
A Stratified Approach to Progressive Approximate Joins

Wee Hyong Tok, Stéphane Bressan, Mong-Li Lee
School of Computing

National University of Singapore
{tokwh,steph,leeml}@comp.nus.edu.sg

ABSTRACT
Users often do not require a complete answer to their query
but rather only a sample. They expect the sample to be ei-
ther the largest possible or the most representative (or both)
given the resources available. We call the query processing
techniques that deliver such results ’approximate’. Process-
ing of queries to streams of data is said to be ’progressive’
when it can continuously produce results as data arrives. In
this paper, we are interested in the progressive and approxi-
mate processing of queries to data streams when processing
is limited to main memory. In particular, we study one of
the main building blocks of such processing: the progressive
approximate join. We devise and present several novel pro-
gressive approximate join algorithms. We empirically eval-
uate the performance of our algorithms and compare them
with algorithms based on existing techniques. In particular
we study the trade-off between maximization of throughput
and maximization of representativeness of the sample.

1. INTRODUCTION
In data stream applications [3, 2, 4] the amount of data to

be processed is generally much larger (potentially infinite)
than the available memory. This is particularly true for ap-
plications whose processing is running on devices such as
handheld computers, for instance. The progressive produc-
tion of results therefore requires query processing algorithms
that can make the best use of main memory and utilize sec-
ondary storage cleverly. Representative of this family of
algorithms are the progressive joins such as XJoin [19], RPJ
[17], HMJ [14], and our own RRPJ [18].

In addition, in many such applications, users are so con-
cerned with rapid production of results that they are ready
to give up completeness of the result. In this case, users may
prefer results that can be produced in main memory only. In
other words, users often do not require a complete answer to
their query but rather only a sample. They expect the sam-
ple to be either the largest possible -they favor quantity-, the
most representative -they favor quality- or both? They may

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT’08, March 25–30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003 ...$5.00.

need to seek a compromise between quality and quantity-,
given the resources (main memory) available. We call the
query processing techniques that deliver such results ’ap-
proximate’.

Join algorithms being the keystones of query processing,
we are interested here in progressive approximate join al-
gorithms. The reference progressive approximate join is
Prob introduced in [7] and its extended version [8]. The
authors introduce the notion of maximum subset (MAX-
Subset) which leads to similar strategies as the ones used by
progressive algorithms such as RPJ [17] and RRPJ [18] to
maximize the size of the set of results produced, quantity.
We show that the performance of Prob can be improved by
stratifying the memory available. We propose ProbHash,
a direct extension of Prob, in which the memory is hash
partitioned and an approximate version of our progressive
algorithm RRPJ also using hash partitioning. Interestingly,
the authors of [7] have disqualified reservoir sampling based
methods based on the extreme scenario given in [5] without
further experiments. We show that this disqualification is
mistaken. We propose a reservoir sampling-based approxi-
mate progressive join, that we call Reservoir Approximate
Join (RAJ), and its stratified version RAJHash. We show
that these algorithms favor the representativeness of the set
of results produced and ensure better quality than the other
algorithms.

The rest of the paper is organized as follows. In Section 2,
we discuss related work. We discuss the notions of quantity
and quality of results produced in Section 3. We present the
proposed algorithms in Section 4. In Section 5, we empir-
ically evaluate the performance of our four algorithms and
compare them with Prob. In particular we highlight and
discuss the trade-off between quantity and quality. We con-
clude and discuss future work in Section 6.

2. RELATED WORK
In the data stream literature, various approximate query

processing techniques have been proposed for aggregation
queries (e.g. quantile [10], heavy hitters [13] and distinct
counts [9]) and join queries [7, 8, 1]. In this paper, we focus
on progressive, approximate join queries where the results
are streamed out to the user as soon as they are produced.

2.1 Progressive Joins
Progressive relational equi-join algorithms [17, 18] stud-

ied the problem of producing complete results over data
streams. In order to work with limited memory these al-
gorithms need to flush tuples to disk whenever memory is

582

full. These disk-resident tuples are then joined at subsequent
phases in order to produce the complete join results. The
goal of these algorithms is to maximize results production,
as well as ensure high result throughput during join process-
ing. If we retain only the in-memory processing phase, these
algorithms are suitable for approximate join processing. In
this paper, we modify one of the state-of-art progressive re-
lational equi-join algorithm, RRPJ [18], and show how it
can be used for progressive approximate join processing.

2.2 Approximate Joins
In conventional databases, several techniques [16, 15, 5]

have been proposed for approximate join processing. These
techniques construct a fixed size random sample of the re-
sults for a relational query. The underlying assumption is
that indices are available for one or both of the datasets,
or statistics on the data distribution known apriori. [16,
15] assumes that indexes are available to facilitate efficient
random access to the data. Given two relations S1 and S2,
it randomly chooses a tuple tS1 from S1, and determines
whether tS1 should be included into the sample by comput-
ing its inclusion probability. If tS1 is included, a tuple tS2,
with the same join attribute, is then randomly chosen from
S2 and joined with tS1. Noting this, [5] proposed a general-
ized technique for sampling the results of join queries which
do not require indices to be pre-constructed. In addition,
Surajit et al. noted that for skewed data distributions, the
random sampling of results from join queries could cause
a worst-case scenario in which no join results are available.
None of these works deal with data streams. In our work, we
show the impact of the worst-case scenario for data stream
processing.

2.3 Progressive Approximate Joins
Several progressive approximate join algorithms [7, 8, 1]

have been proposed for data stream applications. In [7] and
its extended version [8], the motivation was the maximiza-
tion of the result subset produced. A reference theoretical
algorithm, called OPT-offline, was proposed. The algorithm
presents an optimal scenario in which the MAX-subset error
measure is minimized. They cannot be used for online appli-
cations. In order to deal with the online case, two heuristics,
PROB and LIFE, were proposed to maximize the expected
output size. The focus of the work was on maximizing the
result output size of the approximate join, and assumes the
availability of a fast CPU for join processing. Given two
streams, S1 and S2, the priority of a tuple from S1 is com-
puted based on the arrival probability of tuples from S2.
Priority queues are used for storing the in-memory tuples.
Whenever a tuple from S1 arrives, it will need to scan the
entire priority queue of S2 (and vice-versa). Our work differs
in two aspects. Firstly, we show how auxiliary data struc-
tures (i.e. hash-based priority queues) can be used to min-
imize the need to scan all the tuples in memory. Secondly,
we show that maximizing the output size of the result does
not necessarily ensure good result quality. We quantify the
notion of result quality, and propose a technique that is able
to deliver good-quality results progressively. Though [1] also
studied the use of reservoir sampling over memory-limited
join, the focus of the work was on how to balance between
the memory allocated for join buffers and the reservoir. In
addition, [1] do not progressively output results.

