
Data Services in your Spreadsheet!

Régis Saint-Paul, Boualem Benatallah
School of Computer Science & Engineering

University of New South Wales
Sydney NSW 2052, Australia

{regiss, boualem}@cse.unsw.edu.au

Julien Vayssière
SAP Research, RC Brisbane

Level 12, 133 Mary Street
Brisbane QLD 4000, Australia
julien.vayssiere@sap.com

1. INTRODUCTION
End-user programmers—the 45 million of them, as esti-

mated for 2001 in US alone [7]—routinely use spreadsheet
to visualize, manipulate, and analyze data. Thanks to this
environment, they can build applications that solve their
daily problems. Even building a report can be seen as pro-
gramming an application that takes corporate data as in-
put and outputs a presentation. To build this application,
spreadsheet users have to import data and place them in
spreadsheet cells, highlight the important pieces, compute
maybe some aggregates, add a chart or two. If well done,
this application will be used each time data are updated to
effortlessly produce a fresh report.

Service oriented architecture (SOA) emerged as a response
to the general problems of enterprise application integration
(EAI) and enterprise information integration (EII) [5, 2].
This architecture offers a unified and high-level view of the
company resources.

In particular, the advent of data services [4] and standards
such as Service Data Objects (SDO)[8], professional devel-
opers now benefit from high-level and integrated data access.
Integrated because developers can access transparently from
a single end-point to information that may be managed by
various systems and stored in various locations. High-level
because data services rely on a conceptual modeling of the
information—namely the Entity-Relationship (ER) model.
For example, developers can retrieve from a data service an
entity customer. This entity presents information retrieved
for some parts from a relational database and for the rest
from a supply chain management software. From this entity,
developers can also access to related entities such as the pur-
chase orders or the invoices of this particular customer.

Undoubtedly, spreadsheets need to be integrated with SOA.
Indeed, there already exist some efforts to this end. For in-
stance, Microsoft Excel Services [1] allows to incorporate Ex-
cel computations as part of a larger process. Another exam-
ple is given by Visual Studio Tool for Office (VSTO) which
allows to isolate the presentation elements of a spreadsheet
from the data it contains. Data are stored as separate XML

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT’08, March 25–30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003 ...$5.00.

documents and can be consumed by other applications.
These initiatives, however, are intended for professional

developers. A solid background in object-oriented program-
ming is prerequisite for using VSTO. Manipulating SDO en-
tities can alternatively be done by using the macro language
that accompanies spreadsheet environments. But few end-
users are ready to invest time in learning a macro language,
which resort to learning object-oriented programming.

Other approaches, targeted toward end-users, exist. For
instance, StrikeIron [3] is a commercial add-in to MS Ex-
cel that allows to perform simple invocation of web services.
However, the features it offers do not allow manipulation of
complex objects as found in data services. The invocation
results in imported data in the spreadsheet that are a col-
lection of atomic values in cells. The relationship that may
exist among these data, how they relate to an entity, or how
the imported entity is related to other entities is lost.

For the majority of end-users, spreadsheet programming
means formulas and cells manipulations only, sometimes as-
sisted by wizards or visual assistants. An integration solu-
tion has to preserve this programming model and it has to
accommodate existing spreadsheet environment.

In this demonstration, we present SpreadATOR, a mid-
dleware for integration of spreadsheets with SOA. We make
the following contributions:

• In order to leverage end-users expertise in spreadsheet
programming, we base our solution to forming web
services invocation messages on a formula language.
This language allows more expressiveness than purely
graphical approach while remaining simple enough for
end-users experienced in spreadsheet programming;

• Data service invocation typically returns composite en-
tities such as customer. Our approach makes these
composite entities first class values of cells. Users can
then layout the various components of an entity and
maintain the original relationships with other entities;

• We propose a method to help users benefit from rela-
tionships that exist between entities for accessing re-
lated information. For instance, a user may access the
list of purchase order entities corresponding to a cus-
tomer imported by a previous service invocation. We
also allow users to program, in the spreadsheet, com-
putations that apply to business entities (e.g. com-
puting the average of the last 5 purchase orders of a
customer). These computations can be reused for any
entity of the same type (e.g., displaying for all the

690

A B C D
1 0042
2 Ford Prefect
3 150 Beer
4 2 Towel
5 1 Babel Fish
6
10 . . .

