-negative requirement (no dismissal
in answers). Since graph codes are in numerical space, we
take this advantage and conduct efficient filtering over graph
codes. Extensive experiments show that GCoding outper-
forms existing counterpart methods.

1. INTRODUCTION
As a popular data structure, graphs have been used to

model many complex data objects and their relationships in
the real world, for example, the chemical compounds [19]
[9], entities in images [13] and social networks [1]. Due
to the wide usage of graphs, it is quite important to re-
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trieve related graphs containing a query graph from a graph
database efficiently. For example, given a large chemical
compound database, a chemist may want to find all chemi-
cal compounds having a particular sub-structure. Formally,
we define this type of search as sub-graph search, that is
given a query graph Q, we need to find all data graphs Gi,
where Gi contains the query Q, namely, Q is sub-graph iso-
morphism to Gi. Figure 1 shows a running example of sub-
graph search, where a query graph Q and a graph database
with 4 graphs are listed. The number beside the vertex is
vertex ID and the letter in the vertex is vertex label. Graph
003 should be returned as the result, since graph 003 con-
tains query Q.
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Figure 1: Running Example

However, it is not trivial to conduct sub-graph search
efficiently since the sub-graph isomorphism itself is a NP-
complete problem [4]. Thus, to speed up the search, we
often use the filter-and-verification framework, that is, first
employing an effective and efficient pruning strategy to re-
move the false positives (graphs that are not possible in the
results), then checking the remaining candidates by sub-
graph isomorphism. Since the latter step is computation
expensive, the effectiveness of the pruning strategy is the
key issue to improve the search efficiency. So far, there are
many pruning strategies have been proposed [14, 22, 7, 24,
6, 3, 2, 25], which can be divided into the following two
categories:

1. Data-mining based filtering. The approaches in this
category apply data mining methods first to extract
some features (sub-structures) from the graphs. After
that, an inverted index is created for each feature. To
answer a sub-graph query Q, Q is represented as a set
of features and all the graphs that may contain Q are
retrieved by examining the inverted index. The ratio-
nal behind this type of filtering methods is that if some
features of graph Q do not exist in a data graph G, G
cannot contain Q as its sub-graph. The filtering meth-
ods belonging to this category are gIndex [22], Treepi
[24], FG-Index [2] and Tree+δ [25]. However, the ef-

181



fectiveness of these filtering methods depends on the
quality of selected features. Moreover, as mentioned in
[22] [24], the quality of the selected features may de-
grade over time after lots of insertions and deletions.
In this case, we have to re-select features in the whole
updated graph database, and re-build the index from
scratch, which is quite time consuming. For example,
according to the report by the SCI Finder1, approxi-
mate 4,000 new compound structures are added each
day. In this scenario, it is expensive to re-compute the
index to handle updates from scratch.

2. Non-data mining based filtering. Different from the
above methods, no data mining-based feature selec-
tions are needed in the second category, such as Graph-
Grep [14] and Closure-tree [7]. In GraphGrep, all
pathes up to maxL are enumerated. Then, we build
inverted index for each path in GraphGrep. Given a
query graph, all the distinct pathes in the query graph
are searched in the inverted index for the data graphs
contain those path as well. In Closure-tree, the basic
idea is that if we can determine that there does not
exist an injective function from vertices in graph Q to
ones in graph G, Q cannot be sub-graph isomorphism
to G. These two methods can handle the graph updates
with less cost, since they do not rely on the effective-
ness of selected features. However, current non-data
mining approaches are either less effective in pruning
power due to using simple paths (e.g. GraphGrep), or
have to conduct expensive structure comparison (e.g.
Closure-tree) in the filtering process, which makes the
filtering step itself become expensive and degrades the
filtering efficiency.

To address the above shortcomings, in this paper, we pro-
pose a spectral pruning strategy (that is GCoding) for sub-
graph search problem. Specifically, we use a tree to repre-
sent the local structure associated with each vertex. Then,
we assign the spectral signatures to vertices by mapping the
local structure information into the numerical space based
on spectral graph theory. We generate the graph code by
combining all vertex signatures of a graph and conduct fil-
tering step using both the graph code and local signatures.
We prove that our filtering method based on spectral coding
will not introduce false negatives, moreover, due to the light
computation cost of graph code comparison, the graph cod-
ing is efficient and effective in removing false positives, which
is also confirmed by the experiments. Most importantly, it
is not necessary for GCoding to re-compute spectral signa-
tures from scratch in order to handle insertion and deletion.
Therefore, GCoding can work well in the graph database
with frequent updates.

In summary, we made the following contributions in this
paper:

1. We propose a novel spectral graph coding technique,
GCoding, by encoding the structures of a graph into a
numerical space. We design an efficient storage schema
for storing encoded graphs and an efficient index struc-
ture, GCoding-tree.

1SCI Finder: a research discovery tool that allows you to ac-
cess the world’s largest collection of biochemical, chemical,
chemical engineering, medical, and other related informa-
tion. http://www.cas.org/SCIFINDER/

2. Based on GCoding technique, we propose effective and
efficient pruning strategies for sub-graph search prob-
lem, and prove that they satisfy no-false-negatives re-
quirement (no dismissal in answers).

3. We have shown the superiority of GCoding compared
to the existing methods through extensive experiments.

The remainder of the paper is organized as follows: We dis-
cuss some background knowledge in Section 2. The graph
coding method and pruning strategy are proposed in Sec-
tion 3. The framework of sub-graph search is discussed in
Section 4. We evaluate our method in the extensive experi-
ments in Section 5. We discuss the related work in Section
6 in details. Finally, we conclude the paper in Section 7.

2. BACKGROUND
In this section, we briefly review the terminologies that

we will use in this paper.

2.1 Graphs and Trees

Definition 2.1. Graph. A labeled graph is always de-
noted as < V, E, Lv, Le, Fv, Fe >, where (1) V is the set of
vertices; (2) E is the set of edges; (3)Lv is the set of vertex
labels; (4) Le is the set of edge labels; (5) Fv is a function:
V → Lv that assigns labels to vertices; (6) Fe is a function:
E → Le that assigns labels to edges.

Definition 2.2. Sub-graph. If a graph G′ whose ver-
tices and edges form subsets of the vertices and edges of a
given graph G, G′ is a sub-graph of G.

Definition 2.3. Induced Sub-graph. An induced sub-
graph G′ is a subset of the vertices of a graph G together
with any edges whose endpoints are both in this subset.
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Figure 2: Sub-graph and Induced Sub-graph

In fact, induced sub-graph is a special case of sub-graph. In
Figure 2, S1 and S2 are sub-graphs of graph G respectively.
S1 is also an induced sub-graph of G. However, S2 is not an
induced sub-graph of G, since the edge (3, 4) does not exist
in S2.

Definition 2.4. Graph Isomorphism. Assume that we
have two graphs G1 < V1, E1, L1v, L1e, F1v, F1e > and G2

< V2, E2, L2v, L2e, F2v, F2e >. G1 is graph isomorphism to
G2, if and only if there exists at least one bijective function
f : V1 → V2 such that: 1) for any edge uv ∈ E1, there is
an edge f(u)f(v) ∈ E2; 2) F1v(u)= F2v(f(u)) and F1v(v)=
F2v(f(v)); 3) F1e(uv)= F2e(f(u)f(v)).

