
On-Line Discovery of Hot Motion Paths∗

Dimitris Sacharidis
Natl. Technical University

Athens 15780, Greece
dsachar@dblab.ntua.gr

Kostas Patroumpas
Natl. Technical University

Athens 15780, Greece
kpatro@dblab.ntua.gr

Manolis Terrovitis
Natl. Technical University

Athens 15780, Greece
mter@dblab.ntua.gr

Verena Kantere
Natl. Technical University

Athens 15780, Greece
verena@dblab.ntua.gr

Michalis Potamias
Boston University
MA 02215, U.S.A.
mp@cs.bu.edu

Kyriakos Mouratidis
Singapore Mgmt. Univ.

188065, Singapore
kyriakos@smu.edu.sg

Timos Sellis
Natl. Technical University

Athens 15780, Greece
timos@dblab.ntua.gr

ABSTRACT
We consider an environment of numerous moving objects,
equipped with location-sensing devices and capable of com-
municating with a central coordinator. In this setting, we
investigate the problem of maintaining hot motion paths,
i.e., routes frequently followed by multiple objects over the
recent past. Motion paths approximate portions of objects’
movement within a tolerance margin that depends on the
uncertainty inherent in positional measurements. Discovery
of hot motion paths is important to applications requiring
classification/profiling based on monitored movement pat-
terns, such as targeted advertising, resource allocation, etc.
To achieve this goal, we delegate part of the path extraction
process to objects, by assigning to them adaptive lightweight
filters that dynamically suppress unnecessary location up-
dates and, thus, help reducing the communication overhead.
We demonstrate the benefits of our methods and their effi-
ciency through extensive experiments on synthetic data sets.

1. INTRODUCTION
Location-aware devices are ubiquitous nowadays, rang-

ing from GPS-enabled cell phones and PDAs, to location
sensing micro nodes and active RFID tags. This fact en-
ables monitoring of moving objects and real-time analysis
of their motion patterns. Positioning devices share a num-
ber of common characteristics: (i) typically, they are widely
deployed in large areas; (ii) they communicate with central
coordinators using an underlying network; (iii) they collect
numerous, yet inherently inaccurate, location readings per

∗This work has been funded by the project PENED 2003,
which is cofinanced 75% of public expenditure through EC
- European Social Fund, 25% of public expenditure through
Ministry of Development - General Secretariat of Research
and Technology and through private sector, under measure
8.3 of OPERATIONAL PROGRAMME “COMPETITIVE-
NESS” in the 3rd Community Support Programme.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT’08, March 25–30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003 ...$5.00.

minute; and (iv) they have limited resources, such as scarce
battery life and little to moderate memory and processing
power. Having in mind such a dynamic and distributed en-
vironment, we present a framework for on-line analysis of
objects’ movement that extracts motion patterns and iden-
tifies frequently traveled paths.

We present two distinct applications that motivate the
need for on-line analysis of motion patterns. Consider the
case of a mobile phone carrier that wishes to serve targeted
advertisements to subscribers. This service would be based
on people’s profiles and continuous market basket informa-
tion about other clients that follow similar paths. For in-
stance, in case of a major sporting event, many subscribers
are expected to move towards the hosting venue. En route, a
large number of them may stop by at certain facilities (e.g.,
rest areas, kiosks, malls) to purchase food, drinks, etc. This
buying pattern (i.e., many people shopping for similar types
of products at specific locations), can be utilized to promote
a particular store that has an advertising deal with the mo-
bile phone carrier. For example, customers passing by the
advertised store during the event may be informed about its
exact location and its current promotions or discounts.

Motion path extraction could also assist in an emergency
situation. Suppose that a fire breaks up in a rural area and
spreads rapidly. Nearby villages may be at risk and their res-
idents could panic due to conflicting news and/or guidance.
As many people evacuate hastily their homes, they tend to
follow similar paths. Authorities need to monitor their trails
(tracked by their mobile phones) and immediately identify
popular escape routes in order to direct assistance, e.g., am-
bulances, fire engines, etc.

Both examples discussed above require the on-line discov-
ery and maintenance of paths followed by multiple moving
objects. To the best of our knowledge, this is the first work
on this compelling problem where we distinguish three chal-
lenging issues. First, numerous clients are expected to be on
the move, so many object trajectories should be maintained.
To enable effective decision making (e.g., advertising, alert
scenarios), they need to be grouped and summarized, so that
attention is drawn only to the most salient trails. We opt
for a solution that consolidates multiple, neighboring trajec-
tories into motion paths at the coordinator side. For each
of them, we maintain its hotness, i.e., the number of objects
that have recently traveled through it. Thus, end users are
able to visualize/analyze only the hottest paths, and get a
quick idea of the current situation. Figure 1 exemplifies this
process, illustrating (a) the original object trajectories, and

392

Trajectory
of object 3

Trajectory
of object 1

Trajectory of object 2
Trajectory
of object 4

(a) Input Trajectories

Tolerance:

(3)

(2)

(1)

(2)

Hotness

Motion path
²²

²²

²²

(b) Motion Paths

Figure 1: Motion path extraction

(b) the extracted motion paths and their hotness. As de-
picted, each motion path corresponds to a set of trajectory
segments that evolve similarly, approximating them within
a user-specified tolerance ε. In our framework, detected mo-
tion paths and their hotness are maintained in light-weight
index structures enabling fast access. To restrict detection
of salient paths to up-to-date readings, we impose a sliding
time window of size W , which excludes from consideration
any locations received more than W time units ago.

The second challenge in our design regards scalability in
terms of communication overhead and computation cost at
the coordinator. The näıve approach whereby all objects
continuously relay their locations to the coordinator is prac-
tically infeasible because it incurs excessive bandwidth con-
sumption, and may also lead to coordinator overloading due
to the computational cost for motion path extraction. To
alleviate these problems, we propose a distributed approach
for processing and filtering location updates. Each object
executes locally an algorithm (RayTrace) that compresses on-
the-fly its trajectory abiding by a tolerance ε. Thus, the
object itself reduces the number of locations that will be re-
ported to the coordinator. Method RayTrace sets a permis-
sible spatiotemporal extent, and transmits the recent trail
only when the current object location falls outside this filter.
Aided by the coordinator, RayTrace then sets a new filter that
reflects better its current motion pattern. This approach ex-
ploits the computational capabilities at the client side, while
substantially reducing the communication overhead (due to
fewer location updates) and the processing cost at the coor-
dinator (for summarizing trajectories into motion paths).

Dealing with the inherent inaccuracy of location measure-
ments is the third major consideration. Position readings are
imprecise; moreover, they carry different degrees of uncer-
tainty, depending on the handset capabilities and the net-
work infrastructure. A GPS-enabled PDA provides more ac-
curate location tracking than a cell phone, which relies solely
on cellular triangulation for estimating its position. Further-
more, phones with just a few surrounding base stations offer
less accurate measurements. Our proposed framework takes
into account this uncertainty, as well as its varying degrees,
and reports motion paths with discrepancy guarantees.

Outline The remainder of this paper is organized as fol-
lows. Section 2 surveys previous work related to the motion
path discovery problem. Section 3 formulates the problem
and outlines the proposed solution. Section 4 describes the
RayTrace algorithm for filtering positional updates. Next,
Section 5 presents the path extraction process and the asso-
ciated index structures. Section 6 includes our experimental
study. Finally, Section 7 concludes the paper.

2. RELATED WORK
The problem of discovering frequently followed, i.e., hot,

routes has also been examined in a recent work [17], but only
for the case that objects are confined to move in a known
network. A hot route in this context is a sequence of edges,
not necessarily adjacent, that share a high amount of traf-
fic. The approach presented in this paper differs in several
aspects. First, it assumes unrestricted movement on the xy
plane; second, in measuring hotness it considers the time in-
terval that objects crossed each designated path; and, third,
it accounts for imprecision in positional measurements.

