
XCraft: Boosting the Performance of Active XML
Materialization

Gabriela Ruberg
Department of Computer Science/COPPE,

Federal University of Rio de Janeiro
P.O. Box 68.511, Brazil
gruberg@cos.ufrj.br

Marta Mattoso
Department of Computer Science/COPPE,

Federal University of Rio de Janeiro
P.O. Box 68.511, Brazil
marta@cos.ufrj.br

ABSTRACT
An active XML (AXML) document contains tags represent-
ing calls to Web services. Therefore, retrieving its contents
consists in materializing its data elements by invoking the
embedded service calls in a P2P network. In this process,
the result of some service calls can be used as input of other
calls. Also, usually several peers provide each requested
Web service, and peers can collaborate to invoke these ser-
vices. This often implies a huge search space of many equiv-
alent materialization alternatives, each with different per-
formance. In this paper, we model AXML documents from
a workflow perspective and propose a dynamic cost-based
optimization strategy to efficiently materialize them, consid-
ering the volatility of a typical P2P scenario. Our strategy
enables the optimizer, called XCraft, to get more up-to-
date information on the status of the peers, and to deliver
partial results earlier. Based on a service-oriented algebra
of plan operators, we exploit P2P collaboration to delegate
both execution and optimization control. Our tests with an
XCraft prototype show important performance gains w.r.t.
a centralized approach, whilst the optimizer also achieved to
drastically reduce the size of the search space.

1. INTRODUCTION
Data management in P2P systems have been widely ex-

plored in the last years, with emphasis on two technolo-
gies [24]: XML, as the universal format for data exchange;
and Web services, as the standard framework for programs
and data interoperation. The combination of these technolo-
gies raised powerful models for distributed computations.
In particular, we highlight the active XML (AXML) docu-
ments [2, 15, 1], which contain special elements representing
calls to Web services, and consist of a highly-adaptive media
for distributed data. To retrieve the contents of an AXML
document, the results of its embedded service calls need to
be properly materialized. We are interested in producing
and evaluating efficient materialization plans for AXML doc-
uments in a P2P scenario.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT’08 March 25–30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003 ...$5.00.

The service calls that are embedded in an AXML docu-
ment represent intensional elements. Namely, they point to
other elements which constitute the ultimate contents of the
document. Also, they can feed their input parameters from
the AXML document. In this paper, we look at the AXML
materialization problem from a workflow viewpoint. In fact,
materializing AXML documents is very similar to execut-
ing workflows: embedded service calls are tasks to be per-
formed, which are often related to each other, causing some
invocation constraints and data flows. For example, invoca-
tion dependencies occur when service calls takes the result
of other calls as input parameters. Actually, the invocation
constraints of an AXML document correspond to some basic
workflow patterns (namely sequence, parallel split, and syn-
chronization [21]). However, AXML materialization always
involves some data flows towards the peer that is gather-
ing the document contents – called master peer. Hence, an
AXML document can be incrementally composed and con-
sumed, while partial results are usually just temporary in
workflow systems. Another issue particular to AXML mate-
rialization comes from intensional answers. That is, service
calls may return other calls as the result of their invocation.
This means the problem specification may evolve at runtime,
and the system has to dynamically update materialization
plans accordingly. Ideally, the system should limit the im-
pact of these changes on the plan, thus avoiding excessive
re-optimizations.

A materialization plan determines the peers that are nec-
essary to execute the Web services requested by an AXML
document. Basically, embedded service calls include a URL
and other specific attributes that are required to invoke
a Web service, as defined in the SOAP and WSDL stan-
dards [24]. In a more flexible approach, Web services can
be pointed by abstract references, based in some ontology of
services, as in OWL-S [16]. Abstract references are very con-
venient to describe AXML data, specially because locating
the best resources in a P2P system is often burdensome for
users. This way, regardless of the services invocation order,
an AXML document can be materialized by many evaluation
alternatives [19], which differ in: (i) the peer that executes
each service call; and (ii) the peer that invokes each service
call. Notice the master peer can delegate the invocation of a
Web service to another peer, thus adhering to a typical P2P
execution model and thereby improving performance (since
it avoids sending intermediary results to the master peer).

Optimizing AXML materialization is further complicated
by the membership fluctuations of a P2P system, where
peers can join or leave the community at any time. The

299

optimizer cannot afford to spend much effort to generate
materialization plans that may be no longer valid at run-
time. Since unpredictability is endemic in large-scale sys-
tems, peers are not required to produce complete plans be-
fore starting their evaluation. Instead, partial plans can be
generated and executed (possibly in parallel). This approach
has several advantages, since the optimizer can access up-to-
date information from the system, thus increasing both the
quality of the plan statistics and the plan validity. Moreover,
it enables to get first results as fast as they are produced.

The main contribution of this paper is a dynamic cost-
based optimization strategy that addresses the invocation
of Web services along with the delegation of both execu-
tion and optimization control. This dynamic approach en-
ables materialization plans to adapt to the volatility of a
heterogeneous P2P scenario. The basic idea is to handle
arbitrarily-complex AXML documents by properly splitting
the materialization problem into smaller parts, and then in-
terleaving planning and execution. Therefore, the system
can yield partial plans and deliver partial results earlier. Our
optimizer, called XCraft, determines independent tasks for
a materialization plan, and distribute them in a decentral-
ized manner. Plans are encoded with an algebra tailored
for Web services, and contain abstract operators that en-
able incremental analysis. Moreover, plan operators suport
deferred service location, which fits well in dynamic P2P sce-
narios. To rank alternative materialization plans, we use a
cost model that takes into account tasks delegation, parallel
execution, and the main task scheduling heuristics. An ex-
perimental evaluation with an XCraft prototype shows sig-
nificant performance improvements compared to centralized
and static approaches.

This paper is organized as follows. We discuss related
work in Section 2, and motivate the AXML optimization
problem with an application in Section 3. Then, we present
basic concepts on AXML documents in Section 4. In Sec-
tion 5, we introduce a workflow-based formalism for AXML
documents, and a P2P enactment model for AXML materi-
alization. We devise our optimization strategy in Section 6,
and in Section 7 we outline the XCraft service-oriented ar-
chitecture. We describe experimental tests with an XCraft
prototype in Section 8. We conclude in Section 9 with re-
search perspectives.

2. RELATED WORK
We represent AXML invocation constraints in a formal-

ism based on directed acyclic graphs (DAG), similarly to
models used for business processes orchestration in work-
flow systems [6, 12, 21]. We use graphs rather than the
AXML tree mainly because relationships between service
calls result into invocation constraints that can be arbitrar-
ily complex. These constraints are not naturally expressed
by a tree structure. In this section, we analyze works related
to resource planning in grid and P2P systems, and AXML
optimization.

As in scheduling workflow tasks for grid computing [6,
14, 22], we are interested in determining an efficient assign-
ment of tasks (Web service executions) to distributed re-
sources (peers). However, in grid systems tasks usually are
assigned to sites, which encapsulates many servers and per-
form local optimization. These systems aim mainly for load
balance and throughput, while optimizing AXML material-
ization concerns reducing response time by minimizing plan

costs. Nonetheless, planning workflows in distributed het-
erogeneous systems is an NP-complete problem [12], and it
remains a research challenge. Likewise, optimizing AXML
materialization is a hard problem, with additional compli-
cations from the P2P volatility.

