
Indexing High-Dimensional Data in Dual Distance Spaces:
A Symmetrical Encoding Approach

Yi Zhuang1 Yueting Zhuang1 Qing Li2 Lei Chen3 Yi Yu4

1College of Computer Science, Zhejiang University, P.R.China
2Dept of Computer Science, City University of Hong Kong, HKSAR, P.R.China

3Dept of Computer Science, Hong Kong University of Science and Technology, HKSAR, P.R.China
4Graduate School of Humanity and Science, Nara Women's University, Japan

{zhuangyi,yzhuang}@zju.edu.cn, itqli@cityu.edu.hk, leichen@cse.ust.hk, yuyi@ics.nara-wu.ac.jp

ABSTRACT
Due to the well-known dimensionality curse problem, search in a
high-dimensional space is considered as a “hard” problem. In this
paper, a novel symmetrical encoding-based index structure, which
is called EHD-Tree (for symmetrical Encoding-based Hybrid
Distance Tree), is proposed to support fast k-Nearest-Neighbor
(k-NN) search in high-dimensional spaces. In an EHD-Tree, all
data points are first grouped into clusters by a k-Means clustering
algorithm. Then the uniform ID number of each data point is
obtained by a dual-distance-driven encoding scheme in which each
cluster sphere is partitioned twice according to the dual distances
of start- and centroid-distance. Finally, the uniform ID number
and the centroid-distance of each data point are combined to get a
uniform index key, the latter is then indexed through a partition-
based B+-tree. Thus, given a query point, its k-NN search in high-
dimensional spaces can be transformed into search in a single
dimensional space with the aid of the EHD-Tree index. Extensive
performance studies are conducted to evaluate the effectiveness
and efficiency of our proposed scheme, and the results
demonstrate that this method outperforms the state-of-the-art high
dimensional search techniques such as the X-Tree, VA-file,
iDistance and NB-Tree, especially when the query radius is not
very large.

1. INTRODUCTION
With the explosive increase of multimedia data on the Internet,

content-based image or video retrieval has become more important
than ever before. For example, when people read the news on the
web, he or she may want to find an interesting picture or video
related to the news. Using this picture or video as an example, he
or she may want to find similar images or videos. With
consideration of the large scale data available on the web and
requests from potentially large number of users, it is critical to
devise a mechanism that can speed up the search process.
However, due to the complexity of multimedia objects, these
objects are represented by high-dimensional vectors where each
entry of the vector is a representative feature. As a consequence,
we need to find indexing techniques for these high dimensional
data. Due to the well known high dimensional curse problem [1],

oV

qV
jO

oV

qV

oV

qV
jO

Figure 1. The comparison of three search regions

traditional indexing methods such as K-d-tree [2] and R-tree [3]
only work well in low dimensional spaces (e.g., up to 12-16
dimensions [1]). Therefore, the design of efficient indexing tech-
niques for high-dimensional data remains to be an active research
area [1].

In this paper, we propose a high-dimensional indexing scheme
based on the technique of symmetrical Encoding-based Hybrid
Distance Tree, called EHD-Tree, to support progressive k-NN
search. Specifically, in an EHD-Tree, all data points are first
grouped into clusters by using k-Means clustering. Then, the
uniform ID(UID) number of each point is obtained by a dual-
distance-driven encoding scheme in which each cluster sphere is
partitioned twice according to the dual distances: start- and
centroid-distance. Finally, the uniform index key of each data
point is obtained through linearly combing its UID with the
centroid distance together, and is indexed by a partition-based
B+-tree. Using the B+-tree structure to index a high-dimensional
space brings forth many strengths, including fast search, dynamic
update, height balanced structure and so on. It also makes it easier
to graft our technique on top of any existing commercial relational
database. Thus, given a query data point Vq and the number k, the
k-Nearest Neighbor search of Vq in a high-dimensional space is
transformed into search in a single dimensional space with the aid
of the EHD-Tree indexing facilities.

Figure 1 compares intuitively the search region of our EHD-
Tree with those of the counterparts like NB-Tree [18] and
iDistance [19]. As we know, iDistance and NB-Tree only adopt
single distance metric, viz., the centroid-distance or start-distance
respectively (to be elaborated in Section 3.1) to prune the search
region. EHD-Tree, on the other hand, aims to accommodate the
dual distance metrics via using a symmetrical encoding scheme, so
as to further reduce the search region (ref. the shadow region of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
EDBT’07, March 25-30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003...$5.00.

241

the right part of Figure 1). Based on the observation, it is clear that
pruning by dual metrics is more promising on reducing the search
space, which is confirmed by the theoretically analysis to be
detailed in Section 4. However, it is a non-trivial problem to
combine two metrics for pruning, because simply using one after
another will not achieve a better pruning effect than that by using
only one. In this paper, we propose a novel encoding schema
which combines the two metrics effectively, which can be
seamlessly incorporated into a B+-tree. An extensive performance
study is then conducted to evaluate the EHD-Tree’s effectiveness
and efficiency. Our results on various data sets show that the
proposed technique has better performance than that of X-tree [6],
VA-file [9], NB-Tree [18] and iDistance [19], especially when the
query radius is not very large.

The primary contributions of this paper are listed as follows:
1. We propose a symmetrical encoding scheme by double

partitioning the cluster sphere according to the dual distance
metrics (i.e., start-distance and centroid-distance). Thus the
uniform ID number of each point can be obtained to serve as an
integral part of its uniform index key.

2. We design a uniform index key by linearly combing the
uniform ID number of each point with the centroid distance
together, which enables the corresponding range of these two
values to be non-overlapping. Furthermore, based on this encoding
scheme, we propose a symmetrical Encoding-based Hybrid
Distance Tree(EHD-Tree) to facilitate highly efficient k-NN
search.

3. We present a theoretical analysis and comparison on the
search cost of the proposed method and related indexing methods,
and give a cost model for the proposed indexing method.

The rest of this paper is organized as follows. We survey the
related work in Section 2. In Section 3, we describe EHD-Tree,
which is devised to dramatically improve the query performance
of the k-NN search. In Section 4, we give a theoretical analysis for
EHD-Tree. In Section 5, we report several extensive experiments
conducted to evaluate the efficiency and effectiveness of the
EHD-Tree index and compare it with its counterparts. We
conclude the paper in Section 6.

2. RELATED WORK
There is a long stream of research for addressing the high-

dimensional indexing problems [1]. Existing techniques can be
divided into four main categories.

The first category is based on data and space partitioning,
hierarchical tree index structure (e.g., the R-tree [3] and its
variants [4, 5, 6, 7, 8]), etc. Although these methods generally
perform well at low dimensionality, their performance deteriorates
rapidly as the dimensionality increases due to the “dimensionality
curse".

The second category is to represent original feature vectors
using smaller, approximate representations (e.g., VA-file [9],
IQ-tree [10] and A-tree [11]), etc. The VA-file [9] accelerates the
sequential scan by using data compression. Although the VA-file
reduces the number of disk accesses, it incurs higher
computational cost to decode the bit-strings. The IQ-tree [10] is
also an indexing structure along the lines of the VA-file, which
maintains a flat directory containing the minimum bounding
rectangles of the approximate data representations. A-tree [11] is
yet another tree structure based on the Virtual Bounding
Rectangles(VBRs) which are approximations of minimal bounding
rectangles (MBRs) and data objects.

The third category is to use a metric-based method [12] as an
alterative direction for high-dimensional indexing. Examples
include MVP-Tree [13], M-Tree [14] and Slim-Tree [16], Omni
–family technique [17], etc.