3. MEASURING PERFORMANCE

3.1 What do We Measure?
There are two ways to measures the performance of an

approximate algorithm. If we are interested in quantity, the
measure of performance for the algorithm is the amount of
results produced. If we are interested in quality, we need to
measure the similarity between the data distribution of the
complete set of results and the data distribution of the set of
results produced. Because we are interested in progressive
algorithms, performance is not a unique number but a func-
tion of time. It is measured in term of throughput, quantity
over time, when size matters. It is measured in terms of
quality over time (quality throughput), when quality mat-
ters. If both quantity and quality matter, we need both
functions. Notice that the comparison of both functions by
looking at quantity as a function of quality (or vice versa)
at given points in time visualizes the compromise realized
by a given algorithm.

We considered defining a combined measure of quantity
and quality (similarly to the F-measure, which combines re-
call and precision). Unfortunately, our measure of quality
using JS Divergence or any comparable statistical measures
is unbounded, and cannot be normalized.

3.2 How do We Measure Quality?
In order to measure quality, we need to compare two data

distributions. We can compute, combine and compare any
statistics and obtain more or less significant measurements
at different level of granularity.

A reasonable yet simple metrics is the Mean-Square Error
(MSE) between the normalized histograms of the complete
results and result produced by the approximate join. We,
however choose a slightly more accurate measurement with
the Jensen-Shannon divergence [12], which determines the
similarity (or divergence) between two probability distribu-
tions.

3.2.1 MSE
We first discuss the MSE measure. The MSE measure

measures the error differences between the actual and ob-
served results produced. In the approximate join scenario,
the actual results refer to the results produced if the entire
join is computed (or when the memory is unlimited and all
data fit into main memory). The observed results refer to the
results produced by the approximate join method. In order
to ensure a fair comparison between the actual and observed
result distribution, we compare the normalized frequency in-
stead of the actual frequency for each join attribute value.
Let the total number of results produced by the complete
and approximate join be |R| and |R’| respectively. For each
value vi ∈ V , where V denotes the domain of the join at-

tribute, and 1 ≤ i ≤ |V|. |vi| and |v
′

i | denotes the number
of actual and observed results with value vi. For each join
attribute vi, the normalized value for the complete and ap-

proximate joins is given by |vi|
|R|

and
|v

′

i
|

|R′|
respectively. The

MSE between the complete join J and approximate join J’
is given by

MSE(J, J ′) =
V∑

i=1

(
|vi|

|R|
−

|v
′

i |

|R′|
)2 (1)

583

3.2.2 Jensen-Shannon Divergence
In probability and information theory, the Kullback Leibler

(KL) and Jensen-Shannon divergence are used to measure
the similarity between two probability distributions, P and
Q. We use the Jensen-Shannon divergence to measure the
similarity between the actual (P) and observed result (Q)
distribution. We measure the result quality produced by the
approximate join using the Jensen-Shannon divergence. The
Jensen-Shannon divergence measures the similarity between
the actual result distribution (produced by a join where all
tuples fit in memory) and the approximate join result dis-

tribution. Let p(vi) = |vi|
|R|

and q(vi) =
|v

′

i
|

|R′|
. Before defining

the Jensen-Shannon divergence, we first define the KL di-
vergence, given as follows:

DKL(P ||Q) =

V∑

i=1

p(vi) log(p(vi)/q(vi)) (2)

The Jensen-Shannon divergence is given by

DJS(P ||Q) = 1
2
DKL(P ||M) + 1

2
DKL(Q||M) (3)

where M = 1
2
(P + Q)

The goal is to minimize either the MSE or the JS diver-
gence. When the value for either MSE or JS divergence is
zero, the result distributions from the complete and approx-
imate joins are exactly the same.

Given two approximate join methods, J1 and J2, we say
that J1 produces better quality results than J2 if the QMea-
sure(J1) < QMeasure(J2). QMeasure(Z) refers to either
computing MSE(Z) or DJS(Z). Z refers to an arbitrary ap-
proximate join method.

4. SOLUTION
In this section, we describe five methods for performing

approximate joins: (1) Approximate RRPJ (ARRPJ), (2)
Prob, (3) ProbHash, (4) Reservoir Approximate Join (RAJ)
and (5) Stratified Reservoir Approximate Join (RAJHash).

We first present the key idea for an existing progressive
approximate join algorithm, Prob. Next, we propose the
modification of an existing progressive join algorithm for
approximate join processing, called Approx-RRPJ. Lastly,
we propose three new algorithms (ProbHash, RAJ and RA-
JHash). ProbHash aims to maximize the result quantity
as well as improve the overall throughput. Both RAJ and
RAJHash are designed to optimize the result quality.

4.1 Approximate Join Framework
We first discuss a general framework for designing approx-

imate join algorithms which explore the tradeoffs between
result quantity and quality.

Given two streams S1(A,B) and S2(B,C), where A, B and
C are attributes of the data streams. Let the i-th tuple from
S1 and the j-th tuple from S2 be denoted by tS1(ai,bi) and
tS2(bj ,cj) respectively. An approximate join is used to join
the tuples from the two streams. The size of the memory
available for query processing is small relative to the size of
the data streams, which can be unbounded. When a new
tuple arrives and memory is full, we will need to selectively
discard some tuple(s) from memory. Indeed, an important
design criteria for an effective approximate join algorithm is
how tuples are discarded.