Allocating resources and scheduling tasks to efficiently ex-
ecute workflows is indeed an important issue. However, al-
though decentralization has become a key feature in both
P2P and grid computing, current systems do not support a
decentralized planner [6, 7, 9, 10, 17, 25]. The few excep-
tions [5, 8, 22] do not consider the cost of task delegation
when generating plans, and randomly assings tasks coordi-
nation to peers. Yet, our results highlight important per-
formance gains achieved by a decentralized approach. Also,
tasks delegation can significantly benefit process pipelining
techniques for memory-constrained systems, such as in [13],
since it enables to concentrate related processes in peers con-
nected by fast links. Moreover, most of the current planners
are based on static analysis [6, 8, 10, 25]. Even when they
are dynamic or adaptive, they do either greedy [17, 22] or
opportunistic [14] resources selection. Therefore, since they
work with local decisions, they perform a myopic perfor-
mance analysis.

We consider that AXML documents are similar to decision
flows [11] in the sense that their materialization is attribute-
centric. Namely, it aims at determining the values of certain
data elements. Still, conversely to [11], our strategy is dy-
namic and enables decentralized evaluation.

Previous work on AXML optimization mostly addressed
typing control [15], XML query processing [1], and data and
Web services replication [2]. Mechanisms to generate alter-
native strategies for AXML materialization, including basic
cost formula for performance prediction, was first presented
in [19]. XCraft is built upon these ideas, and focuses on
the problem of efficiently producing and evaluating mate-
rialization plans in dynamic P2P systems. Abiteboul et.
al [3] proposed a high-level algebraic framework to generate
AXML materialization alternatives, with strong emphasis
on Web services that can be described by queries. The op-
timization strategy and algebra of XCraft is complementary
to the techniques presented in [3]. Going further, we con-
tribute by handling search complexity, decentralized opti-
mization, resources heterogeneity and P2P membership dy-
namics. In XCraft, all these issues are addressed by a sys-
tematic service-oriented approach.

3. A MOTIVATING AXML APPLICATION
There is a wide range of applications for AXML docu-

ments. In [19], AXML documents are used as a practical
framework for a financial application, to support a loan pro-
gram for farming activities. In this paper, we illustrate the
main AXML materialization issues with a financial applica-
tion for foreign exchange swap, named CurrencySwap. Ba-
sically, currency swap operations rely on exchanging debts
made in a specific currency against either another foreign
currency or a fixed interest rate.

An interesting fact about most of the financial applica-
tions is that performance is just as important as other tra-
ditionally critical issues, such as security and reliability. For
instance, stock trading systems operate in near-real time.
Hence, optimization is a strong requirement in this context.

CurrencySwap setting. Figure 1(a) shows the Curren-

300

(a)
Web Service Providers

CheckSwapStatus P2,P3,P4

GetCurrentSwaps P4,P5

GetSwapLimit P2,P3,P4

GetContractPrincipal P4,P5

CalculateDebt P2,P3,P4,P5

GetContractSwaps P4,P5

GetExchangeRate P2,P3,P4,P5

GetLocalDate P1,P2,P3,P4,P5

GetContractPDF P4,P5

ExtractExcerpt P1,P2,P5

(b)

Figure 1: CurrencySwap application (a) in a P2P
setting, and (b) its Web services.

cySwap application in a P2P setting. Companies interact
with the system through brokers. The central player is the
Brazilian Mercantile&Future Exchange (BMF), which man-
ages all the swap operations coming from brokers. Swap
contracts are negotiated with BNDES, the major Brazilian
funding bank. In turn, BNDES limits the amount of debt
subject to swapping for each company, to reduce its finan-
cial risk. In Figure 1(a), dotted lines indicate peers in the
same intranet (e.g., peers P3 and P4 in the BMF intranet).
We assume data transfers in an intranet are 50 times faster
than through an Internet connection. Information on swap
contracts and financial indices are published through Web
services. Figure 1(b) lists the main Web services provided by
each peer. Peers can gather Web services descriptions either
directly from service providers or from catalogs available on
the network, such as UDDI servers [24].

During business negotiations, brokers can follow swap in-
formation for relevant contracts in a SwapWorkspace doc-
ument, such as the one in Figure 2 (in a simplified AXML
notation). Basically, the SwapWorkspace document contains
the contract number, the company name and its swap status
at BNDES, the debt principal in foreign currency, the cor-
responding converted amount (due to swap operations), the
current date, and an excerpt of the contract settlement. The
contents of the SwapWorkspace document must be gath-
ered from Web services by the invocation of embedded calls,
which are represented by the “sc” elements. We denote a
service call element as scX, where X is the value of its “id”
attribute. In our example, the broker just need to set the
contract number and the company name, and then to re-
quest (either on-demand or periodically) the system to re-
fresh the workspace contents. A materialized version of the
SwapWorkspace document is shown in Figure 3.

Materializing AXML data. The “sc” elements of the
SwapWorkspace document refer to Web services that are
provided by several different peers (see Figure 1). When a
service call is invoked at a peer, the system has to lookup

<current_contract><number> 12345 </number>
<company><name>XTechno Acme Ltd</name>

<can_swap><sc id="1" service="CheckSwapStatus">
<param name="swaps">

<sc id="2" service="GetCurrentSwaps">
<xpath>//company/name</xpath></sc></param>

<param name="current_limit">
<sc id="3" service="GetSwapLimit">

<param name="company">
<xpath>//company/name</xpath></param>

<param name="date">
<xpath>/current_contract/today</xpath></param>

</sc></param></sc></can_swap></company>
<principal><sc id="4" service="GetContractPrincipal">

<xpath>/current_contract/number</xpath></sc>
</principal>
<swap_debt>

<sc id="5" service="CalculateDebt" followed_by="1">
<param name="principal">

<xpath>/current_contract/principal/amount</xpath>
</param>
<param name="swaps">

<sc id="6" service="GetContractSwaps">
<xpath>/current_contract/number</xpath></sc>

</param>
<param name="rate">

<sc id="7" service="GetExchangeRate">
<param name="foreign_currency">

<xpath>/current_contract/principal/currency</xpath>
</param>

<param name="date"><xpath>/current_contract/today
</xpath></param></sc></param>

</sc></swap_debt>
<today><sc id="8" service="GetLocalDate"/></today>
<contract_excerpt><sc id="9" service="ExtractExcerpt">

<param name="text">
<sc id="10" service="GetContractPDF"/></param>

<param name="input_format">PDF</param>
<param name="output_format">XML</param>

</sc></contract_excerpt></current_contract>

Figure 2: AXML document SwapWorkspace.

for its possible service providers, and then choose the best
peer to execute the call. To materialize an entire AXML
document, such a decision is usually influenced by the invo-
cation of other service calls in the document, specially when
some input parameters contain other “sc” elements. A peer
may decide to delegate some related calls to be invoked at
another peer, gathering only the results that are necessary
to build the AXML document. For example, sc9 takes as
input the result of sc10 in Figure 2, but only the result of
sc9 is required to build SwapWorkspace.