The final category is the transformation-based high-dimensional
indexing schemes, such as the Pyramid Technique [15]. The
Pyramid Technique is efficient for window queries, but performs
less satisfactorily for k-NN queries. Most recently, NB-tree [18]
and iDistance [19] are proposed to support B+-tree-based k-NN
search. NB-tree is a single reference point-based scheme, in which
high-dimensional points are mapped to a single-dimension by
computing their distance from the origin individually. Then these
distances are indexed using a B+-tree on which all subsequent
operations are performed. The drawback of NB-Tree is that it can
not significantly prune the search region; especially when the
dimensionality is becoming larger, the pruning capability of it can
be so poor that the number of candidate points returned by the first
round becomes too large to be filtered effectively. iDistance [19]
is proposed by selecting some reference points in order to further
prune the search region so as to improve the query efficiency, and
is testified to be superior to M-Tree [14] and Omni-family [17]
empirically [19]. However the query efficiency of iDistance relies
largely on clustering and partitioning the data and is significantly
affected if the choice of partition scheme and reference data points
is not appropriate.

3. THE EHD-TREE
In order to reduce the search region and speed up the k-NN

queries, in this section, we present a novel high-dimensional
indexing technique called the symmetrical Encoding-based Hybrid
Distance Tree (EHD-Tree for short).

3.1 Preliminaries & Motivations
The design of EHD-Tree is motivated by the following

observations. First, the (dis)similarity between data points can be
derived and ordered based on their distances to a reference data
point. Second, a distance is essentially a single dimensional value
which enables us to reuse existing single dimensional indexing
schemes such as B+-tree. Third, as shown in Figure 1, it is hard to
effectively reduce the search region by only using a single distance
metric (e.g., start-distance [18] or centroid-distance [19]). The
basic idea behind EHD-Tree is to nicely combine the two distance
metrics together by using a novel symmetrical encoding scheme to
obtain a uniform index key expression, so as to further reduce the
search region.

The list of symbols to be used in the rest of paper is summarized
in Table 1.

TABLE 1: Meaning of Symbols Used

Symbols Meaning
Ω a set of data points
Vi the i-th data point and Vi∈Ω
D number of dimensions
n number of data points in Ω
Vq a query data point user submits
α number of the start slices in a cluster sphere
β number of the centroid slices in a cluster sphere

ʘ(Vq,r) the query sphere with centre Vq and radius r
d(Vi,Vj) the distance between two points
⎡ ⎤• the integral part of ●

Without loss of generality, we assume Euclidean distance as the

242

oV

jO

 oV

jO

(a). An example start-slices (b). An example centroid-slices
Figure 2. The dual-distance-driven encoding for the cluster
sphere ʘ(Oj,CRj)

distance function, denoted as d(Vi,Vj), although other distance
functions also apply for EHD-Tree.

DEFINITION 1(START DISTANCE). Given a data point Vi, its
Start Distance (SD for short) is the distance between it and the
origin Vo(0,0,..,0), formally defined as:

 SD(Vi)=d(Vi,Vo) (1)
Assuming that n data points are grouped into T clusters, the

centroid Oj of each cluster Cj is first obtained, where j∈[1,T]. We
model a cluster as a tightly bounded sphere described by its
centroid and radius.

DEFINITION 2 (CLUSTER RADIUS). Given a cluster Cj, the
distance between its centroid Oj and the data point which has the
longest distance to Oj is defined as the cluster radius of Cj,
denoted as CRj.

Given a cluster Cj, the cluster sphere of it is denoted as ʘ(Oj,
CRj), where Oj is the centroid of cluster Cj, and CRj is the cluster
radius.

DEFINITION 3 (CENTROID DISTANCE). Given a data point Vi,
its centroid distance is defined as the distance between itself and
the cluster centroid Oj, and is denoted as:

 CD(Vi)=d(Vi,Oj) (2)

where [1,]jCi∈ and j∈[1,T].

3.2 Symmetrical DDE Scheme
As mentioned before, for each data point Vi in a cluster sphere,

it is a non-trivial task to simply combine the start-distance [18]
and centroid-distance [19] of Vi to get its uniform index key. To
address this problem, we propose a Dual-Distance-Encoding
scheme, called DDE, to obtain a new uniform index key through
double “slicing” the cluster sphere in terms of the values of the
start- and centroid-distance, which can be used to further reduce
the search region in the high-dimensional space

Specifically, all data points are first grouped into T clusters by
using a k-Means clustering algorithm, then the start- and centroid-
distances of each data point are computed, thus Vi can be modeled
as a four-tuple:

 Vi :: = <i, CID, SD, CD> (3)

where i refers to the i-th data point and CID is the ID of the cluster
that Vi belongs to.

DEFINITION 4 (START SLICE). Given a cluster sphere ʘ(Oj,CRj)
the γ-th start-slice of it is denoted as (), jSS γ , which is based on

oV

11

21

31

31

21

31

31

12
22

32

32

32

32

2333

34

34
33

23

22
21

21

11

12

jO

Auxiliary centroid-slice

Auxiliary
start-slice oV

jO

(a). Global Partition (b). Local Partition
Figure 3. The two partition methods for the cluster sphere
ʘ(Oj,CRj)

the value of start-distance, where γ∈[1,α] and j is the ID number
of the cluster sphere.

 Figure 2(a) shows an example of encoding scheme of start-slice
in the cluster sphere ʘ(Oj,CRj). Given a data point Vi∈ʘ(Oj,CRj),
there are two cases to be considered in terms of the start distance:

(i) When () [(), ()]i j j jSD V SD O SD O CR∈ + : as shown in the shaded
part of the cluster sphere in Figure 2(a), the ID number of start-
slice is decreasing with the increase of the start distance of the
point in ʘ(Oj,CRj).

(ii) When () [() , ()]j j j jSD V SD O CR SD O∈ − : as shown in the white
part of the cluster sphere in Figure 2(a), the ID number of start-
slice is increasing with the increase of the start distance of the
point in ʘ(Oj,CRj).

DEFINITION 5 (CENTROID SLICE). Given a cluster sphere
ʘ(Oj,CRj), the μ-th centroid-slice of it is denoted as CS(μ,j), which
is based on the value of centroid-distance, where μ∈[1,β] and j is
the ID number of the cluster sphere.

Similarly, Figure 2(b) shows an example encoding scheme of
centroid-slice in ʘ(Oj,CRj), in which the ID number of centroid-
slice decreases with the increase of the centroid distance of the
point in ʘ(Oj,CRj).
 In order to effectively encode the data points in a cluster sphere,
we propose two partition methods, namely Global Partition and
Local Partition, for comparison purpose.

DEFINITION 6 (GLOBAL PARTITION). Given a cluster sphere
ʘ(Oj,CRj),its global partition is to equally slice the cluster sphere
into β centroid-slices in terms of the thickness value (∇) of slice
based on the centroid distance.

As a result, α start-slices are made in ʘ(Oj,CRj), as shown in
Figure 3(a), where 1jCRβ ∇= +⎡ ⎤⎢ ⎥ ,α is an even integer and α/2+1=
β, j∈[1,T].

DEFINITION 7 (LOCAL PARTITION). Given a cluster sphere
ʘ(Oj,CRj), its local partition is to equally slice the cluster sphere
intoα start-slices.

Consequently, β centroid-slices are made in ʘ(Oj,CRj), as shown
in Figure 3(b), where α is an even number and α/2+1= β, j∈[1,T].

