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ABSTRACT
Protection of one’s intellectual property is a topic with im-
portant technological and legal facets. The significance of
this issue is amplified nowadays due to the ease of data dis-
semination through the internet. Here, we provide tech-
nological mechanisms for establishing the ownership of a
dataset consisting of multiple objects. The objects that
we consider in this work are shapes (i.e., two dimensional
contours), which abound in disciplines such as medicine, bi-
ology, anthropology and natural sciences. The protection
of the dataset is achieved through means of embedding of
an imperceptible ownership ‘seal’, that imparts only minute
visual distortions. This seal needs to be embedded in the
proper data space so that its removal or destruction is par-
ticularly difficult. Our technique is robust to many common
transformations, such as data rotation, translation, scaling,
noise addition and resampling. In addition to that, the
proposed scheme also guarantees that important distances
between the dataset shapes/objects are not distorted. We
achieve this by preserving the geodesic distances between
the dataset objects. Geodesic distances capture a significant
part of the dataset structure, and their usefulness is recog-
nized in many machine learning, visualization and clustering
algorithms. Therefore, if a practitioner uses the protected
dataset as input to a variety of mining, machine learning, or
database operations, the output will be the same as on the
original dataset. We illustrate and validate the applicability
of our methods on image shapes extracted from anthropo-
logical and natural science data.

1. INTRODUCTION
Data are frequently outsourced by companies to mining

firms, for the purpose of extracting and distilling useful in-
formation. Data owners, nonetheless, need also maintain the
principal rights over the datasets they share, which in many
cases have been obtained after expensive and laborious pro-
cedures. This work presents such a protection mechanism,
that can provide convincing evidence about the legal owner-
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ship of a shared dataset, without compromising the dataset
usability, under a wide set of mining and database opera-
tions or machine learning tasks. We achieve that by guar-
anteeing that the relationship between the dataset objects
remains undistorted.

In this work we focus on databases of shapes. As a shape
we consider the 2-dimensional representation of a singular
object. Usually the shape is extracted from an image of the
object, as part of a feature extraction procedure. For ex-
ample, given an image of a leaf we can extract its perimeter
and store it as a two dimensional sequence. The color or
texture of the leaf are not important for pattern matching
algorithms and thus can be discarded. Therefore, a shape is
essentially a compressed representation of an object’s image,
allowing for fast similarity search, classification and cluster-
ing on the dataset. Shape datasets are quite common nowa-
days [23, 24] and have significant applications in a multitude
of fields. For example:

1. In biometrics and in various surveillance applications,
face contours can be utilized as important features for recog-
nizing a person’s identity.

2. Similarly, in medical imaging, databases of tumor
shapes, can be contrasted with MRI and X-Ray images for
identifying significant pathologies [15, 11, 2].

3. In anthropology and evolutionary sciences cranial
characteristics (e.g., skulls) are important morphometric fea-
tures that can useful in establishing evolutionary paths [22].

4. Finally, in many natural sciences, comparison of
shapes plays an important role in establishing accurate tax-
onomies. For example in ichthyology, study of the fish shape
can indicate its species, or in forestry science comparison of
leaf contours is extensively utilized for classifying the affini-
ties between tree species [19, 7].

The embedding of the ownership seal in the dataset will
be achieved through means of watermarking; however this
work approaches watermarking from a novel perspective, by
additionally preserving the mining and visualization capac-
ity of a dataset. The proposed scheme accepts as input a
collection of shapes (2-dimensional sequences), and embeds
a secret key in all of them, with the purpose of satisfying all
the following objectives:

• Provide an ownership determination mechanism for
the whole dataset.

• Introduce only imperceptible visual distortions for each
shape in the dataset.

• Be robust to common data transformations.
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• Provide the facility to tune properly the data protec-
tion scheme, so that important distances between the
dataset objects are retained, therefore search and min-
ing operations on the watermarked dataset are still
meaningful.

The proposed approach slightly distorts the shapes but at-
tempts to preserve as well as possible the object distances.
Our problem formulation is inherently distance preserving,
since a large subset of database, mining and learning al-
gorithms are distance based (e.g. Nearest Neighbor (NN)
search, NN-classification, outlier detection). One question
that immediately arises is which distances are most impor-
tant and therefore should be preserved. Preserving all pair-
wise distances can be not only prohibitive computationally,
but may actually be impossible in practice, too. Therefore,
here we propose to preserve the geodesic distances between
the dataset objects. Geodesic distances are preserved by
maintaining the original minimum-spanning-tree (MST) of
object distances. Such an approach, in addition to preserv-
ing the local dataset structure (nearest neighbors), will also
preserve the semi-global dataset structure. The importance
of geodesic distances is attested in many research efforts,
with applications that range from data visualization and di-
mensionality reduction (e.g. ISOMAP [20]), to phylogeny
construction [16] and data clustering [8]. In this work, we
will also demonstrate the usefulness of geodesic distance
preservation using additional visualization and clustering
applications.

Our contributions are: 1) present a robust rights pro-
tection scheme for shapes (and sequences in general) based
on watermarking principles, 2) show how to embed the own-
ership key in a space that is invariant to common shape
transformations, 3) delineate algorithms that provide geo-
desic distance preservation and show extensions on hierar-
chical clustering algorithms, such as dendrograms, 4) demon-
strate applicability of the algorithms for mining, clustering
and visualization techniques on a variety of real datasets.