Our work is relevant to the domain of spatiotemporal
data reduction, particularly to the topic of trajectory com-
pression. Most existing algorithms [5, 20] attempt to com-
press singleton trajectories in isolation, by adapting the off-
line Douglas-Peucker algorithm [8]. This line simplification
technique drops the least important vertices to achieve a re-
duced representation. It is widely used in spatial databases,
but it requires multiple passes over the data, which yields
it inapplicable to on-line streaming applications. Sampling
techniques have been proposed in [23] for compressing iso-
lated trajectories. Furthermore, segmentation of multiple
trajectories by fitting into axis-parallel rectangles is consid-
ered in [1, 11], where dynamic programming, greedy and
heuristic techniques are employed so as to minimize the
empty space in rectangles or to preserve pair-wise distances
among trajectories.

An adaptation of Douglas-Peucker algorithm more suit-
able to dynamic environments was presented in [20]. Instead
of considering the entire trace of an object for applying line
generalization, an opening window principle is employed to
reduce the amount of timestamped locations considered at
each step. The technique starts processing positions in tem-
poral order and progressively produces successive line seg-
ments. More specifically, after fixing a starting point, the
algorithm examines candidate line segments by setting their
floating endpoint as much farther as possible, provided that
all intermediate locations are within a given tolerance from
the constructed segment. In case this rule is violated, two
alternative policies were proposed for fixing the endpoint
of the new segment. The conservative approach (DP-nopw)
chooses the location that caused the violation, i.e., the one
with the greatest distance from the examined segment. The
eager approach (DP-bopw) takes the location with the great-
est possible timestamp, which is the one just before the float-
ing endpoint. Checking violations is very costly, since all lo-
cations between the starting point and the current floating
endpoint must be examined each time. Overall, this method
is constrained to choose a subset of the reported locations as
endpoints and thus, it offers a rather strict trajectory synop-
sis. In Section 6 we describe an adaptation of this technique
to hot motion path computation and use it as a competitor.

Detecting clusters of moving objects, moving clusters and
frequent motion patterns has also attracted research inter-
est. Clustering similar objects based on their movement
characteristics, e.g., current position and velocity, is dis-
cussed in [18, 14]. More related to our problem is the work
in [15] for identifying dense clusters of objects which move
similarly over a long period of time. According to their
definition clusters need not contain the same set of objects
all along their lifetime. The difference from the problem
we tackle here is twofold. First, although moving clusters
evolve across a path that is interesting (i.e., hot), we only

393

need to identify and maintain the motion paths per se, and
not the actual clusters or their constituent objects. The
second, and most important, reason is that a motion path
may be hot even when no moving cluster crosses it. To
justify this, note that a moving cluster requires objects to
be close enough to each other at any time instant during a
sliding window of W time units. In contrast, a motion path
can become important as long as a sufficient number of ob-
jects have crossed it in the last W time units, no matter
if they travel synchronously or not across that path. The
work in [19] computes spatial regions containing frequent
periodic (e.g., daily, weekly, etc) motion patterns. Besides
limitations including a priori knowledge of periodicity, this
method treats trajectories merely as sequences of locations
(i.e., it eliminates timestamps), hence, being inapplicable to
our timestamp-sensitive problem.

Another topic related to our work is trajectory clustering.
From a data mining perspective, a methodology was intro-
duced in [9] and it was based on a probabilistic mixture of
regression models, which the moving objects are assumed
to follow. Also, detecting similarity among trajectories or
timeseries has also attracted considerable research interest.
Common problems have to do with outliers, local shifts in
time, as well as movements of varying total length. Sev-
eral distance measures have been proposed in order to iden-
tify similar trajectories or subsequences, e.g., Time Warp-
ing Distance [28], Longest Common Subsequence [26], and
Edit Distance on Real Sequences [6]. However, all these
techniques are not particularly tailored to handle on-line
trajectories, since they require comparisons over large por-
tions of objects’ movement, while their objective is to group
together trajectories in their entirety. Hence, they fail to
identify trajectories that locally follow common routes, be-
cause the overall computed distance is greatly affected by
distant segments. The most recent approach was presented
in [16] and proposes a technique for clustering smaller linear
partitions instead of entire trajectories stored in a database.
The main idea of the algorithm is that trajectories are first
split into several parts at characteristic points and then sim-
ilar line segments are grouped together into a cluster. For
identifying common motion patterns, the minimum descrip-
tion length (MDL) measure is adapted from the domain of
pattern recognition, but it seems quite sensitive to appropri-
ate selection of parameters. Moreover, time is ignored and
trajectory segments are considered to be spatial polylines.

In this work, we assume a distributed stream environment,
where multiple, geographically dispersed objects transmit
data to a single coordinator. The latter assumes the role
of consolidating, processing and presenting results to users.
Such a setting is common in many sensor network appli-
cations and data streaming systems. For example, in [21,
7, 2] the coordinator aims to minimize communication cost
by appropriately setting and updating filters on data sources
that enable on-line calculation of counts, quantiles, and top-
k entities, respectively. Filters of a spatial nature have been
employed in the literature on continuous monitoring of range
[10, 4, 24], nearest neighbor [12, 27] and medoid [22] queries.

Our handling of inaccuracy is aligned with the increasing
interest in managing imprecise and uncertain data, such as
in [3]. Closely related to our model of uncertainty, albeit not
for spatio-temporal data, is the work in [25] that proposes
an index for storing and querying imprecise spatial locations
modeled by some probability density function.

3. PRELIMINARIES
In this section we formulate the addressed problem and

present the assumed system architecture, in Sections 3.1 and
3.2, respectively.

3.1 Problem Formulation
We consider objects moving in the xy plane and hence

all spatial locations are points pi = (xi, yi). A point pi
accompanied with a timestamp ti is called a timepoint and
denoted as 〈pi, ti〉. The trajectory of an object consists of a
set of timepoints T = {〈pi, ti〉}. The location of an object
at time ti is denoted as T(ti) = pi. Following common prac-
tice, between any two consecutive timestamps the object is
assumed to move with constant velocity. As a result, the
object’s location at time tk, where ti, ti+1 are consecutive
timestamps and ti < tk < ti+1, is considered to lie in the
(directed) segment pipi+1 and can be calculated using lin-
ear interpolation. In the following, we assume that time is
discrete and that all timestamps are multiples of some time
granule.

We say that a point pa is close to an object with tra-
jectory T if there exists a time tk such that pk = T(tk) is
within distance ε to pa, where ε is a user-specified tolerance
parameter. In other words, the object has passed near pa
at some time tk. Even though our methods apply to any Lp
metric (including the Euclidean), for ease of illustration in
the following we assume the max-distance, i.e., the distance
between pa and pk is defined as max{|xa − xk|, |ya − yk|}.
Given tolerance ε, a directed line segment papb is called a
motion path if there exists a time interval [ta, tb] such that
point p(λ) = pa + λ(pb −pa) is close (within distance ε) to
some object’s location T at time t(λ) = ta+λ(tb−ta) for all
λ ∈ [0, 1]1. We say that the object crosses the motion path
and, inversely, that the motion path fits the object’s move-
ment. Intuitively, an object traveling during time interval
[ta, tb] along motion path papb would always be within dis-
tance ε to another object.

Figure 2 draws with bold line the trajectory of an object
moving along the x axis versus time t. The shaded enve-
lope represents all points that are within distance ε to the
trajectory (at some timestamp). Figure 2 also shows 4 mo-
tion paths, papb, pcpd, pepf , pgph. The object crosses
these motion paths during the time intervals, [ta, tb], [tc, td],
[te, tf], [tg, th], respectively. A motion path paired with its
associated time interval draws a line segment on the xt plane
that is completely inside the shaded envelope.