We first consider approximate join algorithms which max-
imizes the quantity of the results produced. We call such a
algorithm DPX(k), which discards k tuples whenever mem-
ory is full. The goal of the DPX(k) policy is to maximize
the expected size of the result subset. To achieve this, we
can model the probability of the join attribute value(s) for
tuples arriving on both streams. Let the arrival probabilities
be PS1(B) and PS2(B) for streams S1 and S2 respectively.
Whenever a tuple arrives, we assign a priority to the tuple
based on the arrival probabilities from the corresponding
stream. For example, when a tuple tS1(ai,bi) arrives, its
priority value is given by PS2(bi). Similarly, the priority of
a tuple tS2(bj , cj) can be computed using PS2(bj). A pos-
sible implementation for DPX(k) is to maintain two prior-
ity queue (in ascending priority order) for the data streams.
Whenever memory is full, DPX(k) discards the first k tuples
taken from both streams. The intuition is that by keeping
in memory tuples which have higher probability of joining
with tuples from the other stream, the expected number of
results produced will be maximized [17].

Next, we consider approximate join algorithms which are
sampling-based. The goal is to optimize the quality of the
results produced. We call such a algorithm DPY . DPY

continuously maintains a random uniform sample for each
of the data streams. When the memory is not full, tuples
are inserted into the respective reservoirs. When memory
is full, DPY determines whether the newly arrived tuple
should be discarded, or be used to replace a tuple from the
reservoir. Suppose the size of the memory is M, which is di-
vided equally between the two streams S1 and S2. Suppose
nS1

and nS2
tuples have arrived for stream S1 and S2 re-

spectively. We assume that the number of tuples that have
arrived for each stream is greater than the available allocated
memory (i.e. nS1

> (M/2), and nS2
> (M/2)). A newly

arrived tuple tS1(ai,bi) has a (M/2)
nS1

chance of being used to

replace a tuple in the reservoir. Similarly, for a tuple from
S2. Even though DPY might not maximize the number of
results produced, the quality of the results produced could
be much better than DPX(k). This is because DPY en-
sures that the uniformity of the samples for each of the data
streams. When a new tuple arrives, it is used to probe the
corresponding reservoir. Mindful readers might note that
DPY might not work well for skewed data streams if the
memory is allocated equally between the two reservoirs. In
our work, we show how we can tackle this problem by dy-
namically allocating memory for the reservoirs.

4.2 Approximate RRPJ (ARRPJ)
The Result-Rate Based Progressive Join (RRPJ) [18] was

proposed as a progressive join algorithm. It builds statistics
on the result distribution of the hash partitions. The goal
of RRPJ is to maximize the number of results produced by
using the result distribution statistics to determine the non-
productive tuples to be flushed to disk whenever memory is
full. In RRPJ, when all the tuples have arrived, a cleanup
phase is invoked to compute the complete results for the join
query.

In order to build a progressive approximate join, we mod-
ify RRPJ so that it consists of the in-memory processing
phase. We call this join algorithm, Approximate RRPJ (AR-
RPJ). Whenever memory is full, ARRPJ flushes tuples from
memory. The tuples are discarded instead of being flushed
to disk partitions.

584

4.3 Prob
The PROB [7, 8] approximate join is an instantiation of

DPX(1). The goal of PROB is to maximize the quantity
of results produced. It assigns a priority to each tuple that
arrives. Prob can make use of either a fixed or variable
memory allocation to store tuples from each of the data
streams. For fixed allocation, two priority queues are used,
one for each of the data streams. For variable allocation, a
single priority queue is used for both streams. The priority
for a tuple is determined by the arrival probabilities of the
partner stream. We describe how Prob works. Given two
streams S1 and S2, a memory size M. Two priority queues,
PQ1 and PQ2, (one for each stream) are created. Using a
fixed memory allocation, the size of each priority queue is
M
2

. In order to deliver results progressively, a probe-and-
insert paradigm is used. When a tuple tS1 arrives, it needs
to probe all the tuples in the PQ2 in order to determine
join matches. Similarly, when a tuple tS2 arrives, it needs
to probe all the tuples in PQ1 for join matches. At time τ ,
given that |S1| and |S2| tuples have arrived for S1 and S2

respectively. Using a variable memory allocation scheme,
the size of the single priority queue is M. Whenever tuples
arrive from either stream, it will have to scan all the tuples
in the priority queue. The time complexity for both the
fixed and variable memory allocation is given by O(M(|S1|
+ |S2|)).

4.4 ProbHash
In order to reduce the need to probe all in-memory tuples,

we propose a progressive join algorithm, ProbHash. Prob-
Hash relies on hash partitions to organize the in-memory
tuples. In essence, ProbHash is a CPU-efficient extension of
Prob [7, 8].

ProbHash organizes the in-memory tuples for each stream
by storing the tuples using p priority queues, instead of a
single priority queue. The value of p is dependent on the
hash function used. The tuples in each priority queue are
organized based on a ascending priority order. We denote
the set of priority queue for data stream Si as PQSi

(1
≤ i ≤ 2). Figure 1 shows the two sets of priority queues.
Whenever a tuple tS1 arrives, its hash value is computed
by the hash function (denoted by ⊕). It is then used to
probe one of the priority queues in PQS2

. If join matches
are found, the result is delivered to the user. Afterwhich,
tS1 is inserted to one of the priority queues of PQS1

. The
set of priority queues, PQS1

and PQS2
, are each allocated

M
2

memory. Within each priority queue set, we make use
of a variable memory allocation scheme which allows the
size of the priority queues to grow or shrink dynamically.
This mitigates the effect of skewed data distribution, and
ensure that the memory can be better utilized. Suppose the
average length of each priority queue is L (L << M), the
time complexity for ProbHash is given by O(L(|S1| + |S2|)).

When memory is full (|S1| + |S2| = M), and a new tuple
arrives, we will need to select a tuple to be discarded from
amongst the 2p priority queues. We first identify the priority
queue PQi (1 ≤ i ≤ 2p) which contains the tuple with
the smallest priority value. The complexity for finding the
queue which contains a tuple with the smallest priority value
is given by O(p). This is because we only need to scan the
first element of each of the 2p priority queues. In the case
of a tie (i.e several queues with tuples having the smallest
priority value), we randomly pick a tuple from one of these

Priority Queues
for S1

q
1

q
2

q
p

t
S1

Hash function

Priority Queues
for S2

q
1

q
2

q
p

(i) probe(ii) insert

Figure 1: Priority Queue for S1

queues. Other methods can be used too (e.g. the tuple’s
age and preferring tuples that are older). We dequeue the
tuple with lowest priority. We then compute the hash value
for the newly arrived tuple, which is used to determine the
priority queue it is inserted into. Due to the variable memory
allocation, it is important to note that the size of all the
priority queues are not fixed. Hence, if the data distribution
is skewed, some priority queues will be longer.