Definition 2.5. (Induced) Sub-graph Isomorphism.
Assume that we have two graphs G′ and G, if G′ is graph
isomorphism to at least one (induced) sub-graph of G under
bijective function f , G′ is (induced) sub-graph isomorphism
to G under injective function f .
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Figure 3: (Induced) Sub-graph Isomorphism

In Figure 3, G1 is induced sub-graph isomorphism to G,
since G1 is graph isomorphism to S1 in Figure 2, where S1

is an induced subgraph of G. Similarly, G2 is sub-graph
isomorphism to G. Usually, for presentation convenience,
when G′ is (induced) sub-graph isomorphism to G, we also
say that G′ is (induced) sub-graph of G. Throughout the
rest of the paper, we do not distinguish (induced) sub-graph
and (induced) sub-graph isomorphism when the context is
clear.

In this paper, all trees are unlabeled rooted unordered trees
unless otherwise specified, which is defined as follows.

Definition 2.6. Unlabeled Rooted Unordered Tree.
A rooted unordered tree T denoted as T = (V, v0, E), where
(1) V is the set of nodes ; (2) v0 is a distinguished node
called the root that has no entering edges; (3) E is the set of
edges in the tree. Note that, there are no predefined ordering
among each set of siblings in rooted unordered tree.

Definition 2.7. Induced Subtree. For a tree T with
node set V and edge set E , we say that a tree T ′ with node
set V ′ and edge set E′, is an induced subtree of T if and
only if there exists at least one injective function f : V ′ →
V such that: for any directed edge uv ∈ E′ (namely, u is a
parent of v in tree T ′), there is an directed edge f(u)f(v) ∈
E.
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Figure 4: Induced Subtree

In Figure 4, tree T2 is an induced subtree of T1.

2.2 Matrices and Eigenvalues
As we all know, for any graph G, we can denote it by

{0, 1} adjacency matrix M . In this paper, we only consider
non-directed graphs. Therefore, M is a symmetric matrix.
Given a n × n matrix M , there exist a column n-vector −→v
and a scalar λ such that

M−→v = λ−→v
〈−→v ,−→v 〉 = 1

, where 〈−→v ,−→v 〉 is the inner product of two vectors, which
is defined as 〈−→v ,−→v 〉 =

∑n
i=1 vi ∗ vi. The −→v and λ are

called the normalized eigenvector (or simply eigenvector)
and eigenvalue of M respectively. The eigenvectors need
to be normalized since otherwise there is an infinite number
of eigenvalues that are obtained by scaling the eigenvectors.

For an n× n matrix, there are a total of n such eigenvector
and eigenvalue pairs, but they may not be distinct. The
eigenvalues are usually denoted by λ1...λn ordered by their
magnitude in non-ascending order. In spectral graph the-
ory, there exists a close relation between the eigenvalues of
a graph G and its induced sub-graph G′, which is stated in
the following theorem.

Theorem 2.1. [18] Given a graph G with n vertices and
a graph G′ with m vertices (n ≥ m), their adjacency ma-
trices are denoted as A and B respectively. For matrix A,
its eigenvalues are λ1 ≥ λ2 ≥ ... ≥ λn. For matrix B, its
eigenvalues are β1 ≥ β2 ≥ ... ≥ βm. If G′ is an induced
sub-graph of G, then λn−m+i ≤ βi ≤ λi, ( i = 1,..., m ).

In fact, the above theorem is derived from Interlacing The-
orem about the matrix M and its principal sub-matrix [18,
15]:

Theorem 2.2. (Interlacing Theorem) [18]. Let A be a
symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ ... ≥ λn and
let B be one of its principal sub-matrix. If the eigenvalues
of B are β1 ≥ β2 ≥ ... ≥ βm, then λn−m+i ≤ βi ≤ λi, ( i
= 1,..., m ).

In Interlacing Theorem, a principal sub-matrix B of size
m for a matrix A (n×n) is formed by selecting m rows and
the corresponding m columns from the matrix A (m ≤ n).
Now, we can prove Theorem 2.1 as following:

Proof. (Sketch) If G′ is induced sub-graph of G, it is
clear to know, the adjacency matrix A must be a principle
sub-matrix of matrix B. According to Interlacing Theorem,
Theorem 2.1 holds. �

For a tree T with n vertices, we denote it by the adjacency
matrix M . In tree T , if the node i is a parent of node j, we
set Mij =1 and Mji=1. Therefore, M is also a symmetric
matrix. If tree T ′ is an induced sub-tree of T , the above
theorem also holds for T and T ′. Formally, we have the
following theorem.

Theorem 2.3. Given a tree T with n vertices and a tree
T ′ with m vertices (n ≥ m), their adjacency matrices are de-
noted as A and B respectively. For matrix A, its eigenvalues
are λ1 ≥ λ2 ≥ ... ≥ λn. For matrix B, its eigenvalues are
β1 ≥ β2 ≥ ... ≥ βm. If T ′ is an induced sub-tree of T , then
λn−m+i ≤ βi ≤ λi, ( i = 1,..., m).

Proof. (Sketch) If T ′ is induced sub-graph of T , it is clear
to know, the adjacency matrix A must be a principle sub-
matrix of matrix B. According to Interlacing Theorem, The-
orem 2.1 holds. �

It seems that we can directly use Theorem 2.1 as the fil-
tering method to prune false positives in sub-graph search.
Unfortunately, the answer is No due the following observa-
tion.

Remark 2.1. Given a graph G with n vertices and a graph
G′ with m vertices (n ≥ m), their adjacency matrices are
denoted as A and B respectively. For matrix A, its eigenval-
ues are λ1 ≥ λ2 ≥ ... ≥ λn. For matrix B, its eigenvalues
are β1 ≥ β2 ≥ ... ≥ βm.
1) If λn−m+i ≤ βi ≤ λi, ( i = 1,..., m ), we cannot guar-
antee G′ must be an induced sub-graph of G.
2) If G′ is a sub-graph (may not be induced) of G, we can-
not guarantee that λn−m+i ≤ βi ≤ λi, ( i = 1,..., m ).
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Observed from the above Remark 2.1, we know that The-
orem 2.1 is only necessary (not sufficient) condition about
graph G and its induced sub-graph (not sub-graph) G′.
However, in sub-graph search problem, we need to consider
sub-graphs, not induced sub-graphs. Therefore, we cannot
directly apply Theorem 2.1 as a pruning strategy, which, in
fact, motivates us to find a necessary condition for sub-graph
isomorphism according to spectral graph theory.

3. GRAPH ENCODING
As we know that when the query graph Q is sub-graph

isomorphism to a data graph G, for each vertex v in Q, there
must exist a corresponding vertex v′ in G. Furthermore, the
local structure around v in Q should be preserved around v′

in G. Thus, by checking the existence of this mapping, we
can remove false positives as many as possible. However, as
we mentioned before, in the filtering process of sub-graph
search, directly checking the mapping for each vertex and
its local structure is very expensive operation, since it needs
to perform structure comparison. Thus, in this paper, in the
filtering process, we propose GCoding to reduce the checking
cost significantly, due to numerical comparison instead of
structure comparison.

In GCoding, we propose Vertex Signature based on spec-
tral graph theory and develop Graph Code for each graph
by combining all vertex signatures, which will be discussed
in Section 3.1 and 3.2 respectively. Based on vertex sig-
nature and graph code, we propose two pruning rules for
sub-graph search problem. Furthermore, we prove that the
two pruning rules satisfy no-false-negative requirement.

3.1 Vertex Signature
In this work, we first represent the local structure around

a vertex as a tree and then encode the information related
to the tree to a numerical space, called vertex signature.
The filtering will be conducted over these signatures. Algo-
rithm 1 shows the steps to construct the tree for a vertex v
in G, which is called Level-n Path Tree and denoted as
LNPT (G, v, n). LNPT (G, v, n) consists of all n-step sim-
ple pathes from v in graph G. Here, we define a simple path
as a path in a graph with no repeated vertices.