Note that for a single object and for any time interval one
could find an infinite number of motion paths. Fix some
object i, and let Si = {〈papb, tatb〉} denote a set of pairs
consisting of a motion path papb that fits the object’s move-
ment together with the time interval [ta, tb] during which the
object crosses it. We say that Si is a covering motion path
set for object i if at any time tk the object either crosses a
single motion path, or crosses two motion paths papb, pcpd,
but tk = tb = tc and pb ≡ pc, i.e., one’s start point is the
other’s end point. A covering motion path set implies that
one could construct a hypothetical object whose trajectory
is always close to object i’s trajectory. For this reason a cov-
ering set can be considered as a simplification of the object’s
movement. A motion path is considered valid if it belongs to

1Since time is discrete, the λ values are selected so that t(λ)
is a valid timestamp.

394

pa

pe

pb

pc

pg

ph

pf
pd

ta te tb=tg tc tf td th

x

t

²²

Figure 2: Motion paths example

a covering motion path set for some object. In the remain-
der of this paper, we only deal with valid motion paths and,
thus, omit the valid denotation. Returning to the example
in Figure 2, S = {〈papb, tatb〉, 〈pgph, tgth〉} is a covering
motion path set for the object considered. Indeed, pb ≡ pg
and tb = tg.

In the previous, we have assumed that the object’s loca-
tion is accurately known. In a more realistic setting, though,
the location sensing device reports coordinates with a degree
of spatial uncertainty. The position of an object constitutes
a random vector Pi = (Xi, Yi), where Xi, Yi are indepen-
dent random variables. Let us note that there is no un-
certainty regarding the timestamp. We repeat the previous
definitions considering spatial uncertainty. Given tolerance
ε and δ, we say that a point pa is close to an object with
trajectory T if there exists a time tk such that Pk = T(tk)
is within distance ε to pa with probability greater than 1−δ.
Assuming the max-distance metric, we require:

Pr (max{|Xk − xa|, |Yk − ya|} ≤ ε) ≥ 1− δ.

The motion path in the presence of spatial uncertainty is de-
fined accordingly, considering the aforementioned definition
of proximity.

Recall that a motion path could fit multiple objects (or
even the same object) during different time intervals. We
define the hotness of a motion path to be the number of
times objects have crossed it during the past W time units.
The problem of hot motion path discovery can be formulated
as follows:

Problem 1 [Hot Motion Paths] For a set of moving
objects, given tolerance ε (or ε, δ) and a time window
of length W , find covering motion path sets and report
the top-k hottest motion paths.

Intuitively, Problem 1 states that we wish to discover
motion paths that are crossed frequently by many objects.
Depending on the chosen covering motion path sets, the
characteristics of the top-k hottest motion path can vary
greatly. Since this problem is motivated by the need to
identify generalized frequent flows of movement, the best
top-k result should ideally contain motion paths that are
as large as possible (abiding by the tolerance parameters)
and as hot as possible. Hot and large motion paths clearly
convey more information (e.g., objects have crossed them

and stayed close to each other for a long time), compared
to short, but equally hot paths. To assess the quality of
the top-k hottest motion paths, we devise a simple met-
ric, termed score, that promotes longer paths. The score
of a motion path is defined as its hotness multiplied by its
length, and the score of the top-k set is the average score of
its motion paths.

Given this notion of quality, the discovery process set forth
in Problem 1 requires us to carefully construct long motion
paths so that they fit as many objects as possible. Consid-
ering the freedom in choosing covering motion path sets for
each object, this clearly becomes a daunting task. To em-
phasize on the latter, consider the case of a single moving ob-
ject. Problem 1 degenerates to summarizing the object’s tra-
jectory with the fewest, and hence longest, segments. The
solution [13] to this degenerate case requires two passes over
the timepoints and requires linear space and time. As we
discuss in the next section, such algorithms are prohibitive
in our setting since they require storing all timepoints seen
so far. Before proceeding to this section and the system
model description, we summarize in Table 1 definitions and
notation used throughout the paper.

Symbol Description

pi = (xi, yi) point in xy space
〈pi, ti〉 timepoint in xyt space

Ti = {〈pj , tj〉} trajectory of object i
ε, δ tolerance parameters

〈si, tis〉 start of a motion path for object i

〈ei, tie〉 end of a motion path for object i
Tolerance Square square of side 2ε around point pj

Spatial Safe Area (SSA) pyramid (li(t),ui(t)) in xyt space

Final Safe Area (FSA) rectangle (li,ui) at time te
Statei the state transmitted to coordinator

W time window
Λ processing epoch
hj hotness of motion path pjpj+1
APi available motion paths for object i
CPi candidate motion paths for object i
AVi available vertices for object i
CVi candidate vertices for object i

Table 1: Primary symbols and functions

3.2 System Model
We consider an environment where the moving objects

are geographically distributed and can communicate with a
central coordinator. Each object is capable of sensing its
own location with some uncertainty (modeled by tolerance
ε, δ) and is capable of performing simple processing tasks re-
quiring little memory. In this setting, the coordinator must
maintain hot motion paths by collecting information from
the objects.

There are two main issues we must take into account in
this setting. First, objects have scarce battery life. Send-
ing messages over the communication channel is typically
orders of magnitude more power consuming compared to
CPU processing. Following common practice, we must strive
to minimize communication to and from the coordinator.
Furthermore, objects listen for incoming messages only at
predefined time instances termed epochs, i.e., every Λ time
units. The second issue is the streaming nature of location
measurements. An object should not store the unbounded
stream of measurements, let alone transmit it to the coor-
dinator; rather, it should only store information necessary

395

xx

yy

tt
hp0; t0ihp0; t0i

hp1; t1ihp1; t1i

Q1´SSA jt1Q1´SSA jt1

SSASSA

(a) t = t1

hp0; t0ihp0; t0i

xx

yy

tt

hp1; t1ihp1; t1i

hp2; t2ihp2; t2i Q2Q2

SSA jt2SSA jt2

(b) t = t2, before

xx

yy

tt

hp1; t1ihp1; t1i

hp2; t2ihp2; t2i

SSA0 jt2 =Q2\SSA jt2SSA0 jt2 =Q2\SSA jt2

hp0; t0ihp0; t0i

(c) t = t2, after

Figure 3: Updating the SSA

to discover motion paths. Consequently, all processing must
be performed in a single pass over the stream.

We propose a two-tier approach. The first tier involves
a one-pass greedy algorithm, termed RayTrace, running on
each object independently. The second is a discovery strat-
egy, termed SinglePath, that runs on the coordinator and
utilizes a lightweight index structure, termed MotionPath, for
storing the hot motion paths. The RayTrace algorithm acts
as a filter maintaining a permissible spatiotemporal extent,
termed Spatial Safe Area (SSA), around the object’s trajec-
tory. When a location measurement falls outside the SSA,
the current state of the object is sent to the coordinator;
a response will arrive in the next epoch. The coordinator
executes the discovery strategy in the following manner. It
processes messages from all reporting objects and extracts
motion paths for each of them using information found in
MotionPath. Finally, in the upcoming epoch, it sends a mes-
sage to each reporting object informing them about the mo-
tion path they just crossed. We present in detail the RayTrace

algorithm in Section 4, while we discuss the index structures
and discovery strategy in Section 5.

4. FILTERING POSITION UPDATES
The RayTrace algorithm constructs a permissible spatio-

temporal extent (the aforementioned SSA) around an ob-
ject’s trajectory, given some tolerance. RayTrace is a one-pass
greedy algorithm that requires only constant per-measure-
ment processing time and constant space. We first examine
the case of tolerance ε; the adaptation to uncertainty, mod-
eled by tolerance (ε, δ) is presented in Section 4.1.