(a) Source spreadsheet with hierarchi-
cal representation of orders

QuoteRequest
Account

Login =“MyLogin” {MyLogin}
Password =“MyPass” {MyPass}

Orders [] (1 item)
Order

Id =A1 {0042}
ShipTo

FirstName =A2 {Ford}
LastName =B2 {Prefect}

OrderDetails [] (3 items)
OrderLine

Quantity =B3:B5 {150, 2, ...}
ProdName =C3:C5 {Beer, Towel, ...}

(b) Target XML schema with mapping spec-
ifications for order 0042

Figure 1: A spreadsheet and its exportation specification

customer of a list the average computed on a single
customer).

• We propose to enhance the traceability of imported
data by offering a generic facility for meta-data dis-
play. Meta-data provide information such as the last
update of a value, its precision, its source, etc. These
information are central concerns in data quality. We
also allow users to reference meta-data when writing
formula expressions.

2. SERVICE INVOCATION
Web services are invoked by sending an XML query mes-

sage. For invoking services from a spreadsheet, it is therefore
necessary to allow users to build a message that conforms
with the interface of a given service operation (typically ex-
pressed using XMLSchema). To build the invocation mes-
sage, a user has to specify a mapping between the source
spreadsheet and the message schema, referred to as the tar-
get schema.

The role of a mapping specification is to express “corre-
spondences” between spacial location of data in the spread-
sheet and elements of the target schema. The obvious way
to express spacial location in spreadsheet is through cell
or range notations, a fundamental of spreadsheet program-
ming. We propose to reuse it by expressing mappings through
statements of the form l = Formula where l is a label (i.e.,
an element or an attribute in the corresponding XML doc-
ument) of the target schema and Formula is an expression
based on classic spreadsheet formula language. This de-
sign decision guaranties that users’ investment in learning
spreadsheet programming is leveraged. Any1 valid classi-
cal spreadsheet formula expressions is also a valid mapping
expressions in SpreadATOR.

Similar to spreadsheet programming, users can input map-
ping formula i) independently of each other and ii) in any
order. Moreover, each mapping formula input or update
immediately triggers an evaluation displayed to the user for
feedback.

This approach is illustrated in Figure 1. The user inter-
face shows both the spreadsheet (on the left) and the target
schema (on the right) in roughly the same way as depicted in
Figure 1. We use this schematic representation rather than

1With the exception of matrix formulas

a screenshot because, in the same way as classical spread-
sheet formulas, mapping formulas are not displayed contin-
uously. Users may edit them upon selecting a given label of
the schema and only the evaluation is permanently shown
in regard of the label.

Figure 1(b) presents few examples of mapping formulas:

• Login=“MyLogin” uses a constant expression to spec-
ify the value of login;

• Id=A1 uses a cell reference to specify the value of Id,
in our example, the value corresponding to A1 in the
spreadsheet is the string “0042”;

• Quantity=B3:B5 uses a range expression to specify
that there are 3 values in the spreadsheet representing
quantities.

A similar mapping could have been achieved using purely
graphical tool such as the XML mapping tool [6] built in
MS Excel. However, using formulas to specify mappings
offer a greater expressiveness when compared to graphical
only solutions. Moreover, the added expressiveness is not
obtained at the cost of new learning on the part of users
since they can readily reuse their experience in programming
with spreadsheet formula language in this new context. We
give below few examples (expressed using MS Excel syntax)
of the advantages that arise from using formulas in mapping
specification:

Data transformation. Suppose that instead of First-

Name and LastName as two separate attribute, the service
schema expects a FullName, the corresponding mapping can
be specified with FullName=A2&’ ’&B2.

Lists of varying size. The mapping shown in Fig-
ure 1(b) lakes generality in that the list of purchased item
is of exactly 3 items. In order to obtain a mapping valid re-
gardless of the number of rows detailing the purchase, users
can use the following expression:

OrderDetails=OFFSET(B3, 0, 0, COUNTA(C:C), 2)

This formula returns a range starting at cell B3 and span-
ning 2 columns. This range is dynamic since the number
of rows is computed by COUNTA(C:C) which returns the
number of non-empty cells in column C. Note that this map-
ping replaces the two mappings expressed on Quantity and
ProdName in Figure 1(b). This illustrate another feature of

691

SpreadATOR which allows mappings to be expressed indif-
ferently at the tuple level (i.e., on label OrderDetails or
OrderLine) or at the element level (i.e., on label ProdName
and Quantity).