Figure 4 illustrates three alternatives to materialize sc9

and sc10. The left-most alternative represents a centralized
strategy (P1 invokes both service calls), whereas in the two
others P1 delegates service invocations to either P4 (on the
center) or P5 (on the right). Delegation strategies are par-

<current_contract><number> 12345 </number>
<company><name>XTechno Acme Ltd</name>

<can_swap>yes</can_swap></company>
<principal><amount>75000</amount>

<currency>USD</currency>
<due>06/20/2006</due></principal>

<swap_debt>
<amount>196500</amount><flow>-15720</flow>
<currency>BRR</currency></swap_debt>

<today>04/15/2005</today>
<contract_excerpt> . . . </contract_excerpt>

</current_contract>

Figure 3: SwapWorkspace document after AXML
materialization.

301

Figure 4: Some AXML materialization alternatives.

ticularly interesting to evaluate nested service calls when the
respective executors can communicate through a link faster
than the link to the master peer.

Optimization opportunities. Many different evaluation
strategies can be used to materialize the SwapWorkspace
document, considering all the invocation possibilities of each
embedded service call. The materialization performance
may vary a lot for each strategy. For example, if transfering
the result of sc10 through an Internet connection costs 50s
(e.g., from P5 to P1), then it would cost only 1s by intranet
transfers. For large data transfers and many service calls,
such a difference can be much more important. Thus, a
naive materialization strategy may lead to an unacceptable
execution time.

On the other hand, optimizing the materialization of AXML
documents raises a hard problem: the number of evaluation
alternatives grows dramatically even for restricted scenarios.
For instance, in our simple CurrencySwap example, there
are at least 1.898× 1016 alternative evaluation plans for the
SwapWorkspace document, considering only possible combi-
nations of service executors and delegations. Suppose each
plan is generated and analyzed in 0.5ms (a quite reasonable
measure for modern PCs). An exhaustive search would last
more than 305 thousand years (sic!) to find the best plan.
Some heuristics can significantly reduce this search space.
In our example, we can apply the Divide&Conquer (D&C)
heuristic [19], which partitions the document materialization
into independent tasks. This would reduce the search space
to approximately 1.265 × 1014 alternative plans. Still, this
means more than 2 thousand years only to choose the best
plan, to actually start materializing the document. Despite
the great improvement, the time spent in optimization re-
mains critical. Notice that our example has only 5 distinct
peers; if this number raises to 10 peers, the search space
becomes 4096 times larger (with the D&C heuristic).

4. AXML BASICS
In the AXML universe, the basic elements of a P2P setting

are [1, 2, 4, 15]: peers, Web services, and AXML documents.
Peers are uniquely-identified agents connected through a
network, and Web services are operations that peers can
perform. A Web service may require input parameters that
are bound at runtime. The invocation of a Web service is an
event, namely a compact occurence that enables: 1) the flow
of input parameters to the peer that shall execute the ser-
vice; 2) the service execution; and 3) transfering the result
to the peer that requested the service. It has also a termina-
tion status, such as“success”and“fail”. By default, a service

call node is invoked by the peer owning the corresponding
AXML document (called master peer), but this invocation
can be delegated to another peer. To be invoked, a service
call must have all the information necessary to identify the
requested Web service (as defined in the SOAP and WSDL
standards [24]); in particular, the executor endpoint.

An AXML document is traditionally modeled as a labelled
tree with two types of nodes: (i) data nodes, or regular XML
nodes, which can be labelled with either element names or
data values (only for leaf nodes); and (ii) service call nodes,
which can encode all the information required to invoke a
Web service (URL, operation name, etc. [24]). We denote
by SCd the set of all the service calls of a document d. The
children of a service call node stand as its input parameters.
When a service call node is invoked, its respective subtrees
are passed to the Web service, and the invocation result is
inserted as a sibling of the call node in the document.

Both service input parameters and results may be AXML
data. In this case, an input parameter may be either: con-
crete, if it is explicitly provided by nested AXML elements;
or non-concrete, when it is specified by an XPath [24] ex-
pression. The latter represents a query on some AXML el-
ements; it is evaluated whenever the service call is invoked,
and its result is passed in the service request as subtrees of
the parameter element. Given two service call nodes vi and
vj , we say that vj is an intensional parameter of vi if vj is
either a concrete or a non-concrete parameter of vi. The
term fanIn(vi) denotes the number of intensional param-
eters of vi, while fanOut(vj) denotes the number of nodes
for which vj is an intensional parameter.

Elements resulting from service invocations have a spe-
cial timestamp attribute to indicate the current snapshot of
the document contents. Thus, users can choose to consider
either all the previous results or only the last invocation
results for feeding the new service requests.

5. MODELING AXML DOCUMENTS FOR
MATERIZALIZATION

To efficiently materialize an AXML document, the op-
timizer has to identify its invocation constraints, and de-
termine how embedded calls should be mapped to a P2P
system.

We present in Section 5.1 a DAG-based formalism to ex-
press these invocation constraints into dependency graphs,
which are the basis of our optimization strategy. In Sec-
tion 5.2, we characterize the participants of the materializa-
tion process, and define materialization plans.

5.1 AXML Invocation Constraints
The relationships between the service calls of an AXML

document encode some explicit and implicit constraints on
their invocation. These constraints are mostly derived from
producer-consumer relationships between service calls, and
they cannot be properly represented in the AXML document
tree since they rather form a complex graph.

Invocation dependencies are produced by intensional pa-
rameters of service call nodes, and represent precedence con-
straints on services invocations. Namely, one can determine
that some service calls must be invoked before another call,
because the latter consumes their results. To materialize an
AXML document, the optimizer has to detect both the con-
crete and non-concrete parameters of each service call node.

302

Checking concrete parameters is rather trivial and can be
done in advance, when the document is loaded and/or up-
dated. Conversely, non-concrete parameters may need a so-
phisticated analysis, such as in [1]. Also, they may imply
shared dependencies, possibly causing cycles (i.e., invoca-
tion deadlocks). We consider these cycles can be detected
and broken prior to our optimization analysis, according to
the techniques proposed in [18]. Moreover, we assume that
redundant dependencies (incurred from the transitivity of
intensional parameters) are properly reduced as in [18].

Collateral calls. Another way to express invocation con-
straints in AXML documents is specifying a “followed-by”
attribute in service call nodes. We say that the service call
node pointed by this attribute is a collateral call. This means
that an invocation of the collateral call must be triggered im-
mediately after (as a consequence of) the invocation of the
node containing the “followed-by” attribute. For simplic-
ity, we assume that a service call node may be associated
with only one collateral call.

First-level service calls. Some service call nodes play a
distinguished role in the AXML materialization process be-
cause the results of their invocation constitute the contents
of the AXML document. These results must be kept in the
document after its materialization finishes. This is opposed
to the results obtained from nested calls, which are often
temporary and only needed to invoke their dependant calls.
A node vi is a first-level service call of an AXML document
d if vi ∈ SCd and for any node vx in d, if vx is an ancestor
of vi, then vx /∈ SCd. We denote by ξ the set of all the
first-level service calls of d, such that ξ ⊆ SCd.

Dependency graph. This graph is a central input to our
optimization effort, and it concisely represents all the invo-
cation constraints that must be enforced on the service calls
within an AXML document. It can be obtained by static
analysis. Since users may specify documents with cyclic
dependencies and execution loops, we consider only valid
dependency graphs, as stated in [18].