The SSA is a spatiotemporal extent defined by the area
between an initial timepoint 〈s, ts〉 and a rectangle, termed
Final Safe Area (FSA), at time te. The main property of
SSA is that a motion path se exists such that e lies inside
FSA and the object crosses it during [ts, te]. The objective
of the RayTrace algorithm is to identify the latest timestamp
te, and hence the largest SSA, such that a motion path can
be found for the [ts, te] interval. Once RayTrace determines
that the SSA cannot grow larger without violating the toler-
ance parameters, it notifies the coordinator about its state.
The coordinator executes a discovery strategy and responds
with a timepoint 〈e, te〉, which serves as the initial time-
point for the new SSA to be constructed by RayTrace. The
requirement that the endpoint is the next initial timepoint
guarantees that we construct a covering motion path set.

The SSA is uniquely identified by an initial timepoint
〈s, ts〉 and an FSA at time te. Alternatively, we can de-

note the SSA as a time parameterized rectangle (l(t),u(t))
for ts ≤ t ≤ te, so that l(ts) ≡ u(ts) ≡ s and (l(te),u(te))
defines the FSA. We use the notation SSA|ti to imply the
projection of the SSA at time ti; thus, FSA = SSA|te.

Algorithm 1 illustrates RayTrace in detail. In the following
we describe the most important step in RayTrace, updating
the SSA. Given tolerance ε, each timepoint 〈pi, ti〉 is associ-
ated with a square Q of side 2ε around pi, termed tolerance
square. When examining a timepoint 〈pi, ti〉, (Lines 24–40
in Algorithm 1), RayTrace must update the SSA so that its
projection at ti is not greater that the tolerance square. It
first computes the projection SSA|ti (Lines 26–27):

l(ti) = l(ts) +
ti − ts
te − ts

(l(te)− l(ts))

u(ti) = l(ts) +
ti − ts
te − ts

(u(te)− l(ts)).

RayTrace also constructs the tolerance square Q (Lines 29–
30). Then RayTrace examines if an intersection between
SSA|ti and Q exists. If it does, then the SSA is updated
by setting SSA|ti to be the intersection (Lines 33–34) and
proceeds to process the next timepoint. If an intersection
does not exist, the SSA cannot extend any further in time.
RayTrace sends its state to the coordinator (Line 38) and
goes into waiting mode (Line 36), expecting the server re-
sponse. The state message 〈l(ts), ts, l(te),u(te), te〉 includes
the initial timestamp ts, the start point s ≡ l(ts), the fi-
nal timestamp te and the FSA (l(te),u(te)). As long as an
object is in waiting mode, it stores incoming timepoints in
a buffer (Lines 37 and 11). When the next epoch arrives,
RayTrace receives the final timepoint that becomes the initial
timepoint for a new SSA (Lines 13–16) and proceeds with
processing new timepoints.

Example 1 Figure 3 illustrates the process of updating the
SSA, which is depicted in all figures as the shaded spatiotem-
poral extent. The initial timepoint is 〈p0, t0〉; assume that
a new timepoint 〈p1, t1〉 arrives, which defines the tolerance
square Q1. Since this is the first timepoint after the ini-
tial one, the SSA|t1 becomes equal to Q1, as demonstrated
in Figure 3(a). Next, 〈p2, t2〉 arrives defining the tolerance
square Q2, illustrated in Figure 3(b). The projection of the
SSA at the t = t2 plane (SSA|t2) is then intersected with
Q2. Finally, the result of the intersection forms the projec-
tion SSA′|t2 shown in Figure 3(c).

The RayTrace algorithm requires only constant space to

396

store the SSA information; a total of three points and two
timestamps — i.e., the state of the object. The main task of
the algorithm is to maintain and update the SSA. For each
newly arriving timepoint, this process (projecting and inter-
secting) requires only constant time. Also, assuming that a
response from the coordinator comes in a timely manner,
i.e., at the next epoch, the buffer does not grow indefinitely.
Therefore, RayTrace requires O(1) space and O(1) time per
processed timepoint.

Algorithm 1 RayTrace algorithm

1: Procedure RayTrace
2: Input: Timepoint Stream {〈pi, ti〉}
3: Input: Initial Timepoint 〈p0, t0〉
4: Input: Tolerance ε
5: ts ← t0; te ← t0 ; // Initialization of SSA
6: l(ts)← p0 ;
7: waiting ← false ;
8: buf ← {} ;
9: while 1 do

10: Retrieve timepoint 〈pk, tk〉 ;
11: buf .pushBack(〈pk, tk〉) ;
12: if waiting and time is next epoch then
13: Retrieve timepoint from coordinator 〈pcoord, tcoord〉 ;
14: ts ← tcoord; te ← tcoord ; // Reset SSA
15: l(ts)← pcoord ;
16: waiting ← false
17: end if
18: while !waiting and buf ! = {} do
19: 〈pi, ti〉 ← buf .popFront() ;
20: if te = ts then // This is the first timepoint after ts
21: te ← ti ;
22: l(te)← pi − (ε, ε) ;
23: u(te)← pi + (ε, ε) ;
24: else
25: // Calculate FSA = SSA|ti at time ti
26: l(ti)← l(ts) + ti−ts

te−ts
(l(te)− l(ts)) ;

27: u(ti)← l(ts) + ti−ts
te−ts

(u(te)− l(ts)) ;

28: // Calculate tolerance area (li,ui) around pi
29: li ← pi − (ε, ε) ;
30: ui ← pi + (ε, ε) ;
31: if intersects((l(ti),u(ti)), (li,ui)) then
32: te ← ti ; // Update SSA
33: l(te)← max{l(ti), li} ;
34: u(te)← min{u(ti),ui} ;
35: else // Send message to coordinator
36: waiting ← true // Go into waiting mode
37: buf .pushBack(〈pi, ti〉)
38: Send state 〈l(ts), ts, l(te),u(te), te〉
39: end if
40: end if
41: end while
42: end while
43: End Procedure

4.1 Handling Uncertainty
We first consider the case of a single spatial dimension.

A timepoint 〈Xi, ti〉 in this case implies that the location
Xi of the object at ti is a random variable. Given tolerance
ε, δ and assumming that Xi follows a normal distribution
with known parameters, we show how to adapt the RayTrace

algorithm. The objective is to define a tolerance interval for
this timepoint.

The location sensing device reports the mean value xi and
the standard deviation σi of a measurement. We assume
that the actual location follows a normal distribution, i.e.,
Xi ∼ N(xi, σ

2
i). Let x′i denote a location that is close to

Xi. According to the definition of proximity in Section 3.1
we require:

Pr
(
|Xi − x′i| ≤ ε

)
≥ 1− δ,

or equivalently:

Pr
(
Xi ∈ [x′i − ε, x′i + ε]

)
≥ 1− δ. (1)

Thus, the probability that Xi is in the [x′i−ε, x′i+ε] inter-
val must be above 1− δ. Figure 4 illustrates the probability
density function (pdf) of Xi. Equation 1 states that the
shaded part of the pdf has area more than 1− δ. This area
is calculated as:

Φ

(
x′i + ε− xi

σi

)
− Φ

(
x′i − ε− xi

σi

)
,

using the standard cumulative distribution function Φ(z) =
1
2

(
1 + erf

(
z√
2

))
. The error function values erf(z) are typ-

ically precomputed and a table lookup is sufficient for esti-
mating the area.

lili uiui

x0
i¡²x0
i¡² xixi x0

ix0
i x0

i+²x0
i+²

Figure 4: Calculating tolerance square for 〈Xi, ti〉

As shown in Figure 4, x′i should not be far from the mean
value xi; otherwise, the shaded area cannot be larger than
δ. Let li (ui) be the lowest (highest) value that x′i can take
without violating Equation 1, i.e., li, ui are the solutions to
the equation:

Φ

(
x′i + ε− xi

σi

)
− Φ

(
x′i − ε− xi

σi

)
= 1− δ (2)

Equation 2 can be solved numerically in two ways: (i) per-
form a binary search on Φ’s lookup table for those x′i values
satisfying the equation (exploiting Φ’s monotonicity); (ii)
precompute a lookup table which provides li, ui given ε and
δ and simply perform a single lookup per instance. The lat-
ter option is the most efficient method requiring constant
time per timepoint. Note that since lookup tables are given
for the N(0, 1) distribution, a simple transformation is re-
quired for arbitrary mean and standard deviation.