4.5 Reservoir Approximate Join (RAJ)
Conventional reservoir sampling [20] is used to produce a

fixed size random sample of data. Algorithm 1 describes the
details. While data is arriving (line 2), we get the next tuple
from the data stream S (line 3). n denotes the total number
of tuples that have arrived so far. If the number of tuples in
the reservoir is less than the reservoir size |R|, we insert the
tuple into the reservoir (line 5 to 6). Otherwise, the tuple

is inserted into the reservoir with probability |R|
n

(line 8 to
10).

Algorithm 1: Conventional Reservoir Sampling

Data : R - Reservoir, |R| - Reservoir Size,
S - Data Stream
n - Total numbers tuples that has been inserted
into R

begin
1 n = 0 ;
2 while (!endOfStream(S)) do
3 Tuple t = getNextTuple(S) ;
4 n = n + 1 ;

5 if (n < |R|) then
6 Insert t into R ;

end
7 else
8 Randomly generate a number ρ between 1 to n ;
9 if (ρ < |R|) then

10 Replace the ρ-th tuple in R with t ;
end

end
end

end

Conventional reservoir sampling can also be used in a
progressive approximate join. We call this the Reservoir
Approximate Join (RAJ). This is illustrated in Figure 2.
Given two streams S1 and S2, and memory with size M. Two

585

reservoirs, ReservoirS1 and ReservoirS2 are created. Each
reservoir is allocated M

2
memory. For each reservoir, the

conventional reservoir sampling technique is used to man-
age the reservoir. When a tuple tS1 arrives, it is used to
probe ReservoirS2. Results (if any) are produced. After-
which, tS1 is inserted into ReservoirS1. The problem with
this approach is that the entire reservoir needs to be scanned
in order to find tuples which can be joined with the newly
arrived tuple.

Reservoir Reservoir
S1 S2

(i) probe(ii) insert

t
S1

Figure 2: Reservoir Approximate Join

4.6 Stratified Reservoirs Approximate Join
(RAJHash)

In statistics, stratified sampling [6] is another effective
technique for sampling from a population. In stratified sam-
pling, the population is divided into disjoint k sub-populations
of sizes N1, N2,...,Nk respectively. Each sub-population is
called a stratum, and is mutually exclusive (i.e. every ele-
ment in the population must be assigned to only one stra-
tum). Hashing is an effective way to assign each element to
exactly one stratum. In order to reduce the need to scan the
entire reservoir during probing, we adopt the idea of strati-
fied sampling to organize the reservoir for each stream into
multiple sub-reservoirs. We call this algorithm the Stratified
Reservoirs Approximate Join (RAJHash).

t
S1

Hash function

(i) probe(ii) insert

Reservoir S1 Reservoir
S2

Sub-reservoirs

Figure 3: Progressive Approximate Join using Strat-
ified Reservoirs

In the stratified reservoir approach, we allocate M
2

mem-
ory to each reservoir. Each reservoir consists of k sub-
reservoirs. For each reservoir, a variable memory allocation
scheme is used to allocate memory for the sub-reservoirs.
Given a tuple t, the hash function, f(t) = t.value mod k, is
used to assign the tuple to one of the sub-reservoirs. t.value
denotes the value of the join attribute. Algorithm 2 de-

scribes the insertion of a newly-arrived tuple using the strat-
ified reservoir. In Line 1, h denotes the hashed value of the
tuple. If n is less than |R|, then we will just add the tuple
to the h-th sub-reservoir (Line 4). If n is greater or equal
to |R|, then we will need to determine whether to replace a
tuple from the reservoir with the newly arrived tuple (Line
6-10). To do this, a random number, ρ (between 1 to n) is
generated. If ρ is greater than |R|, we discard t. Otherwise,
t is used to replace a tuple from the h-th sub-reservoir. In
this case, even though ρ is less than |R|, ρ can be greater
than the size of the h-th sub-reservoir. To find the tuple to
be replaced, we compute i = ρ mod S (where S is the size
of the h-th sub-reservoir). We then replace the i-th tuple in
the h-th sub-reservoir.

Algorithm 2: Stratified Reservoir - Inserting a tuple

Data : R - Reservoir, |R| - Reservoir Size,
k - Number of sub-reservoirs
t - Tuple to be inserted
n - Total numbers tuples that has been inserted
into R

begin
1 h = f(t) ;
2 n = n + 1 ;
3 if (n < |R|) then
4 Insert t into the h-th sub-reservoir ;

end
else

5 Randomly generate a number ρ

between 1 to n (inclusive);

6 if (ρ < |R|) then
7 S = Get the size of the h-th sub-reservoir ;
8 i = ρ mod S ;
9 Replace the i-th tuple with t ;

end
else

10 Discard t ;
end

end
end

RAJHash introduces some advantages over RAJ. Firstly,
it is more CPU-efficient as it reduces the number of in-
memory tuples that are probed to identify join matches. Sec-
ondly, even in the presence of a skewed distribution, it is able
to gracefully allocate more memory for sub-reservoirs which
need a large sample, and less memory for sub-reservoirs
which contain the skewed values. This is due to the variable
memory allocation for the sub-reservoirs. We empirically
verify this in Section 5.3.