1.1 Methodology and Difference
from Previous Work

Our rights protection scheme extends traditional water-
marking techniques. There has been a proliferation of wa-
termarking research on multimedia datasets [5]. However,
multimedia watermarking is concerned with watermarking a
single object and not a collection of objects, therefore not fo-
cusing on the maintenance of the inter-relationship between
objects, which is one of the primary objectives of this work.

The embedded seal or watermark essentially adds noise on
the original data, which has also been the topic of discus-
sion in many works that consider privacy preserving data-
mining [13, 10, 14, 3]. However, these techniques typically
do not work directly on the actual perturbed data (like our
technique), but attempt to reconstruct the original data dis-
tribution using the known noise distribution that has been
added on the dataset [1, 17]. Privacy preservation can also
be achieved through limited dataset view, for example, by
horizontal or vertical distribution of the data to different
sites [21, 9, 25]. In our setting, the dataset cannot be dis-
sected in portions, but is being distributed as a whole.

Watermarking in data streams has also been presented in
[18] by Sion, et al. That work examines watermarking on
a single numeric sequence and does not consider a collec-
tion of them, with the purpose of maintaining their original

pairwise relationships. Additionally, [18] does not examine
issues important for this work, such as resilience to geomet-
ric data transformations.

In general, our setting presents additional challenges com-
pared to traditional watermarking or privacy preservation
techniques, in the sense that not only do we work on the
perturbed data itself, but more importantly, we provide ad-
ditional guarantees, such as geodesic distance preservation.
Finally, since our problem is inherently distance based, our
current problem formulation and solution can easily be tai-
lored to work on an extensive gamut of mining and machine-
learning algorithms, many of which are strongly dependent
on the use of a distance function (clustering, outlier detec-
tion, etc).

1.2 Overview
First we will present how to embed the ownership seal

in each shape of the dataset using watermarking principles.
The watermark will be embedded in the frequency domain,
and in particular, only in the magnitude of the Fourier de-
scriptors in order to provide robustness against rotational
or other attacks. We will also demonstrate how to detect
the watermark using an advanced correlational filter which
operates in a slightly modified domain, and which provides
better detectability than commonly used correlation detec-
tors. The distortion of each shape with respect to the wa-
termark embedding power will also be provided in a closed
form solution.

Later on, we will revisit a visualization technique that is
based on the spanning-tree, in order to show that the span-
ning tree before and after the watermarking is not modified.
We will provide an algorithm that finds the maximum water-
mark embedding power which does not distort the spanning-
tree (and hence the geodesic distances). We will also provide
an algorithm that preserves the dendrogram structure after
the watermarking, thus making our contribution applicable
to clustering as well.

Red Howler Monkey Male

(Alouatta seniculus seniculus)

Conversion of skull shape into a 

two-dimensional sequence 

Figure 1: Shape perimeter converted into a 2D se-
quence

Our findings are demonstrated on image contour data
from anthropology and the natural sciences. We demon-
strate that typical mining tasks in these disciplines, includ-
ing taxonomy categorization and construction of phyloge-
nies, are not affected by our rights protection scheme. We
treat images of shapes as 2-dimensional sequences by ex-
tracting the shape perimeter and sequencing adjacent pe-
ripheral points. An example of this procedure is shown in
Figure 1, where the skull shape of a Red Howler monkey is
extracted.

In general, the scope of this work is not only to pro-
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vide a technique for convincingly claiming ownership on a
dataset, but to guarantee that by working directly on the
watermarked data, the output of a wide class of data min-
ing, learning and visualization algorithms will remain the
same. This property is very beneficial, because it provides
a protected but still usable copy of the dataset. Additional
benefits of the watermarking approach can also be realized
when different distributions of the dataset are marked with
different keys. This provides a mechanism for conclusively
indicating the source of a leak, by identifying which key was
originally embedded in the dataset.

2. RIGHTS PROTECTION THROUGH WA-
TERMARKING

In this section we explain how to embed a secret water-
mark in a collection of shapes (or contours), which will serve
as an ownership seal for the whole dataset. Each shape con-
tour is stored and treated as a 2-dimensional sequence of val-
ues (or 2D time-series). For embedding the watermark we
will use a spread spectrum approach [5]. This will distribute
the power of the watermark across multiple frequencies and
over a number of dataset objects, making its removal par-
ticularly difficult. The watermark embedded in the dataset
will satisfy the following desirable properties:

1. Imperceptible; there is no apparent visual distortion
on each shape of the dataset.

2. Detectable; the correlation distribution of the wa-
termarked data with the correct key, should be sufficiently
distinct than the distribution with a random key, so as to
allow the conclusive determination of the watermark pres-
ence.

3. Preservation of geodesic distances; the power of
the watermark is tuned in such a way, so that the spanning-
tree of all the objects does not change after the watermark-
ing.

4. Robust to malicious attacks; our technique works by
embedding the watermark in a space that is invariant to
common transformations such as translation, scaling or rota-
tion. We assume that a malicious attacker can apply various
data transformations in an attempt to remove the embed-
ded watermark, to the extent that the data usability is not
hindered. For example, global rotation of all shapes will not
change their relative distance.

In the following sections we explain how the above require-
ments are satisfied by the proposed watermarking scheme.

2.1 Embedding the watermark
We consider each shape as a vector of complex numbers

x = {x1, . . . , xn}, where xk = ak + bki (i is the imaginary
unit with i2=-1), and the real and imaginary parts, ak and
bk, respectively, describe the coordinates of the k-th point of
shape x. Each of the 2D sequences describes the coordinates
of the shape perimeter (as shown in Fig. 1).