Given a graph 003 and query Q in Figure 5, LNPT (003, 0, 2)
and LNPT (Q, 0, 2) are both shown in Figure 5. Note that,
for each v in G, LNPT (G, v, n) is unique since trees here
are unordered (we do not differentiate the order between
siblings).
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Figure 5: Level-n Path Tree

Lemma 3.1. Given two graphs Q and G, Q is sub-graph
isomorphism to G under an injective function g. For each
vertex v in graph Q, we have the Level-n Path Subtree
around the vertex v, denoted by LNPT (Q,v, n). We have a
vertex v′ in graph G, where v′ = g(v). Then, LNPT (Q,v, n)
is an induced sub-tree of LNPT (G, v′, n).

Algorithm 1 Extracting Level-n Path Sub-tree

Require: Input: a graph G and a vertex v in G.
Output: level-n path sub-tree around the vertex v, denoted
as LNPT (G, v, n)

1: Set the vertex v as the root of LNPT (v)
2: Set the vertex set Visited= v.
3: for each neighbor r of the vertex v do
4: Insert the vertex r as a child of v in LNPT (v).
5: Insert the vertex r into the set Visited.
6: Call Function Search(r, n).
7: end for

Function: Search(v,n)

1: n = n - 1
2: if n == 0 then
3: return
4: end if
5: for each neighbor r of the vertex v do
6: if r exists in the set Visited then
7: return
8: end if
9: insert the vertex r as a child of v in LNPT (v).
10: insert the vertex r into the set Visited.
11: Call Function Search(r, n).
12: delete the vertex r from the set Visited.
13: end for

Proof. (Sketch) For each node u in LNPT (Q,v, n), ac-
cording to the definition of LNPT , there must exist a path
vu in graph Q. Since graph Q is sub-graph isomorphism
to graph G, the path vu in graph Q must be preserved in
graph G, which is corresponding to the path v′u′. There-
fore, we can define an injective function f from node u in
LNPT (Q, v, n) to node u′ in LNPT (G, v′, n): u′ = f(u),
where the path vu is corresponding to the path v′u′. Under
the injective function f , it is straightforward to prove that
LNPT (Q, v, n) is a induced sub-tree of LNPT (G, v′, n), ac-
cording to the Definition 2.7. �

In Figure 5, Q is a sub-graph of 003. Furthermore, vertex
0 in Q is corresponding to vertex 0 in graph 003. Therefore,
LNPT (Q, 0, 2) is an induced sub-tree of LNPT (003, 0, 2).
We map the structure information of LNPT into a numer-
ical space. Specifically, for each vertex v in graph G, we
denote the local structure around v (that is LNPT (G, v, n))
by {0, 1} adjacency matrix M . Then, based on the eigenval-
ues of M , we assign Vertex Topology Signature to the vertex
v. Formally, we have Definition 3.1 as follows.

Definition 3.1. Vertex Topology Signature. Given
a graph G and a vertex v ∈ G, the adjacency matrix of
LNPT (G, v, n) is denoted as M . Let eigenvalues of M be
λ1 ≥ λ2 ≥ ... ≥ λm. The Vertex Topology Signature of the
vertex v is defined as the sorted list topS(v)=[ λ1,...,λt ]. t
is a specified parameter, where t ≤ m

Note that there are two parameters, that are n and t, in
Definition 3.1 about topS(v). In experiments, we will dis-
cuss setting of n and t. Here, without loss of generality,
we set n = 2 and m = 2, which means that, for each ver-
tex v in graph G, we denote the local structure around v
by 2-level path tree (that is LNPT (G, v, 2)). When assign-
ing topS(v), we always choose the first two largest eigen-
values (spectral graph theory suggests that some largest
eigenvalues determine greatly the graph’s topological struc-
ture). For example, for vertex 0 in graph 003 in Figure 5,
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topS(0) = [2.10, 1.26]. Similarly, for vertex 0 in query Q,
topS(0) = [2.0, 0.0]

Lemma 3.2. Given two graphs Q and G, Q is sub-graph
isomorphism to graph G under the injective function g. For
any vertex v in Q, its vertex topology signature is topS(v) =
[λ1, .., λi, ..., λt]. There exists a vertex v′ in graph G, where
v′ = g(v). For v′, its topology signature is topS(v′) =
[β1, ..., βi, ..., βt]. We can say that topS(v) � topS(v′), where
� is overloaded here to stand the relationship between topS(v)
and topS(v′), i.e., λi � βi for i = 1, ..., t.

Proof. According to Lemma 3.1, LNPT (Q, v, n) is an
induced sub-tree of LNPT (G, v′, n). Based on Theorem 2.3,
it is straightforward to know that λi � βi for i = 1, ..., t.
�

In Figure 5, query Q is sub-graph isomorphism of graph
003. Furthermore, vertex 0 in Q is corresponding to ver-
tex 0 in 003. Therefore, topS(0) = [2.0, 0.0] in Q is “≤”
topS(0) = [2.10, 1.26] in graph 003. Furthermore, in order
to handle matchings of vertex labels, we propose the follow-
ing definition.

Definition 3.2. Vertex Signature. Given a graph G
and a vertex v ∈ G, the vertex signature of v is a triplet
< L, N, topS(v) >, where L is a length-X counter string to
denote the vertex label, and N is a length-X counter string
to denote the neighbor labels, topS(v) = [λ1, ..., λi, ...λt] is
its vertex topology signature (defined in Definition 3.1).

In Definition 3.2, the L and N parts denote the vertex
label and vertex neighbor labels respectively. For each dis-
tinct label, we use hash function to set m out of X elements
to 1. According to the vertex v’s label, we set the value of L.
For N, N[j]=

∑
Li[j], Li is the v’s neighbor label and N [j] is

j-th element of N . Figure 6 shows an example of computing
the signature of vertex 0 in graph 003.
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Figure 6: Vertex Signature

Lemma 3.3. Assume that a graph Q is sub-graph isomor-
phism to another graph G under the injective function g. For
each vertex v in Q, its signature is < L1, N1, topS(v) >. In
graph G, there is a vertex v′, where v′=g(v). Its signature is
< L2, N2, topS(v′) >. The two vertex signatures satisfy the
following conditions: 1) L1[ i] = L2[ i]; 2) N1[ i] � N2[ i]; 3)
topS(v) � topS(v′).

Proof.(Sketch) a) According to sub-graph isomorphism,
the labels of v and v′ are the same with each other, i.e.
L1[i ] = L2[i ].
b) All neighbors of v in graph Q should be a subset of neigh-
bors of v′ in graph G. According to the method about how
to generate the counter string N1 and N2, it is straightfor-
ward to prove that condition 2) is true.
c) Condition 3) has been proved in Lemma 3.2. �

Given one vertex v in graph Q and one vertex v′ in G, if
sig(v) and sig(v′) satisfy three conditions in Lemma 3.3, we
say sig(v) is compatible to sig(v′). Based on Lemma 3.3,
we can derive the necessary condition about a graph G and
its sub-graph Q, which is stated in following Theorem.

Theorem 3.1. Given a graph G and its sub-graph Q, for
each vertex v in Q, we always can find a vertex v′ in G,
where sig(v) is compatible to sig(v′).

Proof.Directly derived from Lemma 3.3. �

According to Theorem 3.1, if we can not find a v′ in graph
G that is compatible with a vertex v in Q, we can conclude
that G does not contain Q as its subgraph for sure. There-
fore, we have the Pruning Rule 1 as follows.

Pruning Rule 1. Given two graphs Q and G, for a vertex v
in Q, if we cannot find a vertex v′ in graph G, where sig(v) is
compatible to sig(v′), Q cannot be sub-graph isomorphism
to G.�

Lemma 3.4. Pruning Rule 1 satisfies no-false-negative re-
quirement for sub-graph search problem.