4.6.1 Example
In this example, we illustrate how Stratified Reservoir

works. Given two streams S1={10, 22, 34, 11, 30, 90, 2,
1, 13, 10} and S2={ 10, 48, 20, 35, 12, 58, 67, 71, 44, 83 }.
In this example, the size of the memory M = 10 tuples. Two
reservoirs ReservoirS1 and ReservoirS2 are created for S1

and S2 respectively. Each reservoir can hold 5 tuples. In
addition, each reservoir is allocated 10 sub-reservoirs. The
hash function f(t) = t.value mod 10 is used to allocate a tu-
ple to one of the 10 sub-reservoirs. We denote a sub-reservoir
for stream Si as reservoirj

i (0 ≤ j < 9) respectively.
For stream S1, the first tuple arrives. This is inserted

into reservoir0
1 . Next, a tuple from S2 arrives. This is first

used to probe ReservoirS1, which in turn re-directs it to
sub-reservoir reservoir0

1 which produces a result. After 5

586

tuples have arrived from each of the data streams, we have
the following reservoir0

1 = {10, 30}, reservoir1
1 = {11},

reservoir2
1 = {22}, reservoir4

1 = {34}, reservoir0
2 = {10,

20}, reservoir2
2 = {12}, reservoir5

2 = {35} and reservoir8
2

= {48},. When the sixth tuple from S1 arrives, ReservoirS1

is full. We need to decide whether to discard a tuple from
ReservoirS1. First, we compute the hash value of the sixth
tuple to be 0 (i.e. 90 mod 10). To determine whether to
discard the tuple, we randomly generate a number ρ between
1 to 6 (inclusive). If ρ ≤ 5, then we will replace a tuple in
the sub-reservoir reservoir0

1 with this newly arrived tuple.
Suppose the value of ρ is 4. It is important to note that there
are only two tuples in reservoir0

1. To determine which tuple
to be replaced, we compute 4 mod 2 = 0. Thus, the first
tuple (value=10) is then replaced with the newly arrived
tuple. Thus, sub-reservoir reservoir0

1 = {90, 30}. Similarly,
when the sixth tuple (value = 58) from S2 arrives, we need to
decide whether to discard or replace a tuple from reservoir8

2.
We generate a random number, ρ between 1 to 6 (inclusive).
Suppose rho = 6. Thus, we discard the newly arrive tuple.
Thus, sub-reservoir reservoir8

2 = {48}.

4.7 Discussion
Approx-RRPJ, Prob and ProbHash attempt to maximize

the quantity (i.e. number of results produced) by sacrificing
tuples that do not produce or produce few results. There-
fore, they tend to favour results in certain ranges. In con-
trast, RAJ and RAJHash strive to maintain a good rep-
resentative sample. With limited memory, an approximate
join algorithm need to effectively make use of the available
memory, balancing between quantity and quality of the re-
sults produced.

5. PERFORMANCE ANALYSIS
In this section, we perform an extensive performance study,

using both synthetic and real-life datasets. 5 algorithms are
used in the performance study: (1) ARRPJ (2) Prob (3)
ProbHash (4) RAJ and (5) RAJHash. We implemented all
the progressive approximate algorithms in C++, and con-
duct the experiments on a Pentium 4 2.4 Ghz PC (1GB
RAM).

We evaluate the approximation performance by: (1) Vi-
sualizing the quality of the results using normalized result
histograms, (2) Measuring the percentage of results (Quan-
tity) and ,(3) Measuring the JS Divergence (Quality). We
have also conducted experiments to measure the quality of
the results using MSE. As the results using MSE show simi-
lar trends to JS Divergence, the results are omitted. We also
studied the effects of varying memory sizes. In addition, we
also studied the throughput and quality throughput of the
various progressive approximate join algorithms by taking
snapshots of the result distribution at different time epochs.

The experiment parameters are given in Table 1. When
the memory allocated to the approximate join is 100%, all
tuples fit in memory. Hence, the complete set of join results
are produced. We refer to this method as EXACT, which
we use as a benchmark for comparison for result quality
and computing the percentage of results produced by each
method.

5.1 Effect of Skewed Distribution
In this experiment, we investigate the performance of the

various methods in the presence of a skewed distribution.

Table 1: Experiment Parameters
Parameter Values
Memory allocated to
approximate join, M Varies between 10% to 100%
Datasets Skewed
(DS, Dataset Size) (100,000 tuples)

Extreme
(100,000 tuples)
Real-life: Weather
(2,074,948 tuples)

The skewed distribution is generated as follows: The fre-
quency of the join attribute values is determined by a Zip-
fian distribution. The skewness of the Zipfian distribution
is determined by a factor η. We set η to be 1.0. We vary
the memory allocated to be 10% to 100% of the dataset size
(100,000 tuples). The domain of the join attribute value is
set to be 1-50.

5.1.1 Approximation Performance
We first study the performance of the algorithm w.r.t to

approximation only. Therefore, we consider bounded input
streams, and look at the quantity and quality after all the
tuples have been processed.

The goal of the first experiment is to visualize the quality
of the results produced by the various progressive approxi-
mate join algorithms. We fixed the memory allocated to the
approximate join to be 10% of the dataset. To achieve this,
we plot the result histograms for each of the algorithms. In
the y-axis, we show the normalized frequency for each join
attribute value. Given the number of results produced by
an approximate join method J is |J |. The number of results
with join attribute value v is given by |v|. The normalized

frequency is defined as |v|
|J|

. In the x-axis, we plot the value

of the join attributes.
From Figure 4(a)-(c), we can observe that ARRPJ, Prob,

and ProbHash favor the production of the most likely results.
Hence, the results that are produced are skewed towards
the join attribute values that appear more frequently. From
Figure 4(e) and (f), it is visually striking that the normalized
histograms for RAJ and RAJHash are almost identical to
the distribution of the complete results (Figure 4(a)). For a
quantitative comparison of the result quality, we also show
the JS Divergence for the various algorithms in Figure 4(g).
Thus, we can conclude the quality of results produced by
RAJ and RAJHash is higher than that produced by ARRPJ,
Prob, and ProbHash.

In the second experiment, we vary the amount of memory
allocated to the progressive approximate join. The x-axis
shows the amount of memory allocated as a percentage of
the total dataset size. The y-axis shows the percentage of
results produced and the JS Divergence respectively for Fig-
ure 4(h) and (i). From the figures, we can observe that the
quantity and quality improves as the amount of memory al-
located increases. In addition, it is consistently observed in
all the algorithms. From Figure 4(h), we can observe that
the number of results produced by RRPJ, Prob and Prob-
Hash is significantly more than RAJ and RAJHash. How-
ever, from Figure 4(i), we can observe that the JS-divergence
of RAJ and RAJHash is much lower. As noted in Section
4.7, with limited memory, there is always a tradeoff between

587

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5 10 15 20 25 30 35 40 45

N
or

m
al

iz
ed

 F
re

qu
en

cy

Join Attribute Value

EXACT

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5 10 15 20 25 30 35 40 45

N
or

m
al

iz
ed

 F
re

qu
en

cy

Join Attribute Value

ARRPJ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5 10 15 20 25 30 35 40 45