Definition 1. The dependency graph ∆ of an AXML doc-

ument d is denoted by
〈
G,⊗,

↪→
E, ε

〉
, where G is a directed

graph with a set V = SCd of nodes, and a set E of edges.
The set V has a distinguished subset ⊗ of persistent nodes,
such that a node vi is in ⊗ iff either vi ∈ ξ or fanOut(vi) >
1. Edges in E are either simple or collateral. For any two
nodes vi and vj in V , there is a simple edge vj → vi in E iff vj

is an intensional parameter of vi. The subset
↪→
E denotes the

collateral edges of E, containing an edge vi ↪→ vj iff vj is a
collateral call of vi. The term ε denotes a state function that
maps each node in V into {active, ready, inactive, failed}.

Nodes are active if they need to be invoked, and ready if
all their dependencies are inactive. Once invoked, they are
either inactive or failed (see [18] for a detailed statechart).
Figure 5 shows the dependency graph obtained from the
SwapWorkspace document. Nodes are circles labelled with
service call IDs. Double-line circles are persistent nodes.
Dashed arrows indicate collateral edges. Notice a depen-
dency graph encodes a partial order on its service calls.

Exit points. Nodes that do not have outgoing simple edges
(i.e., with fanOut = 0) are particularly important: they
are said exit points, since they represent points where the

sc1 sc5

sc8 sc7 sc4

sc2

sc3

sc6

sc10

sc9

Figure 5: SwapWorkspace dependency graph.

materialization process finishes. They can be used to unfold
a graph into spanning trees, thus enabling the optimizer to
break the materialization problem into smaller parts.

Intensional answers. An AXML-enabled system may al-
low Web services to return service calls in their results. This
artifice can be very useful in many scenarios. For instance,
suppose a Web service does not have a certain information
that was requested by the user, but it knows which Web
services can provide it. In this case, the service may return
other calls (to alternative providers), and let the system to
pursue the request through other Web services. In this way,
the materialization of AXML data can be dynamically dis-
tributed, thus providing peers with great flexibility for collab-
oration. We present in [18] mechanisms to efficiently update
a dependency graph with intensional answers. Also, our op-
timization strategy reduces the impact of these answers on
materialization plans.

5.2 AXML P2P Enactment
A basic way to write an AXML document consists in hard-

wiring addresses for the Web services, where the user locates
a peer to execute each service call. This approach is not ade-
quate since P2P systems are often complex, highly-dynamic
arrangements of peers. Alternatively, one can use abstract
service references, based on semantic Web services [16]. An
abstract service reference points to a Web service that may
be provided by many peers. Users can rely on the system to
choose the best provider for each service call. Notice that
even if specific service addresses are used, peers can collab-
orate to materialize a document by delegating some service
calls to be invoked by other peers. Therefore, peers need
some strategy to distribute the materialization process.

In the sequel, we consider a (possibly infinite) set P of
peers identifiers. We also assume peers can gather informa-
tion about Web services distribution from the network. Each
peer keeps a list of neighbors (denoted by N , with N ⊆ P),
namely the peers it can collaborate with.

Execution scope. Given a service call node v, its execution
scope LE

v represents the peers that can execute the Web
service of v, such that LE

v = any | unknown | {P1, . . . , Pn},
where {P1, . . . , Pn} is a subset of P which provides v, with
n ≥ 0. We consider service calls can use the symbol “any”
as the peer providing a Web service, indicating that any
provider that the optimizer may find is considered good.
The symbol”unknown” denotes the optimizer does not have
local information on a requested service, but can lookup for
it in the P2P system.

Observe that LE
v = {} means the optimizer could not

discover any information about peers providing v. Since
peers can join or leave the system randomly, the execution
scope of a peer is rather a snapshot of the system status.
If LE

v is empty, then the peer can either retry to locate the
service afterwards (hoping for some change in the system)

303

or ask other peers to fill in the missing information.

Delegation scope. Distributed computing is inherent in
AXML materialization, since service executions usually take
place in different peers. Going further, in XCraft other as-
pects can be distributed. Peers can collaborate to locate
service providers, as well as peers can ask other peers to
generate parts of a materialization plan for an AXML doc-
ument. Similarly, a peer can delegate parts of the materi-
alization of a document to other peers. Given a service call
node v, the delegation scope LC

v denotes the peers that may
invoke v, such that LC

v = any | {P1, . . . , Pn}, where any indi-
cates that all the peers in N may invoke v, and {P1, . . . , Pn}
is a subset of P, with n ≥ 0.

In principle, the optimizer may consider any peer in the
system to delegate some AXML materialization, accepting
that such a peer is allowed to invoke the corresponding ser-
vice calls. However, this can rapidly make the optimization
problem intractable. Hence, we assume a small-world P2P
scenario, where the optimizer can limit LC based on LE

(and possibly a given set of peers).

Materialization plans are used to control the AXML ma-
terialization process. They are the basis of peers interaction.
A plan determines how each service call node is going to be
invoked. In XCraft, it can be split and distributed among
peers. Moreover, peers can revise some optimization deci-
sions of a plan, and then choose to re-split it among other
peers. Thereby, the materialization process can be spread
across the system in a decentralized manner.

A materialization plan is obtained from the dependency
graph of an AXML document. More precisely, we consider
the minimum forest of spanning trees (MFST) [18] of a de-
pendency graph. Plan nodes are labelled based on an al-
gebra A, which consists of a finite set of operators (see
details in Section 6.1). Furthermore, given a service call
node v held by peer Pv, an invocation plan IPv is an ex-
pression

〈
P E , P C

〉
, where P E and P C are peers that can

execute and invoke v, respectively, such that P E ∈ LE
v and

P C ∈ (Pv∪LC
v). The term ÎPv denotes the set of all possible

invocation plans of v, according to LE
v and LC

v . Material-
ization plans are defined next.

Definition 2. A materialization plan M for a dependency
graph ∆ is denoted by 〈Λ,O,L,Â, Pm〉, where: Λ is the
MFST of ∆; O associates nodes in Λ with operators in A;
L is a mapping from each node v in Λ to invocation plans in

ÎPv; Â sets for each node in Λ a total order on its children;
and Pm is the master peer of M, namely the peer that holds
M and where its persistent results must arrive. We say
that L and Â are, respectively, the location scope and the
invocation schedule ofM. Moreover, M is physical if both L
is total and it maps each node in Λ to exactly one invocation
plan; otherwise, M is abstract.

The makespan of a materialization plan is the time from
the materialization starts until the last service call invoca-
tion is completed and the required results are returned to
the master peer. Optimizing AXML materialization per-
formance consists in finding a physical plan that minimizes
the makespan. This involves two main issues: (i) planning
resource selection, that is determining a caller and an ex-
ecutor for each service call; and (ii) scheduling service call
invocations, to exploit parallelism. Since optimizing AXML

1 Algorithm DynamicallyOptimize(∆, k)
2 {Efficiently materialize ∆ based on dynamic plan

generation of k-depth steps.}
3 begin
4 Generate an initial abstract plan Mi from ∆
5 Compute the set Ti of materialization tasks

of Mi

6 Order the tasks of Ti by priority level
7 for each task t in Ti do
8 if t is to be delegated then

10 Pick a new master peer P ′m from N for t
11 Delegate t to P ′m and go to the next task
12 end if
13 Split t into k-depth subplans
14 for each subplan Mx in t in topological order
15 do
16 Locate providers and executors for Mx

17 Generate alternative physical plans of Mx

18 Rank physical plans and pick
the best Mbest

19 Execute Mbest

20 end for
21 Re-evaluate the order of tasks in Ti {optional}
22 end for
23 end

Figure 6: Dynamic optimization strategy.

materialization has exponential time complexity in the worst
case [18], our strategy focuses on finding suboptimal, yet ef-
ficient solutions in reasonable time.