In each shape contour we will embed a watermark, which
is a secret information that will be hidden inside each se-
quence. The watermark is encoded in a vector W ∈ {−1, 1, 0}n,
that is, taking 3 distinct values and having the same length
as x. The embedding of the watermark consists of a com-
position function that, given x and W , returns a modified
sequence which is similar to x and encloses W . In what
follows we explain more clearly the meaning of similar and
describe how to discover the enclosed watermark.

In order to provide better resilience against malicious at-
tacks, we will not embed the watermark in the original space
domain but into the frequency domain, instead. Every se-
quence x will thus be represented by a set of Fourier descrip-
tors X = {X1, . . . , Xn}, where n is the number of points in
x, as well as the number of its frequency components. The
mapping from one domain to the other is described by the
well known normalized discrete Fourier transform ft(x) and
its inverse ift(X).

Every coefficient Xj can be expressed in terms of its mag-
nitude ρj and phase φj , that is, Xj = ρje

φji. We use a
multiplicative embedding of the watermark only on the mag-
nitudes, but we retain the original phases.

Definition 1 (Multiplicative Fourier Embedding).
For a sequence x ∈ C

n and a watermark W ∈ R
n, the mul-

tiplicative Fourier embedding generates a watermarked se-
quence

�
x by replacing the magnitudes of each Fourier de-

scriptor of x with a watermarked magnitude
�
ρj:

�
ρj = ρj · (1 + pWj)

where power 0 ≤ p ≤ 1 specifies the intensity of the water-
mark.

Using the modified magnitudes
�
ρj and the original phases

φj , we go back from the frequency domain to the space do-
main and reconstruct the watermarked sequence using the
inverse discrete Fourier transform. An overview of the de-
scribed methodology is provided in Figure 2.

Frequency Domain

ft ift

watermarked 
magnitudes

original 

shape

watermarked 

shape

watermark

Magnitude

Phase

Magnitude

Phasesame

modified

Frequency Domain

Figure 2: Overview of watermarking technique.

Recall that in each frequency component of the sequence
we will embed an element of the secret watermark W ∈
{−1, 1, 0}n. The multiplicative watermark is beneficial be-
cause larger magnitudes are allowed to hold (mask) larger
embedding powers. By construction, W will contain l/2 val-
ues of -1 and and l/2 values of +1, where l < n, and there-
fore

�
Wj = 0. Only those l elements of Wj 6= 0 encode the

owner signature, independently of the sequence length n.
The choice of which Fourier descriptors (frequencies) will

be used to embed the watermark, i.e. Wj 6= 0, may affect
the effectiveness of the detection process against malicious
attacks. Indeed, the magnitudes ρj typically have a very
skewed distribution, where most of the energy is concen-
trated in very few frequency descriptors. We embed the
watermark in the coefficients with the highest energy, since
these describe the essence of the shape, making more dif-
ficult the watermark removal without inducing significant
distortion in the shape. In Fig. 3 we can see the recon-
struction of a shape from a dataset of skulls, when being
approximated using 2 to 16 coefficients with the highest en-
ergy.

Driven by these considerations, we have chosen to em-
bed the watermark in those coefficients having, on average,
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2 coeffs 4 coeffs 8 coeffs

Orangutan skull Extracted Shape

16 coeffs

Figure 3: Shape reconstruction for different number of Fourier coefficients that contain the highest energy.

the largest magnitudes. Some randomization process can
also be inserted in this stage, so as to ensure additional ro-
bustness. However, no portion of the watermark will be
embedded on the first Fourier descriptor X1 (the DC com-
ponent), since it captures the center of gravity of the shape
x (X1 =

�
xj/

√
n), and it is therefore easily susceptible

to attacks. For example, a simple translation will change
the center of gravity of x (and the DC component) without
affecting its shape, but it will erase this part of the water-
mark.

Let µj(D) be the average value of the j-th magnitude
across the dataset D, then, the watermark W is formally
defined as follows:

Wj =

��� 0 if j = 1 (DC component)
{−1, 1} if µj(D)is among the l largest µi6=0(D)

0 otherwise

with
�

Wj = 0.

Symbol Description
D original dataset of shapes�
D watermarked dataset
x sequence in space-domain
X sequence in frequency domain
n number of points in a sequence

Xj = ρje
φji Fourier descriptor as a function of its

magnitude and phase
p embedding power�

Xj =
�
ρje�φji

Watermarked Fourier descriptor as a
function of its watermarked magnitude
and phase

µj(D) mean of ρj across the shape perimeters in D
l number of non-zero elements of watermark
χ correlation�

Dp(x, y) distance between two shapes x, y when
watermarked using power p

Table 1: Notation used in the paper

Table 1 summarizes the notation used throughout the pa-
per.
Resilience of Frequency Embedding: By construction
the embedded watermark is resistant to:

1) Rotations; by rotating all objects by the same amount,
all their points change, but the original distances between
objects remain the same. This can be readily realized by
observing that if R is a given rotation matrix and x,y any
two shape sequences in the dataset, then ‖R(x−y)‖ = ‖x−
y‖, since the rows and columns of R are orthonormal and
RRT = 1. So this is an attack that can easily be performed
with the purpose of destroying all the original values (and
possibly the secret watermark) but without affecting any of
the relative object positions. Rotations affect only the phase
in the frequency domain and not the magnitudes. Since

our watermark is embedded in the magnitude, it will be
invariant to similar attacks.

2) Translations; if one globally translates all the objects by
the same amount (e.g. 10 points to the left) all the original
shape values will change, but the relative positions of all
objects will remain the same. Global translations only affect
the first frequency component (the DC), where we don’t
embed any part of the watermark, therefore our scheme is
also robust to translation attacks.