Observe that [li, ui] serves as the tolerance interval for
the timepoint 〈Xi, ti〉 with mean value xi and standard de-
viation σi. Consequently, the RayTrace algorithm can be
straightforwardly adapted to construct an SSA given uncer-
tainty in the input data.

An important point is that for given ε, δ a timepoint might
have standard deviation σi such that Equation 2 has no so-
lutions. To avoid this pitfall, a proactive approach would be
to set more relaxed tolerance bounds, assuming knowledge
of the typical imprecision in the location sensing devices.
A retroactive approach would be to assign some predefined
minimal tolerance area to these timepoints.

In the case of xy plane, the location Pi = (Xi, Yi) of an
object at time ti is a random vector following a joint 2d

397

normal distribution: Pi ∼ N(pi,Σi). A location (x′i, y
′
i) is

close to (Xi, Yi) if:

Pr
(
max{|Xi − x′i|, |Yi − y′i|} ≤ ε

)
≥ 1− δ,

or equivalently:

Pr
(
(|Xi − x′i| ≤ ε) ∧ (|Yi − y′i| ≤ ε)

)
≥ 1− δ.

Assuming independence among x, y measurements (hence,
Σi = diag

(
(σxi)2, (σyi)2

)
) the last equation becomes:

Pr
(
|Xi − x′i| ≤ ε

)
· Pr

(
|Yi − y′i| ≤ ε

)
≥ 1− δ. (3)

To simplify Equation 3, we require the failure probability
to be less than δ

2
for each dimension, i.e.:

Pr
(
Xi∈[x′i−ε, x′i+ε]

)
≥1− δ

2
, P r

(
Yi∈[y′i−ε, y′i+ε]

)
≥1− δ

2
,

since (1 − δ
2
)2 is marginally larger than 1 − δ for small δ

values. Therefore, using such a simplification, it is easy to
revert to the single dimensional case and apply the method-
ology previously described.

5. DISCOVERING HOT MOTION PATHS
The coordinator performs three basic tasks: (i) stores de-

tected motion paths, (ii) maintains their hotness, and (iii)
executes a discovery strategy, processing the state of report-
ing objects. In the following, we discuss each task in detail.

5.1 Storing Motion Paths
We use a lightweight grid-based index to store motion

paths. The entire space is partitioned into a predetermined
number of cells and the endpoints of each motion path are
indexed, rather than the linear shape of the path itself. Ev-
ery cell contains a list of entries about endpoints that fall
inside its area. Apart from storing coordinates of these end-
points, each index entry also stores the respective motion
path id and the coordinates of the other endpoint. The list
is sorted by motion path id and organized in a hash table.
This allows for fast insertions and deletions, requiring con-
stant (on average) time.

5.2 Hotness Maintenance
Recall that the hotness hi of a motion path pipi+1 is ex-

pressed as the number of objects that have crossed it within
a sliding window extending to the past W time units from
current time. To maintain this count for each motion path,
we use a hash table and an event queue. The hash table
uses as key the motion path id i, and stores for each i the
corresponding number of objects hi. The event queue up-
dates the hash table when the exit timestamp tie of an object
expires from window W .

Assume that we detect that an object has crossed motion
path pipi+1 with id i at [ts, te]. First, we increase (by one)
the counter for pipi+1 in the hash table. The counter will
have to be decreased at time te +W , since the correspond-
ing interval will completely fall outside the window W . To
efficiently capture these interval expirations, upon updating
hi, we en-heap tuple 〈te +W, i〉 into the event queue.

The queue is sorted on expiry time, and its head corre-
sponds to the next expiring interval considering all motion
paths and intervals in the system. When the current time
reaches the expiry time at the head of the heap, then: (i) the
top entry is de-heaped, (ii) the hotness of the corresponding

motion path is decreased in the hash table, and (iii) if the
hotness becomes 0, the motion path is deleted from the grid
and the hash table.

Each counter lookup or update in the hash table takes
expected constant time. Every en-heap or de-heap operation
in the event queue costs time logarithmic to the number of
its entries. Thus, the overall computational overhead is low.
Regarding space requirements, both structures are relatively
concise and can be maintained in main memory.

5.3 The SinglePath Strategy
The SinglePath strategy processes all state messages {〈si,

tis, l
i, ui, tie〉} received from the reporting objects. Note that

we use the superscript index i to refer to object with id i.
The objective of SinglePath is to find the hottest motion path
that starts from si and finishes somewhere inside the FSA
(li,ui). The rationale behind this policy is to minimize the
number of paths introduced by any single object, utilizing
motion paths already discovered and crossed by other ob-
jects. In order to exploit existing motion paths, one should
first probe the grid index and examine all paths intersect-
ing this FSA, since these paths could be most relevant to
the current motion of object i. However, depending on the
distribution of objects and the actual pattern of their move-
ment, it may occur that no motion path matches the current
state of that object. We distinguish three cases regarding
the information retrieved from MotionPath for each object i:

1. There are available motion paths starting from si and
ending somewhere inside the FSA (li,ui).

2. There is no available motion path, but there exist avail-
able vertices, i.e., motion path endpoints that fall inside
FSA (li,ui).

3. No available motion path or vertex is found.

Note that Case 1 simply involves updating the hotness for
a motion path that will be chosen among the available ones.
However, Cases 2 and 3 entail construction of a new motion
path for the object at hand and this path must be stored.

SinglePath attempts to identify motion paths and to com-
pute hotness collectively for all objects, in order to reuse
existing motion paths (thus, increasing their hotness) and
avoid introduction of multiple new ones. The strategy first
handles all objects for which available motion paths were
identified (Case 1). Afterwards, it takes care of the remain-
ing objects that received no path at all (Cases 2 and 3).
All cases follow a two-phase paradigm: generation of can-
didates (motion paths or vertices) and selection of hottest
candidate. Algorithm 2 shows in detail all steps involved; in
the following, we discuss the most critical operations.

Handling candidate motion paths. Throughout this
step, a search for qualifying motion paths is performed for
each object (Function GetCandidatePaths called in Line 5).
Initially, a range query is evaluated against the grid index,
specifying a rectangle (li,ui) for each object i (Line 42).
We obtain motion paths sipj that intersect (li,ui). Their
respective hotness values hj are obtained after performing
a single lookup in the hash table. Let APi = {〈sipj , hj〉}
denote the set of available motion paths retrieved for ob-
ject i (Lines 43–46). Note that the hotness of each path
in APi associated to the i-th object should increase by one
(Line 44), implying the potential influence of object i on the
significance of any of these motion paths (i.e., if eventually

398

Algorithm 2 SinglePath Strategy

1: Procedure InsertMotionPaths
2: Input: Object States = {〈si, tis, li,ui, tie〉}
3: Rall ← ∅; //Memory-resident structure for FSA’s
4: for each state 〈si, tis, li,ui, tie〉 do
5: CPi ← GetCandidatePaths(si, R(li,ui));
6: Rall ← Rall ∪ {R(li,ui)};
7: end for

//Identify overlaps among final safe areas
8: for all Rk ∈ Rall do
9: Calculate overlapping areas R{j} =

⋂
k∈{j}Rk

10: R{j}.count←| {j} |;
11: Rall ← Rall ∪ {R{j}}
12: end for

//Increase hotness of paths that appear in multiple CP’s
13: for each motion path mpi ∈ CPi do
14: mpi.hotness← mpi.hotness+ | {mpi ∈ CPj ,∀j 6= i} |;
15: end for

//Selection phase
16: for each object i in States do
17: if CPi 6= ∅ then
18: //Case 1: Examine available motion paths
19: Choose motion path mpk ∈ CPi with max hotness
20: Update hotness of mpk at MotionPath index
21: else
22: CVi ← GetCandidateVertices(R(li,ui));