N
or

m
al

iz
ed

 F
re

qu
en

cy

Join Attribute Value

PROB

(a) Exact (b) ARRPJ (c) Prob

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5 10 15 20 25 30 35 40 45

N
or

m
al

iz
ed

 F
re

qu
en

cy

Join Attribute Value

ProbHash

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5 10 15 20 25 30 35 40 45

N
or

m
al

iz
ed

 F
re

qu
en

cy

Join Attribute Value

RAJ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5 10 15 20 25 30 35 40 45

N
or

m
al

iz
ed

 F
re

qu
en

cy

Join Attribute Value

RAJHash

(d) ProbHash (e) RAJ (f) RAJHash

ARRPJ Prob ProbHash RAJ RAJHash
JS Divergence 0.06136 0.10812 0.10811 0.00001 0.00018

(g) JS Divergence

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 R

es
ul

ts

% Memory Allocated

ARRPJ
RAJ

RAJHash
Prob

ProbHash
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

JS
 D

iv
er

ge
nc

e

% Memory Allocated

ARRPJ
RAJ

RAJHash
Prob

ProbHash

(h) Percentage of results produced (i) JS Divergence

Figure 4: Skewed Dataset

quantity and quality.

5.1.2 Throughput and Quality Throughput
Next, we measure the quantity and quality of the results

over time. We set the amount of memory allocated to the
progressive approximate join algorithms to be 10% of the
dataset size. We measure the percentage of complete results
produced and the JS Divergence over time (x-axis).

From the results presented in Figure 5(a) and (b), we
can observe that the throughput of ARRPJ, ProbHash, and
RAJHash is significantly better than RAJ and Prob. How-
ever, they produce a lesser percentage of the complete re-
sults compared to Prob. In Figure 5(c), we can observe that
the JS Divergence of ARRPJ, ProbHash, and Prob is sig-
nificantly higher than RAJ and RAJHash. In addition, as
time progresses, the JS Divergence of ARRPJ, ProbHash,
and Prob increases. In contrast, from Figure 5(d), we can
observe that the JS Divergence of RAJ and RAJHash de-
creases with time. This is because the former three meth-

ods aims to maximize quantity. Over an extended period of
time, this affects the quality of the results. For the sampling-
based algorithms, RAJ and RAJHash, as time progresses,
the quality improves. Hence, the decreasing JS Divergence.

ProbHash has significantly better throughput, compared
to Prob, due to the partitioning of the data space into mul-
tiple priority queues. This reduces the number of scans for
join matches. In contrast, for Prob, a newly arrived tuple
will have to scan all the tuples in the corresponding prior-
ity queue, which is inefficient. A similar observation can be
made between RAJHash and RAJ. Most importantly, this
is achieved without sacrificing the overall result quality over
time.

We also studied the tradeoffs between quantity and qual-
ity. The results are presented in Figure 5(e). As observed
in earlier graphs, when the percentage of results increases,
the JS Divergence for ARRPJ, ProbHash, and RAJHash in-
creases. In contrast, from Figure 5(f), we can observe that
for RAJ and RAJHash the JS Divergence decreases with

588

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 10 20 30 40 50 60 70 80 90 100

%
 R

es
ul

ts

Time (s)

ARRPJ
RAJ

RAJHash
Prob

ProbHash
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25

%
 R

es
ul

ts

Time (s)

ARRPJ
RAJ

RAJHash
ProbHash

(a) % Result vs Time (b) Zoom of (a)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 10 20 30 40 50 60 70 80 90 100

JS
 D

iv
er

ge
nc

e

Time (s)

ARRPJ
RAJ

RAJHash
Prob

ProbHash
 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

 0.0011

 0 5 10 15 20 25

JS
 D

iv
er

ge
nc

e

Time (s)

RAJ
RAJHash

(c) JS Divergence vs Time (d) Zoom of (c)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.02 0.04 0.06 0.08 0.1 0.12

%
 R

es
ul

ts

JS Divergence

ARRPJ
RAJ

RAJHash
Prob

ProbHash
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0.0002 0.0004 0.0006 0.0008 0.001

%
 R

es
ul

ts

JS Divergence

RAJ
RAJHash

(e) % Result vs JS Divergene (f) Zoom of (e)

Figure 5: Skewed Dataset : Throughput and Quality Throughput

increasing number of results produced.

5.2 Real Life Dataset
In this experiment, we investigate the performance of the

various methods using a real-world dataset, consisting of
weather data [11].

The dataset consists of monthly cloud measurements, col-
lected by sensors globally. Similar to [7], we chose the data
collected for September 1985 and September 1986 as the in-
puts to the approximate equijoin. The total size of both
datasets is approximately 2 million tuples. For each of the
dataset, we extracted the values of the latitude and longi-
tude attributes. These attributes denotes the location of
sensors which capture the sensors reading. Next, we parti-
tion the data universe using a 18 x 36 square grid. Each
grid cell is assigned a unique identifier. Each tuple in the
dataset, described by its latitude and longitude, is then as-
signed the value of the unique identifier. We then perform
an equijoin between the 1985 and 1986 datasets.

We omit the results for Prob and RAJ, and show only
their more efficient counterparts, ProbHash and RAJHash
respectively.

5.2.1 Approximation Performance
Similar to Section 5.1, we first study the performance of

the algorithm w.r.t to approximation only. Thus, we con-
sider bounded input streams, and look at the quantity and
quality after all the tuples have been processed.

In the first experiment, we fixed the memory allocated to
the approximate join to be 10% of the dataset. We present
the result histograms for the various approximate join algo-
rithms in Figure 6(a)-(d), where we can observe the quality
of the result distribution. We omit the result histograms for
Prob and Reservoir as they exhibit similar trends to Prob-
Hash and SReservoir respectively. From Figure 6(a)-(d), we
can observe that the normalized result histograms for RA-
JHash is similar to Exact. In contrast, we can observe that
ARRPJ and ProbHash indeed maximize the result quantity
for the join attribute values which appear more frequently.