In the experimental section, in addition to geometric trans-
formations, we also show the resilience of our scheme to
other attacks, including noise addition and resampling.

2.2 Error introduced by the watermark.
Altering each shape in order to embed a watermark adds

some noise in the dataset. We measure this noise as the
relative error ε introduced in a given sequence x.

Let ‖ · ‖ be L2 norm of a vector, then due to Parseval’s
theorem, and after some algebraic manipulations, it is easy
to see that:

‖x − �
x‖ = ‖X −

�
X‖ = . . . =

= �‖ρ − �
ρ‖2 + 2�

j

ρj

�
ρj [1 − cos(φj −

�
φj)]

= ‖ρ − �
ρ‖ (since φj =

�
φj )

= ‖ρ − ρ(1 + pW )‖
= p ‖ρW‖

and therefore:ε(x,
�
x) = 1

‖x‖
‖x − �

x‖ = p ‖ρW‖
‖x‖

This means that the watermark embedding introduces an
error which is proportional to the embedding power and to
the norm of those descriptors for which Wj 6= 0. Given
this immediate relationship between power and error, we
will often refer to the Euclidean error introduced by the
watermark to quantify the amount of power used during the
embedding process.

In Figure 4 we can see the result of the Fourier embedding
for a watermark of length l = 64 using different embedding
powers. In this dataset, an error of ε = 1% is already visi-
ble, and therefore the user can set this as a potential upper
bound on the watermark embedding power.

2.3 Watermark Detection
The detection step attempts to measure the correlation χ

between the watermarked magnitudes
�
ρ and the watermark

W . Given a watermarked shape
�
x and a watermark W , the

larger the correlation between the two, the higher the prob-
ability that W was the actual embedded watermark. Since
we spread the watermark across all objects of the dataset,
we will instead measure the correlation between W and the
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Figure 4: Watermark embedding in one of the
shapes from the skulls dataset.

average magnitudes µ(
�
D), where µj(

�
D) is the average value

of
�
ρj for every trajectory

�
x ∈

�
D.

Unfortunately, directly measuring the correlation between
these two would not have been very effective. Since our goal
is to minimize distortion (that is, use a small embedding
power), then every set of magnitudes

�
ρ is dominated by the

original level of average magnitudes µ(D), which, in a sense,
behave like a background noise, masking the embedded wa-
termark pW we want to discover.

To overcome this difficulty, we record µ(D) during the
embedding process and remove its bias before the detection

takes place. The correlation between
�
D and W is thus de-

fined as follows:

Definition 2 (Watermark Detection). Let
�
D be a

watermarked dataset and let W be the actual watermark.
The correlation between

�
D and W given the average magni-

tudes in the original dataset µ(D) is:

χ(W,
�
D) = �µ(

�
D)

µ(D)
− 1� × W

where the above division is element-wise and the multipli-
cation is an inner product.

This improved scheme can be thought of as an inversion
of the multiplicative embedding, and allows for a highly ef-
fective detection of the watermark. It is easy to see that the
correct watermark will have maximum correlation (pW ) ×
W , while any other watermark W ′ 6= W will have a smaller
correlation (pW ′) × W .

The cost we have to pay for such an effective detection
process is to store, together with the watermark W (length
l), the vector µ(D) (also length l). Therefore, the full 2l
values can be considered as the new key used in the wa-
termarking. The additional l values impose a very small
additional storage cost and in practice lead to enhanced se-
curity. In fact, consider that it is almost impossible for a

malicious third party to measure χ(W,
�
D) since µ(D) is un-

known, and therefore very difficult to be discovered, in an
attempt to remove the embedded watermark W .

2.3.1 Detection process
In between the embedding and the detection process, the

dataset may be subject to attacks/transformation by a ma-
licious attacker. The correlation values between the correct
watermark and incorrect watermarks will thus be distorted.
For this reason the detection process is probabilistic in na-
ture.

We say that watermarking is successful if the correlation of
the watermarked dataset with the correct key is consistently
larger than the correlation with any other key, irrespective
of the embedding key. In particular, we will say that that

W has been embedded in
�
D if χ(W,

�
D) ≥ ω, for a given
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Figure 5: Correct and incorrect watermark em-
pirical correlation distributions. Dataset = skulls,
p = p.5.

threshold ω. If the correlation with a wrong key W ′ becomes
larger than the one with the correct key W we have a false
positive. If this is the case, the owner of W ′ may claim the
ownership of the dataset against owner of W .

The best choice of ω is the correlation value that sepa-
rates best between correct and incorrect key correlations.
The value of ω is set empirically as follows. Given a dataset
watermarked with a random watermark W and then trans-
formed by a malicious attacker, we measure its correlation
with W and with other 500 distinct incorrect watermarks
W ′. We repeat this experiment for 500 different W s and this
results to two probability distributions. We denote with α
the empirical correlation distribution of the correct key and
with β the wrong key’s empirical correlation distribution.
The more these distributions are separated the better we
can detect the presence of the watermark (see Figure 5).

If the correlation of a wrong watermark is larger than ω
we have a false positive. A similar argument holds for the
case of false negatives. Giving the same importance to both
cases, we choose the value of ω to be exactly in the middle
of the two distributions when properly normalized, i.e. ω is
such that:

mean(α) − ω

std(α)
=

ω − mean(β)

std(β)

Since α and β exhibit strongly Gaussian distributions (see
Fig.5), we can measure the false positive FP and negative
probabilities (FN ) as follows:

P (FP) =
1

std(α)
√

2π � +∞

ω

exp �− �χ − mean(α)

std(α)
√

2 �2� dχ

and symmetrically for P (FN ).
That is, we choose ω as the probability point such that

P (FP) = P (FN ). In the experimental section we will show
that it is possible to maintain low false positive/negative
rates in presence of many adversarial attacks.

