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ABSTRACT 
Due to the well-known dimensionality curse problem, search in a 
high-dimensional space is considered as a “hard” problem. In this 
paper, a novel symmetrical encoding-based index structure, which 
is called EHD-Tree (for symmetrical Encoding-based Hybrid 
Distance Tree), is proposed to support fast k-Nearest-Neighbor 
(k-NN) search in high-dimensional spaces. In an EHD-Tree, all 
data points are first grouped into clusters by a k-Means clustering 
algorithm. Then the uniform ID number of each data point is 
obtained by a dual-distance-driven encoding scheme in which each 
cluster sphere is partitioned twice according to the dual distances 
of start- and centroid-distance. Finally, the uniform ID number 
and the centroid-distance of each data point are combined to get a 
uniform index key, the latter is then indexed through a partition- 
based B+-tree. Thus, given a query point, its k-NN search in high- 
dimensional spaces can be transformed into search in a single 
dimensional space with the aid of the EHD-Tree index. Extensive 
performance studies are conducted to evaluate the effectiveness 
and efficiency of our proposed scheme, and the results 
demonstrate that this method outperforms the state-of-the-art high 
dimensional search techniques such as the X-Tree, VA-file, 
iDistance and NB-Tree, especially when the query radius is not 
very large. 

1.  INTRODUCTION 
With the explosive increase of multimedia data on the Internet, 

content-based image or video retrieval has become more important 
than ever before. For example, when people read the news on the 
web, he or she may want to find an interesting picture or video 
related to the news. Using this picture or video as an example, he 
or she may want to find similar images or videos. With 
consideration of the large scale data available on the web and 
requests from potentially large number of users, it is critical to 
devise a mechanism that can speed up the search process. 
However, due to the complexity of multimedia objects, these 
objects are represented by high-dimensional vectors where each 
entry of the vector is a representative feature. As a consequence, 
we need to find indexing techniques for these high dimensional 
data. Due to the well known high dimensional curse problem [1],  
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Figure 1. The comparison of three search regions 

 
traditional indexing methods such as K-d-tree [2] and R-tree [3] 
only work well in low dimensional spaces (e.g., up to 12-16 
dimensions [1]). Therefore, the design of efficient indexing tech- 
niques for high-dimensional data remains to be an active research 
area [1].  

In this paper, we propose a high-dimensional indexing scheme 
based on the technique of symmetrical Encoding-based Hybrid 
Distance Tree, called EHD-Tree, to support progressive k-NN 
search. Specifically, in an EHD-Tree, all data points are first 
grouped into clusters by using k-Means clustering. Then, the 
uniform ID(UID) number of each point is obtained by a dual- 
distance-driven encoding scheme in which each cluster sphere is 
partitioned twice according to the dual distances: start- and 
centroid-distance. Finally, the uniform index key of each data 
point is obtained through linearly combing its UID with the 
centroid distance together, and is indexed by a partition-based 
B+-tree. Using the B+-tree structure to index a high-dimensional 
space brings forth many strengths, including fast search, dynamic 
update, height balanced structure and so on. It also makes it easier 
to graft our technique on top of any existing commercial relational 
database. Thus, given a query data point Vq and the number k, the 
k-Nearest Neighbor search of Vq in a high-dimensional space is 
transformed into search in a single dimensional space with the aid 
of the EHD-Tree indexing facilities. 

Figure 1 compares intuitively the search region of our EHD- 
Tree with those of the counterparts like NB-Tree [18] and 
iDistance [19]. As we know, iDistance and NB-Tree only adopt 
single distance metric, viz., the centroid-distance or start-distance 
respectively ( to be elaborated in Section 3.1) to prune the search 
region. EHD-Tree, on the other hand, aims to accommodate the 
dual distance metrics via using a symmetrical encoding scheme, so 
as to further reduce the search region (ref. the shadow region of 
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the right part of Figure 1). Based on the observation, it is clear that 
pruning by dual metrics is more promising on reducing the search 
space, which is confirmed by the theoretically analysis to be 
detailed in Section 4. However, it is a non-trivial problem to 
combine two metrics for pruning, because simply using one after 
another will not achieve a better pruning effect than that by using 
only one. In this paper, we propose a novel encoding schema 
which combines the two metrics effectively, which can be 
seamlessly incorporated into a B+-tree. An extensive performance 
study is then conducted to evaluate the EHD-Tree’s effectiveness 
and efficiency. Our results on various data sets show that the 
proposed technique has better performance than that of X-tree [6], 
VA-file [9], NB-Tree [18] and iDistance [19], especially when the 
query radius is not very large.  

The primary contributions of this paper are listed as follows: 
1. We propose a symmetrical encoding scheme by double 

partitioning the cluster sphere according to the dual distance 
metrics (i.e., start-distance and centroid-distance). Thus the 
uniform ID number of each point can be obtained to serve as an 
integral part of its uniform index key. 

2. We design a uniform index key by linearly combing the 
uniform ID number of each point with the centroid distance 
together, which enables the corresponding range of these two 
values to be non-overlapping. Furthermore, based on this encoding 
scheme, we propose a symmetrical Encoding-based Hybrid 
Distance Tree(EHD-Tree) to facilitate highly efficient k-NN 
search. 

3. We present a theoretical analysis and comparison on the 
search cost of the proposed method and related indexing methods, 
and give a cost model for the proposed indexing method. 

The rest of this paper is organized as follows. We survey the 
related work in Section 2. In Section 3, we describe EHD-Tree, 
which is devised to dramatically improve the query performance 
of the k-NN search. In Section 4, we give a theoretical analysis for 
EHD-Tree. In Section 5, we report several extensive experiments 
conducted to evaluate the efficiency and effectiveness of the 
EHD-Tree index and compare it with its counterparts. We 
conclude the paper in Section 6.  

2.  RELATED WORK 
There is a long stream of research for addressing the high- 

dimensional indexing problems [1]. Existing techniques can be 
divided into four main categories. 

The first category is based on data and space partitioning, 
hierarchical tree index structure (e.g., the R-tree [3] and its 
variants [4, 5, 6, 7, 8]), etc. Although these methods generally 
perform well at low dimensionality, their performance deteriorates 
rapidly as the dimensionality increases due to the “dimensionality 
curse". 

The second category is to represent original feature vectors 
using smaller, approximate representations (e.g., VA-file [9], 
IQ-tree [10] and A-tree [11]), etc. The VA-file [9] accelerates the 
sequential scan by using data compression. Although the VA-file 
reduces the number of disk accesses, it incurs higher 
computational cost to decode the bit-strings. The IQ-tree [10] is 
also an indexing structure along the lines of the VA-file, which 
maintains a flat directory containing the minimum bounding 
rectangles of the approximate data representations. A-tree [11] is 
yet another tree structure based on the Virtual Bounding 
Rectangles(VBRs) which are approximations of minimal bounding 
rectangles (MBRs) and data objects. 