In the second experiment, we vary the amount of memory
allocated for the progressive approximate join algorithms.
The results are presented in Figure 6(e) and (f). From the
figures, we can also observe that the quantity and quality im-
proves as the amount of memory allocated increases. Also,
we can observe in Figure Figure 6(e) that the number of

589

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 200 400 600 800 1000 1200 1400 1600 1800

N
or

m
al

iz
ed

 F
re

qu
en

cy

Join Attribute Value

Exact

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 200 400 600 800 1000 1200 1400 1600 1800

N
or

m
al

iz
ed

 F
re

qu
en

cy

Join Attribute Value

RRPJ

(a) Exact (b) ARRPJ

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 200 400 600 800 1000 1200 1400 1600 1800

N
or

m
al

iz
ed

 F
re

qu
en

cy

Join Attribute Value

PROBHash

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 200 400 600 800 1000 1200 1400 1600 1800

N
or

m
al

iz
ed

 F
re

qu
en

cy

Join Attribute Value

RAJHash

(c) ProbHash (d) RAJHash

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

%
 R

es
ul

ts

% Memory Allocated

ARRPJ
RAJHash
ProbHash

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

JS
 D

iv
er

ge
nc

e

% Memory Allocated

ARRPJ
RAJHash
ProbHash

(e) Percentage of results produced (f) JS Divergence

Figure 6: Real Life Dataset (WEATHER)

results produced by RRPJ, Prob and ProbHash is signifi-
cantly more than RAJ and RAJHash. From Figure 6(f), we
can observe that the JS-divergence of RAJ and RAJHash is
much lower.

5.2.2 Throughput and Quality Throughput
Next, we measure the quantity and quality of the results

over time. We set the amount of memory allocated to the
progressive approximate join algorithms to be 10% of the
dataset size. We measure the percentage of complete results
produced and the JS Divergence over time (x-axis).

From Figure 7(a) and (b), we can observe that the through-
put of ARRPJ, ProbHash and RAJHash is significantly bet-
ter than RAJ and Prob. This is similar to the observation
made for the skewed synthetic dataset. From Figure 7(c), we
can observe that the JS Divergence of ARRPJ, ProbHash,
and Prob is significantly higher than RAJ and RAJHash.
As time progresses, the JS Divergence of ARRPJ, ProbHash,
and Prob increases. In contrast, from Figure 7(d), we can
observe that the JS Divergence of RAJ and RAJHash ini-
tially increases. This is due the arrival of non-representative
tuples in the beginning. Hence when these tuples are used

in the join, the results are not representative (hence the in-
creasing JS divergence at the initial stages). However, when
time progresses, the JS Divergence decreases with time. The
tradeoffs between quantity and quality are presented in 7(e)
and (f). We can observe that the JS Divergence increases
as the percentage of results produced by ARRPJ, Prob and
ProbHash increases. In contrast, the JS Divergence for RAJ
and RAJHash decreases over time. In Figure 7(f), the ini-
tial increase in JS Divergence is due to the effects discussed
earlier for Figure 7(d).

5.3 Effect of Extreme Dataset
In this experiment, we investigate the performance of the

various methods in the presence of the extreme scenario [7,
8]. Due to space constraints, we present only the results for
the approximation performance when all tuples have arrived.

The extreme scenario is characterized by having join at-
tribute values that appear less frequently for each dataset.
Figure 10 shows the join attributes values used in the ex-
treme scenario for two data streams, R1 and R2. For the
experiments, the value of b1 and b2 is set to 1 and 2 respec-
tively.

590

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 10000 20000 30000 40000

%
 R

es
ul

ts

Time (s)

ARRPJ
RAJ

RAJHash
Prob

ProbHash
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2000 4000 6000 8000 10000 12000 14000 16000

%
 R

es
ul

ts

Time (s)

ARRPJ
RAJ

RAJHash
ProbHash

(a) % Result vs Time (b) Zoom of (a)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 10000 20000 30000 40000

JS
 D

iv
er

ge
nc

e

Time (s)

ARRPJ
RAJ

RAJHash
Prob

ProbHash
 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 4000 8000 12000

JS
 D

iv
er

ge
nc

e

Time (s)

RAJ
RAJHash

(c) JS Divergence vs Time (d) Zoom of (c)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.02 0.04 0.06 0.08 0.1 0.12

%
 R

es
ul

ts

JS Divergence

ARRPJ
RAJ

RAJHash
Prob

ProbHash
 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0 2 4 6 8 10 12 14 16 18 20

JS
 D

iv
er

ge
nc

e

% Results

RAJ
RAJHash

(e) % Result vs JS Divergene (f) Zoom of (e)

Figure 7: Real Life Dataset (WEATHER): Throughput and Quality Throughput

Figure 10: Extreme Case
A B B C
a1 b1 b2 c1

a2 b2 b1 c2

a3 b2 b1 c3

a4 b2 b1 c4

.
aN b2 b1 cN

R1 R2

From Figure 8(a), we can observe that except for RAJ,
all methods are able to generate 100% of the results. An
interesting observation is that RAJHash is able to generate
100% of the results, whereas RAJ does not. This is because
RAJHash is able to keep the rare values b1 (from R1) and
b2 (from R2) in the sub-reservoir. When the tuples with
join attribute values b2 (from R1) and b1 (from R2) arrives,
they are assigned to the other sub-reservoir. In this way,
RAJHash was able to maintain a random uniform sample
for each of the sub-reservoirs.

[5, 7] noted that using the Reservoir method will not pro-
duce any join results for the extreme scenario. The assump-
tion made was that the Reservoir needs to be completely
filled for either of the data streams, before join processing
can start. In contrast, when a probe-insert paradigm is used
to continuously probe the reservoir while it is being built,
join results can still be produced since the rare tuples have
not been discarded from the reservoir yet. In the experi-
ment, we show that even in the extreme scenario, RAJ will
still produce results (instead of an empty result set) as it
progressive probe the reservoirs for result.

In addition, we also present a softer variant of the extreme
scenario. In this variant, we relax the constraints on the
appearance of specific join attribute values. In this variant,
the values of b1 (from R1) and b2 (from R2) have a 50%
chance of re-appearing in the dataset. From Figure 9(a),
we can observe that Prob, ProbHash, RAJ and RAJHash
produce the same percentage of results. From Figure 9(b),
we can observe that the quality of the results produced by
RAJ and RAJHash are significantly better.