Noncontiguous lists. Suppose that users have an exist-
ing spreadsheet where a list is divided into several categories
identified by intermediate rows bearing the category title.
The user needs to express the list of table parts that are to
be exported as a merged list in the invocation message. A
mapping expressing such situation would be similar to:

Quantity=B3:B5,B9:B13,B17:B30

ProdName=C3:C5,C9:C13,C17:C30

In addition to the possibilities natively offered by for-
mula expressions, SpreadATOR extends the formula lan-
guage with new symbols allowing mapping of various situa-
tions. Due to space restriction, it is not possible to present
here these extensions.

3. CONSUMING SERVICES RESPONSES

3.1 Formula-based data importation
Data services give access to complex composite entities.

However, in traditional spreadsheet applications, cells can
only contain atomic values such as integer or string. For-
mulas are similarly limited to return only values compatible
with cell content. While it may seem a natural solution,
we argue that modifying spreadsheet formula language so
that it accounts for complex data types is not appropriate.
Indeed, for most applications and users, this language sim-
plicity is its greatest asset and its limitations are not per-
ceivable.

In order to account for the complexity of external data
types while altering as few as possible existing spreadsheet
applications, we position our system SpreadATOR as mid-
dleware for spreadsheet integration with data services.

A representation is built through a collection of formulas
that are attached to spreadsheet cells. Formulas are main-
tained in a separate context—called the external mapping
definition—which leaves untouched the original formula lan-
guage and the overall behavior of the spreadsheet environ-
ment.

Figure 2 shows the mapping definition in one spreadsheet
grid and its evaluation in another. In reality, the spread-
sheet user only sees one grid only. Traditional formulas and
SpreadATOR formulas are merged in a single interface, mak-
ing the programming very intuitive to spreadsheet develop-
ers. They are oblivious of the fact the two types of formulas
are maintained by different systems.

SpreadATOR formula language is meant to reflect the way
resources are accessed and the model in which entities are
represented. Our implementation of SpreadATOR relies on
JScript.Net (.Net implementation of javascript) for formula
evaluation. Thus, formula syntax (of this implementation)
of SpreadATOR corresponds to that of cell B2. However,
for accessing services built according to the REST model,
a same approach could be adopted using a language in the
style of XPath (as illustrated in cell B3 Figure 2.

Both formula examples in Figure 2 return an atomic type
(a string), but statements returning object references are
also valid. For example, =Customers[’001’] returns a ref-
erence to an instance of customer and =Customers returns

Customer
lastName
firstName

Customer 002
Dent
Arthur

Customer 001
Prefect
Ford

Customer 003
Beeblebrox
Zaphod

Spreadsheet application

A B C D

1

2

3 Dent

4

Prefect

SpreadATOR External mapping definition

A B C D

1

2

3

=Customers[“001”].LastName

4

=\\Customers\002@lastName

External Mapping Definition

Figure 2: Formula-based representation of compos-
ite entities

a reference to the complete list of customers. The refer-
ence returned is managed by SpreadATOR; for Excel, the
cell simply contains a string representation of these objects
(obtained by the default transtyping given by toString()).
The advantages of storing a reference to a composite entity
in a cell are:

• It is now possible to refer directly to these composite
objects to build their representations on the spread-
sheet. For example, if B2=Customers[’001’], we can
have a formula B3=B2.lastName. Thus, it suffices that
the content of B2 changes (e.g. if it is replaced by a
reference to customer 002), for all related formula to
change accordingly. This makes formula short, easy to
read and efficient to compute;

• The content of cell B2 now has a type. It is possible to
display additional information corresponding to that
particular entity type and permit navigation to related
entities through the template mechanism, described in
the next Section.

We want to emphasize that, despite the object-like syn-
tax of the formula language used in SpreadATOR, we do not
assume any familiarity of end-users with object-oriented pro-
gramming. First, users access only pre-built objects avail-
able from data services, they do not actually “create” these
objects. Second, the use of formula does not preclude the
complementary usage of wizards or visual assistants to gen-
erate the formulas. Traditional spreadsheet formulas are
themselves often built by using wizard dialogs. The visual
assistant we propose in SpreadATOR allows to build entity
representation by drag&drop manipulations.

3.2 Relationship based manipulations
Our aim is to allow spreadsheet users to benefit from

the rich relationships that may exist between entities. To
this end, we propose a template mechanism. The idea of
template is not new to spreadsheet and end-users are al-
ready familiar with it. The innovation of SpreadATOR is
to associate templates with the type of composite objects—
each type may have several templates—and allow to define
a generic representation used for all instances of that type.
Templates are given names and are proposed in a drop-down
menu (see Figure 3(a)).