The third category is to use a metric-based method [12] as an 
alterative direction for high-dimensional indexing. Examples 
include MVP-Tree [13], M-Tree [14] and Slim-Tree [16], Omni 
–family technique [17], etc.  

The final category is the transformation-based high-dimensional 
indexing schemes, such as the Pyramid Technique [15]. The 
Pyramid Technique is efficient for window queries, but performs 
less satisfactorily for k-NN queries. Most recently, NB-tree [18] 
and iDistance [19] are proposed to support B+-tree-based k-NN 
search. NB-tree is a single reference point-based scheme, in which 
high-dimensional points are mapped to a single-dimension by 
computing their distance from the origin individually. Then these 
distances are indexed using a B+-tree on which all subsequent 
operations are performed. The drawback of NB-Tree is that it can 
not significantly prune the search region; especially when the 
dimensionality is becoming larger, the pruning capability of it can 
be so poor that the number of candidate points returned by the first 
round becomes too large to be filtered effectively. iDistance [19] 
is proposed by selecting some reference points in order to further 
prune the search region so as to improve the query efficiency, and 
is testified to be superior to M-Tree [14] and Omni-family [17] 
empirically [19]. However the query efficiency of iDistance relies 
largely on clustering and partitioning the data and is significantly 
affected if the choice of partition scheme and reference data points 
is not appropriate.   

3.  THE EHD-TREE 
In order to reduce the search region and speed up the k-NN 

queries, in this section, we present a novel high-dimensional 
indexing technique called the symmetrical Encoding-based Hybrid 
Distance Tree (EHD-Tree for short).  

3.1 Preliminaries & Motivations 
The design of EHD-Tree is motivated by the following 

observations. First, the (dis)similarity between data points can be 
derived and ordered based on their distances to a reference data 
point. Second, a distance is essentially a single dimensional value 
which enables us to reuse existing single dimensional indexing 
schemes such as B+-tree. Third, as shown in Figure 1, it is hard to 
effectively reduce the search region by only using a single distance 
metric (e.g., start-distance [18] or centroid-distance [19]). The 
basic idea behind EHD-Tree is to nicely combine the two distance 
metrics together by using a novel symmetrical encoding scheme to 
obtain a uniform index key expression, so as to further reduce the 
search region.  

The list of symbols to be used in the rest of paper is summarized 
in Table 1. 

TABLE 1: Meaning of Symbols Used 

Symbols Meaning
Ω a set of data points 
Vi the i-th data point and Vi∈Ω 
D number of dimensions 
n number of data points in Ω 
Vq a query data point user submits 
α number of the start slices in a cluster sphere
β number of the centroid slices in a cluster sphere

ʘ(Vq,r) the query sphere with centre Vq and radius r
d(Vi,Vj) the distance between two points 
⎡ ⎤• the integral part of ● 

Without loss of generality, we assume Euclidean distance as the  
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(a). An example start-slices (b). An example centroid-slices
Figure 2. The dual-distance-driven encoding for the cluster 
sphere ʘ(Oj,CRj) 

distance function, denoted as d(Vi,Vj), although other distance 
functions also apply for EHD-Tree. 

DEFINITION 1(START DISTANCE). Given a data point Vi, its 
Start Distance (SD for short) is the distance between it and the 
origin Vo(0,0,..,0), formally defined as:  

                 SD(Vi)=d(Vi,Vo)                 (1) 
Assuming that n data points are grouped into T clusters, the 

centroid Oj of each cluster Cj is first obtained, where j∈[1,T]. We 
model a cluster as a tightly bounded sphere described by its 
centroid and radius. 

DEFINITION 2 (CLUSTER RADIUS). Given a cluster Cj, the 
distance between its centroid Oj and the data point which has the 
longest distance to Oj is defined as the cluster radius of Cj, 
denoted as CRj. 

Given a cluster Cj, the cluster sphere of it is denoted as ʘ(Oj, 
CRj), where Oj is the centroid of cluster Cj, and CRj is the cluster 
radius. 

DEFINITION 3 (CENTROID DISTANCE). Given a data point Vi, 
its centroid distance is defined as the distance between itself and 
the cluster centroid Oj, and is denoted as:  

               CD(Vi)=d(Vi,Oj)                 (2) 

where [1, ]jCi∈ and j∈[1,T]. 

3.2 Symmetrical DDE Scheme 
As mentioned before, for each data point Vi in a cluster sphere, 

it is a non-trivial task to simply combine the start-distance [18] 
and centroid-distance [19] of Vi to get its uniform index key. To 
address this problem, we propose a Dual-Distance-Encoding 
scheme, called DDE, to obtain a new uniform index key through 
double “slicing” the cluster sphere in terms of the values of the 
start- and centroid-distance, which can be used to further reduce 
the search region in the high-dimensional space 

Specifically, all data points are first grouped into T clusters by 
using a k-Means clustering algorithm, then the start- and centroid- 
distances of each data point are computed, thus Vi can be modeled 
as a four-tuple: 

             Vi :: = <i, CID, SD, CD>               (3) 

where i refers to the i-th data point and CID is the ID of the cluster 
that Vi belongs to.  

DEFINITION 4 (START SLICE). Given a cluster sphere ʘ(Oj,CRj) 
the γ-th start-slice of it is denoted as ( ), jSS γ , which is based on 
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(a). Global Partition (b). Local Partition 
Figure 3. The two partition methods for the cluster sphere 
ʘ(Oj,CRj) 

 
the value of start-distance, where γ∈[1,α] and j is the ID number 
of the cluster sphere. 

  Figure 2(a) shows an example of encoding scheme of start-slice 
in the cluster sphere ʘ(Oj,CRj). Given a data point Vi∈ʘ(Oj,CRj), 
there are two cases to be considered in terms of the start distance: 

(i) When ( ) [ ( ), ( ) ]i j j jSD V SD O SD O CR∈ + : as shown in the shaded 
part of the cluster sphere in Figure 2(a), the ID number of start- 
slice is decreasing with the increase of the start distance of the 
point in ʘ(Oj,CRj). 

(ii) When ( ) [ ( ) , ( )]j j j jSD V SD O CR SD O∈ − : as shown in the white 
part of the cluster sphere in Figure 2(a), the ID number of start- 
slice is increasing with the increase of the start distance of the 
point in ʘ(Oj,CRj). 

DEFINITION 5 (CENTROID SLICE). Given a cluster sphere 
ʘ(Oj,CRj), the μ-th centroid-slice of it is denoted as CS(μ,j), which 
is based on the value of centroid-distance, where μ∈[1,β] and j is 
the ID number of the cluster sphere. 

Similarly, Figure 2(b) shows an example encoding scheme of 
centroid-slice in ʘ(Oj,CRj), in which the ID number of centroid- 
slice decreases with the increase of the centroid distance of the 
point in ʘ(Oj,CRj). 
  In order to effectively encode the data points in a cluster sphere, 
we propose two partition methods, namely Global Partition and 
Local Partition, for comparison purpose. 