For the example shown in Figure 3, the number of the start
slices in the cluster sphere is 6 and the number of the centroid
slices is 4. Note that, different from the local partition (c.f., Figure
3(b)), it is impossible for the global partition (c.f., Figure 3(a)) of
ʘ(Oj,CRj) to exactly slice the cluster sphere based on the centroid

243

distance. Therefore the auxiliary start- and centroid-slices are
introduced, which are shown as blue circle in Figure 3(a).

Based on the above two partition methods, a data point Vi also
can be re-written by a four-tuple:

Vi::=<i, CID, SD_ID, CD_ID> (4)

where i is the ID number of Vi, CID is the cluster ID number where
Vi belongs to, SD_ID is the slice ID number in terms of the start-
distance-based slicing method and CD_ID is the slice ID number in
terms of the centroid-distance-based slicing method.

For a data point Vi in the corresponding cluster sphere, the ID
number of the start slice and centroid slice Vi falls in can be
derived as follows:

() ()
2

()

_ ()
2

_ () 1

ji

j

j i

j

i

i

SD V SD O
CR

CR CD V
CR

SD ID V

CD ID V

−⎧ ⎡ ⎤= −⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎨

−⎡ ⎤⎪ = + ⎢ ⎥⎪ ⎢ ⎥⎩

α

β

α

 (5)

where α is an even integer and α/2+1= β.
Therefore the uniform ID number of Vi can be represented by

linearly combining the SD_ID and CD_ID, as follows:
 () _ () _ ()i i iUID V c SD ID V CD ID V× +=

() () ()
2

1
2 j j

i j ijSD V SD O CR CD V
CR CR

c ×
− −⎛ ⎞⎡ ⎤ ⎡ ⎤= − + +⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎝ ⎠α β

α (6)

where c is a constant to linearly stretch the SD_ID and CD_ID.
Based on this encoding scheme, we can get the uniform

encoding identifier of each data point by double slicing the cluster
sphere, as shown by Algorithm 1.

Algorithm 1. The Dual-Distance-driven Encoding
Input: Ω: the data point set,

α: the number of start slices in each cluster sphere;
β: the number of centroid slices in each cluster sphere;

Output: DDE(1 to n): the encode representation for n points;
1. The data points in Ω are grouped into T clusters using k-Means

clustering algorithm
2. for j:=1 to T do
3. for (),i j jV O CRΘ∈ do
5. the centroid distance and start distance of it are computed;
6. the ID numbers of the start- and centroid-slices where Vi belongs

to is identified by Eq.(5);
7. the uniform ID of Vi (DDE(Vi)) can be derived by Eq.(6);
8. end for
9. end for

Figure 4. The symmetrical encoding algorithm

3.3 The Data Structure
Based on the above definitions, we can get the index key of Vi

as follows:

i i iV UID V CD(V) MCDkey = ()() +

 () () () ()
2

1
2

i j j i i

j j

SD V SD O CR CD V CD V
CR CR MCD

c − −
× +
⎛ ⎞⎡ ⎤ ⎡ ⎤− + +⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎝ ⎠

=
α β

α (7)

Since CD(Vi) may be larger than one, it should be normalized into
the range of [0,1] through division by the Maximal CD(MCD)ψ
which is a constant. Thus, it is guaranteed that the search range of
the uniform ID and centroid-distance of each point will not be
overlapping.
 Eq. (7) shows the index key expression of Vi. However, due to

ψ Since MCD is a maximal value of Euclidean distance of two data points,
MCD is set 2 for real life data, otherwise MCD is set d .

1Sindex0Sindex 1TSindex −

B tree+B tree+ B tree+

Figure 5. EHD-Tree index architecture

the symmetrical encoding scheme, it is possible that there exist
two different data points (e.g., Vi and Vj) in the same cluster sphere,
whose index keys are identical. As shown in Figure 2(a), such two
data points should satisfy the criteria that: (SD(Oj)-SD(Vi))×(SD(Oj)-
SD(Vj))<0. To avoid the overlapping of the index keys, a uniform
index key (UKey) expression is proposed by adding two constants
(i.e., SCALE_1 and SCALE_2) to linearly extend the range value of
the index key, as follows:

_1 () [(), ()]

_ 2 () [() , ())

(),
()

(),
i i j j j

i i j j j
i

SCALE if SD V SD O SD O CR

SCALE if SD V SD O CR SD O

key V
UKey V

key V
∈ +

∈ −

+⎧
⎨ +⎩

=

() () () ()
_1 1

2

() [(), ()]

() () () ()
_ 2 1

2

() [()

2

2

j j j

i j j i i

j j

i

i j j i i

j j

i j

SD V SD O CR CD V CD V
SCALE

CR CR MCD

if SD V SD O SD O CR

SD V SD O CR CD V CD V
SCALE

CR CR MCD

if SD V SD O CR

c

c

×

×

− −
+ + +

∈ +

− −
+ + +

∈ −

⎛ ⎞⎡ ⎤ ⎡ ⎤−⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎝ ⎠

⎛ ⎞⎡ ⎤ ⎡ ⎤−⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎝ ⎠

+

=
+

α β

α β

α

α

, ())j jSD O

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪⎩

 (8)

Finally, the n index keys obtained using Eq.(8) are inserted into a
partitioned B+-tree, as to be discussed next.

3.4 Building EHD-TREE
Figure 5 shows the index structure of the EHD-Tree which is

composed of a hash table and T sliced indexes, where T is the total
number of clusters. A cluster sphere corresponds to a sliced index
which is named by the cluster ID (viz., CID). The hash table above
the sliced indexes is to map the query sphere to the corresponding
affected cluster ones (sliced index) based on CID.

Figure 6 shows the detailed steps of constructing an EHD-Tree
index. Note that the routine TransValue(Vi) is a distance
transformation function as given in Eq.(8), and BInsert(dist,bt(j))
is a standard B+-tree insert procedure, where j=1,2,..,T.

Algorithm 2. EHD-Tree Index Construction
Input: Ω: the data point set;
Output: bt(1 to T): the index for EHD-Tree;
1. The data points in Ω are grouped into T clusters using k-Means

clustering algorithm
2. for j:=1 to T do
3. bt(j)←newEHDFile(); /*create index header file */
4. for each data point Vi in the j-th cluster do
5. the centroid- and start-distance of each data point are computed;
6. the ID number of Vi is obtained according to algorithm 1;
7. Key(Vi)=TransValue(Vi);
8. BInsert(Key(Vi),bt(j)); /* insert it to B+-tree */
9. end for
10. return bt(j)
11. end for

Figure 6. The EHD-Tree index construction algorithm

As shown in Figure 5, the index keys of the data points in a
cluster are indexed by a sliced index. Thus T clusters corresponds
to T sliced indexes. Given a query data point Vq, the affected
clusters can be quickly accessed through a hash table.

244

3.5 Index Update Algorithm
We now investigate the problem of EHD-Tree update through a

relatively simple algorithm. The detailed steps are shown in Figure
7. Given a new data point Vnew, the routine ClusterID(Vnew)

ψ

returns the ID number of the cluster that Vnew belongs to(line1),
and then the index key of this new data point is obtained by the
same transformation function as shown in Eq. (8)(line2).
Furthermore, the index key of Vnew is inserted into the
corresponding sliced index of EHD-Tree (line3). Finally the
updated index is returned (line4).
Algorithm 3. EHD-tree Index update
Input: Vnew: a new data point, SI(1 to T): the EHD-Tree index;
Output: SI(1 to T): updated EHD-Tree index;
1. cid←ClusterID(Vnew);
2. dist←TransValue(Vnew);
3. BInsert(dist, SI(cid));
4. return SI(1 to T)

Figure 7. Update algorithm of EHD-Tree index

3.6 k-NN Search with EHD-Tree
For n high-dimensional data points, k nearest neighbor search is

the most frequently used search method which retrieves the k most
similar data points(in terms of distance) to a given data point. In
this section, we focus on k-NN search for high-dimensional data
points with the help of EHD-Tree mechanism.