6. DYNAMIC OPTIMIZATION FOR AXML
MATERIALIZATION

Efficiently materializing AXML documents involves two
major issues: a huge search space of evaluation alternatives,
and the unpredictability of the P2P setting. In a static
approach, all the service calls and the interactions among
them, their service providers, and communication costs are
assumed to be known a priori. Clearly, this is not suitable
for AXML materialization. Instead, the optimizer should
react to changes in the environment, and it should not be
based solely on plan re-optimization (which is often expen-
sive in an unstable setting). We propose an optimization
strategy that exploits dynamic techniques to reduce search
complexity and to adapt to both system performance and
membership fluctuations. In our strategy, materialization
plans are not produced at once, and re-optimization is trig-
gered only when really necessary. Not surprisingly, our tech-
niques rely on splitting a plan into smaller pieces. Yet, they
partition the problem specification such that relevant as-
pects are preserved.

Inspired on typical Web protocols, which present results
as they arrive (instead of waiting for complete documents),
our optimization strategy also allows to minimize the time
to obtain the first results of the document materialization.
We interleave planning and execution, thus the optimizer
can decide how to proceed after partial executions, when it
may have more fresh information on the system status. The
overall algorithm of our strategy is described in Figure 6.
Basically, we work on the materialization of an AXML doc-
ument by using its dependency graph. The optimizer un-

304

folds this graph into trees, and then produces an initial ab-
stract plan, whose location scope and invocation schedule
are not determined. This plan is partitioned into material-
ization tasks, which are further split into subplans accord-
ing to the topological order of the nodes. For each subplan,
the optimizer annotates the execution and delegation scopes
of the nodes, and then generates alternative physical sub-
plans. These equivalent subplans are ranked based on their
makespan, and the “best” (but not necessarily optimal) al-
ternative is picked and evaluated. This process is repeated
for all tasks. Optionally, some tasks can be delegated. Next,
we detail these steps.

6.1 Generating Materialization Plans
Generating a materialization plan consists of associating

the nodes of a dependency graph with adequate evaluation
operators, which will actually process each service request.
For example, a service call may be invoked by the master
peer or be delegated to another peer – each case requires a
different operator.

Spanning trees. Since a dependency graph is rather com-
plex, we first encode it using a tree-based structure that is
more tailored for distributed evaluation. Namely, we ex-
tract the minimum forest of spanning trees of the graph.
Several classical algorithms can be used to build spanning
trees from an arbitrary graph. For instance, the well-known
Prim’s algorithm has time complexity O(|V |2) using an ad-
jacency list as graph structure, and O(|V |log|V |+ |E|) for a
heap-based graph. This algorithm begins with a node of the
graph as the current tree, and then builds its border, that
is a set of all the nodes that can be reached from it. Nodes
in the border are added to the spanning tree and expanded
recursively. These steps are repeated until all the spanning
trees of the graph are obtained. To generate the MFST,
the exit points of the graph are used as roots for spanning.
Moreover, given two nodes vx and vy, we consider that vy is
reachable for spanning from vx if either vy → vx or vx ↪→ vy

is in the dependency graph.
An AXML document usually involves shared dependen-

cies and/or collateral calls, whose subgraphs do not corre-
spond directly to trees. To handle this, we have to build a
flat representation of the graph, where each node belongs to
exactly one tree. This is done by node detachment – namely,
by identifying and separating subgraphs that are connected
by some service call. It involves two special transforma-
tions: (i) node replication, to replace a node by a set of ex-
act copies of it, which denote the same instance of its service
call; and (ii) node cloning, to add new instances of a service
call node to the dependency graph. Node replication sepa-
rates subgraphs connected by shared dependencies, whereas
node cloning expands collateral calls. In [18], we present an
algorithm to flatten graphs based on these transformations
without loss of information.

For large AXML documents, keeping the entire depen-
dency graph in memory in order to generate its MFST may
be prohibitive. Specially after node detachment, since flat-
tening a graph usually inflates its size. Nevertheless, our ap-
proach can scale well in limited-memory scenarios, since the
optimizer does not necessarily have to generate the MFST
at once. In fact, the optimizer can expand and process each
spanning tree individually (namely, by processing seed by
seed). Even node detachment itself can be performed “on-
the-fly”, as nodes are expanded in the spanning trees.

Algebra of materialization operators. Having com-
puted the MFST of a dependency graph, the optimizer has
to turn the resulting trees into a materialization plan. This
can be done by labelling tree nodes with operators of an
algebra, which has to support Web services invocation and
P2P collaboration. Also, it should allow the optimizer to
gradually evaluate plans. From these requirements, we pro-
pose the algebra described in Figure 7.

We distinguish three operators types:

• abstract operators (µ and ρ), which encode the possible
executors and callers of service call nodes;

• physical operators (invoke, fetch and δ), which have
the information required to actually invoke a Web ser-
vice; and

• auxiliary operators (Θ and locate), which are used to
decentralize the optimization process.

Notice that both δ and the auxiliary operators do not point
directly to Web services that are requested in the AXML
document. Instead, they point to some basic Web service
for P2P collaboration [18], which in turn can handle one or
more service requests of the AXML document.

The optimizer uses these operators to compose material-
ization plans as follows. First, it generates an initial plan
with abstract operators. Then, this plan is successively
transformed by replacing, adding and/or consuming oper-
ators. Plan transformations may be due to either opera-
tors evaluation or traditional rule-based optimization. It is
worth mentioning that our algebraic approach is extensible,
since one can add other operators to the proposed algebra,
as well as new rules to handle these operators. For exam-
ple, the invoke operator could be further specialized into
other physical operators, such as an asynchronous operator
for continuous Web services.

Generating initial plans. Although there are many plan
alternatives for an MFST, abstract operators enable to per-
form a simple (and fast!) analysis to generate initial plans.
We assume each tree node yields either a µ or a ρ operator,
the latter for replicated nodes. At this phase, neither Â nor
L are set for the plan; they are progressively defined during
the optimization. Also, collateral calls are denoted by “cp ”
annotations on plan operators. Other supportive informa-
tion may be annotated, such as node height. Thus, a plan
can divided into three areas: the “main plan”, which has
all the spanning trees rooted by exit points, such that repli-
cated nodes are labelled by either ρ or fetch; the “cached
plans” area, which keeps the subplans of replicated nodes;
and the “collateral plans” area, for the subplans pointed by
“cp ” references.

Figure 8 depicts the initial abstract plan for the depen-
dency graph of Figure 5. Each node represents an algebraic
operator, which is specified in the node label.

6.2 Dynamic Plan Generation
In our optimization strategy, instead of processing the en-

tire initial plan at once, the optimizer partitions it: first,
into materialization tasks, and then into k-depth subplans.
The idea is to adopt a hybrid search technique to generate
physical plans by performing a workflow-based analysis on
subplans of each task, and evaluating each selected physical
subplan.