Proof. (proof by contradiction) We assume that Prun-
ing Rule 1 will lead to false-negative. Specifically, given a
query Q, we assume the data graph G∗ is a correct result.
However, G∗ is pruned by Pruning Rule 1. Namely, G∗ is a
false negative.

Since Q is a sub-graph of G∗, according to Theorem 3.1,
for each vertex v in query Q, there exists a compatible vertex
v′ in the graph G∗. Therefore, according to Pruning Rule
1, G∗ will not be filtered out. It leads to contradiction to
assumption. Thus, Lemma 3.4 is correct.

The above pruning rule requires “vertex to vertex” com-
parison, which is computational expensive. Therefore, we
need to design a more efficient pruning strategy for large
graph databases, which is discussed in the next sub-section.

0000 0000 0010

0000 0010 0000

Vertex 0's 
Neighbor Pairs

<B,a>

<B,b>

0000 0010 0010

A 0000 0000 0001

B 0000 0001 0000

C 0001 0000 0000

Vertex
Label

Bit-String

A

C

B B

C

0

1

3 4

2
0000 0000 0001

Vertex 0's 
Label 

A

0000 0000 0001

0000 0000 0001Sig(0) 0000 0010 0010 2.10, 1.26 

LSig N topS

Hash Function F1:

a
b

<B, a> 0000 0000 0010

<B, b> 0000 0010 0000

pair Bit-String

Hash Function F2:

… … … 

+a

b c
(a)

(b)

(c)

Figure 7: Encoding Edge Label

In experiments, we will handle vertex-labeled and edge-
labeled graphs. In order to consider edge label, we illustrate
the method by Figure 7.For a vertex v in a graph G, we de-
note the neighbor vertex label and adjacent edge label as a
pair < vL, eL >, where vL is the neighbor vertex label and
eL is the corresponding adjacent edge label. For example,
the vertex 0 in Figure 7 has two pairs, that are < B, a >
and < B, b >. We encode the pairs into the N part of the
vertex signature Sig(0). Specifically, for each distinct pair,
we also use the hash function to set m out of X elements to
‘1’, as shown in Figure 7b. Then we set N part of Sig(0)
by element-wise “ADD” operations. In fact, the method in
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encoding adjacent edge labels is the same with that in encod-
ing neighbor vertex labels. Furthermore, in order to obtain
L part of Sig(0), like in Figure 6, we also map each vertex
label into a hash value in Figure 7a. The Sig(0) is shown in
Figure 7c. It is also straightforward to know Lemma 3.3 and
3.4 and Theorem 3.1 still hold. For illustration convenience,
we do not consider the adjacent edge labels in the following
discussion.

3.2 Graph Code
Benefiting from the vertex signature, the local structure

around a vertex has been mapped into the numerical space.
In this subsection, we propose the graph coding technique
by combining all the vertex signatures of a graph G, which
maps the global structure of G into the numerical space.
In the new pruning strategy, we only need to compare two
graph codes instead of the “vertex to vertex” comparison.

topS
VertexID L N

1 2

0 000000000001 000000020000 2.10 1.26

1 000000010000 000200010001 2.14 1.00

2 000000010000 000000010001 2.10 1.26

3 000100000000 000000010000 2.00 0.00

4 000100000000 000000010000 2.00 0.00

GCode(003) 000200020001 000200060002 Seq1 Seq2

Seq1 2.14, 2.10, 2.10, 2.00, 200

Seq2 1.26,1.26, 1.00,  0.00, 0.00 

+ +

Graph 003 : 

Figure 8: Graph Code of graph 003

Figure 8 shows the example of building graph code for
graph 003 (that is GCode(003)). First, we compute all ver-
tex signatures of graph 003. We also assume that we only
consider the first two largest eigenvalues (that are λ1 and
λ2) when computing vertex signatures. GCode(003) =<
L, N, Seq1, Seq2 >. To obtain the L (and N) part of GCode(003),
we combine the L (and N) part of all vertex signatures by
element-wise “ADD” operations. All λ1 (and λ2) are col-
lected and ranked to form a non-ascending sequence Seq1

(and Seq2). Formally, we have the following definition about
graph code.

Definition 3.3. Graph Code (GCode for short) The
code of a graph G with n vertices is a triplet, GCode(G) =<
L, N, SpecSeq(G) >, where L and N are counter strings and
SpecSeq(G) = [Seq1, Seq2, ..., Seqt] is a sequence of eigen-
value lists. Assume that graph G has n vertices, and each
vertex vj is denoted as sig(vj) = < Lj , Nj , topS(vj) =
[λj1, .., λjt] >, we have:

1) L[i] =
∑j=n−1

j=0 Lj [i], where L[i] is the i-th counter of L.

2)N [i] =
∑j=n−1

j=0 Nj [i], where N[i] is the i-th counter of N.

3) For all vertex topology signatures topS(vj), all λjk are
ranked according to non-ascending order to form the sorted
list Seqk, where k = 1, ..., t.

All graph codes of running example are shown in Figure
9. Based on the Definition of 3.3, we have the following
Theorem.

Gcode(001) 1.93, 1.90, 1.90, 1.73, 1.73000200050001000200020001 1.18, 1.18, 1.00, 1.00, 0.00

Gcode(002) 2.05, 2.05, 2.00, 1.73, 1.73000200010007000100010003 1.41, 1.21, 1.21, 0.00, 0.00

Gcode(003) 2.14, 2.10, 2.10, 2.00, 200000200060002000200020001 1.26,1.26, 1.00,  0.00, 0.00 

Gcode(004) 1.73, 1.73, 1.73, 1.73000200020004000100010002 1.00, 1.00, 1.00, 1.00

Seq1
*NL Seq2

Gcode(Q) 2.00, 2.00, 2.00, 2.00, 2.00000200050001000200020001 0.00, 0.00, 0.00, 0.00, 0.00

Note:  Seq1
*  : For each graph G, the length of Seq1 (or Seq2 ) is equal to  vertex number of G.

Figure 9: Graph Code Database

Theorem 3.2. Given two graphs Q with n1 vertices and
G with n2 vertices, where n1 ≤ n2, their GCodes are denoted
as GCode(Q) =< QL, QN, [Seq1(Q), Seq2(Q), ..., Seqt(Q)]>
and GCode(G) = < GL, GN, [Seq1(G), Seq2(G), ..., Seqt(G)] >.
If Q is sub-graph isomorphism to graph G, GCode(Q) and
GCode(G) satisfy the following conditions:
1) QL[i] ≤ GL[i], where QL[i] is i-th elment of QL;
2) QN[i] ≤ GN[i], where QN[i] is i-th element of QN;
3) Seqk(Q)[j] ≤ Seqk(G)[j], k = 1, ..., t and j = 0...n1 − 1.

Proof. Since graph Q is sub-graph isomorphism to graph
G, it is necessary that each vertex v in Q has a correspond-
ing vertex u = g(v) in G under some injective function g.
In the following analysis, assume that sig(v) = < vL, vN ,
topS(v) > and sig(u) = < uL, uN , topS(u) >.
a) According to Lemma 3.3, we know that vL[i] = uL[i].
Since the function g is an injective function from vertices in

Q to vertices in G, it means that
j1=n1−1∑

j1=0

vLj1 ≤
j2=n2−1∑

j2=0

vLj2

Therefore, QL[i] ≤ GL[i].
b) According to Lemma 3.3, we know that vN [i] ≤ uN [i].
Since the function f is an injective function from vertices in

Q to vertices in G, it means that
j1=n1−1∑

j1=0

vNj1 ≤
j2=n2−1∑

j2=0

vNj2 .