DEFINITION 6 (GLOBAL PARTITION). Given a cluster sphere 
ʘ(Oj,CRj),its global partition is to equally slice the cluster sphere 
into β centroid-slices in terms of the thickness value ( ∇ ) of slice 
based on the centroid distance. 

As a result, α start-slices are made in ʘ(Oj,CRj), as shown in 
Figure 3(a), where 1jCRβ ∇= +⎡ ⎤⎢ ⎥ ,α is an even integer and α/2+1= 
β, j∈[1,T]. 

DEFINITION 7 (LOCAL PARTITION). Given a cluster sphere 
ʘ(Oj,CRj), its local partition is to equally slice the cluster sphere 
intoα start-slices.  

Consequently, β centroid-slices are made in ʘ(Oj,CRj), as shown 
in Figure 3(b), where α is an even number and α/2+1= β, j∈[1,T]. 

For the example shown in Figure 3, the number of the start 
slices in the cluster sphere is 6 and the number of the centroid 
slices is 4. Note that, different from the local partition (c.f., Figure 
3(b)), it is impossible for the global partition (c.f., Figure 3(a)) of 
ʘ(Oj,CRj) to exactly slice the cluster sphere based on the centroid 
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distance. Therefore the auxiliary start- and centroid-slices are 
introduced, which are shown as blue circle in Figure 3(a). 

Based on the above two partition methods, a data point Vi also 
can be re-written by a four-tuple: 

Vi::=<i, CID, SD_ID, CD_ID>             (4) 

where i is the ID number of Vi, CID is the cluster ID number where 
Vi belongs to, SD_ID is the slice ID number in terms of the start- 
distance-based slicing method and CD_ID is the slice ID number in 
terms of the centroid-distance-based slicing method. 

For a data point Vi in the corresponding cluster sphere, the ID 
number of the start slice and centroid slice Vi falls in can be 
derived as follows: 

( ) ( )
2

( )

_ ( )
2

_ ( ) 1

ji

j

j i

j

i

i

SD V SD O
CR

CR CD V
CR

SD ID V

CD ID V

−⎧ ⎡ ⎤= −⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎨

−⎡ ⎤⎪ = + ⎢ ⎥⎪ ⎢ ⎥⎩

α

β

α

           (5) 

where α is an even integer and α/2+1= β. 
Therefore the uniform ID number of Vi can be represented by 

linearly combining the SD_ID and CD_ID, as follows: 
 ( ) _ ( ) _ ( )i i iUID V c SD ID V CD ID V× +=                        

( ) ( ) ( )
2

1
2 j j

i j ijSD V SD O CR CD V
CR CR

c ×
− −⎛ ⎞⎡ ⎤ ⎡ ⎤= − + +⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎝ ⎠α β

α       (6) 

where c is a constant to linearly stretch the SD_ID and CD_ID. 
Based on this encoding scheme, we can get the uniform 

encoding identifier of each data point by double slicing the cluster 
sphere, as shown by Algorithm 1. 

Algorithm 1. The Dual-Distance-driven Encoding 
Input:  Ω: the data point set,  

α: the number of start slices in each cluster sphere; 
β: the number of centroid slices in each cluster sphere; 

Output: DDE(1 to n): the encode representation for n points; 
1.  The data points in Ω are grouped into T clusters using k-Means 

clustering algorithm 
2.  for j:=1 to T do   
3.     for ( ),i j jV O CRΘ∈ do 
5.        the centroid distance and start distance of it are computed; 
6.        the ID numbers of the start- and centroid-slices where Vi belongs 

to is identified by Eq.(5); 
7.        the uniform ID of Vi (DDE(Vi)) can be derived by Eq.(6); 
8.     end for 
9.  end for 

Figure 4.  The symmetrical encoding algorithm 

3.3 The Data Structure 
Based on the above definitions, we can get the index key of Vi 

as follows: 

i i iV UID V CD(V ) MCDkey = ( )( ) +                    

 ( ) ( ) ( ) ( )
2

1
2

i j j i i

j j

SD V SD O CR CD V CD V
CR CR MCD

c − −
× +
⎛ ⎞⎡ ⎤ ⎡ ⎤− + +⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎝ ⎠

=
α β

α  (7) 

Since CD(Vi) may be larger than one, it should be normalized into 
the range of [0,1] through division by the Maximal CD(MCD)ψ 
which is a constant. Thus, it is guaranteed that the search range of 
the uniform ID and centroid-distance of each point will not be 
overlapping. 
  Eq. (7) shows the index key expression of Vi. However, due to 

                                                        
ψ Since MCD is a maximal value of Euclidean distance of two data points, 
MCD is set 2 for real life data, otherwise MCD is set d . 

1Sindex0Sindex 1TSindex −

B tree+B tree+ B tree+

 

Figure 5.  EHD-Tree index architecture 
  
the symmetrical encoding scheme, it is possible that there exist 
two different data points (e.g., Vi and Vj) in the same cluster sphere, 
whose index keys are identical. As shown in Figure 2(a), such two 
data points should satisfy the criteria that: (SD(Oj)-SD(Vi))×(SD(Oj)- 
SD(Vj))<0. To avoid the overlapping of the index keys, a uniform 
index key (UKey) expression is proposed by adding two constants 
(i.e., SCALE_1 and SCALE_2) to linearly extend the range value of 
the index key, as follows: 

_1 ( ) [ ( ), ( ) ]

_ 2 ( ) [ ( ) , ( ))

( ),
( )

( ),
i i j j j

i i j j j
i

SCALE if SD V SD O SD O CR

SCALE if SD V SD O CR SD O

key V
UKey V

key V
∈ +

∈ −

+⎧
⎨ +⎩

=  

( ) ( ) ( ) ( )
_1 1

2

( ) [ ( ), ( ) ]

( ) ( ) ( ) ( )
_ 2 1

2

( ) [ ( )

2

2

j j j

i j j i i

j j

i

i j j i i

j j

i j

SD V SD O CR CD V CD V
SCALE

CR CR MCD

if SD V SD O SD O CR

SD V SD O CR CD V CD V
SCALE

CR CR MCD

if SD V SD O CR

c

c

×

×

− −
+ + +

∈ +

− −
+ + +

∈ −

⎛ ⎞⎡ ⎤ ⎡ ⎤−⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎝ ⎠

⎛ ⎞⎡ ⎤ ⎡ ⎤−⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎝ ⎠

+

=
+

α β

α β

α

α

, ( ))j jSD O

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪⎩

 (8) 

Finally, the n index keys obtained using Eq.(8) are inserted into a 
partitioned B+-tree, as to be discussed next. 