3. GEODESIC DISTANCES - MINIMUM SPAN-
NING TREE

Now we describe how to properly tune the watermark em-
bedding power p so that the geodesic distances between the
dataset objects are not distorted. The importance of geo-
desic, or minimum path, distances is well recognized be-
cause of their usefulness in a variety of data analysis tasks,
including applications such as logistics [6], data clustering
[8], visualization [12] and phylogeny construction in biologi-
cal applications [16]. Recently a wide class of dimensionality
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reduction/visualization techniques that exploit geodesic dis-
tances have gained large popularity, because they have suc-
cessfully been applied to uncover hidden structures in high-
dimensional datasets. ISOMAP [20] is probably one of the
most well known such techniques, which uses the minimum-
spanning-tree of distances between objects in order to better
approximate the dataset structure, discover non-linearities
and estimate more accurate the intrinsic data dimensional-
ity.

In general, preservation of the minimum-spanning-tree
(MST) is useful because: 1) The Nearest-Neighbor (NN)
of every object will be retained, hence the local dataset
structure will not change. Note, that many mining algo-
rithms utilize the nearest-neighbors, such as NN-search or
NN-classification. 2) The MST will also preserve important
global dataset characteristics, therefore the relationship be-
tween distant objects (and clusters) will not be lost.

In order to show that the geodesic (or spanning-tree) dis-
tances before and after the watermarking will remain the
same, we will make use of a visualization technique that
is based on the minimum-spanning-tree. This visualization
technique uses the spanning tree in order to visualize the
relationships between shapes/objects on 2-dimensions. Our
rights protection scheme does not distort the MST there-
fore the mapping will remain the same. Since our approach
guarantees MST preservation, it can be exploited by any
technique that utilizes the spanning-tree or the 1-Nearest-
Neighbor, which the MST also preserves. Therefore, dimen-
sionality reduction/compression techniques such as ISOMAP
can also be used to visualize the watermarked shapes, with
guarantees on the visualization outcome.

Based upon the techniques for geodesic distance preser-
vation, we will also show how our methodology can be ex-
tended to preserve dendrograms, which are commonly em-
ployed in anthropological or natural sciences for discover-
ing clusters and relationships between the examined ob-
jects/species.

In the sections that follow, we will revisit a mapping /
visualization technique that relies on the MST, which will
help us illustrate the minute differences on the spanning-tree
that are introduced by our right protection/watermarking
technique. We will explain what constraints need to be em-
bedded in the watermarking scheme in order to guarantee
MST-preservation. Additional constraints will also be incor-
porated for guaranteeing dendrogram preservation. Finally,
we evaluate the outcome of our methodology, before and
after the incorporation of the watermark.

3.1 Minimum-Spanning-Tree Mapping
Here, we describe succinctly a mapping technique pro-

posed by Lee, et al. [12], which utilizes the Minimum-
Spanning-Tree (MST) and a triangulation method for dis-
playing relationship of objects on 2-dimensions. The tech-
nique preserves 2 distances per object on the two-dimensional
space. The first distance preserved is the distance to the
nearest neighbor of every object. The second distance can
either be different for every object (e.g. its 2NN), or it can
be the distance to a reference point. The latter option cre-
ates a powerful visualization technique which allows not only
the Nearest Neighbors to be preserved (local structure), but
additionally preserves distances towards a single reference
point, giving the option for global data view with respect to
that object. For visualizing the relationship between shapes,

we will, later on, adapt the reference point (or pivot) tech-
nique.

The computation of the MST requires O(V logE) time for
V vertices and E edges using Kruskal’s algorithm. Once
the MST is calculated the mapping on the 2D space can
commence from any point/object that the user designates
and the MST tree is mapped either in a breadth or depth-
first-search manner. In this work we utilize a BFS mapping.
Let us see how the mapping works with a running example.

Suppose the first two points (A and B) of the MST are
already mapped, as shown in Fig. 6 (a). Let us assume
that the second distance preserved per object is the dis-
tance with respect to a reference point which in our case is
the first point. The third point is mapped at the intersec-
tion of circles centered at the reference points. The circles
are centered at A and B with radii of D(A, C) -the distance
between points A and C- and D(B, C), respectively. Due
to the triangle inequality, the circles either intersect at 2
positions or are tangent. Any position on the circles’ in-
tersection will retain the original distances towards the two
reference points. The position of point C is shown in Fig. 6
(a). The fourth point is mapped at the intersection of cir-
cles centered at A and C (Fig. 6 (b)) and the fifth point is
mapped similarly (Fig. 6 (c)). The process continues until
all the points of the MST at positioned on the 2D plane and
the final result is shown in Fig. 6 (d).

A B

C

DE

F

G

H

I

J

A B

C

A B

C

D

A B

C

DE

(a) (b)

(c) (d)

Figure 6: Mapping through MST and triangulation

We will utilize the above visualization technique to demon-
strate that the geodesic distances before and after the water-
marking remain virtually the same, and that the spanning-
tree is not distorted. Of course, the results for any MST-
based algorithm will not be altered, similarly.

4. MST-PRESERVING WATERMARKING
The focus of this section is to guarantee that the spanning-

tree for a set of objects is identical before and after water-
marking. We achieve this by discovering the appropriate
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watermark embedding power, which ensures preservation of
the original Minimum-Spanning-Tree. To achieve this goal it
is necessary to preserve the edges of the minimum-spanning-
tree.