Therefore, QN [i] ≤ GN [i].
c) We prove the 3) by contradiction.
Assume that 3) does not hold, that is SpecSeq(Q)k[j] >
SpecSeq(G)k[j]. SpecSeq(Q)k is a sorted list in a non-
ascending order, therefore, SpecSeq(Q)k[i] ≥ SpecSeq(G)k[j],
where i = 0...j. It means that there exist j+1 vertices vi in
graph Q (i=0...j), whose λk are larger than SpecSeqk(G)[j].
Since graph Q is sub-graph isomorphism to graph G, for each
vertex vi in Q, it has a corresponding vertex ui. According
to condition 3) in Lemma 3.3, the λk of vertex vi is no larger
than that of vertex ui. Thus, there must exist j+1 vertices
ui in graph G, whose λk are larger than SpecSeq(G)k[j].
On the other hand, as we know, SpecSeq(G)k is also a non-
ascending sorted list and SpecSeq(G)k[j] is the j-th largest
one, which indicates that there exist at most j vertices ui

(i=0...j-1), whose λk are no smaller than SpecSeq(G)k[j].
This contradicts to the above conclusion. Therefore, condi-
tion 3) is correct. �

For example, in Figure 9, Seq1(Q)[0]=2.00 > Seq1(001)[0]
=1.93. Therefore, graph 001 is pruned safely, since GCode(Q)
and GCode(001) cannot satisfy the third condition in The-
orem 3.2. Similarly, graph 002 and 004 are also filtered
out. Only graph 003 is left as a candidate, since GCode(Q)
and GCode(001) satisfy all three conditions in Theorem
3.2. Actually, Theorem 3.2 is the necessary condition about
GCode(Q) and GCode(G), if Q is a sub-graph of G. Thus,
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we have the following Pruning Rule 2.

Pruning Rule 2. Given two graphs Q with n1 vertices and
G with n2 vertices (n1 ≤ n2), their GCodes are denoted as
GCode(Q) =< QL, QN, [Seq1(Q), Seq2(Q), ..., Seqt(Q)] >,
GCode(G) =< GL, GN, [Seq1(G), Seq2(G), ..., Seqt(G)] >.
If GCode(Q) and GCode(G) cannot satisfy the following
three conditions, graph Q cannot be sub-graph isomorphism
to graph G.
1) QL[i] ≤ GL[i], where QL[i] is i-th element of QL;
2) QN [i] ≤ GN [i], where QN [i]is i-th element of QN ;
3) Seqk(Q)[j] ≤ Seqk(G)[j], k=1...m and j = 0...n1 − 1.
�

Lemma 3.5. Pruning Rule 2 satisfies no-false-negative re-
quirement for sub-graph search problem.

Proof. Similar with Lemma 3.4, it can be proved ac-
cording to Theorem 3.2 by contradiction.

4. SUBGRAPH SEARCH
In GCoding, there are two processes: offline and online.

In offline process, we compute graph code database. In on-
line process, we conduct sub-graph search over graph code
databases. We explain the details about two processes as
follows.

In the offline process, for each graph Gi in a graph database,
we compute all vertex signatures in Gi and combine them to
obtain GCode based on the discussion in the above section.
All graph codes of the running example is shown in Figure
9. Since the same vertex signature may be shared in differ-
ent graphs, we build a vertex signature dictionary to store
all distinct vertex signatures. For each graph ID, it has a
list of pairs < signatureID, count >, where signatureID
is a pointer to some vertex signature in the dictionary, and
count denotes the number of this vertex signature in the
graph. Note that, graph code database and vertex signa-
ture dictionary are easy for update maintenance. We only
need to compute the vertex signatures and GCode for the
inserted (or deleted) data graphs, and then insert them into
(or delete them from) graph code database and vertex sig-
nature dictionary.

In the online process, given a query graph Q, we con-
vert it to its GCode and use GCode(Q) to search over the
graph code database to filter false positive as many as possi-
ble before we conduct the expensive subgraph isomorphism
checking. We formulate the online framework of sub-graph
search in GCoding as follows:

1. We compute the vertex signatures and graph code of
query Q.

2. In the filtering phase, we use pruning rules discussed
in Section 3 to remove unqualified graphs, Rule 2 first
then Rule 1 as shown in Figure 10.

3. To obtain the final results, we perform sub-graph iso-
morphism for each candidate.

Rule 1Rule 2
Subgraph

isomorphismQuery Q Gcode(Q) Candidate 1 Candidate 2 Results

Figure 10: Online Processing

It is clear that using Rule 2 is much more efficient than
that of Rule 1. Therefore, we designed an online framework
shown in Figure 10, which first uses Rule 2 to prune most
false positives in the 1st filter process and then use Rule 1
to filter out more false positives in the 2nd filter process.

Given a query graph Q and its graph code GCode(Q), us-
ing Rule 2, we can conduct pairwise comparison between
GCode(Q) and each GCode(Gi) in the graph code database.
Though the pairwise comparison between GCode(Q) and
GCode(Gi) is not an expensive task, linear scan is not scal-
able for large graph databases. Therefore, an efficient index
structure is needed for reducing the number of pairwise com-
parisons.

Similar to S-tree [16] for indexing the signature files, we
develop our GCode-Tree. For each GCode(Gi) =< Li, Ni,
SepcSeq(Gi) >, we extract the first two elements, i.e. L
and N, to build a GCode-Tree. GCode-Tree is a balanced
tree, where each node has at least m children (m ≤ 2),
and at most M children ((M+1)/2 ≥ m). Assume that the
intermedin node (directory node) I in GCode-Tree has k
child nodes Ci, we set I.L[j] = Max(Ci.L[j]), i=1...k, where
I.L[j] is the j-th counter of I.L. Similarly, we set I.N [j]
= Max(Ci.N [j]). The insertion and deletion operations of
GCode-Tree are analogous to those of S-tree, we omit the
details about these dynamic operations. For the running
example given in Figure 1, the corresponding GCode-Tree
is shown in Figure 11.

Given a query graph Q and its GCode, GCode(Q) =<
L, N, SpecSeq(Q) >, we start traversing the GCode-tree
from the root. For each intermedin node I =< L, N >,
if there exists some i, where GCode(Q).L[i] > I.L[i] or
GCode(Q).N [i] > I.N [i], all descendants of I can be pruned
safely. For example, given the query graph Q, GCode(Q)
shown in Figure 9, for the node I1 in GCode-Tree, GCode(Q)
.L[3] = 2 > I1.L[3] = 1, all descendants of I1 are not in
the result set. It means that graph 001 and 002 can be
pruned safely. Therefore, by scanning the GCode-Tree, we
can prune all graph codes that do not satisfy the condition
1) or 2) of Pruning Rule 2. For each remaining graph code
GCode(Gi), we check whether GCode(Q) and GCode(Gi)
satisfy the condition 3) of Rule 2. Then, in the second step
of the filtering process, we perform “vertex-to-vertex” com-
parison filtering based on Rule 1.
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Figure 11: GCode-Tree

5. EXPERIMENTS
In this section, we evaluate the performance of our method,

i.e. GCoding, for sub-graph search. gIndex [22], Closure-
Tree [7], FG-Index [2] and Tree+δ [25] are chosen to com-
pare with our methods. Our methods are implemented in
standard C++ with STL library support and compiled with
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gcc/g++. All experiments are done on a P4 1.7GHz ma-
chine of 1G RAM running Linux.