Suppose a worksheet with a formula A1=Customers[001];
that is, cell A1 contains, from SpreadATOR point of view, a
reference to the instance of type Customer that represents

692

(a) A worksheet accessing 3 RSS feeds (b) Template view of one RSS feed and object explorer

Figure 3: Representing Composite Entities in Spreadsheet using SpreadATOR

the customer 001. When A1 is selected, users can open a
template associated to the type Customer (or create a new
template for that type). An internal object named obj is
associated to the instance referenced in A1. Users can use
this reference to build a representation of this object.

While formulas used in a worksheet refer to external enti-
ties (e.g. formula =Customers[001].lastName represents an
access to a particular customer), formulas used in templates
references an internal object denoted obj. For example, in
a template suited for objects of type Customer, we would
have a formula such as =obj.lastName. The approach used
to build the template is exactly the same as for a worksheet
and relies on the same visual assistant, only the formula
generated by the assistant are different.

The template defines how to represent an object obj. Ac-
cessing a template is equivalent to a relationship navigation
since the template can display any information related to the
selected instance—for example, the list of purchase orders
of the selected customer.

Furthermore, SpreadATOR allows to access the customized
grid representation of an object type from a worksheet that
contains instances of that type. For example, suppose that
a customer template called “PO details” is used to compute
in cell G4 the average of POs worth more than 100$. From
our worksheet example above, where cell A1 contains a ref-
erence to customer 001, we can access the custom aggregate
of the template using the formula =template(A1,’PO de-

tails’,G4).
This formula can easily be duplicated for all the customers

present on a worksheet, simply changing the reference A1.
In object-oriented terminology, it is as if the type Customer
had been extended with a new method that computes the
custom aggregate. When this formula is evaluated, obj is
associated with the reference contained in A1. It can be seen
as the SpreadATOR equivalent to keyword this in object
oriented programming. However, obj stands for “current
cell composite content”, rather than“current instance of that
class”.

By comparison, computing this custom aggregate on a
list of customers in traditional spreadsheet programming
approach—that is, without resorting to another program-
ming paradigm such as a macro language—is more com-

plex. For example, one could import the list of customers
in a worksheet and either (i) import as a large table all the
purchase orders of all customers in a second worksheet or
(ii) import the list of POs in a separate worksheet for each
customer. In either case, one would have to rebuild the join
between the list of customers and that of POs, i.e., to look
for the starting and ending row corresponding to a customer
(case (i)) or to retrieve the worksheet corresponding to a
customer (case (ii)). The formula language of spreadsheet
includes these lookup functions. But why should users have
to build this join when it is readily available in the ER data
model?

3.3 Meta-data management
Meta-data are not very different in nature from other in-

formation related to a given entity. They mainly differ by
their semantics and usages. Meta-data are typically not val-
ues that users want to lay out on the spreadsheet because
they are not essential attributes of the information accessed.
They represent a complement of information, kind of a docu-
mentation; they speak about data. For example, a Business
Intelligence (BI) software often provides access to Key Per-
formance Indicator (KPI) such as “Order processing delay”
which expresses in days the average time needed to process
a customer purchase order. Such KPI are high level aggre-
gates. Users need to know what they exactly mean, how
they are evaluated, when they were last refreshed, how ac-
curate they are, etc. We need meta-data (i) to always be
accessible whenever we examine a KPI and (ii) not to oc-
cupy cells of their own on the worksheet—unless, of course,
the specific application we build calls for it.

Thus, we propose in SpreadATOR to display meta-data
separately from the worksheet in some reserved space of the
user interface (see the bottom-right area in Figure 3(a)).
We define meta-data as a collection of 〈name, value〉 pairs
obtained from a collection of 〈name, formula〉 tuples that
depend—in the same way as the template mechanism—on
the type of the composite object contained in the cell. The
former is used for display in a list when a cell containing a
composite object is selected, while the later corresponds to
a collection defined by the user where each formula refers
to the selected object through the keyword obj introduced
in the previous section. For example, end-users can de-

693

Figure 4: Mashup application for sales opportunities

fine a meta-data for type Customer with 〈Last contacted,
obj.lastContactDate〉. When a cell containing a customer
is selected, the evaluation of this formula is displayed in
the bottom-right section of the screen, e.g. 〈Last contacted,
21/06/2006〉.