3.6.1 Picking a Value of LB and UB
Assuming that a query sphere ʘ(Vq,r) intersects with a cluster

sphere ʘ(Oj,CRj), we need to examine which “slices” in ʘ(Oj,CRj)
intersect with ʘ(Vq,r).

DEFINITION 8 (LOW BOUND OF START-SLICE). Given two
intersected spheres ʘ(Vq,r) and ʘ(Oj,CRj), the low bound of start-
slice in ʘ(Oj,CRj) is the start-slice which is the closest to the
boundary of ʘ(Oj,CRj) in terms of start distance, denoted as
LBS(j).

DEFINITION 9 (UPPER BOUND OF START-SLICE). Given two
intersected spheres ʘ(Vq,r) and ʘ(Oj,CRj), the upper bound of
start-slice in ʘ(Oj,CRj) is the start-slice which is the farthest to the
boundary of ʘ(Oj,CRj) in terms of start distance, denoted as
UBS(j).

DEFINITION 10 (LOW BOUND OF CENTROID-SLICE). Given
two intersected spheres ʘ(Vq,r) and ʘ(Oj,CRj), the low bound of
centroid-slice in ʘ(Oj,CRj) is the the centroid-slice which is the
farthest to the cluster centre Oj, denoted as LBC(j).

DEFINITION 11 (UPPER BOUND OF CENTROID-SLICE). Given
two intersected spheres ʘ(Vq,r) and ʘ(Oj,CRj), the upper bound of
centroid-slice in ʘ(Oj,CRj) is the centroid-slice which is the closest
to the cluster centre Oj, denoted as UBC(j).

DEFINITION 12 (CENTROID-HYPERPLANE). Given a cluster
sphere ʘ(Oj,CRj), its centroid hyperplane is a sphere ʘ(Vo,SD(Oj))
which is across the cluster centre Oj, where Vo is the origin.

Now we focus on how to get the LBS, UBS, LBC and UBC. For
a query sphere ʘ(Vq,r) in Figure 8, the corresponding search range
of its start-distance is [SD(Vq)-r,SD(Vq)+r]. Similarly, the search
of the centroid-distance is [CD(Vq)-r,CD(Vq)+r]. As mentioned in
Section 3.2, a cluster sphere (e.g., ʘ(Oj,CRj)) is “sliced” into α

ψ The cluster the Vnew belongs to is identified by choosing the minimal
distance between Vnew and the cluster centroid. In most cases, the cluster
radius need not to be changed since the new point almost falls in the
corresponding cluster. Otherwise, the cluster radius needs to be enlarged.

oV

qVjO
jCR

Figure 8. The choice of LBS, UBS, LBC and UBC of ʘ(Vq,r) in
ʘ(Oj,CRj)

start-slices and β centroid-slices. Once a query sphere intersects
with the cluster sphere, some continuous “slices” (e.g., from the
LBS(j)-th “slice” to the UBS(j)-th “slice”, where LBS(j)≤UBS(j))
may be affected (intersected). Therefore we can derive the ID
number of the low bound start-slice(LBS) and upper bound slice
(UBS) in the j-th cluster sphere by the process described
immediately below:

For the corresponding LBS of ʘ(Vq,r), there are four cases to be
considered in terms of the start-distance:

(i). if () ()q j jSD V r SD O CR+ ≥ + or () ()q jSD V r SD O− > , then

() 1LBS j = , () ()
()

2 2
q j

j

SD V r SD O
UBS j

CR
α

α
− −

= ⎡ ⎤− ⎢ ⎥⎢ ⎥
 (9)

(ii). if () ()q j jSD V r SD O CR+ < + and () ()q jSD V r SD O− > or
() ()q j jSD V r SD O CR− > − and () ()q jSD V r SD O+ < , then

() ()
()

2 2
q j

j

SD V r SD O
LBS j

CR
α

α
+ −

= ⎡ ⎤− ⎢ ⎥⎢ ⎥
, () ()

()
2 2

q j

j

SD V r SD O
UBS j

CR
α

α
− −

= ⎡ ⎤− ⎢ ⎥⎢ ⎥

(10)

(iii). if () () ()j q jSD O r SD V SD O r− < < + , then
() () () ()

()
2 2 2 2

q j q j

j j

SD V r SD O SD V r SD O
LBS j

CR CR
andα α

α α
+ − − −

= ⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
,

()
2

UBS j α= (11)

Note that, in this case, ʘ(Vq,r) is intersected with the centroid
hyperplane of ʘ(Oj,CRj), therefore there exists two values of LBS
due to the symmetry.

(iv). if () ()q j jSD V r SD O CR− ≤ − and () ()q jSD V r SD O+ < , then

 () 1LBS j = , () ()
()

2 2
q j

j

SD V r SD O
UBS j

CR
α

α
+ −

= ⎡ ⎤− ⎢ ⎥⎢ ⎥
 (12)

Similarly, we can get the ID numbers of the low bound (LBC)
and the upper bound (UBC) of the centroid-slices, which are shown
below:

()
1

()
1

, () ()

() , () ()

1, ()

q
q j q

j

q
q j q

j

q j

CD V r
CR

CD V r
CR

if CD V r CR and CD V r

LBC j if CD V r CR and CD V r

if CD V r CR

β

β

−
+

+
+

+ < >

= + < ≤

+ ≥

⎧ ⎡ ⎤
⎢ ⎥⎪ ⎢ ⎥

⎪
⎪ ⎡ ⎤⎨ ⎢ ⎥⎢ ⎥⎪
⎪
⎪⎩

 (13)

()1 , () 0
()

, () 0

q
q

j

q

CD V r if CD V r
CRUBC j

if CD V r

β

β

−+ − >
=

− ≤

⎧ ⎡ ⎤
⎪ ⎢ ⎥⎢ ⎥⎨
⎪⎩

 (14)

 As an example, Figure 8 shows a cluster sphere ʘ(Oj,CRj)
which is divided into 5 centroid-slices and 8 start-slices. The two

245

a. () ()q jSD V r SD O− ≥ b. () () ()q j qSD V r SD O SD V r− < < + c. () ()q jSD V r SD O+ ≤

Figure 9. The three cases in terms of the position of two spheres

affected start-slices that are closest or farthest to the boundary of
ʘ(Oj,CRj) are the 1st and 3 rd start-slices respectively, denoted as
LBS(j)=1, UBS(j)=3. Similarly, we have LBC(j)=1, UBC(j)=3.

3.6.2 k-NN Algorithm
Before presenting our k-NN algorithm under the EHD-Tree

scheme, we first introduce some important routines. Routine
RSearch(Vq,r) is the main range search algorithm which returns
the candidate data points of range search with centre Vq and radius
r. USearch(Vq,r) and LSearch(Vq,r) are for the implementation of
the range search. Farthest(S,Vq) returns the data point which is the
farthest from Vq in the candidate data point set S. BRSearch(left,
right, j) is a standard B+-tree range search function in the j-th
sliced index.

As the cluster spheres in high-dimensional spaces are sliced
equally in two different manners (viz., start-distance-based and
centroid-distance-based), there are three cases with respect to the
relative position of the query sphere and its intersected cluster
sphere, as discussed below.