We call this task MST-Preserving (MST-P) watermark-
ing. Below we formally define the generalized MST-Preservation
problem, which also allows for an error tolerance in the
Spanning-Tree preservation:

MST-P Watermarking Problem. Given dataset D,
minimum threshold (pmin) and maximum threshold (pmax),
find the largest p, pmin ≤ p ≤ pmax, such that after the
watermark embedding, at most a fraction τ among the edges
of the Euclidean minimum spanning tree do not match the
MST of the original dataset.

Therefore, we would like to discover the largest power p,
pmin ≤ p ≤ pmax that guarantees MST-preservation, since
larger energies of the embedded watermark provide better
detection and resilience to attacks. We dictate an upper
bound pmax on the embedding power in order to guaran-
tee minimization of visual distortion for the shapes after
the watermark embedding. A proper pmax value can be de-
termined empirically by observing at which power level the
shapes are distorted (Fig. 7). This process can, also, be
easily automated by examining how the gradient of the wa-
termarked shape changes (i.e., how smooth it is before and
after watermarking), and stopping when the cumulative gra-
dient exceeds a certain threshold.

Leaves

10
-5

5x10
-2

Error - Larger Distortion

Distortion�

Visible

Figure 7: Visual distortions for different watermark
embedding powers, for the leaves dataset.

Setting the minimum power pmin is a way of providing
assurance for high detectability for the watermark and addi-
tionally limits the search space for the best power for MST-
preservation. In our experiments we set pmax = p10−2 , i.e.
the power that introduces at most a 1% relative error. Also,
for simplicity, minimum power was set to pmin = 0.

Finally, one can allow for a percentage of edges of the
spanning tree to be different, either for the purpose of em-
bedding an even stronger watermark, or for guaranteeing
that the algorithm will return a result within the designated
watermark power embedding range. For all our experiments
we set τ to zero, effectively enforcing full maintenance of the
MST. This constraint was always satisfied for our datasets.

Before explaining our technique for MST-preservation it
is useful to derive a closed form formula of the distance
between two watermarked shapes

�
x and

�
y as a function of

the embedding power p:

�
D2

p(x, y) = ‖�x − �
y‖2 = ‖

�
X −

�
Y ‖2

= ‖(1 + pW ) × X − (1 + pW ) × Y ‖2

= ‖(1 + pW ) × (X − Y )‖2

= ‖W 2 × (X − Y )‖2 p2 +
2‖W × (X − Y )‖2 p +
D2(x, y)

We use this parameterized distance function to calculate
the largest power between pmin and pmax that ensures the
required preservation property.

4.1 MST-preservation
In order to preserve the minimum spanning tree we must

preserve its fundamental property. Let T (D, E) be a min-
imum spanning tree, where D are the nodes, and E is the
set of |D| − 1 edges composing the tree. If we remove an
edge e(x, y) ∈ E, we split the original tree in two connected
components Ue and Ve. Since T is the minimum spanning
tree, such edge e(x, y) has the property of being the shortest
edge that may link Ue with Ve. If we denote with D(e) the
distance D(x, y), for every edge e(x, y) ∈ E it holds that:

D(e) ≤ D(u, v) ∀u ∈ Ue, ∀v ∈ Ve (1)

Recall that we want to guarantee that the Euclidean mini-
mum spanning tree Tp after having embedded a watermark
with power p is still the same as the original T . This implies
that for each edge e ∈ E the above property still holds after
the watermarking, i.e.:

�
Dp(e) ≤

�
Dp(u, v) ∀u ∈ Ue, ∀v ∈ Ve (2)

where
�
Dp is the distance between the two objects in the

watermarked database.
Given that we are able to express the distance between two

objects as a function of the embedding power p, the MST-
P problem requires to find the largest p such that at most
τ · |E| edges of the original MST do not satisfy the above
inequality. In the worst case, this would require O(|D|3)
inequalities.

We saw earlier that distance
�
Dp, or equivalently

�
D2

p, can
be expressed as a quadratic function of the embedding power
p. The MST-P problem can thus be solved by finding the
solutions of a system of quadratic inequalities, for which we
provide Algorithm 1.

Algorithm 1 MST-preservation.

1: T (|D|, E) = find Euclidean MST of D
2: for all e ∈ E do

3: good powers(e) = [pmin, pmax]
4: for all u ∈ Ue do

5: for all v ∈ Ve do

6: bad powers = solve(
�
Dp(e) >

�
Dp(u, v))

7: good powers(e) = good powers(e) \ bad powers
8: end for

9: end for

10: end for

11: p = max{p : |{e : p /∈ good powers(e)}| < τ · |D|}
Let solve(〈EXPR〉) return all powers p ∈ [pmin, pmax] which
satisfy inequality EXPR.

Complexity: Since function solve can be computed in con-
stant time, and the MST can be obtained in O(|D| log |D|)
time, the worst-case complexity of this algorithm is O(|D|3).
Notice that this is an offline computation cost before the
data are released (and therefore not a prohibitive cost), and
represents only a small additional overhead for providing
assurances about the dataset ownership.