3.4 Building EHD-TREE 
Figure 5 shows the index structure of the EHD-Tree which is 

composed of a hash table and T sliced indexes, where T is the total 
number of clusters. A cluster sphere corresponds to a sliced index 
which is named by the cluster ID (viz., CID). The hash table above 
the sliced indexes is to map the query sphere to the corresponding 
affected cluster ones (sliced index) based on CID. 

Figure 6 shows the detailed steps of constructing an EHD-Tree 
index. Note that the routine TransValue(Vi) is a distance 
transformation function as given in Eq.(8), and BInsert(dist,bt(j)) 
is a standard B+-tree insert procedure, where j=1,2,..,T. 

Algorithm 2. EHD-Tree Index Construction 
Input:  Ω: the data point set; 
Output: bt(1 to T): the index for EHD-Tree; 
1.  The data points in Ω are grouped into T clusters using k-Means 

clustering algorithm 
2.  for j:=1 to T do   
3.     bt(j)←newEHDFile();     /*create index header file */ 
4.     for each data point Vi in the j-th cluster do 
5.        the centroid- and start-distance of each data point are computed; 
6.        the ID number of Vi is obtained according to algorithm 1; 
7.        Key(Vi)=TransValue(Vi); 
8.        BInsert(Key(Vi),bt(j));  /* insert it to B+-tree */ 
9.     end for 
10.    return bt(j) 
11.  end for 

Figure 6. The EHD-Tree index construction algorithm 
 

As shown in Figure 5, the index keys of the data points in a 
cluster are indexed by a sliced index. Thus T clusters corresponds 
to T sliced indexes. Given a query data point Vq, the affected 
clusters can be quickly accessed through a hash table.  
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3.5 Index Update Algorithm 
We now investigate the problem of EHD-Tree update through a 

relatively simple algorithm. The detailed steps are shown in Figure 
7. Given a new data point Vnew, the routine ClusterID(Vnew)

ψ
 

returns the ID number of the cluster that Vnew belongs to(line1), 
and then the index key of this new data point is obtained by the 
same transformation function as shown in Eq. (8)(line2). 
Furthermore, the index key of Vnew is inserted into the 
corresponding sliced index of EHD-Tree (line3). Finally the 
updated index is returned (line4). 
Algorithm 3. EHD-tree Index update 
Input: Vnew: a new data point, SI(1 to T): the EHD-Tree index; 
Output: SI(1 to T): updated EHD-Tree index;  
1.  cid←ClusterID(Vnew); 
2.  dist←TransValue(Vnew); 
3.  BInsert( dist, SI(cid));          
4.  return SI(1 to T) 

Figure 7. Update algorithm of EHD-Tree index 

3.6 k-NN Search with EHD-Tree 
For n high-dimensional data points, k nearest neighbor search is 

the most frequently used search method which retrieves the k most 
similar data points( in terms of distance) to a given data point. In 
this section, we focus on k-NN search for high-dimensional data 
points with the help of EHD-Tree mechanism.  

3.6.1 Picking a Value of LB and UB 
Assuming that a query sphere ʘ(Vq,r) intersects with a cluster 

sphere ʘ(Oj,CRj), we need to examine which “slices” in ʘ(Oj,CRj) 
intersect with ʘ(Vq,r).  

DEFINITION 8 (LOW BOUND OF START-SLICE). Given two 
intersected spheres ʘ(Vq,r) and ʘ(Oj,CRj), the low bound of start- 
slice in ʘ(Oj,CRj) is the start-slice which is the closest to the 
boundary of ʘ(Oj,CRj) in terms of start distance, denoted as 
LBS(j). 

DEFINITION 9 (UPPER BOUND OF START-SLICE). Given two 
intersected spheres ʘ(Vq,r) and ʘ(Oj,CRj), the upper bound of 
start-slice in ʘ(Oj,CRj) is the start-slice which is the farthest to the 
boundary of ʘ(Oj,CRj) in terms of start distance, denoted as 
UBS(j). 

DEFINITION 10 (LOW BOUND OF CENTROID-SLICE). Given 
two intersected spheres ʘ(Vq,r) and ʘ(Oj,CRj), the low bound of 
centroid-slice in ʘ(Oj,CRj) is the the centroid-slice which is the 
farthest to the cluster centre Oj, denoted as LBC(j). 

DEFINITION 11 (UPPER BOUND OF CENTROID-SLICE). Given 
two intersected spheres ʘ(Vq,r) and ʘ(Oj,CRj), the upper bound of 
centroid-slice in ʘ(Oj,CRj) is the centroid-slice which is the closest 
to the cluster centre Oj, denoted as UBC(j). 

DEFINITION 12 (CENTROID-HYPERPLANE). Given a cluster 
sphere ʘ(Oj,CRj), its centroid hyperplane is a sphere ʘ(Vo,SD(Oj)) 
which is across the cluster centre Oj, where Vo is the origin. 

Now we focus on how to get the LBS, UBS, LBC and UBC. For 
a query sphere ʘ(Vq,r) in Figure 8, the corresponding search range 
of its start-distance is [SD(Vq)-r,SD(Vq)+r]. Similarly, the search 
of the centroid-distance is [CD(Vq)-r,CD(Vq)+r]. As mentioned in 
Section 3.2, a cluster sphere (e.g., ʘ(Oj,CRj)) is “sliced” into α 

                                                        
ψ The cluster the Vnew belongs to is identified by choosing the minimal 
distance between Vnew and the cluster centroid. In most cases, the cluster 
radius need not to be changed since the new point almost falls in the 
corresponding cluster. Otherwise, the cluster radius needs to be enlarged. 

oV

qVjO
jCR

Figure 8. The choice of LBS, UBS, LBC and UBC of ʘ(Vq,r) in 
ʘ(Oj,CRj) 
 
start-slices and β centroid-slices. Once a query sphere intersects 
with the cluster sphere, some continuous “slices” (e.g., from the 
LBS(j)-th “slice” to the UBS(j)-th “slice”, where LBS(j)≤UBS(j)) 
may be affected (intersected). Therefore we can derive the ID 
number of the low bound start-slice(LBS) and upper bound slice 
(UBS) in the j-th cluster sphere by the process described 
immediately below: 

For the corresponding LBS of ʘ(Vq,r), there are four cases to be 
considered in terms of the start-distance: 

(i). if ( ) ( )q j jSD V r SD O CR+ ≥ +  or ( ) ( )q jSD V r SD O− > , then 

( ) 1LBS j = , ( ) ( )
( )

2 2
q j

j

SD V r SD O
UBS j

CR
α

α
− −

= ⎡ ⎤− ⎢ ⎥⎢ ⎥
      (9) 

(ii). if ( ) ( )q j jSD V r SD O CR+ < +  and ( ) ( )q jSD V r SD O− >  or 
( ) ( )q j jSD V r SD O CR− > −  and ( ) ( )q jSD V r SD O+ < , then 

( ) ( )
( )

2 2
q j

j

SD V r SD O
LBS j

CR
α

α
+ −

= ⎡ ⎤− ⎢ ⎥⎢ ⎥
, ( ) ( )

( )
2 2

q j

j

SD V r SD O
UBS j

CR
α

α
− −

= ⎡ ⎤− ⎢ ⎥⎢ ⎥
          

(10) 

(iii). if ( ) ( ) ( )j q jSD O r SD V SD O r− < < + , then 
( ) ( ) ( ) ( )

( )
2 2 2 2

q j q j

j j

SD V r SD O SD V r SD O
LBS j

CR CR
andα α

α α
+ − − −

= ⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
, 

( )
2

UBS j α=                                    (11) 

Note that, in this case, ʘ(Vq,r) is intersected with the centroid 
hyperplane of ʘ(Oj,CRj), therefore there exists two values of LBS 
due to the symmetry. 