5.1 Datasets and Setting
In experiments, we consider vertex-labeled and edge-labeled

graphs. Because the implementation of Closure-tree does
not handle edge labels, we use the same technique men-
tioned by [3], that is to insert an additional vertex for each
edge to encode this information. Since the edge and ver-
tex labels were drawn from disjoint sets, there could be no
ambiguity between edges and vertices. This enables a per-
formance comparison.
1) AIDS Antiviral Screen Dataset This dataset is avail-
able publicly on the website of the Developmental Thera-
peutics Program 2. We generate 10,000 connected and la-
beled graphs from the molecule structures and omit Hydro-
gen atoms. The graphs have an average number of 24.80
vertices and 26.80 edges, and a maximum number of 214
vertices and 217 edges. A major portion of the vertices are
C, O and N. The total number of distinct vertex labels is 62,
and the total number of distinct edge labels is 3. We refer
to this dataset as AIDS dataset. Each query set Qm has
1000 connected query graphs and query graphs in Qm are
connected size-m graphs (the edge number in each query is
m), which are extracted from some data graphs randomly,
such as Q4, Q8, Q12, Q16, Q20 and Q24.
2) Large Graph Database We download the “NCI 127K
Connection Tables ” dataset from the same web site with
AIDS dataset. The dataset contains about 127K compounds.
We randomly choose 100,000 compounds to form the large
graph database. The graphs have an average number of 18.6
vertices and 19.7 edges, and a maximum number of 100 ver-
tices and 111 edges. The total number of distinct vertex
labels and edge labels are 77 and 3 respectively. We refer it
as NCI dataset. Using the same method in AIDS dataset,
we generate three query sets, that are Q25, Q20 and Q15.
Each query set has 1,000 query graphs.
3) Synthetic Dataset The synthetic dataset is generated
by a synthetic graph generator provided by authors of [12].
The synthetic graph dataset is generated as follows: First,
a set of S seed fragments are generated randomly, whose
size is determined by a Poisson distribution with mean I.
The size of each graph is a Poisson random variable with
mean T. Seed fragments are then randomly selected and in-
serted into a graph one by one until the graph reaches its
size. Parameter V and E denote the number of distinct ver-
tex labels and edge labels respectively. The cardinality of
the graph dataset is denoted by D. We generate the graph
database using the same parameters with gIndex in [22]:
D=10,000, S=200, I=10, T=50, V=4, E=1. The large syn-
thetic dataset, used in scalability test in subsection 5.3.5,
has all the same parameters except for D=100,000.

In gIndex, Closure-tree, FG-Index and Tree+δ algorithms,
we choose the default or the suggested values for parameters
according to [22, 7, 2, 25].

In GCoding, for vertex signature (see Definition 3.2) and
GCode (see Definition 3.3), the L and N part are the hash
value of vertex label and neighbor labels. The longer the
L and N are, the less conflicts among hash values. On the
other hand, it is straightforward to know that longer L and
N means lager space cost. Eventually, the L and N part are
analogous to signature file [11], which are used to denote

2http : //dtp.nci.nih.gov/

the set of elements. In order to obtain a tradeoff between
hash conflicts and space cost, we use the analysis in [11] to
guide setting the length of L and N . In experiments, we set
|L|=30 and |N |=30.

As we know, in definitions about the vertex signature and
GCode (see Definition 3.2 and 3.3), there are two important
parameters, i.e. n and t. n means using n-level LNPT, and
t means that we always choose the t largest eigenvalues. We
evaluate the effects of n and t in the following experiments.

5.2 Effect of n and t
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Figure 12: The Pruning Power at (a) Different Eigen-

values and (b) Different Level LNPT in AIDS Dataset

Figure 12(a) shows the performance in different eigenval-
ues. Observed from the Figure 12(a), we find that choos-
ing three or more eigenvalues cannot lead to more improve-
ment in pruning power. Moreover, choosing more eigenval-
ues means the larger graph code database. Therefore, we
always choose the two largest eigenvalues, i.e. λ1 and λ2 in
our experiments.

As we know, LNPT (G, v, 1) is the level-1 path tree around
vertex v. Actually, all nodes in LNPT (G, v, 1) are all v’s
neighbor vertices. The 1st level LNPT information has been
coded into the “N” part of vertex signatures and graph
codes. Therefore, we should use 2 or more levels LNPT .
However, choosing more levels means that the corresponding
matrix is larger, and it needs more time to compute eigen-
values for vertex signatures and graph codes. As show in
Figure 12(b), choosing 3-levels does not lead to significant
improvement in pruning power. Therefore, we use 2-level
LNPT in GCoding in our experiments.

5.3 Performance Study
5.3.1 Cost of Offline Processing

We first evaluate the performance of GCoding in the of-
fline process, such as the size of “graph code database to-
gether with Indexes” and the processing time of generating
GCode for all the graphs.

Figure 13(a) shows the index size in different methods.
For the GCoding method, we refer to “graph code database
together with Indexes” as “index”. With the increase of sizes
of datasets, from 2K to 10K, the index size of GCoding is
smaller than gIndex, Closure-Tree and lager than FGIndex
and Tree+δ. In experiments, our index file of GCoding is
stored as “ASCII” format. The index size of GCoding can
be optimized by “binary” format file. The index file of gIn-
dex is stored in “ASCII” file. The index files in FGIndex and
GCoding are stored in “binary” file. Figure 13(b) shows the
offline processing time in different methods. Closure-tree is
the fastest. Our methods is slower than Closure-tree. In
GCoding, in order to compute the eigenvalues of adjacency-
matrix, we implement Jacobi method [5], which is an itera-
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Figure 13: (a) Index Size and (b) Offline Processing
Time in AIDS dataset

Table 1: Evaluating Multi-step Pruning Strategy of
GCoding in AIDS dataset

Cand.2
Time3

(sec.)
Cand. Time Cand. Time

Q241 Q20 Q16

16.20 12.89 9.59

3.1 41.81 6.3 48.64 12.0 106.80

Compute Graph 
Codes

46.30 2.30 96 3.15 293 5.30

9.00 9.91 24.67 13.62 55.87 29.79

1-st filtering

2-nd filtering

28.41 29.66 44.68Total filtering 
time

Total Response 
Time

Cand. Time Cand. Time Cand. Time

Q12 Q8 Q4

6.42 3.98 1.75

18.1 234 157.9 496.10 2254 823

1033 6.10 2511.1 10.50 5527 25.80

271.29 47.58 916.98 55.82 3315 57.55

60.10 70.30 85.10

Note :  Q241 :   The edge number of Q24 is 24.
            Cand.2 : Candidate Size ;
            Time 3 : All running time reported in this section are the total running time in 1000 queries in each query set.

tive algorithm for computing the eigenvalues. According to
our experiments, on average, we need to about 0.008 ∼ 0.010
second to compute the vertex signatures and graph code for
each graph. gIndex is much slower than Closure-tree and
our method, since it needs expensive mining process to find
some discriminative fragments. Actually, other data min-
ing based methods have the similar limitations, since they
all need to perform expensive frequent sub-graphs (or sub-
trees) mining algorithms, such as FGIndex and Tree+δ.

5.3.2 Efficiency of Two Step Filter
As we know, according to the online process framework in

Figure 10, in order to answer a sub-graph query, we need to
compute GCode for each query graph, perform two step fil-
tering phases and do sub-graph isomorphism test in the ver-
ification process. In this experiment, we test the efficiency
of two step filtering. Table 1 shows the running time of each
step and pruning power of each filtering step. Note that all
running time (including Filtering Time and Total Response
Time) reported in this section are the running time of 1000
queries in each query set. For the left candidate graphs, we
implement ULLMANN algorithm [17] to perform sub-graph
isomorphism test.