Case 1: () ()q jSD V r SD O− ≥

In this case, as shown in Figure 9(a), the query sphere ʘ(Vq,r) is
above the blue bold line1. The search range [r1, r2] can be derived
based on the following:

r1 = ()_1 () () q

MCD
CD V rSCALE c LBS j LBC j+ × + + − , and

r2 = _1 () () j

MCD
CRSCALE c UBS j UBC j+ × + + ;

Case 2: () () ()q j qSD V r SD O SD V r− < < +

In this case, as shown in Figure 9(b), when the query sphere
ʘ(Vq,r) intersects with the blue bold line, the EHD-Tree index
needs to be visited twice since for the candidate data points in two
different parts (i.e., above the blue bold line and below the blue
bold line) of the cluster sphere ʘ(Oj,CRj), the value range of their
index keys is different and discontinuous. As a result, we conclude
that the two sub ranges [r11, r12] and [r21, r22] for search can be
determined by the following:

r11 = ()_1 () () q

MCD
CD V rSCALE c LBS j LBC j+ × + + − ,

r12 = _1 () () j

MCD
CRSCALE c UBS j UBC j+ × + + ; and

1 The blue bold line in Figure 9 refers to the centroid-hyperplane of (,)j jO CRΘ .

r21=
()_ 2 () () qCD V rSCALE c LBS j LBC j

MCD
+ × + + − ,

r22 = _ 2 () () j

MCD
CRSCALE c UBS j UBC j+ × + +

Case 3: () ()q jSD V r SD O+ ≤

In this case, as shown in Figure 9(c), the query sphere is below
the blue bold line, so the search range [r1, r2] is determined by the
following:

r1 = ()_ 2 () () qCD V rSCALE c LBS j LBC j
MCD

+ × + + − , and

r2 = _ 2 () () jCRSCALE c UBS j UBC j
MCD

+ × + + .

oV

1O
qV

2O

3O

Figure 10. Search regions for k-NN query of EHD-Tree

We are now at the position to present our k-NN algorithm under
the EHD-Tree mechanism. In Figure 10, the deep shaded circle
represents a query sphere ʘ(Vq,r) with Vq as the centre and r as the
radius and the light shaded region (i.e., search region) should be
checked. As shown in Figure 11, the whole search process is
performed in three steps: first, when a user submits a query data
point Vq, the search starts with a small radius, and step by step, the
radius is increased to form a bigger query sphere iteratively (line3).
Once the number of candidate data points is larger than k, the
search stops, and the (|S|-k-1) data points which are farthest to the
query one are identified (lines 6-7) and removed from the
intermediate answer set S (line8). Note that the symbol |S| denotes
the total number of candidate points in S, and the candidate points
in S are the points whose distances to the query point Vq are less
than or equal to the query radius r. In this way, the k nearest

oV

qVjO

Query sphere

Centroid hyperplane
Cluster sphere

oV

qV

jO
Query sphere

Centroid hyperplane
Cluster sphere

oV

qV

jO

246

neighbor data points of Vq are returned.
Algorithm 4. kNN Search
Input: a query data point Vq, k, ∆r
Output: query results S
1. r←0, S←Φ; /* initialization */
2. while (|S|<k)
3. r←r+∆r;
4. S←RSearch(Vq,r);
5. if (|S|>k) then
6. for count:=1 to |S|-k-1do
7. Vfar←Farthest(S,Vq);
8. S←S-Vfar;
9. end for
10. end if
11. end while

RSearch(Vq,r)
12. S1←Φ, S2←Φ; /* initialization */
13. for each cluster sphere ()j jO CR,Θ do
14. if ()j jO CR,Θ dose not intersect with ()qV ,rΘ then
15. break;
16. else
17. if () ()q jSD V r SD O− ≥ then /* above the blue bold line */
18. S2←USearch(Vq,r, j);
19. else if () ()q jSD V r SD O+ ≤ then /* below the blue bold line */
20. S2←LSearch(Vq,r, j);
21. else /* intersects with the blue bold line */
22. S2←USearch(Vq,r, j);
23. S2←S2∪LSearch(Vq,r, j);
24. end if
25. S1←S1∪S2;
26． if ()j jO CR,Θ contains ()qV ,rΘ then end loop;
27. end if
28. end for
29. return S1; /* return candidate data points */

USearch(Vq,r, j)
30. _1 () () ()() /qleft SCALE LBS j LBC j CD V MCDc r← × + ++ − ;
31. _1 () () /jright SCALE c UBS j UBC j CR MCD← + × + + ;
32. S3←BRSearch[left, right, j];
33. for each data point Vi∈S3 do
34. if ()q id V ,V r> then 3 3 iS S V← − ; /* Vi is removed from S3 */
35. end for
36. return S3;

LSearch(Vq,r, j)
37. _ 2 () () (()) /qleft SCALE c LBS j LBC j CD V r MCD← + × + + − ;
38. _ 2 () () /jright SCALE c UBS j UBC j CR MCD← + × + + ;
39. S3←BRSearch[left, right, j];
40. for each data point Vi∈S3 do
41. if ()q id V ,V r> then 3 3 iS S V← − ; /* Vi is removed from S3 */
42. end for
43. return S3;

Figure 11. k-NN search algorithm

4. THEORETICAL ANALYSIS
As mentioned in Section 3.6, a k-NN query is completed

through iteratively performing a range search. To have a basic
understanding on the performance of our EHD-Tree indexing
vis-à-vis other existing indexing schemes like NB-tree [18] and
iDistance [19], we investigate and compare these schemes through
their search regions involved in range search with a same radius
for the three index schemes. Additionally, we give a proof in the
later part of this section that EHD-Tree will not introduce false
dismissals.

For NB-tree, assume the range search is of centre Vq and radius
r, then according to [18], the search region involved can be
derived as:

 () (), () , ()O Oq qV SD V r V SD V rΘ − Θ +∩ (15)

where −
• means the complementary space of that • stands for.

Similar to NB-tree, the search region of iDistance [19] is as
follows:

 ()1 (, ()) (,)j q j jj
t O CD V r O CR= Θ Θ− ∩∑ (16)

 As discussed in Section 3.3, our EHD-Tree is based on the
NB-tree and iDistance, therefore the search region of it is the
intersection of the two search regions of these two methods
(NB-tree and iDistance). Without loss of generality, for the range
search of EHD-Tree, assume that the query sphere Θ(Vq,r)
intersects with t′ cluster spheres, and t′≤t≤T since the number of
cluster spheres intersected with the query sphere may be larger or
equal to t due to the variation of α. Note that in iDistance’s range
search with the same radius r, t refers to the number of cluster
spheres intersected with the query one. Additionally, for EHD-
Tree, the ID numbers of the low bound and the upper bound of
start-slices in the j-th cluster sphere are determined by Eqs. (9-12)
respectively. The search region of EHD-Tree (cf. Figure 10) can
thus be represented as follows:

() ()1 2

1 1
(((() (() ()) ()) (),) ,) () , ,O O O Oi i

i j

tt
V O V O V j V j ji

= =
ΘΘ Θ Θ ∩∩ ∩ + ∩ +∑ ∑σ δ δ σ γγ

()3

1
() () ()(,) (,) (,) (, ()) ()O O O Ok k

k

t
k SD SDV V O V O V k kσ δ γ

=
Θ Θ Θ Θ∩ ∩ ∩ ∩∑ (17)

where 2() () ()i
i i

CRi LBS i SD O CR
α

σ × + −= , 2 () ()() i
i i

CRi UBS i SD O CR
α

δ × −= + ,

(, ()) (,)() qi i iO CD V r O CRiγ Θ Θ− ∩= . t′=t1+t2+t3, where t1, t2 and t3 are
the numbers of cluster spheres which Θ(Vq,r) is below, above and
intersecting with their corresponding centroid hyperplanes
respectively.