(iv). if ( ) ( )q j jSD V r SD O CR− ≤ −  and ( ) ( )q jSD V r SD O+ < , then 

 ( ) 1LBS j = , ( ) ( )
( )

2 2
q j

j

SD V r SD O
UBS j

CR
α

α
+ −

= ⎡ ⎤− ⎢ ⎥⎢ ⎥
      (12) 

Similarly, we can get the ID numbers of the low bound (LBC) 
and the upper bound (UBC) of the centroid-slices, which are shown 
below: 

( )
1

( )
1

, ( ) ( )

( ) , ( ) ( )

1, ( )

q
q j q

j

q
q j q

j

q j

CD V r
CR

CD V r
CR

if CD V r CR and CD V r

LBC j if CD V r CR and CD V r

if CD V r CR

β

β

−
+

+
+

+ < >

= + < ≤

+ ≥

⎧ ⎡ ⎤
⎢ ⎥⎪ ⎢ ⎥

⎪
⎪ ⎡ ⎤⎨ ⎢ ⎥⎢ ⎥⎪
⎪
⎪⎩

 (13) 

( )1 , ( ) 0
( )

, ( ) 0

q
q

j

q

CD V r if CD V r
CRUBC j

if CD V r

β

β

−+ − >
=

− ≤

⎧ ⎡ ⎤
⎪ ⎢ ⎥⎢ ⎥⎨
⎪⎩

          (14) 

  As an example, Figure 8 shows a cluster sphere ʘ(Oj,CRj) 
which is divided into 5 centroid-slices and 8 start-slices. The two  
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a. ( ) ( )q jSD V r SD O− ≥  b. ( ) ( ) ( )q j qSD V r SD O SD V r− < < +  c. ( ) ( )q jSD V r SD O+ ≤  

Figure 9. The three cases in terms of the position of two spheres 

affected start-slices that are closest or farthest to the boundary of 
ʘ(Oj,CRj) are the 1st and 3 rd start-slices respectively, denoted as 
LBS(j)=1, UBS(j)=3. Similarly, we have LBC(j)=1, UBC(j)=3. 

3.6.2 k-NN Algorithm 
Before presenting our k-NN algorithm under the EHD-Tree 

scheme, we first introduce some important routines. Routine 
RSearch(Vq,r) is the main range search algorithm which returns 
the candidate data points of range search with centre Vq and radius 
r. USearch(Vq,r) and LSearch(Vq,r) are for the implementation of 
the range search. Farthest(S,Vq) returns the data point which is the 
farthest from Vq in the candidate data point set S. BRSearch(left, 
right, j) is a standard B+-tree range search function in the j-th 
sliced index.  

As the cluster spheres in high-dimensional spaces are sliced 
equally in two different manners (viz., start-distance-based and 
centroid-distance-based), there are three cases with respect to the 
relative position of the query sphere and its intersected cluster 
sphere, as discussed below. 

Case 1: ( ) ( )q jSD V r SD O− ≥  

In this case, as shown in Figure 9(a), the query sphere ʘ(Vq,r) is 
above the blue bold line1. The search range [r1, r2] can be derived 
based on the following: 

r1 = ( )_1 ( ) ( ) q

MCD
CD V rSCALE c LBS j LBC j+ × + + − , and 

r2 = _1 ( ) ( ) j

MCD
CRSCALE c UBS j UBC j+ × + + ; 

Case 2: ( ) ( ) ( )q j qSD V r SD O SD V r− < < +  

In this case, as shown in Figure 9(b), when the query sphere 
ʘ(Vq,r) intersects with the blue bold line, the EHD-Tree index 
needs to be visited twice since for the candidate data points in two 
different parts (i.e., above the blue bold line and below the blue 
bold line) of the cluster sphere ʘ(Oj,CRj), the value range of their 
index keys is different and discontinuous. As a result, we conclude 
that the two sub ranges [r11, r12] and [r21, r22] for search can be 
determined by the following: 

r11 = ( )_1 ( ) ( ) q

MCD
CD V rSCALE c LBS j LBC j+ × + + − , 

r12 = _1 ( ) ( ) j

MCD
CRSCALE c UBS j UBC j+ × + + ; and 

                                                        
1 The blue bold line in Figure 9 refers to the centroid-hyperplane of ( , )j jO CRΘ . 

r21=
( )_ 2 ( ) ( ) qCD V rSCALE c LBS j LBC j

MCD
+ × + + − , 

r22 = _ 2 ( ) ( ) j

MCD
CRSCALE c UBS j UBC j+ × + +  

Case 3: ( ) ( )q jSD V r SD O+ ≤  

In this case, as shown in Figure 9(c), the query sphere is below 
the blue bold line, so the search range [r1, r2] is determined by the 
following: 

r1 = ( )_ 2 ( ) ( ) qCD V rSCALE c LBS j LBC j
MCD

+ × + + − , and 

r2 = _ 2 ( ) ( ) jCRSCALE c UBS j UBC j
MCD

+ × + + . 
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Figure 10.  Search regions for k-NN query of EHD-Tree 

We are now at the position to present our k-NN algorithm under 
the EHD-Tree mechanism. In Figure 10, the deep shaded circle 
represents a query sphere ʘ(Vq,r) with Vq as the centre and r as the 
radius and the light shaded region (i.e., search region) should be 
checked. As shown in Figure 11, the whole search process is 
performed in three steps: first, when a user submits a query data 
point Vq, the search starts with a small radius, and step by step, the 
radius is increased to form a bigger query sphere iteratively (line3). 
Once the number of candidate data points is larger than k, the 
search stops, and the (|S|-k-1) data points which are farthest to the 
query one are identified (lines 6-7) and removed from the 
intermediate answer set S (line8). Note that the symbol |S| denotes 
the total number of candidate points in S, and the candidate points 
in S are the points whose distances to the query point Vq are less 
than or equal to the query radius r. In this way, the k nearest 
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qVjO