305

Operator Description
µ(v) The materialize operator denotes the set of possible invocation plans of the service call node v, based

on LC
v and LE

v .
ρ(v) The retrieve operator indicates that v is a shared dependency. It works like µ(v) with a cache lookup.

invoke(v, IPv) Represents an invocation of v from P C to execute the requested Web service at P E , such that
IPv =

〈
P E , P C

〉
.

fetch(v) Tells the optimizer to try to use previous invocation results of v from the cache before materializing v.

δ(v, IPv) The delegate operator asks peer P C , from IPv =
〈
P E , P C

〉
, to materialize (possibly optimizing) the

subplan rooted at v.
Θ(v) The optimize operator denotes a request for a neighbor to optimize the subplan rooted at v.

locate(v) Represents a request for a neighbor to determine LE for all of the operators missing this information
in the subtree root by v.

Figure 7: Algebraic operators for dynamic and decentralized AXML materialization.

µµµµ(sc1.1)
h=3

µµµµ(sc3.1)
h=2

µµµµ(sc2.1)
h=1

ρρρρ(sc8.1)
h=1

µµµµ(sc5)
cp=1.2,h=3

µµµµ(sc7)
h=2

µµµµ(sc6)
h=1

ρρρρ(sc8.1)
h=1

µµµµ(sc9)
h=2

µµµµ(sc10)
h=1

µµµµ(sc4)
h=1

µµµµ(sc1.2)
h=3

µµµµ(sc3.2)
h=2

µµµµ(sc2.2)
h=1

µµµµ(sc8.2)
h=1

µµµµ(sc8.1)
h=1

cached plans

main plan collateral
plans

Figure 8: Initial abstract plan for the Swap-
Workspace dependency graph.

Materialization tasks. To determine the materialization
tasks of a plan, we focus on its exit points: each tree of the
MFST yields a task. These trees are not necessarily inde-
pendent, due to shared nodes. They can be grouped into
overlay clusters, such that the trees of each cluster share
some service result. Still, once a shared node is evaluated,
its related trees may become independent. Since this en-
ables parallel execution and fosters decentralization, we try
to find a tasks schedule that would gradually increase the
parallelism potential of the plan, which is given by the num-
ber of clusters of the plan. To rank materialization tasks, the
optimizer assigns priorities for them, based on (possibly a
combination of) some properties, such as the number of ser-
vice calls, related clusters and replicated nodes [18]. These
last two criteria reflect the degree of, respectively, external
and internal data coupling of a task.

In a regular peer (i.e., with only one processor), mate-
rialization tasks are usually evaluated in a blocking mode.
Namely, they are handled one-by-one, and each task blocks
the evaluation of the others. In this case, using parallelism
potential to compute priority can help the optimizer to ex-
plore parallel execution through tasks delegation. This also
works for parallel peers, since each task blocks the evaluation
only within the scope of its clusters.

Physical subplans. Although materialization tasks are
natural candidates to a plan splitting unit, usually they are
not small enough to be efficiently optimized. Hence, the op-
timizer splits materialization tasks into subplans of depth k,
where k is a small integer, as described in [18]. For each ab-
stract subplan, the optimizer generates its alternative phys-
ical subplans. First, it tries to annotate abstract operators

invoke(sc7,<P4,P1>)

invoke(sc8.1,<P1,P1>) invoke(sc4,<P5,P1>)

(a)

δ(sc7,<P3,P2>)

invoke(sc8.1,<P1,P1>) δ(sc4,<P5,P4>)

(b)

δ(sc7,<P4,P4>)

invoke(sc8.1,<P1,P1>) invoke(sc4,<P4,P4>)

(c)

Figure 10: Some physical alternatives for the sub-
plan rooted by µ(sc7).

with their respective execution and delegation scopes, from
the the peer catalog. If some operators miss this informa-
tion, then locate operators can be used to discover the miss-
ing scopes.

Notice P2P systems are highly dynamic, and the location
scope of a plan should be preferably provided by late binding.
By restricting it to subplans, we can defer retrieving services
addresses until they are really necessary.

An abstract subplan works as a template for physical sub-
plans. The optimizer uses it to yield different combinations
of execution and delegation scope. For example, Figure 10
shows some physical alternatives for the subplan rooted by
µ(sc7) in Figure 8, according to the services distribution of
Figure 3. Notice that Figure 10(a) represents a centralized
materialization approach, such that the master peer (i.e.,
P1) has to invoke every service call of the subplan. On the
other hand, the subplan alternatives in Figure 10(b) and Fig-
ure 10(c) indicate that the master peer will delegate some
service calls to other peers, in a decentralized approach.

Several algorithms can be used to produce this search
space, such as an exhaustive method or eager enumera-
tion [18]. Yet, our work rather puts emphasis on partitioning
a plan to reduce its search space and exploit P2P collabora-
tion. Yet, it is worth noting that most of these algorithms
can perform efficiently with our strategy, since it enables
them to handle smaller problems.

306

dependency
graph initial abstract

plan

Cost Analyzer

services
catalog

annotated
subplan

physical
subplan

delegated
plan

Abstract Plan Builder

Graph Extractor

Service Locator

metadata &
statistics catalog

Plan Scheduler

scheduling heuristics

Performance Monitor

materialization
tasks pool

plan generation
algorithms

External Handler

delegated
plan

Service Call
Handler

Planner

collaboration
request

Optimization
Tasks Factory Collaboration

Service

ActiveXML peer

XCraft

remote
request

local
request

Plan Evaluator

AXML documents
repository

AXML documents
repository

optimization tasks pool

AXML
document

Figure 9: System architecture of the XCraft optimizer.

Build operator
inputs

Invoke target
Web service

Collect
operator result

Update AXML
document

Update
plan

Check intensional
answers

Monitor performance

Cache result

Check shared
nodes

Trigger
collateral call

Figure 11: Steps of evaluating a physical operator.

Subplans evaluation. The optimizer evaluates a phys-
ical subplan by inspecting operators following the invoca-
tion schedule (Â). Since we consider a decentralized envi-
ronment, where parts of a plan may be delegated to other
peers, the optimizer actually evaluates only: local opera-
tors, namely those whose caller is Pm; and delegation points,
which are mostly δ and Θ operators. Also, we assume all
delegation points return their result to Pm (i.e., transitive
delegation cannot be enforced).

To evaluate an operator of a physical subplan, the op-
timizer builds the required inputs, invokes the service call,
gathers the result, and updates both the plan and the AXML
document accordingly. Also, it monitors the service invoca-
tion and result transfer, and may trigger re-optimization if
the performance significantly surpasses expected costs. If
some error arises, the optimizer may resubmit the operator,
considering the user allows it. Moreover, the optimizer has
to check on the result for intensional answers, to properly
update the plan. This affects only the current subplan, and
eventual re-optimizations do not ripple to the rest of the
plan. Finally, the optimizer has also to load shared results
into the cache and trigger collateral calls accordingly. The
materialization process finishes when all tasks are properly
evaluated. These steps are shown in Figure 11.

7. XCRAFT ARCHITECTURE
Based on ActiveXML [4], an open-source P2P platform

to manage AXML documents, we present a service-oriented
optimizer architecture called XCraft. XCraft works as a
facade component of the ActiveXML peer; it interacts with
the AXML documents repository, internal catalogs, and the
Service Call Handler.