//Case 2: Check available end vertices of motion paths
//Adjust vertex hotness according to potential overlaps

23: for each 〈pj , hj〉 ∈ CVi do
24: Find smallest overlap Rk ∈ Rall s.t. pj ∈ Rk

25: hj ← hj + Rk.count;
26: end for

//Case 3: Generate additional candidate vertices
27: hm ← 0;
28: for each overlap Rk ∈ Rall do
29: if R(li,ui) ∩Rk 6= ∅ and Rk.count > hm then
30: Rm ← Rk;hm ← Rk.count;
31: end if
32: end for
33: vm ← Centroid(Rm);
34: CVi ← CVi ∪ {〈vm, hm〉};
35: Choose vertex pk ∈ CVi with max hotness hmax
36: Insert motion path 〈sipk, hmax〉 at MotionPath index
37: end if
38: end for
39: End Procedure

40: Function GetCandidatePaths(vertex si, rectangle R(li,ui))
41: Initialization: APi ← ∅

//Search MotionPath index
42: Pi ← motion paths {sipj} s.t. pj ∈ R(li,ui);

43: for each motion path sipj ∈ Pi do

44: hj ← hotness(sipj) + 1; //Look-up in hash table

45: APi ← APi ∪ {〈sipj , hj〉};
46: end for
47: return APi
48: End Function

49: Function GetCandidateVertices(rectangle R(li,ui))
50: Initialization: AVi ← ∅;

//Search MotionPath index
51: Vi ← end vertices of motion paths s.t. pj ∈ R(li,ui);
52: for each distinct vertex pj ∈ Vi do
53: hj ← 0;

//Sum up hotness of all converging paths
54: for each motion path qpj terminating at pj do
55: hj ← hj + hotness(qpj);
56: end for
57: AVi ← AVi ∪ {〈pj , hj〉};
58: end for
59: return AVi
60: End Function

were chosen as hottest). Note that hotness values are only
temporarily adjusted in APi, leaving intact the contents of
the hash table.

As soon as index probing is finished, a new set CPi defines
the candidate motion paths obtained for object i; hence,
CPi = APi (Line 5). We stress that other objects may also
accentuate hotness of paths in CPi, since the sets of avail-
able motion paths are not disjoint (Lines 13–15). This is
reasonable, considering that potential selection of a specific
motion path for an object j 6= i could modify hotness rank-
ing among candidate paths for i. Finally, provided that the
set CPi of candidate motion paths is non-empty, the selec-
tion phase simply involves choosing the hottest path for each
object i among those collected in its CPi (Lines 17–20).

Handling candidate vertices. Recall that this stage af-
fects only objects for which no motion path has been identi-
fied during the previous step. For each object i, it provides a
set of candidate end vertices for a new path that will have its
starting vertex at si. Our goal is to choose the hottest pos-
sible vertex as the endpoint of this newly discovered motion
path for object i. Intuitively, selection of the hottest ver-
tex increases the chances that object i crosses a hot motion
path immediately afterwards. Such vertices can be obtained
from existing motion paths, while hotness of a vertex is cal-
culated summing the hotness of each incoming motion path
(implying multiple segments converging to them).

Let AVi = {〈pj , hj〉} denote the set of available vertices
pj and their hotness hj for object i. The construction of
AVi is detailed in function GetCandidateVertices. Similarly
to Case 1, this set is obtained with a range query against
the grid (Line 51). The hotness of each vertex is calculated
by summing up the hotness of all converging motion paths
(Lines 54–56).

However, it is not sufficient to only consider the vertices
of existing motion paths inside the FSA. Specifically:

(i) AVi may be empty if no motion path intersects the cur-
rent FSA, so no vertices will be returned (Case 3). There-
fore, a new vertex must be generated, in a way that takes
into account motion patterns of other objects as well.
This policy increases the chance that new vertices could
also serve as endpoints of other motion paths in the fu-
ture. Thus, we can avoid further segmentation of paths.

(ii) When calculating hotness for a vertex, we must also take
into account the possibility that the same vertex may
be returned for other objects as well, thus increasing the
probability that this vertex might be more suitable for
selection.

(iii) Newly generated motion paths for other objects will also
provide additional vertices that should not be missed.

We successfully collect additional candidate vertices (be-
sides those in AVi), by examining intersections of objects’
FSA rectangles. We maintain a structure Rall that processes
the final safe areas Ri (= (li,ui)) of all considered objects
(Line 6), and calculates their overlaps R{j} =

⋂
k∈{j}Rk

(Lines 8–12). Each rectangle in Rall is associated with a
count (its perceived “hotness”), expressing the number of
rectangles that it overlaps with, i.e., c{j} = |{j}| (Line 10).
The intuition is that if we are forced to choose an arbitrary
vertex, then its hotness should be as high as the count of
the smallest stored rectangle in which it resides. This ob-
servation is better illustrated with the following example.

399

R1(1)R1(1)

R13(2)R13(2) R3(1)R3(1)

R2(1)R2(1)

R23(2)R23(2)

R12(2)R12(2) R123(3)R123(3)

(a) Intersections

R1R1
R2R2

R3R3

p1p1
p2p2

(b) Choosing a Vertex

Figure 5: Considering overlapping rectangles for ad-
ditional candidate vertices.

Example 2 Consider three objects and their respective
FSAs, R1, R2 and R3, that intersect with each other con-
structing intersections R12, R23, R13 and R123. Figure 5(a)
illustrates all original FSA’s and their overlaps, along with
their counts. Now, assume that there are no available ver-
tices for objects 1 and 3 and that there is a single available
vertex p2 for object 2 with hotness 1. If we choose p2 as
the endpoint for that object’s motion path, its hotness will
become 2 (one for the existing motion path plus one for the
newly discovered path). However, had we chosen a vertex
inside R123, say p1 in Figure 5(b), and used that as the end-
point for the motion path of all objects, its hotness would
be 3. Obviously, we should consider introducing additional
vertices from the overlapping areas with the highest counts.

Once AVi has been found, we construct CVi = {〈pj , hj〉},
the set of candidate vertices for each object i as follows. The
candidate set is initialized to the set of available vertices:
CVi = AVi (Line 22). Fix an object i and consider one of its
available vertices pj with hotness hj . Let Rk be the smallest
intersection in which pj resides and let its associated count
ck = Rk.count. Had we chosen vertex pj as the endpoint
of all objects whose FSA overlap with Rk, then its hotness
would become hj + ck. To reflect this potential influence,
we increment by ck the hotness of pj in CVi (Lines 23–26).

As soon as this update has been performed for all available
vertices of all objects, we need to generate additional can-
didate vertices, as demonstrated in Example 2. In fact, we
only need to generate a single additional vertex per object.
Let Rm denote the intersected rectangle with the highest
count cm among those of object i, i.e., among those that
fall inside FSA Ri. Then, the newly generated candidate
vertex for this object should lie inside Rm and, thus, must
have hotness cm. We choose one such vertex, e.g., by taking
the centroid of Rm, and insert it into CVi (Lines 27–34).
This scheme guarantees that candidate vertices exist even
for objects that received neither a motion path nor a vertex
from the index (Case 3). Finally, the selection phase per ob-
ject i simply involves selecting the hottest candidate vertex
among those in CVi and inserting the newly created path
into the index (Lines 35–36).

6. EXPERIMENTAL EVALUATION
In this section, we empirically evaluate the performance

of our framework, focusing on the RayTrace algorithm and
the SinglePath strategy. To better gauge its effectiveness, we
compare it against a Douglas-Peucker [8] variant, termed

DP, that discovers spatial line segments close to the objects’
movement. We must note that due to its nature, the output
line segments do not constitute proper motion paths because
they are disconnected and, in practice, they are hardly in-
terpretable. Hence, DP is not directly comparable to our ap-
proach. Rather, as it purposefully benefits already existing
line segments and is not bound by the strict covering mo-
tion path set requirements, DP is expected to assign higher
hotness to segments when compared to our methodology.