Query sphere

Centroid hyperplane
Cluster sphere

oV

qV

jO
Query sphere

Centroid hyperplane
Cluster sphere
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neighbor data points of Vq are returned.  
Algorithm 4. kNN Search 
Input: a query data point Vq, k, ∆r 
Output: query results S 
1.  r←0, S←Φ;             /*   initialization   */ 
2.  while (|S|<k)             
3.     r←r+∆r;         
4.     S←RSearch(Vq,r);   
5.     if (|S|>k) then           
6.        for count:=1 to |S|-k-1do 
7.          Vfar←Farthest(S,Vq); 
8.          S←S-Vfar; 
9.        end for 
10.    end if 
11. end while 
 
RSearch(Vq,r) 
12.  S1←Φ, S2←Φ;                    /*  initialization  */ 
13.  for each cluster sphere ( )j jO CR,Θ do    
14.     if ( )j jO CR,Θ dose not intersect with ( )qV ,rΘ then    
15.        break; 
16.     else  
17.        if ( ) ( )q jSD V r SD O− ≥ then     /*  above the blue bold line  */ 
18.           S2←USearch(Vq,r, j); 
19.        else if ( ) ( )q jSD V r SD O+ ≤ then  /* below the blue bold line  */ 
20.           S2←LSearch(Vq,r, j); 
21.        else                     /*  intersects with the blue bold line  */ 
22.           S2←USearch(Vq,r, j); 
23.           S2←S2∪LSearch(Vq,r, j); 
24.        end if 
25.        S1←S1∪S2;  
26．      if ( )j jO CR,Θ contains ( )qV ,rΘ then end loop; 
27.     end if 
28.  end for 
29.  return S1;                        /*  return candidate data points  */ 
 
USearch(Vq,r, j) 
30.  _1 ( ) ( ) ( )( ) /qleft SCALE LBS j LBC j CD V MCDc r← × + ++ − ; 
31.  _1 ( ) ( ) /jright SCALE c UBS j UBC j CR MCD← + × + + ; 
32.  S3←BRSearch[left, right, j];  
33.  for each data point Vi∈S3 do 
34.     if ( )q id V ,V r> then 3 3 iS S V← − ;     /* Vi is removed from S3 */ 
35.  end for 
36.  return S3;        
 
LSearch(Vq,r, j) 
37.  _ 2 ( ) ( ) ( ( ) ) /qleft SCALE c LBS j LBC j CD V r MCD← + × + + − ; 
38.  _ 2 ( ) ( ) /jright SCALE c UBS j UBC j CR MCD← + × + + ; 
39.  S3←BRSearch[left, right, j];  
40.  for each data point Vi∈S3 do 
41.     if ( )q id V ,V r> then 3 3 iS S V← − ;    /* Vi is removed from S3 */ 
42.  end for 
43.  return S3;        

Figure 11.  k-NN search algorithm 

4.  THEORETICAL ANALYSIS 
As mentioned in Section 3.6, a k-NN query is completed 

through iteratively performing a range search. To have a basic 
understanding on the performance of our EHD-Tree indexing 
vis-à-vis other existing indexing schemes like NB-tree [18] and 
iDistance [19], we investigate and compare these schemes through 
their search regions involved in range search with a same radius 
for the three index schemes. Additionally, we give a proof in the 
later part of this section that EHD-Tree will not introduce false 
dismissals.  

For NB-tree, assume the range search is of centre Vq and radius 
r, then according to [18], the search region involved can be 
derived as:  

           ( ) ( ), ( ) , ( )O Oq qV SD V r V SD V rΘ − Θ +∩          (15) 

where −
•  means the complementary space of that •  stands for. 

Similar to NB-tree, the search region of iDistance [19] is as 
follows: 

         ( )1 ( , ( ) ) ( , )j q j jj
t O CD V r O CR= Θ Θ− ∩∑          (16) 

  As discussed in Section 3.3, our EHD-Tree is based on the 
NB-tree and iDistance, therefore the search region of it is the 
intersection of the two search regions of these two methods 
(NB-tree and iDistance). Without loss of generality, for the range 
search of EHD-Tree, assume that the query sphere Θ(Vq,r) 
intersects with t′ cluster spheres, and t′≤t≤T since the number of 
cluster spheres intersected with the query sphere may be larger or 
equal to t due to the variation of α. Note that in iDistance’s range 
search with the same radius r, t refers to the number of cluster 
spheres intersected with the query one. Additionally, for EHD- 
Tree, the ID numbers of the low bound and the upper bound of 
start-slices in the j-th cluster sphere are determined by Eqs. (9-12) 
respectively. The search region of EHD-Tree (cf. Figure 10) can 
thus be represented as follows:  

( ) ( )1 2

1 1
( (( ( ) ( ( ) ( )) ( )) ( ), ) , ) ( ) , ,O O O Oi i

i j

tt
V O V O V j V j ji

= =
ΘΘ Θ Θ ∩∩ ∩ + ∩ +∑ ∑σ δ δ σ γγ

( )3

1
( ) ( ) ( )( , ) ( , ) ( , ) ( , ( )) ( )O O O Ok k

k

t
k SD SDV V O V O V k kσ δ γ

=
Θ Θ Θ Θ∩ ∩ ∩ ∩∑  (17) 

where 2( ) ( ) ( )i
i i

CRi LBS i SD O CR
α

σ × + −= , 2 ( ) ( )( ) i
i i

CRi UBS i SD O CR
α

δ × −= + , 

( , ( ) ) ( , )( ) qi i iO CD V r O CRiγ Θ Θ− ∩= . t′=t1+t2+t3, where t1, t2 and t3 are 
the numbers of cluster spheres which Θ(Vq,r) is below, above and 
intersecting with their corresponding centroid hyperplanes 
respectively. 
 

COROLLARY 1. For a range query with centre Vq and radius r, 
when α is large enough, the search region of EHD-Tree is the 
intersection of the search regions of the other two indexing 
methods (i.e., iDistance and NB-tree). 

PROOF: Based on Eq. (17) which determines the search region 
of EHD-Tree with centre Vq and radius r, we can get the following:            

2lim ( ) ( )j
j j

CR UBS j SD O CR
α α→∞

⎛ ⎞× + −⎜ ⎟
⎝ ⎠

                         

= { }2 ( ) ( ) ( )
2 2

lim j q j
j j

j

CR SD V r SD O SD O CR
CR→∞

+ −× + −⎛ ⎞⎡ ⎤−⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠α

α
α α   

   = ( )qSD V r+                                      (18) 

Similarly we can get the following equation: 
2lim ( ) ( )j

j j
CR LBS j SD O CR

α α→∞

⎛ ⎞× + −⎜ ⎟
⎝ ⎠

= ( )qSD V r−       (19) 

 By combining Eqs. (17) and (19), we get the final search region 
of EHD-Tree as shown below: 
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O CD V r O CR=

Θ Θ
Θ Θ

⎛ ⎞− ∩ + ∩= ⎜ ⎟⎜ ⎟− ∩⎝ ⎠
∑              (20) 

For the same range search, the search regions of NB-tree and 
iDistance can be determined according to Eqs. (15) and (16) 
respectively. It is obvious that when the number of start-slices(α) 
is large enough, the search region of EHD-Tree is the intersection 
of these two search regions, which is much smaller than that of 
NB-tree and iDistance individually.                      □ 

247



THEOREM 1. Given a query point Vq and a query radius r, let S1 
be the candidate answer set obtained by the sequential scan, S2 be 
the candidate point set obtained by iDistance, S3 be the candidate 
point set obtained by NB-tree and S4 be the candidate point set 
obtained by EHD-Tree. Then we have (1). S3 ⊇ S4 ⊇ S1; (2). 
S2 ⊇ S4 ⊇ S1; (2). S4=S2∩S3. In other words, for EHD-Tree, 
there are no false dismissals to be introduced. 