Figure 9 shows the main modules of XCraft. The opti-
mizer conducts AXML materialization as follows. When the
contents of an AXML document are requested, its master
peer starts a new optimization task at XCraft. The Graph
Extractor analyzes the service calls embedded into the doc-
ument and produces its dependency graph (or retrieves it,
if it is already available in the cache). This graph is used
by the Abstract Plan Builder to extract the corresponding
MFST and to yield an initial abstract plan. The Planner, a
central XCraft module, takes the initial plan, breaks it into
materialization tasks and calculates their priority.

Materialization tasks are processed such that each task
is split into subplans, and each subplan is optimized and
completely evaluated before optimization is resumed. First,
the Planner asks the Service Locator to identify the loca-
tion scope of the current subplan. According to the plan
generation strategy, the Planner roves the search space of
alternative physical plans; it uses the Plan Scheduler to de-
termine Â by applying some scheduling heuristic (e.g., min-
min, max-min, etc.). For each physical plan, it asks the
Cost Analyzer to estimate the makespan, and registers the
subplan with the best makespan during the search. Then,
it sends the overall best subplan to the Plan Evaluator,
which evaluates the corresponding operators by triggering
their service calls according to Â.

As the subplan evaluation proceeds, service call results are
gathered and merged into the AXML document. The Per-
formance Monitor watches over operators evaluation, and
may demand subplan re-optimization if necessary. Both the
Planner and the Plan Evaluator may also get plans com-
ing from the External Handler, which routes requests from
other peers. These requests consist of materialization plans

307

serialized in the XML format. Plans may keep information
on their delegation trace to control propagation in the P2P
system. Remote requests are received by the Collaboration
Service, which implements the interface of the basic Web
services for P2P collaboration. Finally, evaluation results
are sent back to the origin peer through the Collaboration
Service reply.

For simplicity, we omitted in Figure 9 two XCraft mod-
ules: the Plan Cache, where the optimizer keeps shared
plans and their results; and the Optimizer Profile Loader,
which is used to configure a set of properties that control
the behavior of XCraft internal modules.

8. EXPERIMENTAL RESULTS
We have implemented and tested the proposed optimiza-

tion strategy in the ActiveXML system [4]. We extended
the ActiveXML peer (version 4-Beta) with the XCraft opti-
mizer. We used the Java language and open-source software,
such as Apache Tomcat 4.1.29, JDK 1.4.2, and Axis 1.1. To
compute spanning trees, we used a Java implementation of
the Prim-Jarnik algorithm from the JDSL library.

In our tests, we deployed three ActiveXML peers extended
with the XCraft optimizer and some basic collaboration Web
services. At each peer, we also deployed two declarative
Web services, which perform respectively a union and a join
operation on documents derived from the ACM SIGMOD
Record articles database [20]. These services take a single
input parameter, and combines it (either by a union or a
join operation) with a locally stored file.

We used three heterogeneous machines under different
workloads, as described in Figure 12. Processing power is
represented by BogoMips [23]. Master indicates the master
peer, which is connected through a 512Kbps Internet link
to the other two machines. Laptop1 and Laptop2 are lo-
cated in a 36Mbps local network. Figure 13 shows these
peers connections. Also, we generated sets of AXML docu-
ments with different configurations of service call nodes by
varying the height and width of the document trees. Recall
the height is determined by invocation dependencies and
the width corresponds to the number of trees in the MFST
of the AXML document. Basically, in the experiments we
used AXML documents that contain sequences (i.e., batch-
pipelined tasks) and parallel splits patterns from grid work-
flows [21].

We performed two basic analysis. First, we identified as-
pects that have relevant impact on the materialization com-
plexity (i.e., the number of alternative plans). We observe
the time spent in optimization with different plan genera-
tion approaches, and compare these results with the XCraft
dynamic strategy. In the second battery of tests, we eval-
uate the gains achieved by subplan delegation. We focused
on delegation of service invocations, since both optimiza-
tion and service location operators are more related to con-
tingency planning and do not directly reflect performance
improvement. These operators rather benefit the adaptivity
capabilities of the optimizer.

It is worth noting that most P2P and grid systems neglect
the communication costs from transfering data between two
operators that are delegated to the same peer. Nonethe-
less, this simplification is not true for Web services, since
they always involve heavy operations for XML handling, as
observed in [19].

Peer O.S. BogoMips RAM
Master Debian GNU/Linux 2957.31 512Mb

Laptop1 MS WindowsTMXP 1718.18 512Mb

Laptop2 Linux SuSeTM 1198, 77 512Mb

Figure 12: Hardware of deployed ActiveXML peers.

Figure 13: P2P network used in experiments.

8.1 Devising the Search Space
The time spent on the optimization process is a crucial

point when efficiently materializing AXML documents. Since
this represents a combinatorial problem, exhaustive search
is usually prohibitive, thus making heuristics mandatory.
Moreover, in P2P systems, the optimization process itself
cannot be time-consuming due to the dynamic behavior of
peers. Therefore, an important goal of the optimizer is to
analyze the size of the search space of a given materialization
plan.

The great improvements of hardware performance have
made possible to tackle several complex optimization prob-
lems. Nonetheless, we observed they are still insufficient
to solve the issues posed by AXML materialization, which
usually involves very large search spaces. To have a more
clear idea of the size of the search space of an AXML docu-
ment, we used the complexity formulas presented in [18] to
identify its relevant dimensions and estimate their impact.

In Figure 14, we varied the fanOut of service call nodes
for an AXML document with height h = 2 and four first-
level service calls (i.e., width is |Λ| = 4). We consider a
system of three peers. Notice the axis of number of plans
is in a logarithmic scale. Results represents the complexity
of partial plans with only executors and to the complete
search space, assuming an exhaustive method. Analogously,
Figure 15 shows the size of the search space by varying both
the fanOut and the document height. These results clearly
indicate the search space grows exponentially with respect
to both fanOut and h. In fact, even for small documents,
its size is significantly large. In further analysis, we found
this exponential behavior stands the same for the number of
peers involved in the materialization process.

XCraft uses a dynamic optimization strategy to reduce the
number of inspected plans, yet taking into account relevant
properties such as communication costs. Basically, XCraft
breaks materialization tasks according to a given parameter
k. We can observe in Figure 16 the impact of our strategy
on the number of inspected alternative plans. We used an
AXML document with four first-level service calls of height
fixed at h = 8. We assumed a very simple case, where the
fanOut of each service call node is 1 (namely, the docu-
ment contains only 32 service call nodes). We estimated the
number of inspected plans with our dynamic strategy for dif-
ferent values of the k parameter (i.e., the height of each sub-
plan to be analyzed by the optimizer), considering both the
analysis of subplan delegation and choosing only service ex-
ecutors. We also compare these results with the exhaustive

308

Figure 14: Impact on the size of the search space by
varying the fanOut of service calls.

Figure 15: Search space analysis from varying both
the document height and the fanOut.

search strategy, and results of using the Divide&Conquer
heuristic to identify independent materialization tasks. No-
tice that even in this simple case, the size of the search space
prevents adopting the exhaustive strategy. Our dynamic ap-
proach provides XCraft with flexibility to deal with complex
AXML scenarios, by allowing it to scan search spaces with
manageable sizes.

The size of the search space has a major impact on the
optimization time, which can be estimated from the results
in Figure 16. In our experiments, for the AXML document
used in Figure 16, we observed that the optimizer spends
an average of 0.5 millisecond to generate and analyze an
alternative plan. Although large documents tend to require
more time to be generated and analyzed, this average value
sets a good performance reference. For example, scanning
the search space of 1000 equivalent plans would take about
0.5 second.