6. CONCLUSION

591

 30

 40

 50

 60

 70

 80

 90

 100

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 R

es
ul

ts

% Memory Allocated

ARRPJ
RAJ

RAJHash
Prob

ProbHash
 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

JS
 D

iv
er

ge
nc

e

% Memory Allocated

ARRPJ
RAJ

RAJHash
Prob

ProbHash

(a) Percentage of results produced (b) JS Divergence

Figure 8: Extreme Scenario : Vary Amount of Memory

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 R

es
ul

ts

% Memory Allocated

ARRPJ
RAJ

RAJHash
Prob

ProbHash
 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
JS

 D
iv

er
ge

nc
e

% Memory Allocated

ARRPJ
RAJ

RAJHash
Prob

ProbHash

(a) Percentage of results produced (b) JS Divergence

Figure 9: Extreme Scenario Variant : Vary Amount of Memory

6.1 Summary
In this paper, we have investigated the problem of pro-

gressive approximate join processing using limited memory.
Though several approximate join processing techniques

have been proposed, the focus has always been maximization
of the size of the set of results. In this work, we have clearly
differentiated the notions of quantity and quality. We have
shown that algorithms can favor one or the other. We have
also empirically demonstrated that there exists a trade-off
between the two strategies as they compete for the usage of
memory.

We have shown that stratification of memory with hash
partitioning can significantly improve the efficiency of pro-
gressive approximate joins and therefore improve through-
put without sacrificing quantity and quality. We have also
shown that reservoir sampling based progressive approxi-
mate joins are superior when quality matters.

We propose four new progressive approximate join algo-
rithms: ARRPJ, ProbHash, RAJ and RAJHash. The former
two, like Prob, favor quantity, the latter two favor quality.
ProbHash improves on Prob on every aspects. RAJ and
RAJHash produce results of significantly better quality. In-
terestingly, although they produces less results, RAJ and
RAJHash are the fastest to produce because of the simplic-
ity of the reservoir data structure and algorithm.

6.2 Future Work
As future work, we are currently studying two problems.

Firstly, we are studying a unified framework for approxi-

mate join algorithms, which balances between quality and
quantity. The framework will allow straightforward general-
ization to other data models (e.g spatial, high-dimensional,
XML). Secondly, we are also studying the design of multi-
way approximate join algorithms.

Prob and ProbHash cannot be easily generalized to other
data models. This is due to the dependence on the ar-
rival probabilities of the partner data stream. While the
arrival probabilities for relational data can be computed in
a straightforward manner, it is difficult to compute such
probabilities for data from other data models. Similarly,
Prob and ProbHash cannot be easily extended for multi-way
approximate join, unless the multi-way join query plan is de-
composed into a series of binary joins. This is because for a
multi-way join, it is not clear which is the partner stream.
Decomposing the multi-way join query plan to a series of
binary joins would limit the adaptiveness of the join.

One of the advantages of using RAJ and RAJHash is that
they can be easily generalized to other data models. In ad-
dition, they can also be easily used in multi-way joins. This
is because the decision to discard a tuple from the reservoir
(or sub-reservoirs) does not depend on the data model. For
multi-way joins, multiple reservoirs can be defined for each
of the data streams. We are currently investigating the re-
sult quality of the answers that are produced using RAJ and
RAJHash for other data models.

7. REFERENCES
[1] M. Al-Kateb, B. S. Lee, and X. S. Wang. Reservoir

sampling over memory-limited stream joins. In
SSDBM, page 23, 2007.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and

592

J. Widom. Models and issues in data stream systems.
In PODS, pages 1–16, 2002.

[3] S. Babu and J. Widom. Continuous queries over data
streams. SIGMOD Record, 30(3):109–120, 2001.

[4] D. Carney, U. Çetintemel, M. Cherniack, C. Convey,
S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and
S. B. Zdonik. Monitoring streams - a new class of data
management applications. In VLDB, pages 215–226,
2002.

[5] S. Chaudhuri, R. Motwani, and V. R. Narasayya. On
random sampling over joins. In SIGMOD, pages
263–274, 1999.

[6] W. G. Cochran. Sampling Techniques, 3rd Edition.
John Wiley, 1977.

[7] A. Das, J. Gehrke, and M. Riedewald. Approximate
join processing over data streams. In SIGMOD, pages
40–51, 2003.

[8] A. Das, J. Gehrke, and M. Riedewald. Semantic
approximation of data stream joins. IEEE Trans.
Knowl. Data Eng., 17(1):44–59, 2005.

[9] P. B. Gibbons. Distinct sampling for highly-accurate
answers to distinct values queries and event reports.
In VLDB, pages 541–550, 2001.

[10] M. Greenwald and S. Khanna. Space-efficient online
computation of quantile summaries. In SIGMOD,
pages 58–66, 2001.

[11] C. J. Hahn, S. G. Warren, and J. London. Edited
synoptic cloud reports from ships and land stations
over the globe, 1982-1991,
http://cdiac.esd.ornl.gov/ftp/ndp026b, 1996.

[12] J. Lin. Divergence measures based on the shannon
entropy. IEEE Transactions on Information Theory,
37(1):145–151, 1991.

[13] G. S. Manku and R. Motwani. Approximate frequency
counts over data streams. In VLDB, pages 346–357,
2002.

[14] M. F. Mokbel, M. Lu, and W. G. Aref. Hash-merge
join: A non-blocking join algorithm for producing fast
and early join results. In ICDE, pages 251–263, 2004.

[15] F. Olken. Random Sampling from Databases. Ph.D.
dissertation, Computer Science, University of
California, 1993.

[16] F. Olken and D. Rotem. Simple random sampling from
relational databases. In VLDB, pages 160–169, 1986.

[17] Y. Tao, M. L. Yiu, D. Papadias, M. Hadjieleftheriou,
and N. Mamoulis. RPJ: Producing fast join results on
streams through rate-based optimization. In
SIGMOD, pages 371–382, 2005.

[18] W. H. Tok, S. Bressan, and M.-L. Lee. RRPJ :
Result-rate based progressive relational join. In
DASFAA, pages 43–54, 2007.

[19] T. Urhan and M. J. Franklin. XJoin: Getting fast
answers from slow and bursty networks. Technical
Report CS-TR-3994, University of Maryland, 1999.

[20] J. S. Vitter. Random sampling with a reservoir. ACM
Trans. Math. Softw., 11(1):37–57, 1985.

593