COROLLARY 1. For a range query with centre Vq and radius r,
when α is large enough, the search region of EHD-Tree is the
intersection of the search regions of the other two indexing
methods (i.e., iDistance and NB-tree).

PROOF: Based on Eq. (17) which determines the search region
of EHD-Tree with centre Vq and radius r, we can get the following:

2lim () ()j
j j

CR UBS j SD O CR
α α→∞

⎛ ⎞× + −⎜ ⎟
⎝ ⎠

= { }2 () () ()
2 2

lim j q j
j j

j

CR SD V r SD O SD O CR
CR→∞

+ −× + −⎛ ⎞⎡ ⎤−⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠α

α
α α

 = ()qSD V r+ (18)

Similarly we can get the following equation:
2lim () ()j

j j
CR LBS j SD O CR

α α→∞

⎛ ⎞× + −⎜ ⎟
⎝ ⎠

= ()qSD V r− (19)

 By combining Eqs. (17) and (19), we get the final search region
of EHD-Tree as shown below:

() ()

()

1 2

3

1 1

1

(((() (() () ()) ()) ()

() () () (()

,) ,) , ,
lim

(,) (,) (,) , ())

O O O O
i j

O O O O
k

t t

i i

t

k k

V O V O i V j V j j

k SD SD kV V O V O V k
α

γ

σ δ γ δ σ γ

σ δ

= =

=

→∞

ΘΘ Θ Θ

Θ

+ ∩

Θ Θ Θ

⎛ ⎞∩ ∩ ∩⎜ ⎟
⎜ ⎟
⎜ ⎟

∩ ∩ ∩ ∩⎜ ⎟
⎝ ⎠

∑ ∑

∑

() ()
()1

, () , ()
, () (,)

O O
t

q q

i qi i i

V SD V r V SD V r
O CD V r O CR=

Θ Θ
Θ Θ

⎛ ⎞− ∩ + ∩= ⎜ ⎟⎜ ⎟− ∩⎝ ⎠
∑ (20)

For the same range search, the search regions of NB-tree and
iDistance can be determined according to Eqs. (15) and (16)
respectively. It is obvious that when the number of start-slices(α)
is large enough, the search region of EHD-Tree is the intersection
of these two search regions, which is much smaller than that of
NB-tree and iDistance individually. □

247

THEOREM 1. Given a query point Vq and a query radius r, let S1
be the candidate answer set obtained by the sequential scan, S2 be
the candidate point set obtained by iDistance, S3 be the candidate
point set obtained by NB-tree and S4 be the candidate point set
obtained by EHD-Tree. Then we have (1). S3 ⊇ S4 ⊇ S1; (2).
S2 ⊇ S4 ⊇ S1; (2). S4=S2∩S3. In other words, for EHD-Tree,
there are no false dismissals to be introduced.

PROOF. (1). Given a query sphere ʘ(Vq,r), the search regions of
NB-tree and iDistance are represented by Eq. (15) and Eq. (16)
respectively. Based on the analysis of the two Equations, we
observe that these two search regions both contain ʘ(Vq,r). That is
to say, no false dismissals are introduced by either of the two
index schemes (i.e., iDistance and NB-tree). Furthermore, based
on the COROLLARY 1, when the number of start-slices (α) is large
enough, the search region of EHD-Tree is the intersection of its
two counterparts generated by NB-tree and iDistance. In other
words, the candidate point set generated by EHD-Tree is the
intersection of the two candidate point sets generated by iDistance
and NB-tree. Therefore, we can derive that (1). S3 ⊇ S4 ⊇ S1; (2).
S2 ⊇ S4 ⊇ S1; (3). S4=S2∩S3. All of these mean that there are no
false dismissals to be introduced by EHD-Tree. □

5. EXPERIMENTAL RESULTS
In this section, we report an empirical performance study

conducted to extensively evaluate the effectiveness of EHD-Tree,
and we compare it with the following competitive techniques:
X-Tree, iDistance, NB-Tree and VA-file.

5.1 Experiment Setup
We have implemented EHD-Tree, NB-Tree, iDistance, VA-file

and X-tree in C language and used B+-tree as the single
dimensional index structure. It is worth mentioning that as
empirically testified in [19], iDistance is better than M-Tree [14]
and Omni-family [17] for various data distributions. So we only
use iDistance for comparison with EHD-Tree. All the experiments
are executed on a Pentium IV CPU at 2.0GHz with 256 Mbytes
memory and index page size is fixed to 4096 Bytes.

To verify the effectiveness of EHD-Tree, three types of data set
have been used as experimental data:

(1) The real data set comprises of the Color Histogram dataset
available from the UCI KDD Archive [20], containing 32-
dimensional image features extracted from 68,040 images. All the
data values of each dimension are normalized to the range of [0,1].

(2) The uniform data set is a random point set consisting of the
points distributed uniformly in the range of [0,1] in each
dimension. In our evaluation, the size of the data set is 100,000
with its dimensionalities ranging from 8 to 64.

(3) The clustered data set is a synthetic data set whose default
number of clusters is 30 and the cluster centers are randomly
generated in each cluster: the data follows the normal distribution
with the default standard deviation of 0.05. The data size and its
dimensionalities are the same as that of the uniform dataset.

In our evaluation, we use the number of page accesses and the
CPU time as the performance metrics. All the experimental
performances are measured in terms of the average disk page
access, as well as the CPU time over various types of 100 queries.
For VA-file, no buffer is used and the number of bits per
dimension is set 8.

5.2 Effect of T
In the first experiment, we study the effect of the number of

clusters (T) on the efficiency of range search by using the 100, 000
16-D uniform dataset. Figures 12(a) and 12(b) show that with the
increase of T, the query efficiency (including the I/O and CPU cost)
first increases gradually since the average search region is
reducing as the number of clusters increases. Once T exceeds a
threshold (e.g., 120), the significant overlaps of different cluster
spheres lead to the high cost of I/O and CPU in the search.
Therefore we should treat T as a tuning factor. Empirically, T can
be set 120 as the optimal number of clusters.

20 40 60 80 100 120 140
0

300

600

900

1200

1500

T

Page accesses

 20 40 60 80 100 120 140
0

30

60

90

120

150

180

T

CPU cost(ms)

(a). T vs. I/O cost (b). T vs. CPU cost
Figure 12. Effect of T on k-NN search

5.3 Comparison of Two Partition Methods
 In this experiment, we give a performance comparison between
the two partition methods (viz., Global Partition and Local
Partition). Figure 13 shows that the query efficiency for the global
partition method is better than that of the local partition method
when the number of centroid-slices is not too large. This is
because for the local partition, the number of centroid-slices in
every cluster is identical. It will definitely result in a poor pruning
effect for some larger cluster spheres. With the increase of the
centroid-slices, the gap between the two partition methods
becomes reduced, and so much so the pruning effectiveness of
both methods converges and moves towards the same.

0 10 20 30 40 50 60 70
0

400

800

1200

1600

2000

Number of centroid-slices

 Global Partition
 Local Partition

Number of candidate points

Figure 13. Global Partition vs. Local Partition

5.4 Effect of α
We use α to denote the number of start-slices in a cluster sphere.

In this evaluation, we use the real data to study the effect of α on
the efficiency of range search with an identical search radius (e.g.,
0.25). Figure 14 illustrates that the number of candidate points by
EHD-Tree is decreasing gradually as α increases. That is to say,
the search efficiency of EHD-Tree can not improve anymore when
α exceeds a threshold, (e.g., α=40). This is because with the
increase of α, the number of “slices” in a cluster sphere increases
too. The difference between the actual search region and the ideal
search space as identified in Eq.(14) is getting smaller and smaller
as α increases. The efficiency of EHD-Tree does not improve
anymore once α reaches an optimal value. It is interesting to note
that the search efficiency of EHD-Tree is better than that of
iDistance and NB-tree no matter what value α is of, and the search

248

efficiency of EHD-Tree does not increase anymore when α≥40.
Therefore, α is also a turning factor to the search optimization.
Based on our experiments, we set α to 40 as the optimal value.