In the first filtering step, we use Filtering Rule 2 in Sec-
tion 3.2 by comparing GCodes to filter out the unqualified
graphs. Observed from Table 1, the first step is the fastest,
which prunes most false positives. After that, we compare
the vertex signatures in query graph and data graphs by Fil-
tering Rule 1. The filtering time in the second step is slower
than that in the first step. However, it is clear to know the
filtering time in the 2nd-Step pruning phase is faster than
sub-graph isomorphism test in verification process. Further-
more, the candidate size after the 2nd-step filtering is less
than 1

4
of that after the 1st-step filtering. Therefore, in or-

der to obtain fast total response time, it is worth performing
2-step filtering phase in GCoding method.

5.3.3 Performance Comparison with Related Work
We compare the pruning power, the filtering time and

total response time with the existing counterpart methods
on both AIDS and synthetic datasets.

In the software of FGIndex provided by authors in [2], the
filtering process and verification process are implemented to-
gether. It does not report the candidate size and filtering
time. In order to obtain candidate size in FGIndex, we work
as follows. According to [2], frequent sub-graphs and edges
are chosen as indexed features to build the inverted index.
Some of them (that are δ-TCFG) are maintained in memory
to build core-FGIndex (First Level), and the others are used
to build disk-resident FGIndex (Second Level). It is clear to
know that, the pruning power of FGIndex are only derived
from all indexed frequent sub-graphs and edges, including
the first level and the second level. Therefore, in our exper-
iments, according to [2], we mine all frequent sub-graphs by
the software gSpan [20], and set minimum support to be 0.1
(suggested value in [2]). Then, we build the simple inverted
index for all frequent sub-graphs and edges. When a query
Q is given, we can fix the candidates by scanning the simple
inverted index. The candidate size in the straightforward
method must be equal to that in FGIndex, since they use
the same indexed features. However, the filtering time in
FGIndex is much quicker than that in the straightforward
method, since it optimizes the cost of scanning the inverted
index by two levels of FGIndex. To be fair, we omit the
comparison with filtering time of FGIndex.

As we all know, sub-graph search contains of two pro-
cesses: filtering and verification. The total response time
includes filtering time and verification time. In our exper-
iments, we implement ULLMANN algorithm to implement
sub-graph isomorphism algorithm in verification process. In
fact, different sub-graph isomorphism algorithms affect the
total response time greatly. Since all sub-graph search meth-
ods employ the filter-and-verification framework 3, there-
fore, to evaluate the pruning power of each method, the
candidate size should make more sense than total response
time.

Observed from Figure 15(a), we can find that GCoding
has the largest pruning power in all query sets. In fact, it
is really hard to prove that GCoding can get the largest
pruning power from theoretical aspect. Nonetheless, we can
still provide some theoretical analysis. First, in practice,
data graphs in the database are always sparse, which is also
mentioned in [25]. In a sparse graph, the local structure
around each vertex is tree-like structure, whose structural
information can be captured by LNPT around the vertex.
Second, in GCoding, we consider all local structural infor-
mation around each vertex. However, in gIndex, FGIndex
and Tree+δ, for a graph G, its structural information is
only captured by some features that are included in G. In
other words, some local structure in G that does not includes
features are not considered. For example, in Figure 14, in
GCoding, we consider all local structure around each vertex
in G. However, in feature-based methods, we only consider
the shaded part of G, since the non-shaded part does not
include “features”. Therefore, compared with feature-based
methods, GCoding consider more structural information.

Due to expensive structure comparison and maximal match-

3In FGIndex, when query Q is a frequent sub-graph, it does
not need verification process, which will be discussed later.
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Figure 14: Local Structure in Feature-Based Ap-
proaches

ing algorithm in the filtering phase, the filtering time of
Closure-tree is the slowest, which is about 5 ∼ 10 times than
that in gIndex and GCoding method in Figures 15(c). In
GCoding method, the filtering time in Q24 is faster than Q4,
since there are more false positives in Q24 that are pruned
in the first filtering step than that in Q4. As we know, the
filtering time in the first filtering step is less than that of the
second filtering step, which is also confirmed in Table 1. In
gIndex, there are less “indexed features” in Q4 than that in
Q24. It means that scanning inverted index consumes less
time in Q4 than that in Q24. Therefore, the filtering time
in Q4 is faster than that in Q24 in gIndex method. Due to
the same reason, in Tree+δ, the filtering time in Q4 is faster
than that in Q24.

In FGIndex, if the query Q is a frequent sub-graph, namely,
Q is isomorphism to an indexed features, it can report the
answer set without verification process. Therefore, it can
obtain the fast response time when Q is a frequent sub-
graph. However, there are few queries that are frequent
sub-graphs, especially when queries are large graphs. Thus,
only in Q4, the response time in FGIndex is smaller than
that in GCoding. In other query sets, since the candidate
size in FGIndex is larger than that in GCoding, the response
time in FGIndex is larger than that in GCoding, as shown in
Figure 15(e). GCoding is also faster than gIndex, Closure-
tree and Tree+δ in total response time, since GCoding has
the least candidate size in each query set.

We also test GCoding in synthetic datasets together with
other methods. The performance of GCoding is similar with
that in AIDS dataset, which outperforms other methods in
most cases.

5.3.4 Performance on Incremental Maintenance
In Section 1, we discussed that feature-based graph in-

dexing methods (state art of graph indexing methods) may
degrade their pruning power over time in dynamic setting
of graph database. In this experiment, we test the per-
formance of GCoding over dynamic datasets, and compare
it with gIndex (the classical feature-based graph indexing
method).

As discussed in Section 4, to handle insertions, we only
need to compute GCode and vertex signatures for the new
inserted graphs. Then we insert them into the graph code
database. According to [22], there are two kinds of meth-
ods to handle insertions in gIndex: 1)update the id lists of
involved fragments; or 2) re-build the index in batch from
scratch.

In experiments, we vary the database size from 2K to
10K, and we choose Q16 as query sets. Figure 16(a) shows
the pruning power of each method, where pruning power
is defined as DBSize−CandidateSize

DBSize−ResultSize
. Observed from Figure

16(a), the pruning power of GCoding is stable irrespective
to database updates.

For gIndex, we use two methods to handle insertion. First,

Q24 Q20 Q16 Q12 Q8 Q4

101

102

103

104

C
an

di
da

t/A
ns

w
er

 S
et

 S
iz

e

Query Size

GCoding
gIndex
Closure-tree
FGIndex
Tree+
Answer Set

(a) Candidate Size in AIDS

Dataset

Q15 Q10 Q5
100

101

102

103

C
an

di
da

t/A
ns

w
er

 S
et

 S
iz

e

Query Size

GCoding
gIndex
Closure-tree
FGIndex
Tree+
Answer Set

(b) Candidate Size in Synthetic

Dataset

Q24 Q20 Q16 Q12 Q8 Q4
0

50

100

150

200

250

300

Fi
lte

rin
g 

Ti
m

e 
(s

ec
on

ds
)

Query Size

GCoding
gIndex
Closure-tree
Tree+

(c) Filtering Time in AIDS

Dataset ∗

Q15 Q10 Q5
0

50

100

150

200

250

300

Fi
lte

rin
g 

Ti
m

e 
(s

ec
on

ds
)

Query Size

GCoding
gIndex
Closure-tree
Tree+

(d) Filtering Time in Synthetic

Dataset ∗

Q24 Q20 Q16 Q12 Q8 Q4

10
2

10
3

T
ot

al
 R

es
po

ne
 T

im
e 

(s
ec

on
ds

)

Query Size

GCoding
gIndex
Closure
FGIndex
Tree+δ

(e) Total Response Time in AIDS

Dataset

Q15 Q10 Q5
0

100

200

300

400

500

600

700

Fi
lte

rin
g 

Ti
m

e 
(s

ec
on

ds
)

Query Size

GCoding
gIndex
Closure-tree
FGIndex
Tree+

(f) Total Response Time in Syn-

thetic Dataset
∗ We omit the comparison with FGIndex in Filtering time. The reason is

explained in Section 5.3.3

Figure 15: Evaluating Online Performance
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Figure 16: Evaluating Dynamic Performance

we build the inverted index on 2K dataset and then update
the id lists of involved fragments on other datasets. We re-
fer the method as “update gIndex Incrementally” in Figure
16. Second, we build the inverted index for each dataset
from scratch. We refer the method as “update gIndex from
scratch” in Figure 16.