PROOF. (1). Given a query sphere ʘ(Vq,r), the search regions of 
NB-tree and iDistance are represented by Eq. (15) and Eq. (16) 
respectively. Based on the analysis of the two Equations, we 
observe that these two search regions both contain ʘ(Vq,r). That is 
to say, no false dismissals are introduced by either of the two 
index schemes (i.e., iDistance and NB-tree). Furthermore, based 
on the COROLLARY 1, when the number of start-slices (α) is large 
enough, the search region of EHD-Tree is the intersection of its 
two counterparts generated by NB-tree and iDistance. In other 
words, the candidate point set generated by EHD-Tree is the 
intersection of the two candidate point sets generated by iDistance 
and NB-tree. Therefore, we can derive that (1). S3 ⊇ S4 ⊇ S1; (2). 
S2 ⊇ S4 ⊇ S1; (3). S4=S2∩S3. All of these mean that there are no 
false dismissals to be introduced by EHD-Tree.           □ 

5.  EXPERIMENTAL RESULTS 
In this section, we report an empirical performance study 

conducted to extensively evaluate the effectiveness of EHD-Tree, 
and we compare it with the following competitive techniques: 
X-Tree, iDistance, NB-Tree and VA-file. 

5.1 Experiment Setup 
We have implemented EHD-Tree, NB-Tree, iDistance, VA-file 

and X-tree in C language and used B+-tree as the single 
dimensional index structure. It is worth mentioning that as 
empirically testified in [19], iDistance is better than M-Tree [14] 
and Omni-family [17] for various data distributions. So we only 
use iDistance for comparison with EHD-Tree. All the experiments 
are executed on a Pentium IV CPU at 2.0GHz with 256 Mbytes 
memory and index page size is fixed to 4096 Bytes.  

To verify the effectiveness of EHD-Tree, three types of data set 
have been used as experimental data:  

(1) The real data set comprises of the Color Histogram dataset 
available from the UCI KDD Archive [20], containing 32- 
dimensional image features extracted from 68,040 images. All the 
data values of each dimension are normalized to the range of [0,1].  

(2) The uniform data set is a random point set consisting of the 
points distributed uniformly in the range of [0,1] in each 
dimension. In our evaluation, the size of the data set is 100,000 
with its dimensionalities ranging from 8 to 64. 

(3) The clustered data set is a synthetic data set whose default 
number of clusters is 30 and the cluster centers are randomly 
generated in each cluster: the data follows the normal distribution 
with the default standard deviation of 0.05. The data size and its 
dimensionalities are the same as that of the uniform dataset. 

In our evaluation, we use the number of page accesses and the 
CPU time as the performance metrics. All the experimental 
performances are measured in terms of the average disk page 
access, as well as the CPU time over various types of 100 queries. 
For VA-file, no buffer is used and the number of bits per 
dimension is set 8.   

5.2 Effect of T 
In the first experiment, we study the effect of the number of 

clusters (T) on the efficiency of range search by using the 100, 000 
16-D uniform dataset. Figures 12(a) and 12(b) show that with the 
increase of T, the query efficiency (including the I/O and CPU cost) 
first increases gradually since the average search region is 
reducing as the number of clusters increases. Once T exceeds a 
threshold (e.g., 120), the significant overlaps of different cluster 
spheres lead to the high cost of I/O and CPU in the search. 
Therefore we should treat T as a tuning factor. Empirically, T can 
be set 120 as the optimal number of clusters. 
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(a).  T vs. I/O cost (b).  T vs. CPU cost 
Figure 12.  Effect of T on k-NN search 

5.3 Comparison of Two Partition Methods 
  In this experiment, we give a performance comparison between 
the two partition methods (viz., Global Partition and Local 
Partition). Figure 13 shows that the query efficiency for the global 
partition method is better than that of the local partition method 
when the number of centroid-slices is not too large. This is 
because for the local partition, the number of centroid-slices in 
every cluster is identical. It will definitely result in a poor pruning 
effect for some larger cluster spheres. With the increase of the 
centroid-slices, the gap between the two partition methods 
becomes reduced, and so much so the pruning effectiveness of 
both methods converges and moves towards the same. 
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Figure 13.  Global Partition vs. Local Partition 

5.4 Effect of α 
We use α to denote the number of start-slices in a cluster sphere. 

In this evaluation, we use the real data to study the effect of α on 
the efficiency of range search with an identical search radius (e.g., 
0.25). Figure 14 illustrates that the number of candidate points by 
EHD-Tree is decreasing gradually as α increases. That is to say, 
the search efficiency of EHD-Tree can not improve anymore when 
α exceeds a threshold, (e.g., α=40). This is because with the 
increase of α, the number of “slices” in a cluster sphere increases 
too. The difference between the actual search region and the ideal 
search space as identified in Eq.(14) is getting smaller and smaller 
as α increases. The efficiency of EHD-Tree does not improve 
anymore once α reaches an optimal value. It is interesting to note 
that the search efficiency of EHD-Tree is better than that of 
iDistance and NB-tree no matter what value α is of, and the search 
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efficiency of EHD-Tree does not increase anymore when α≥40. 
Therefore, α is also a turning factor to the search optimization. 
Based on our experiments, we set α to 40 as the optimal value. 
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Figure 14.  Effect of α 

5.5 Effect of Dimensionality 
Now we proceed to study the effect of the dimensionality on the 

performance of 10-NN search using 100,000 clustered dataset with 
the dimensionality ranging from 16 to 64. In the following 
experiments, the number of clusters is set 120, the number of start- 
slices is 40 and the global partition scheme is accommodated. 