10 20 30 40 50 60 70 80
0

1000

2000

3000

4000

5000

6000

Number of Start-Slices

 Seq-scan
 EHD-Tree
 iDistance
 NB-tree

Number of candidate points

Figure 14. Effect of α

5.5 Effect of Dimensionality
Now we proceed to study the effect of the dimensionality on the

performance of 10-NN search using 100,000 clustered dataset with
the dimensionality ranging from 16 to 64. In the following
experiments, the number of clusters is set 120, the number of start-
slices is 40 and the global partition scheme is accommodated.

Figure 15 compares the query performance differences in terms
of CPU and I/O cost as the dimensionality increases. It is shown
that EHD-Tree outperforms the other methods since EHD-Tree
can more effectively reduce the search region than other methods.
As shown in Figure 15(a), both the X-tree and sequential scan
perform poorly in terms of CPU cost. It is observable that the
performance gap in the CPU cost between VA-file, iDistance,
NB-tree and EHD-Tree becomes larger as the dimensionality
keeps increasing. As shown in Figure 15(b), the I/O performance
for the NB-tree degrades due to many additional internal nodes at
the leaf-level to be accessed and the large number of false
positives. Although iDistance involves clustering and partitioning
which helps prune faster and access less I/O pages, the gap
between the I/O cost of iDistance and that of EHD-Tree becomes
slightly bigger as dimensionality increases, since it is hard for
iDistance to effectively prune the search region by only using a
single distance.

16 24 32 40 48 56 64
0

200

400

600

800

1000

Dimensionality

 EHD-Tree
 NB-tree
 VA-file
 iDistance
 X-tree
 Seq-scan

CPU cost(ms)

 16 24 32 40 48 56 64
0

1000

2000

3000

4000

Dimensionality

 EHD-Tree
 NB-tree
 VA-file
 iDistance
 X-tree
 Seq-scan

Page access

(a). CPU Cost vs. Dimensionality (b). I/O Cost vs. Dimensionality

Figure 15. Effect of the dimensionality

5.6 Effect of Data Size
In this experiment, we use the three types of data set mentioned

above to measure the performance behaviors of 10-NN queries
with varying number of data points. Exactly 100 various types of
10-NN queries are performed over the real data whose
cardinalities ranges from 10,000 to 50,000, and the uniform data
and clustered data sets ranging from 20,000 to 100,000
respectively, with the same dimensionality (e.g., 32) for all cases.

Figure 16 shows the performance of query processing in terms

of CPU cost. It is evident that EHD-Tree outperforms the other
five methods in terms of the CPU cost for the three datasets. It is
interesting to note that the performance gap between the tree-
based method such as the X-tree and other four techniques (viz.,
EHD-Tree, NB-tree, iDistance and VA-file) becomes larger since
it is a CPU-intensive operation during query process. We also
notice that the X-tree is faster than sequential scan in the real data
set due to its skewness. For the uniform and clustered datasets, the
CPU cost of the five methods increase almost linearly as the
dataset size increases, but the increase for X-tree is the fastest. As
shown in Figure 16(b)(c), the CPU performance of the X-tree is
better than that of sequential scan when the data size is small, and
gets slightly worse than the sequential scan when the size of data
points becomes large.

In Figure 17, the query performance evaluations with respect to
the I/O cost are conducted. The experimental result reveals that
EHD-Tree yields consistent performance gain and is more
efficient than other methods. EHD-Tree is not very sensitive to the
data volume since the increase in data size does not increase the
height of B+-tree substantially, and it can more effectively than
others filter away points that are not in the answer set. It is
important to mention that the gap between the I/O cost of NB-tree
and that of VA-file widens as the data size increases. The I/O cost
of NB-tree grows exponentially with the increase of the dataset
size, and is also slightly better than the sequential scan for the
uniform dataset since it almost scans all of the leaf-level nodes of
the whole index. While the I/O cost of iDistance and VA-file also
increases with the increase of the data size, it grows at a slower
rate in which for the uniform dataset, we could see that iDistance
and VA-file follows closely.

5.7 Performance Behavior of k-NN Search
In this series of experiments, we still use the real data set

(68,040 points), uniform data set (100,000 points) and clustered
data set (100,000 points) in the experiments to test the effect of
increasing the value of k in the k-NN search. Note that the
dimensionality of these types of data is fixed to 32.
 In Figure 18, the CPU cost of EHD-Tree is better than that of
other methods for all data sets, especially when the query range is
small (i.e., k is small). Among these indexes, the CPU cost of the
X-tree is still the most expensive. The performances of VA-file
and iDistance are pretty close to each other, and the gap between
these two techniques with respect to CPU time becomes smaller as
k increases. Based on the results of the above experiments, it is
clear that the pruning effectiveness of EHD-Tree benefits more
from the skewness of the real and clustered data sets.

Figure 19 demonstrates the experimental results in terms of I/O
cost when k ranges from 10 to 100. EHD-Tree performs the best
by a wide margin in terms of page access. The I/O costs of
iDistance and VA-file are closely similar and NB-tree exhibits a
dramatic increase in terms of page access and it finally exceeds the
X-tree when k is 45 for the uniform data set, as shown in Figure
19(b). Figure 19 also shows an interesting scenario that the gap
between EHD-Tree and iDistance is reducing with the increase of
k. This is because the search region may cover the whole cluster
when the k (i.e., query radius) is increasing.

5.8 Effect of Dynamic Insertion
 In this experiment, we investigate the effect of dynamic
insertion on our EHD-Tree indexing method. We first adopt a
synthetic 32-dimensional clustered data set with 100,000 points to
construct EHD-Tree by using 80% (80,000) of the data. We run

249

10 20 30 40 50
0

30

60

90

120

150

Dataset size(×1000)

 EHD-Tree
 iDistance
 NB-tree
 VA-file
 X-tree
 Seq-scan

CPU cost(ms)

(a). real dataset

20 40 60 80 100
0

50

100

150

200

250

Dataset size(×1000)

 EHD-Tree
 iDistance
 NB-tree
 VA-file
 X-tree
 Seq-scan

CPU cost(ms)

(b). uniform dataset

20 40 60 80 100
0

50

100

150

200

250

Dataset size(×1000)

 EHD-Tree
 iDistance
 NB-tree
 VA-file
 X-tree
 Seq-scan

CPU cost(ms)

(c). clustered dataset

Figure 16. CPU Cost vs. Dataset Size

10 20 30 40 50
0

200

400

600

800

1000

Dataset size(×1000)

 EHD-Tree
 iDistance
 NB-tree
 VA-file
 X-tree
 Seq-scan

Page access

(a). real dataset

20 40 60 80 100
0

200

400

600

800

1000

1200

1400

1600

Dataset size(×1000)

 EHD-Tree
 iDistance
 NB-tree
 VA-file
 X-tree
 Seq-scan

Page access

(b). uniform dataset

20 40 60 80 100
0

200

400

600

800

1000

1200

1400

1600

Dataset size(×1000)

 EHD-Tree
 iDistance
 NB-tree
 VA-file
 X-tree
 Seq-scan

Page access

(c). clustered dataset

Figure 17. I/O Cost vs. Dataset Size

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

450

K

 EHD-Tree
 iDistance
 NB-tree
 VA-file
 X-tree
 Seq-scan

CPU cost(ms)