The DP Method. As described in Section 2, the windowed
variations of Douglas-Peucker algorithm proposed in [20] of-
fer concise trajectory synopses per object. However, unless
objects follow exactly the same trajectory, all motion paths
extracted will not have hotness greater than one. We choose
to relax our requirements. In particular we allow selection
of line segments that are close to objects’ movements and
ignore the time dimension. In this manner, we expect seg-
ments to achieve hotness that upper bounds the hotness
achieved by motion paths. Whenever a new segment should
be created between a starting point and the chosen float-
ing point, we do not store it at once. Instead, we check
whether an existing segment (produced earlier by another
object) falls completely within the minimum bounding box
(MBB) of the candidate segment. Each MBB is expanded
by the tolerance value, to cope with uncertainty in objects’
locations. In case such a segment exists, we need not store
the candidate segment, but we must increase the hotness
of the existing path. Otherwise, the new segment is stored
with hotness 1. This simple policy can provide an even more
dense approximation for each trajectory, with the additional
benefit that many segments now belong to multiple object
traces. On the other hand, connectivity between successive
motion paths for each object is no longer preserved. Note
that we measure DP’s quality for the sake of comparison
with SinglePath and exclude all time measurements. As ob-
served in our evaluation, DP runs significantly faster than
SinglePath because it simply performs one range query per
discovered segment.

6.1 Experimental Setting
All algorithms were implemented in C++ and compiled

with gcc on a 3GHz Intel Core 2 Duo CPU. All processing
takes place in main memory.

We generated synthetic datasets for trajectories of mov-
ing objects traveling on the main road network of greater
Athens that covers an area of 250 km2. We utilized a simpli-
fied graph of the network, assuming that nodes (representing
major crossroads) are connected via straight linear links and
not curved polylines (as in the real network). This network
is illustrated in Figure 6 and consists of 1831 links connect-
ing 1125 nodes in total. Links are ranked with weights, re-
flecting their significance in vehicle circulation. Thus, links
are classified into four categories: motorways, highways, pri-
mary roads, and secondary roads.

Each object is initially assigned at a randomly chosen
node. Whenever it is allowed to move, this object chooses
to follow one of the outgoing links of that node. To make
this decision, we calculate a ratio that expresses the rela-
tive weight of each such link compared to the total weight
of all links connected to the current node. Finally, we ran-
domly choose to follow a link with probability equal to its
ratio. We assume that all objects have equal-length dis-
placement s between successive positions, so that the next

400

Figure 6: Athens road network links.

location will be along that link or at the opposite end node
(at most). In the sequel, as long as an object does not cross
a node, it continues its course along that link. Note, though,
that movement is also controlled by another parameter that
refers to the agility of moving objects. This means that, at
each timestamp, only a portion α of the total number N
of objects is allowed to move (decided randomly), while the
rest remain stopped. Therefore, the inter-arrival time be-
tween positional measurements is not fixed for each object,
but it fluctuates with time. As in a real traffic scenario,
objects tend to follow main roads for large parts of their
movement and enter into minor roads less frequently. To
capture uncertainty, white noise is then added to object lo-
cations. In particular, a value randomly chosen between
−err and err is added to both coordinates. Although the
data were generated by considering a fixed road network,
the algorithms have no knowledge of this fact, and, hence,
cannot take advantage of it when discovering motion paths.
Intuitively, we expect the algorithms to identify the most
frequently traveled parts of the Athens’ network.

We run a set of experiments for different parameter values.
We consider N = 10,000, 20,000 and 100,000 objects that
travel with fixed agility a = 0.1. During a timestamp, ob-
jects move s = 10 meters and take a location measurement
with positional error err = 1 meter. We model uncertainty
with ε tolerance2; we vary its value from ε = 1 to 20 me-
ters. Window size is fixed to W = 100 timestamps and at
any timestamp we wish to recover the k = 10 hottest mo-
tion paths. In each experiment we vary a single parameter,
while we set the remaining to their default values. The du-
ration of every simulation is 250 timestamps and an epoch
corresponds to 10 timestamps. Table 2 summarizes the pa-
rameters involved and their ranges; the default values are
shown in bold.

To measure the efficiency and quality of the SinglePath

strategy we use three metrics. First, we measure the size
of the index in terms of motion paths. Second, we calcu-
late the score (see Section 3.1) of the top-k hottest motion
paths discovered. Finally, we measure the processing time
spent by the coordinator executing the SinglePath strategy.

2We do not consider ε, δ tolerance since the processing in-
volved is similar, as shown in Section 4.1

Parameter Values

N 10000, 20000, 100000 objects
Tolerance (ε) 1, 2, 10, 20 meters

Positional error (err) 1 meter
Agility (α) 0.1

Displacement (s) 10 meters
Window size (W) 100 timestamps

k 10

Table 2: Experimental parameters.

The reported/plotted measurements for the aforementioned
performance factors correspond to average values per epoch.

6.2 Experimental results
In the first set of experiments we vary the number of ob-

jects fromN = 10, 000 to 100, 000 while the tolerance is fixed
to ε = 10 and show the results in Figure 7. Regarding the
number of segments measured by the index size, Figure 7(a)
clearly illustrates that DP inserts fewer segments. This is
expected as DP enjoys more freedom and is not restricted to
finding motion paths. SinglePath, on the other hand, must
strictly identify motion paths that fit to some object’s move-
ment for a time interval. Note that even for 100,000 objects,
SinglePath identifies only 16% more segments compared to
DP, i.e., 10,896 versus 9,416.

Figure 7(b) shows the score for the top-10 hottest motion
paths returned by the two methods for varying N values. In
general, since DP identifies fewer total segments, their aver-
age hotness is larger than that of the motion paths found by
SinglePath. Interestingly, for N = 20, 000 SinglePath achieves
higher score that DP. This is attributed to the fact that in
this setting SinglePath extracts longer motion paths.

Figure 7(c) measures the average per epoch processing
time spent by the coordinator running SinglePath. This run-
ning time essentially determines what the smallest epoch
can be, since all processing must have finished by the next
epoch so that objects exit the waiting mode of the RayTrace

algorithm as soon as possible. As shown in the figure, for
a large number of objects N > 100, 000, processing time
becomes close to 40 secs. To compensate for this behav-
ior, one can choose to increase the tolerance parameter. As
discussed in the following, higher ε values lead to reduced
processing times.

Figure 8 measures the same metrics as before but fixes the
number of objects to N = 20, 000 and varies the tolerance
parameter from ε = 1 to 20. Figures 8(a) and 8(b) show
that RayTrace significantly outperforms the benchmark, i.e.,
it discovers fewer motion paths that are both hotter and
longer. When the tolerance increases, recall that the MBBs
of the range queries that DP issues also increase. This re-
sults in more freedom when selecting segments. Regarding
the scalability of processing time as ε increases, Figure 8(c)
clearly illustrates the benefits of relaxing tolerance values.
The processing time decreases by a factor greater than 3
when the ε increases from 2 to 20.