4. DEMONSTRATION
In order to identify new opportunities for selling enterprise

software, one method used by sales persons is to monitor the
stock price of publicly-listed companies for any discontinuity.
A strong rise or fall of a company’s stock is often a sign that
a significant event just happened in the life of the company,
and any such event may potentially be an opportunity to
sell software.

For example, a sharp increase in the stock price may be
the consequence of new plans to expand the business, or of
the company becoming the target of an acquisition. In the
first case, the company will need new software to manage
its expanded operations. In the second case, sales person
need to react quickly since mergers and acquisitions often
translate into IT integration projects. This kind of projects
is an opportunity as well as a threat since existing software
could be ripped and replaced in the process. Therefore, a
clear advantage can be gained from talking to the customer
before competitors do.

The implementation of this scenario leads to building a
form of mashup application in the spreadsheet by combining
data obtained from i) a web site delivering XML documents
with financial informations ii) RSS feeds of news and iii)
SAP web services for accessing a CRM system. The appli-
cation comprises four different parts, which can be seen in
the screenshot presented in Figure 4.

The top part of the application displays the top 5 biggest
increases and the top 5 biggest decreases in the stock price
of companies on the Australian Securities Exchange (ASX).
We obtain this information by performing an HTTP GET
call to the asx.com.au Web site, which returns an XML
document. Because the information returned is properly
structured, we can display it in columns. One important
column is the one displaying the stock symbol, which is a
three-letter code that uniquely references a given company’s
stock. Since SpreadATOR comes with a built-in library for
performing HTTP calls, all we have to do is drag&drop la-
bels from the structure of the returned XML document onto
the spreadsheet in order to display the different fields of the
message in different columns. The resulting set of formulas
is then copied in order to show only the top 5 best and worst

performers of the moment.
Using this information, the sales person can see that some-

thing happened. Now, the next thing to do is to understand
why. At this stage, the user may input into the cell with
a yellow background the symbol of a stock he is interested
in investigating. This then triggers the download of recent
financial news where the stock symbol appears. These news
are obtained from Google News using an RSS feed. Here
again, since SpreadATOR natively supports newsfeeds as a
complex entity, all we have to do is use the drag-and-drop
features in order to properly arrange the display of the six
most recent news items that contain the required keyword.

The bottom part of the user interface is a lookup of the
company’s internal CRM system that gives us information
about LEI as a customer: which salesperson is responsible
for that account for example, and how much software has
been sold to them so far. These information are important
when making phone calls: a sales person would not approach
a customer in the same way if they sold them a major soft-
ware upgrade last months or haven’t heard from them in five
years. The enterprise application used here was the SAP
CRM product which exposes a number of web services.

Through this scenario, we demonstrate:

• How service invocation is achieved by building mes-
sages using formulas;

• How service responses bearing complex documents can
be seen as a first-class cell value and used to built a
spreadsheet representation also using formula;

• The graphical environment that allows to perform most
of these manipulation by simple point and click oper-
ations;

• Access to related information in the form of meta-data
such as the last refresh time/date of a data obtained
by service invocation;

• Access to related entities by navigation through entity
relationships using the template mechanism.

5. ACKNOWLEDGMENTS
Authors wish to thank Trang Nguyen and Xiaoping Yang

for their work on the implementation of SpreadATOR.

6. REFERENCES
[1] Excel Services Overview. Microsoft Corp., 2006.

[2] G. Alonso et al. Web Services - Concepts, Architectures
and Application. Springer-Verlag, 2004.

[3] B. Brauer. Next evolution of data integration into
microsoft excel. Technical report, StrikeIron Inc., 2006.

[4] M. Carey. Data delivery in a service-oriented world: the
BEA AquaLogic data services platform. In
SIGMOD’06, pages 695–705, New York, USA, 2006.

[5] A. Halevy et al. Enterprise information integration:
successes, challenges and controversies. In SIGMOD’05,
pages 778–787, New York, USA, 2005.

[6] F. Rice. Creating XML mappings in excel 2003.
Technical report, Microsoft Corp., 2005.

[7] C. Scaffidi, M. Shaw, and B. Myers. Estimating the
numbers of end users and end user programmers. In
VL/HCC’05, pages 207–214, 2005.

[8] Next-generation data programming: Service data
objects. Technical report, IBM, BEA, 2003.

694