(a). real dataset

0 20 40 60 80 100
0

100

200

300

400

500

600

700

K

 EHD-Tree
 iDistance
 NB-tree
 VA-file
 X-tree
 Seq-scan

CPU cost(ms)

(b). uniform dataset

0 20 40 60 80 100
0

100

200

300

400

500

600

700

K

 EHD-Tree
 iDistance
 NB-tree
 VA-file
 X-tree
 Seq-scan

CPU cost(ms)

(c). clustered dataset

Figure 18. K vs. CPU Cost

0 20 40 60 80 100

400

800

1200

1600

2000

2400

K

 EHD-Tree
 iDistance
 NB-tree
 VA-file
 X-tree
 Seq-scan

Page access

(a). real dataset

0 20 40 60 80 100

800

1200

1600

2000

2400

2800

3200

K

 EHD-Tree
 iDistance
 NB-tree
 VA-file
 X-tree
 Seq-scan

Page access

(b). uniform dataset

0 20 40 60 80 100

800

1200

1600

2000

2400

2800

3200

K

 EHD-Tree
 iDistance
 NB-tree
 VA-file
 X-tree
 Seq-scan

Page access

(c). clustered dataset

Figure 19. K vs. I/O Cost

250

some range queries randomly generated and record the average
total response time. Then we insert another 5% of the data into the
database and re-run the same queries. This process is repeated
until the remaining 20% of the data all gets inserted. Meanwhile,
we run the queries on the EHD-Tree built when there are 85%,
90%, ... of the data available, which corresponds to the optimal
case of EHD-Tree with no updates. We compare the total response
time of the two cases as shown in Figure 20. As expected, the
difference between them becomes larger as more data points are
inserted, but the largest difference is within 20% even for the case
of having 20% of newly inserted data. Assuming that the number
of clusters is optimal at first, as more data points are inserted or
deleted from the data set, the value of T may not be optimal
anymore. Hence the performance more or less gets degraded.
Considering that EHD-Tree typically outperforms other techniques
by a factor of 1 to 2, this deterioration is acceptable. Experiments
on 10-NN queries exhibit similar results.

80 85 90 95 100
0

30

60

90

120

The percentage of data points(%)

 Optimal EHD-Tree
 EHD-Tree with updates

Total responding time(ms)

Figure 20. Effect of Dynamic Insertion

6. CONCLUSION
In this paper, we have presented a novel high-dimensional

indexing scheme, which we term as symmetrical Encoding-based
Hybrid-Distance-Tree (EHD-Tree). Three main steps are taken in
building an EHD-Tree: first, all (n) data points are grouped into T
clusters by using a k-Means algorithm. Second, the uniform ID
number of each point is obtained through a small encoding effort,
in which each cluster sphere is partitioned twice according to the
dual distances of start- and centroid-distance. Finally, the uniform
index key of each point is derived by combining its uniform ID
with its centroid-distance together, and is indexed by a partitioned
B+-tree. Compared with the four most competitive techniques
including iDistance, NB-Tree, X-tree, VA-file, both theoretical
analysis and experimental studies have shown that EHD-Tree can
more effectively prune the search space especially when the query
radius is relatively small.

ACKNOWLEDGEMENTS
This work is partially supported by the key program of National
Natural Science Foundation of China(No.60533090), National
Science Fund for Distinguished Young Scholars (No.60525108),
973 Program (No.2002CB312101), Science and Technology
Project of Zhejiang Province (2005C13032,2005C11001-05) and
China-America Academic Digital Library Project.

REFERENCES
[1] Christian Böhm, Stefan Berchtold, Daniel Keim. Searching in

High-dimensional Spaces: Index Structures for Improving the
Performance of Multimedia Databases, ACM Computing Surveys,
2001. 33 (3).

[2] Bentley JL. Multidimensional binary search trees used for
associative searching, Communications of the ACM, 18(9): pp.

509−517, 1975.
[3] A. Guttman, R-tree: A dynamic index structure for spatial

searching, In Proceedings of the ACM SIGMOD Conference,
pp.47-54, 1984.

[4] N. Beckmann, H.-P. Kriegel, R. Schneider, B. Seeger. The
R*-tree: An Efficient and Robust Access Method for Points and
Rectangles, In Proceedings of ACM SIGMOD Conference, pp.
322-331, 1990.

[5] King-Ip Lin, H.V. Jagadish and Christos Faloutsos, The TV-tree
an index structure for high-dimensional data, VLDB Journal,
1994.

[6] S. Berchtold, D.A. Keim and H.P. Kriegel. The X-tree: An index
structure for high-dimensional data. In Proceedings of the 22th
VLDB Conference, pp. 28-37, 1996.

[7] D. A. White and R. Jain. Similarity Indexing with the SS- tree, In
Proceedings of ICDE Conference, pp. 516-523, 1996.

[8] N. Katamaya and S. Satoh. The SR-tree: An index structure for
high-dimensional nearest neighbor queries. In Proceedings of
ACM SIGMOD Conference, pp. 32-42. 1997.

[9] R. Weber, H. Schek, and S. Blott. A quantitative analysis and
performance study for similarity-search methods in high-
dimensional spaces. In Proceedings of the 24th VLDB
Conference, pp. 194-205, 1998.

[10] S. Berchtold, C. Bohm, H.P. Kriegel, J. Sander, and H.V.
Jagadish. Independent quantization: An index compression
technique for high-dimensional data spaces. In Proceedings of
the 16th ICDE Conference, pp. 577-588. 2000.

[11] Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima. The
A-tree: An index structure for high-dimensional spaces using
relative approximation. In Proceedings of VLDB Conference, pp.
516–526, 2000.

[12] E. Chávez, G. Navarro, R. Baeza-Yates, and J. Marroquín,
Searching in Metric Spaces, ACM Computing Surveys: 33(3), pp.
273-321, ACM Press, 2001.

[13] T. Bozkaya and M. Ozsoyoglu. Distance-based indexing for
high-dimensional metric spaces. In Proceedings of ACM
SIGMOD Conference, pages 357-368. 1997.

[14] P.Ciaccia, M. Patella, and P. Zezula. M-trees: An efficient access
method for similarity search in metric space. In Proceedings of
the 23rd VLDB Conference, pages 426-435. 1997.

[15] S. Berchtold, C. Bohm, and H.-P. Kriegel. The pyramid
technique: Towards breaking the curse of dimensionality. In
Proceedings of SIGMOD Conference, 1998.

[16] Traina Jr., C., Traina, A., Seeger, B., Faloutsos, Slim-trees: High
Performance Metric Trees Minimizing Overlap Between Nodes,
In Proceedings of the EDBT Conference, Konstanz, Germany,
2000.

[17] Filho, R. F. S., Traina, A., and Faloutsos, C. Similarity search
without tears: The Omni family of all-purpose access methods. In
Proceedings of ICDE Conference, pp. 623–630. 2001

[18] M J. Fonseca and J A. Jorge. Indexing High-dimensional Data
for Content-Based Retrieval in Large Databases. In Proceedings
of the 8th DASSFA Conference, Kyoto, Japan, pp. 267-274, 2003.

[19] H.V. Jagadish, B.C. Ooi, K.L. Tan, C. Yu, R. Zhang. iDistance:
An Adaptive B+-tree Based Indexing Method for Nearest
Neighbor Search., ACM Transactions on Data Base Systems,
2005. 30(2), pp. 364-397.

[20] UCI KDD Archive, http://www.kdd.ics.uci.edu, 2002.

251