4.2 Extending to Dendrogram Preservation
Now, we discuss how the techniques introduced in Sec-

tion 4.1 can be extended for clustering techniques, and in
specific for dendrogram preservation. Dendrograms are in-
stantiations of hierarchical clustering schemes. One such
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Figure 8: Skulls data and MST visualization

approach is often referred to as Divisive Hierarchical sin-
gle linkage clustering (DHC). In this scheme, all the nodes
of the graph are first clustered into a single group. Then,
considering the various edges in the MST in decreasing or-
der, the nodes are successively broken into clusters until the
necessary number of clusters is obtained. We define the
Dendrogram-preserving (DHC-P) watermarking problem as
follows:

DHC-P Watermarking Problem. Given dataset D,
minimum threshold (pmin) and maximum threshold (pmax),
find the largest p, pmin ≤ p ≤ pmax, such that after the
watermark embedding, the dendrogram obtained is the same
as the dendrogram on the original dataset.

To guarantee that the dataset (after watermarking) is
DHC-preserving, we ensure that it is MST-preserving, and
that the order of the edges in the MST (sorted by distance)
remains the same. For the rest of this discussion, we treat
the edges in the MST as a sorted (decreasing distance or-
der) array. In this notion, we represent the ith largest edge
in E by E(i). Thus to ensure that the watermarked dataset
is DHC-preserving, we need to guarantee that the ordering
of the edges in E does not change after watermarking, i.e.,
each edge should still be larger than all the edges that are
shorter than it in the original dataset.

�
Dp(E(i)) ≥

�
Dp(E(j)) ∀i, j ≤ |E|, i < j (3)

Also, consider that usually only a certain number of clusters
k << |D| are of interest to the user. Therefore, for each of
the k − 1 larger edges we enforce the order constraint with
an additional set of inequalities. In other words, inequality
3 needs to be satisfied only for i, j ≤ k. For the other edges
we only need to ensure that

�
Dp(E(k)) ≥

�
Dp(E(j)) ∀k < j ≤ |E|

The relative ordering amongst the remaining |E| − k edges
need not be maintained.

Built on top of Algorithm 1, we introduce a DHC-preserving
algorithm which aims at finding the largest power that will
preserve k clusters generated via DHC. After the MST-
preservation is run in order to get a baseline set of feasible
watermark embedding powers, a new iteration is performed
which processes only a subset of the minimum spanning tree

edges, and ensures that the necessary orderings are main-
tained. The resulting algorithm is depicted as Algorithm 2.
Note that, the algorithm is slightly over-constrained, since,
in order to get the same set of k clusters, it is not needed to
preserve the whole MST.

Algorithm 2 DHC-preservation.

1: k = number of desired clusters
2: T (|D|, E) = find Euclidean MST of D
3: good powers(E) = run MST preservation algorithm
4: for all i ∈ {1, . . . , k − 1} do

5: bad powers = solve(
�
Dp(E(i + 1)) >

�
Dp(E(i)))

6: good powers(E(i)) = good powers(e) \ bad powers
7: end for

8: for all j ∈ {k + 1, . . . , |E|} do

9: bad powers = solve(
�
Dp(E(j)) >

�
Dp(E(k)))

10: good powers(E(j)) = good powers(e) \ bad powers
11: end for

12: p = max{p : |{e : p /∈ good powers(e)}| < τ · |D|}
Let solve(〈EXPR〉) return all powers p ∈ [pmin, pmax] which
satisfy inequality EXPR.

Complexity: Since the additional constraints may require
to solve at most O(|D|) inequalities, the global complexity
of the algorithm is still dominated by the MST-preservation,
and it is therefore O(|D|3).

5. EXPERIMENTAL EVALUATION
We evaluate our algorithms, by depicting that geodesic

distances are not distorted through visualization and clus-
tering applications. We also examine the robustness of our
scheme under various attacks on the watermarked shapes.
For our experiments we utilize 3 shape datasets; more infor-
mation on them is provided in Table 2.

dataset # points per shape # shapes # classes
skulls 1500 16 7
leaves 128 1125 15
fish 256 247 10

Table 2: Characteristics of the datasets
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5.1 Usefulness of MST-preservation
In this section we demonstrate the usefulness of retaining

the geodesic distances. We will also show that our rights
protection technique does not change the geodesic distances
between the watermarked shapes. We embed the secret wa-
termark in each shape and then we use the mapping tech-
nique presented in section 3.1 in order to visualize the re-
lationship between the shapes. For this example we use a
simple Euclidean distance to evaluate the similarity between
the shapes, even though more complex measures could be
plugged into our algorithm as well.

We first demonstrate the meaningfulness of results using
the spanning-tree visualization on watermarked shapes of
skulls. The result is shown in Fig. 8. Note that on the fig-
ure we plot the original image from which every shape is de-
rived, simply for presentational purposes; however we clarify
that the rights protection scheme works on the dataset of
contours of those shapes. We utilize the MST mapping of
section 3.1 and select the chimpanzee as the pivot point for
the visualization. We can notice that the results projected
by the spanning-tree visualization are in consensus with the
current views on primate evolution [4].

In our second example, we demonstrate another spanning-
tree mapping, illustrating the MST before and after the
shapes are watermarked. For this example we utilize shapes
from the leaves dataset and the resulting MST mapping is
shown in Fig. 9. We fill-in the different leaf shapes with
diverse colors in order to differentiate the leaves that belong
to the different tree species. In this example we contrast the
MST on the original shapes (black lines) against the MST on
the watermarked shapes (orange line). We can observe that
the two spanning trees (and therefore the geodesic distances)
for any practical purpose are almost identical. Therefore,
our algorithm accurately chose the watermark embedding
power, so as not to distort the geodesic distances, and hence
the spanning-tree.