Figure 15 compares the query performance differences in terms 
of CPU and I/O cost as the dimensionality increases. It is shown 
that EHD-Tree outperforms the other methods since EHD-Tree 
can more effectively reduce the search region than other methods. 
As shown in Figure 15(a), both the X-tree and sequential scan 
perform poorly in terms of CPU cost. It is observable that the 
performance gap in the CPU cost between VA-file, iDistance, 
NB-tree and EHD-Tree becomes larger as the dimensionality 
keeps increasing. As shown in Figure 15(b), the I/O performance 
for the NB-tree degrades due to many additional internal nodes at 
the leaf-level to be accessed and the large number of false 
positives. Although iDistance involves clustering and partitioning 
which helps prune faster and access less I/O pages, the gap 
between the I/O cost of iDistance and that of EHD-Tree becomes 
slightly bigger as dimensionality increases, since it is hard for 
iDistance to effectively prune the search region by only using a 
single distance. 
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Figure 15.  Effect of the dimensionality 

5.6 Effect of Data Size 
In this experiment, we use the three types of data set mentioned 

above to measure the performance behaviors of 10-NN queries 
with varying number of data points. Exactly 100 various types of 
10-NN queries are performed over the real data whose 
cardinalities ranges from 10,000 to 50,000, and the uniform data 
and clustered data sets ranging from 20,000 to 100,000 
respectively, with the same dimensionality (e.g., 32) for all cases. 

Figure 16 shows the performance of query processing in terms 

of CPU cost. It is evident that EHD-Tree outperforms the other 
five methods in terms of the CPU cost for the three datasets. It is 
interesting to note that the performance gap between the tree- 
based method such as the X-tree and other four techniques (viz., 
EHD-Tree, NB-tree, iDistance and VA-file) becomes larger since 
it is a CPU-intensive operation during query process. We also 
notice that the X-tree is faster than sequential scan in the real data 
set due to its skewness. For the uniform and clustered datasets, the 
CPU cost of the five methods increase almost linearly as the 
dataset size increases, but the increase for X-tree is the fastest. As 
shown in Figure 16(b)(c), the CPU performance of the X-tree is 
better than that of sequential scan when the data size is small, and 
gets slightly worse than the sequential scan when the size of data 
points becomes large. 

In Figure 17, the query performance evaluations with respect to 
the I/O cost are conducted. The experimental result reveals that 
EHD-Tree yields consistent performance gain and is more 
efficient than other methods. EHD-Tree is not very sensitive to the 
data volume since the increase in data size does not increase the 
height of B+-tree substantially, and it can more effectively than 
others filter away points that are not in the answer set. It is 
important to mention that the gap between the I/O cost of NB-tree 
and that of VA-file widens as the data size increases. The I/O cost 
of NB-tree grows exponentially with the increase of the dataset 
size, and is also slightly better than the sequential scan for the 
uniform dataset since it almost scans all of the leaf-level nodes of 
the whole index. While the I/O cost of iDistance and VA-file also 
increases with the increase of the data size, it grows at a slower 
rate in which for the uniform dataset, we could see that iDistance 
and VA-file follows closely. 

5.7 Performance Behavior of k-NN Search 
In this series of experiments, we still use the real data set 

(68,040 points), uniform data set (100,000 points) and clustered 
data set (100,000 points) in the experiments to test the effect of 
increasing the value of k in the k-NN search. Note that the 
dimensionality of these types of data is fixed to 32.  
  In Figure 18, the CPU cost of EHD-Tree is better than that of 
other methods for all data sets, especially when the query range is 
small (i.e., k is small). Among these indexes, the CPU cost of the 
X-tree is still the most expensive. The performances of VA-file 
and iDistance are pretty close to each other, and the gap between 
these two techniques with respect to CPU time becomes smaller as 
k increases. Based on the results of the above experiments, it is 
clear that the pruning effectiveness of EHD-Tree benefits more 
from the skewness of the real and clustered data sets.  

Figure 19 demonstrates the experimental results in terms of I/O 
cost when k ranges from 10 to 100. EHD-Tree performs the best 
by a wide margin in terms of page access. The I/O costs of 
iDistance and VA-file are closely similar and NB-tree exhibits a 
dramatic increase in terms of page access and it finally exceeds the 
X-tree when k is 45 for the uniform data set, as shown in Figure 
19(b). Figure 19 also shows an interesting scenario that the gap 
between EHD-Tree and iDistance is reducing with the increase of 
k. This is because the search region may cover the whole cluster 
when the k (i.e., query radius) is increasing. 

5.8 Effect of Dynamic Insertion 
  In this experiment, we investigate the effect of dynamic 
insertion on our EHD-Tree indexing method. We first adopt a 
synthetic 32-dimensional clustered data set with 100,000 points to 
construct EHD-Tree by using 80% (80,000) of the data. We run 

249



10 20 30 40 50
0

30

60

90

120

150

Dataset size(×1000)

 EHD-Tree
 iDistance
 NB-tree
 VA-file
 X-tree
 Seq-scan

CPU cost(ms)

 
(a). real dataset 

20 40 60 80 100
0

50

100

150

200

250

Dataset size(×1000)

 EHD-Tree
 iDistance
 NB-tree
 VA-file
 X-tree
 Seq-scan

CPU cost(ms)
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(c). clustered dataset 

Figure 16.  CPU Cost vs. Dataset Size 
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(c). clustered dataset 

Figure 17.  I/O Cost vs. Dataset Size 
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(c). clustered dataset 

Figure 18.  K vs. CPU Cost 
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(b). uniform dataset 
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(c). clustered dataset 

Figure 19.  K vs. I/O Cost
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some range queries randomly generated and record the average 
total response time. Then we insert another 5% of the data into the 
database and re-run the same queries. This process is repeated 
until the remaining 20% of the data all gets inserted. Meanwhile, 
we run the queries on the EHD-Tree built when there are 85%, 
90%, ... of the data available, which corresponds to the optimal 
case of EHD-Tree with no updates. We compare the total response 
time of the two cases as shown in Figure 20. As expected, the 
difference between them becomes larger as more data points are 
inserted, but the largest difference is within 20% even for the case 
of having 20% of newly inserted data. Assuming that the number 
of clusters is optimal at first, as more data points are inserted or 
deleted from the data set, the value of T may not be optimal 
anymore. Hence the performance more or less gets degraded. 
Considering that EHD-Tree typically outperforms other techniques 
by a factor of 1 to 2, this deterioration is acceptable. Experiments 
on 10-NN queries exhibit similar results. 
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Figure 20.  Effect of Dynamic Insertion

6.  CONCLUSION 
In this paper, we have presented a novel high-dimensional 

indexing scheme, which we term as symmetrical Encoding-based 
Hybrid-Distance-Tree (EHD-Tree). Three main steps are taken in 
building an EHD-Tree: first, all (n) data points are grouped into T 
clusters by using a k-Means algorithm. Second, the uniform ID 
number of each point is obtained through a small encoding effort, 
in which each cluster sphere is partitioned twice according to the 
dual distances of start- and centroid-distance. Finally, the uniform 
index key of each point is derived by combining its uniform ID 
with its centroid-distance together, and is indexed by a partitioned 
B+-tree. Compared with the four most competitive techniques 
including iDistance, NB-Tree, X-tree, VA-file, both theoretical 
analysis and experimental studies have shown that EHD-Tree can 
more effectively prune the search space especially when the query 
radius is relatively small. 
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