Observed from Figure 16, the pruning power in “update
gIndex from scratch” is more stable than “update gIndex
Incrementally”. However, it is more expensive for “update
gIndex from scratch” to handle insertions, which is about
3∼5 times than GCoding update time in Figure 16(b). The
pruning power of ‘update gIndex Incrementally” fall down
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about 5% during insertion in Figure 16(a). In fact, other
feature-based methods have the same problems in dynamic
setting. Therefore, we can say that, in dynamic setting,
feature-based methods is either ineffective (‘update index
Incrementally”) or inefficient (‘update index from scratch”).

We can also find from Figure 16 that GCoding method is
more suitable for dynamic graph database. First, its pruning
power is stable for dynamic setting; Second, the update time
is fast.
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Figure 17: Scalability of GCoding

5.3.5 Scalability Test
In order to test the scalability of the GCoding, we use

two large graph databases, i.e. the NCI dataset and a large
synthetic dataset, and run Q10, Q15 and Q20 on these two
datasets, respectively. The cardinalities in both datasets are
100K respectively. From Figure 17, we find the GCoding
scale well on both offline and online processing. We find
that compared to Q20 and Q15, the candidate sizes of Q10
change faster. This is because the number of qualified results
for Q10 is much larger than those for Q20 or Q15.

6. RELATED WORK
As a popular data structure, graphs have been used to

model many complex data objects in real world, such as,
chemical compounds [19] [9], entities in images [13], XML
documents[23] and social networks [1]. Due to the wide

usage of graphs, it is quite important to provide users to
organize, access and analyze graph data efficiently. There-
fore, graph database has attracted a lot of attentions from
database and data mining community, such as sub-graph
search [14, 22, 7, 24, 6, 3, 2, 25], frequent sub-graph mining
[8, 12, 21] and correlation sub-graph query [10].

Among many graph-based applications, it is quite impor-
tant to retrieve related graphs containing a query graph from
a large graph database efficiently, which is called sub-graph
search problem. As we all know, sub-graph isomorphism
is NP-complete problem [4]. Usually, to speed up the sub-
graph search, we use the filter-and-verification framework.
First, we remove false positives (graphs that are not possi-
ble in the results) by pruning strategy ; Then, we perform
sub-graph isomorphism algorithm on each candidate to ob-
tain the final results. Obviously, less candidates mean better
search performance. So far, there are many pruning strate-
gies have been proposed [14, 22, 7, 24, 6, 3, 2, 25]. Basically,
they can divided into two categories:
1) Data-mining based filtering. The approaches in this cate-
gory apply data mining techniques to extract some discrimi-
nate sub-structures as indexed features, then, build inverted
index for each feature. Query graph Q is denoted as a set of
features, and the pruning power always depends on selected
features. By the inverted indexes, we can fix the complete
set of candidates. Many algorithms have been proposed to
improve the effectiveness of selected features, such as gIn-
dex [22], TreePi [24], FG-Index [2] and Tree+δ[25]. In gIn-
dex, Yan et al. propose a “discriminative ratio” for features.
Only frequent and discriminative subgraphs are chosen as in-
dexed features. In TreePi, due to manipulation efficiency of
trees, Zhang et al. propose to use frequent and discriminate
subtrees as feature set. In FGIndex, Cheng et al. use fre-
quent sub-graphs and edges as indexed features. In Tree+δ,
Zhao et al. use frequent free trees and a small number of
discriminative sub-graphs as indexed features. Usually, on
static graph databases, data mining methods always find
“good” features, which leads to good pruning power [22, 24,
2, 25]. However, they have some intrinsic limitations. For
example, they assume that the database is static, or at least
statistics of the graph database do not change. In practice,
the frequent updates to the graph database do exist. For
example, approximate 4,000 new compound structures are
added every data, according to the report by the SCI Finder.
In pattern recognition, the new recognized graph patterns
are always inserted into the graph pattern database. In or-
der to handle updates, data mining-based filtering has two
methods, as suggested in [22]: 1) update the id lists of in-
volved features; 2) re-do feature selection and re-build the
index from scratch. The former method cannot guarantee
the effectiveness, namely, pruning power will degrade. We
have evaluated it in Section 5. The latter method is time
consuming. In practice, it is difficult for us to re-do feature
selection and then re-build index from scratch.
2) Non-data mining based filtering. Different from the first
category, no data mining-based feature selections are needed
in this category. There are two representative algorithms,
GraphGrep [14] and Closure-tree [7]. In GraphGrep, Shasha
et al. propose to use all pathes up to maxL length as index
features. Similarly, GraphGrep also builds inverted index
for each path. Different from the first category, we enumer-
ate all pathes up to maxL length, and no feature selection
are needed. Since paths are less discriminative than sub-
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structures, GraphGrep has less pruning power. In Closure-
tree, He and Singh propose pseudo subgraph isomorphism
by checking the existence of a semi-perfect matching from
vertices in query graph to vertices a data graph (or graph
closure). The major limitation of Closure-tree is the high
cost in filtering phase, since Closure-tree needs to perform
expensive structure comparison and maximal matching algo-
rithm in filtering phase. From our performance study, even
though we set pseudo compatibility level to 1 (default value
in Closure-tree software), the filtering time of Closure-tree
is 5∼10 times higher than that in GCoding. In GCoding,
we only need to perform “cheap” numerical operations.

There are some other interesting recent work in graph
search problem, such as [3] [6]. In [3], Williams et al. pro-
pose to enumerate all connected induced subgraphs in the
graph database, and organize them in a Graph Decomposi-
tion Index (GDI). It is difficult for the method to work in a
graph database with large-size graphs, due to combination
explosion of enumerating all connected induced subgraphs.
Jiang et al. propose gString [6] for compound database. It
is not straightforward to extent gString to graph database
in other applications. However, the framework of GCoding
can be extended to many other graph-based applications,
such as pattern recognition and protein structure analysis.

In XML database, Zhang et al. in [23] propose a pruning
strategy based on Interlacing Theorem. In [15], based on
spectral coding method, Shokoufandeh et al. discuss sim-
ilarity search in a tree database. More difficult than tree
database, Interlacing Theorem cannot always hold between
a graph and its sub-graph. The main contribution of GCod-
ing is that, we use Interlacing Theorem to conduct sub-graph
search with no positive dismissal.

7. CONCLUSIONS
In this paper, in order to answer sub-graph search, we pro-

pose a novel spectral graph coding technique, i.e GCoding.
Benefiting from GCoding, we map the structure informa-
tion of graphs into the numerical space by vertex signatures
and GCodes. Then, we design two-step filtering process.
Compared with existing approaches, GCoding has signifi-
cant advantages. First, it has fast offline processing time
and is easy for maintenance. Therefore, it can handle static
and dynamic graph databases well. Second, GCode has both
good pruning power and fast filtering time. Third, good
scalability of GCoding ensures its good performance in very
large graph databases.
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