To better illustrate the effectiveness of our methods, Fig-
ure 9 draws the entire set of motion paths that have hotness
greater than 0 within the time window. Comparing to the
entire network shown in Figure 6, the SinglePath strategy
manages to accurately extract a set of motion paths that
resembles the (unknown to SinglePath) network. Notice that

401

 2

 4

 6

 8

 10

 10 20 50 100

m
ot

io
n

pa
th

s
(t

h
o
u
s
a
n
d
s
)

objects (thousands)

SinglePath
DP

(a) Index Size vs N

 0

 1000

 2000

 3000

 4000

 5000

 6000

 10 20 50 100

sc
or

e

objects (thousands)

SinglePath
DP

(b) Top-k Score vs N

 1

 10

 100

 1000

 10000

 10 20 50 100

tim
e

(m
s
)

objects (thousands)

SinglePath

(c) Processing Time vs N

Figure 7: Varying the Number of Objects

 1

 10

 100

 1 2 10 20

m
ot

io
n

pa
th

s
(t

h
o
u
s
a
n
d
s
)

tolerance

SinglePath
DP

(a) Index Size vs ε

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 1 2 10 20

sc
or

e

tolerance

SinglePath
DP

(b) Top-k Score vs ε

 1

 10

 100

 1000

 1 2 10 20

tim
e

(m
s
)

tolerance

SinglePath

(c) Processing Time vs ε

Figure 8: Varying the Tolerance Parameter

Figure 9: The network as discovered by SinglePath.

motion paths with larger hotness are drawn with thicker
lines. For completeness, Figure 10 focuses on the center of
Athens and draws the top 20 hottest motion paths stored in
the index.

7. CONCLUSIONS
In this work, we proposed a framework for on-line mainte-

nance of hot motion paths in order to detect frequently trav-
eled trails of numerous moving objects. We consider a dis-
tributed setting, with a coordinator that maintains hotness

Figure 10: Top 20 hottest motion paths in the center
of Athens.

and geometries of these paths in a spatiotemporal index, and
many moving clients that issue updates only for important
changes in their positions. We focus on motion patterns
during the recent past, thus discarding obsolete paths that
expire from a sliding time window. We assume freely mov-
ing objects, i.e., not restricted by some network, and our
techniques take into consideration uncertainty inherent in
location readings while providing discrepancy guarantees for
the discovered motion paths. Empirical simulations demon-
strate the ability of our methodology to provide a dense
representation of objects’ movement, as well as its efficiency
with respect to on-line maintenance of significant motion
patterns.

As part of our future work, we intend to explore methods
for improving the filtering approach by means of receiving
feedback from the server. Currently, each moving object has

402

knowledge limited to its own state. It is expected that ob-
taining information about nearby moving objects and hot
motion paths could significantly improve the splitting deci-
sions employed by the RayTrace algorithm.

8. REFERENCES
[1] A. Anagnostopoulos, M. Vlachos, M. Hadjieleftheriou,

E. J. Keogh, and P. S. Yu. Global distance-based
segmentation of trajectories. In ACM International
Conference on Knowledge Discovery and Data Mining
(KDD), pages 34–43, 2006.

[2] B. Babcock and C. Olston. Distributed top-k
monitoring. In ACM International Conference on
Management of Data (SIGMOD), pages 28–39, 2003.

[3] O. Benjelloun, A. D. Sarma, A. Y. Halevy, and
J. Widom. Uldbs: Databases with uncertainty and
lineage. In International Conference on Very Large
Data Bases (VLDB), pages 953–964, 2006.

[4] Y. Cai, K. A. Hua, and G. Cao. Processing
range-monitoring queries on heterogeneous mobile
objects. In International Conference on Mobile Data
Management (MDM), pages 27–38, 2004.

[5] H. Cao, O. Wolfson, and G. Trajcevski.
Spatio-temporal data reduction with deterministic
error bounds. The VLDB Journal, 15(3):211–228,
2006.

[6] L. Chen, M. T. Özsu, and V. Oria. Robust and fast
similarity search for moving object trajectories. In
ACM International Conference on Management of
Data (SIGMOD), pages 491–502, 2005.

[7] G. Cormode, M. N. Garofalakis, S. Muthukrishnan,
and R. Rastogi. Holistic aggregates in a networked
world: Distributed tracking of approximate quantiles.
In ACM International Conference on Management of
Data (SIGMOD), pages 25–36, 2005.

[8] D. Douglas and T. K. Peucker. Algorithms for the
reduction of the number of points required to
represent a digitised line or its caricature. The
Canadian Cartographer Journal, 10(2):112–122, 1973.

[9] S. Gaffney and P. Smyth. Trajectory clustering with
mixtures of regression models. In ACM International
Conference on Knowledge Discovery and Data Mining
(KDD), pages 63–72, 1999.

[10] B. Gedik and L. Liu. Mobieyes: A distributed location
monitoring service using moving location queries.
IEEE Transactions on Mobile Computing,
5(10):1384–1402, 2006.

[11] M. Hadjieleftheriou, G. Kollios, V. J. Tsotras, and
D. Gunopulos. Indexing spatiotemporal archives. The
VLDB Journal, 15(2):143–164, 2006.

[12] H. Hu, J. Xu, and D. L. Lee. A generic framework for
monitoring continuous spatial queries over moving
objects. In ACM International Conference on
Management of Data (SIGMOD), pages 479–490,
2005.

[13] H. Imai and M. Iri. An optimal algorithm for
approximating a piecewise linear function. Journal of
Information Processing, 9(3):169–162, 1986.

[14] C. S. Jensen, D. Lin, and B. C. Ooi. Continuous
clustering of moving objects. IEEE Transactions on
Knowledge and Data Engineering, 19(9):1161–1174,

2007.

[15] P. Kalnis, N. Mamoulis, and S. Bakiras. On
discovering moving clusters in spatio-temporal data. In
International Symposium on Advances in Spatial and
Temporal Databases (SSTD), pages 364–381, 2005.

[16] J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory
clustering: A partition-and-group framework. In ACM
International Conference on Management of Data
(SIGMOD), pages 593–604, 2007.

[17] X. Li, J. Han, J.-G. Lee, and H. Gonzalez. Traffic
density-based discovery of hot routes in road
networks. In International Symposium on Advances in
Spatial and Temporal Databases (SSTD), pages
441–459, 2007.

[18] Y. Li, J. Han, and J. Yang. Clustering moving objects.
In ACM International Conference on Knowledge
Discovery and Data Mining (KDD), pages 617–622,
2004.

[19] N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou,
Y. Tao, and D. W. Cheung. Mining, indexing, and
querying historical spatiotemporal data. In ACM
International Conference on Knowledge Discovery and
Data Mining (KDD), pages 236–245, 2004.

[20] N. Meratnia and R. A. de By. Spatiotemporal
compression techniques for moving point objects. In
International Conference on Extending Database
Technology (EDBT), pages 765–782, 2004.

[21] C. Olston, J. Jiang, and J. Widom. Adaptive filters
for continuous queries over distributed data streams.
In ACM International Conference on Management of
Data (SIGMOD), pages 563–574, 2003.

[22] S. Papadopoulos, D. Sacharidis, and K. Mouratidis.
Continuous medoid queries over moving objects. In
International Symposium on Advances in Spatial and
Temporal Databases (SSTD), pages 38–56, 2007.

[23] M. Potamias, K. Patroumpas, and T. Sellis. Sampling
trajectory streams with spatiotemporal criteria. In
International Conference on Scientific and Statistical
Database Management (SSDBM), pages 275–284.
IEEE Computer Society, 2006.

[24] S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref,
and S. E. Hambrusch. Query indexing and velocity
constrained indexing: Scalable techniques for
continuous queries on moving objects. IEEE
Transactions on Computers, 51(10):1124–1140, 2002.

[25] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and
S. Prabhakar. Indexing multi-dimensional uncertain
data with arbitrary probability density functions. In
International Conference on Very Large Data Bases
(VLDB), pages 922–933, 2005.

[26] M. Vlachos, D. Gunopulos, and G. Kollios.
Discovering similar multidimensional trajectories. In
IEEE International Conference on Data Engineering
(ICDE), pages 673–684, 2002.

[27] W. Wu, W. Guo, and K.-L. Tan. Distributed
processing of moving k-nearest-neighbor query on
moving objects. In IEEE International Conference on
Data Engineering (ICDE), pages 1116–1125, 2007.

[28] B.-K. Yi, H. V. Jagadish, and C. Faloutsos. Efficient
retrieval of similar time sequences under time warping.
In IEEE International Conference on Data
Engineering (ICDE), pages 201–208, 1998.

403