8.2 Plan Delegation Effects
Although our dynamic strategy produces suboptimal solu-

tions, it enables the optimizer to exploit subplans delegation,
which usually results in significant performance gains. This
can be noted in Figure 17. We evaluate the performance
achieved by delegating materialization subplans containing
service call nodes with fanOut = 1, and invocation results
with 100Kbytes. This corresponds to AXML documents

Figure 16: Search space reduction in XCraft.

Figure 17: Performance gains obtained by subplans
delegation.

that contain batch-pipelined tasks (i.e., with at most one
dependency). We vary the height of tasks in the documents
from 2 to 6, and use the D&C heuristic to partition materi-
alization plans into independent tasks. The k parameter is
set with the task height.

In a centralized evaluation strategy, the optimizer invokes
of each service call, and gathers their results from an Internet
link. With delegation, the master peer sends physical sub-
plans (i.e., materialization tasks) to be evaluated remotely,
and receives only persistent service results to compose the
final document contents. Only the root element of each ma-
terialization task is a persistent result. It is worth noting
that, for higher values of fanOut and of the size of service
results, the performance gains of plan delegation tend to be
even more expressive.

9. CONCLUSIONS
Materializing AXML documents correspond to a general

case of finding efficient assignments of inter-related tasks to
heterogeneous machines, which is a hard optimization prob-
lem. In this paper, we present an optimization strategy that
widely explores dynamic techniques, thus scaling well for
decentralized and ad-hoc P2P systems. This strategy also
improves system recovery since smaller tasks can be better
monitored for early error detection and fixing. The proposed
optimization strategy exploits algebraic operators to handle
plan complexity and encode collaboration decisions. We also
present a service-oriented optimizer architecture to support
collaborative AXML materialization.

We believe this work goes beyond the AXML context, and
contributes to the efficient execution of workflows, specially

309

in highly-dynamic and heterogeneous settings. Also, with
a descentralized architecture for collaborative optimization,
we addressed an important issue that has been neglected in
most of the current systems.

We are currently evaluating methods based on stochastic
local search to incrementally refine physical plans. These
methods have been implemented in a simulation tool, to
facilitate the analysis of complex P2P settings. There are
many other interesting paths to pursue our work, such as in-
vestigating contingency planning for service call failures, and
extending XCraft with pipeline techniques, such as those
proposed by [13].

Acknowledgements. This work is partially funded by
CNPq and INRIA. Gabriela Ruberg was also supported by
the Central Bank of Brazil. The contents of this paper do
not represent the opinion of these instituitions. The authors
would like to thank Serge Abiteboul and Ioana Manolescu
for the fruitful discussions on AXML optimization, and the
Gemo team for the ActiveXML prototype.

10. REFERENCES
[1] S. Abiteboul, O. Benjelloun, B. Cautis, I. Manolescu,

T. Milo, and N. Preda. Lazy query evaluation for
Active XML. In ACM SIGMOD, pages 227–238, 2004.

[2] S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu,
and T. Milo. Dynamic XML documents with
distribution and replication. In ACM SIGMOD, 2003.

[3] S. Abiteboul, I. Manolescu, and E. Taropa. A
framework for distributed XML data management. In
EDBT, pages 1049–1058, 2006.

[4] ActiveXML home page. At www.activexml.net.

[5] B. Benatallah, M. Dumas, and Q. Z. Sheng.
Facilitating the rapid development and scalable
orchestration of composite web services. Distributed
and Parallel Databases, 17(1):5–37, 2005.

[6] J. Blythe, S. Jain, E. Deelman, A. Mandal, and
K. Kennedy. Task Scheduling Strategies for
Workflow-based Applications in Grids. In CCGrid,
2005.

[7] T. D. Braun, H. J. Siegel, N. Beck, L. Bölöni,
M. Maheswaran, A. I. Reuther, J. P. Robertson, M. D.
Theys, B. Yao, D. A. Hensgen, and R. F. Freund. A
comparison of eleven static heuristics for mapping a
class of independent tasks onto heterogeneous
distributed computing systems. J. Parallel Distrib.
Comput., 61(6):810–837, 2001.

[8] J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd.
GridFlow: Workflow management for grid computing.
In CCGRID, pages 198–205, 2003.

[9] E. Deelman, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, K. Blackburn, A. Lazzarini,
A. Arbree, R. Cavanaugh, and S. Koranda. Mapping
Abstract Complex Workflows onto Grid
Environments. J. Grid Comput., 1(1):25–39, 2003.

[10] A. Gounaris, R. Sakellariou, N. W. Paton, and
A. A. A. Fernandes. Resource scheduling for parallel
query processing on computational Grids. In GRID,
pages 396–401, 2004.

[11] R. Hull, F. Llirbat, B. Kumar, G. Zhou, G. Dong, and
J. Su. Optimization techniques for data-intensive
decision flows. In ICDE, pages 281–292, 2000.

[12] Y.-K. Kwok and I. Ahmad. Static scheduling
algorithms for allocating directed task graphs to
multiprocessors. ACM Comput. Surv., 31(4):406–471,
1999.

[13] M. Lemos and M. A. Casanova. On the complexity of
process pipeline scheduling. In SBBD, pages 57–71,
2006.

[14] L. A. Meyer, D. Sheftner, J. Voeckler, M. Mattoso,
M. Wilde, and I. Foster. An opportunistic algorithm
for scheduling workflows on grids. In VECPAR, 2006.

[15] T. Milo, S. Abiteboul, B. Amann, O. Benjelloun, and
F. D. Ngoc. Exchanging intensional XML data. In
ACM SIGMOD, pages 289–300, 2003.

[16] OWL-S: Semantic Markup for Web Services. At
http://www.w3.org/Submission/OWL-S/.

[17] Pegasus home page. At http://pegasus.isi.edu.

[18] G. Ruberg and M. Mattoso. XCraft: A dynamic
optimizer for the materialization of active XML
documents. COPPE/UFRJ Tech. Report ES-709/07,
http://www.cos.ufrj.br/˜gruberg/xcraft rt.pdf, 2007.

[19] N. Ruberg, G. Ruberg, and I. Manolescu. Towards
cost-based optimization for data-intensive Web service
computations. In SBBD, pages 283–297, 2004.

[20] ACM SIGMOD Record articles database. Available at
http://acm.org/sigmod/record/xml/.

[21] W. M. P. van der Aalst, A. H. M. ter Hofstede,
B. Kiepuszewski, and A. P. Barros. Workflow patterns.
Distributed and Parallel Databases, 14(1):5–51, 2003.

[22] P. K. Vargas, I. de Castro Dutra, V. Nascimento,
L. Santos, L. Silva, C. Geyer, and B. Schulze.
Hierarchical submission in a grid environment. In
MGC, pages 1–6, 2005.

[23] D. W. The quintessential Linux benchmark: All about
the BogoMips number displayed when Linux boots.
Linux Journal, 21, 1996.

[24] The W3 Consortium. At http://www.w3.org/.

[25] M. Wieczorek, R. Prodan, and T. Fahringer.
Scheduling of scientific workflows in the ASKALON
grid environment. SIGMOD Record, 34(3):56–62, 2005.

310