MST after watermarking
MST before watermarking

Figure 9: MST preservation on the Leaves dataset

Finally, in Fig.10 we demonstrate the visualization of wa-
termarked shapes using the dendrogram preservation algo-
rithm. We note that the dendrogram on the watermarked
shapes is identical to the one based on the original shapes
(which is omitted for brevity). One can also extract mean-
ingful information on the dendrogram of the watermarked
shapes, which captures all the information that the original
dendrogram conveys. Similar species are still grouped to-
gether and therefore the mining capacity of the dataset is
not lost.

Human

Orangutan male 2

Orangutan male 1

De Brazza monkey 

male

De Brazza monkey 

juvenile

De Brazza monkey 

female

Red Howler monkey 

male

Red Howler monkey 

female

Figure 10: Watermarked Shapes and Dendrogram
Preservation

5.2 Resilience to attacks
After we have determined the best watermark embedding

power and having shown that geodesic distances are not dis-
torted by the presence of the watermark, we test the water-
mark detectability under various adversary attacks. Any
recipient of the dataset can perform a number of opera-
tions, with either malicious or innocuous intentions, which
can potentially diminish the detectability of the embedded
watermark. We assume that any of the possible transfor-
mations can only be performed up to a certain intensity
degree, so as not to destroy the actual value and usability of
the dataset (i.e., a shape cannot be completely distorted).
In each test the embedding power p utilized, is the maxi-
mum power that preserves the original spanning-tree of all
shapes in the dataset.

We examine the effectiveness of our watermarking method-
ology under four types of attacks.

Geometric transformations, such as global transla-
tion or rotation of the objects, do not distort a shape (or
change the relative position of the objects), but may de-
stroy a watermark if it is not embedded in the proper space.
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Figure 11: (a) Gaussian Noise in space; notice that the rightmost shape is very distorted, (b) Gaussian Noise
in Frequency (c) Decimation and (d) Data reduction attacks.

We construct such attacks by watermarking the shapes and
then applying random translations, scalings and rotations
on each of the objects (same geometric transformation on
each one of them -otherwise the relationship between the
objects may change). The experiment is repeated 100 times
and in Table 3 we report the average false positive/negative
rates after each geometric transformations.

P (FP ) = P (FN) after
dataset no attack translation +scaling +rotation
skulls 7.4E-9 1.4E-9 6.6E-9 1.2E-7
fish 5.8E-9 3.1E-9 3.7E-9 1.0E-9

leaves 5.9E-9 6.1E-9 1.1E-8 6.8E-8

Table 3: Geometric attacks

Geometric attacks can potentially be harmful for certain
watermarking schemes, such as approaches that change the
least significant bits of an object [1, 18]. For our method-
ology the high detectability of the watermark is guaranteed
by the properties of the Fourier descriptors. In fact, for each
of the datasets, false positive/negative rates are in the area
of 10−9 and the minute changes are typically attributed to
rounding errors.

Noise addition is a more critical attack because it can
potentially destroy the embedded watermark. For this at-
tack, we translate all points of each shape using a vector

whose coordinates are drawn by a normal distribution with
mean 0 and variances that result in .5%−3% relative Euclid-
ean error compared to the original shape. In Figure 11(a) we
plot the results on the watermark detectability and on the
same figure we overlay the distortion caused on the shape
by the addition of noise. From the figure it is apparent that
in order to erase the watermark an attacker would have to
introduce a large error completely distorting the visual ap-
pearance of the shapes, rendering the dataset useless.

An adversary may also add Gaussian noise in the fre-
quency domain, which is where the watermark is embedded.
The results for this attack are depicted in Fig. 11(b). Again,
large amount of noise would need to be added which would
destroy the dataset usability.

Decimation: On this attack each dataset shape is rep-
resented by a smaller set of points that best approximate the
original shape contour. A shorter sequence is obtained by
sampling equidistant points from the spline associated with
the original sequence. Decimation is a significant attack, be-
cause even though it does not change significantly the shape,
it allows the adversary to generate a new sequence which
has no points in common to the original shape. In our tests
(see Figure 11(c)), even when using half-length sequences,
watermark detection is not affected.

Object removal from the dataset; in this type of at-
tack, we are interested in evaluating watermark detection in
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the presence of dataset amputations. Our detection tech-
nique relies partially on the fact that we can spread the
watermark over all the shapes sequences in the dataset.
Therefore, as more objects are removed from the dataset,
detectability is reduced, but it is still kept at high levels
(Fig. 11(d)). The skulls is the most affected dataset,
because it consists of smallest number of objects (only 16).

Double watermarking; finally one can consider the
situation where an attacker attempts to add one’s own wa-
termark and claim ownership of the dataset. For this type of
attack the legitimate owner can simply present the original
dataset which contains neither watermark (which of course
the attacker cannot present), effectively resolving the owner-
ship problem. Notice, this is the single attack that requires
the existence of the original dataset.

To summarize, with these experiments we have shown that
the detectability of the embedded watermark is not hindered
at all by geometric transformations. Additionally, a mali-
cious adversary would have to destroy the usability of the
dataset (distort the shapes significantly) in an effort to erase
the hidden watermark.

6. CONCLUSIONS
We have presented the first ownership protection mech-

anism for shapes with geodesic distance preservation, pro-
viding guarantees on the outcome for a wide class of mining
algorithms. We have shown that the embedded ownership
seal imparts a minimal visual distortion on object shapes
and is very robust under a variety of attacks. Finally, our
findings are verified and visualized empirically for anthro-
pological and natural science data.

There are several possible avenues for extending and im-
proving this work. For example, the runtime of the rudimen-
tary and, rather, costly algorithm for the MST preservation,
can be significantly improved by exploiting the triangle in-
equality, thus pruning a great amount of unnecessary dis-
tance calculations.
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