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ABSTRACT 

We address the problem of generating a mediated schema from a 
set of relational data source schemas and conjunctive queries that 
specify where those schemas overlap. Unlike past approaches that 
generate only the mediated schema, our algorithm also generates 

view definitions, i.e., source-to-mediated schema mappings. 

Our main goal is to understand the requirements that a mediated 
schema and views should satisfy, such as completeness, preserva-
tion of overlapping information, normalization, and minimality. 
We show how these requirements influence the detailed structure 
of schemas and view definitions that are produced. We introduce 
a normal form for mediated schemas and view definitions, show 
how to generate them, and prove that schemas and views in this 
normal form satisfy our requirements. 

The view definitions in our normal form use stylized GLAV 
mappings, for which query rewriting is easier than general GLAV 
mappings. We demonstrate the efficiency of query rewriting in a 
prototype implementation. 

1. INTRODUCTION 
In data integration, users query multiple sources using a unified, 
mediated schema rather than querying each source separately. 
Each query over the mediated schema is then translated into 
queries over the source schemas. The results of these queries are 
combined and returned to the user. 

To enable this scenario, the system needs view definitions, that is, 
mappings that relate the mediated schema to its data sources. In 
this paper, we analyze what constitutes a good mediated schema 
and mappings and show how to obtain them. 

We focus on the case where one starts with a set of data source 
schemas. Although the disjoint union of the data source schemas 
could be used as the mediated schema, this is usually not what is 
wanted because it is highly redundant. The reason why a mediated 
schema over multiple data sources makes sense is that the data 
sources are closely related. Thus, some information is represented 
in two or more schemas, often in different ways. Even if a user 

were willing to deal with this redundancy, the complexity of 
accessing the information in different representations would make 
the schema hard to use. Therefore, such overlapping information 
should have just one representation in the mediated schema with a 
mapping to each of its representations in the source schemas. 

One step in the development of the mediated schema is 
identifying the overlapping source-schema elements that should 

be collapsed. This is the database designer’s job—to identify those 

overlapping elements, possibly with the help of a schema match-
ing tool. The designer needs to explain how each overlapping 
element is mapped to each of the data sources in which it appears. 

Example 1 Suppose we want a mediated schema to integrate 
two travel databases, Go-travel and Ok-travel. Go-travel has 
three relations: 

Go-flight(f-num, time, meal) 

Go-price(f-num, date, price) 

Go-airline(airline, phone) 

The attribute f-num is the flight number and meal is a bool-

ean. The other attributes are self-explanatory. Ok-travel has 

just one relation: Ok-flight(f-num, date, time, price, nonstop), 

where nonstop is a boolean. The overlapping information in 

Ok-travel’s and Go-travel’s schemas could be represented in a 

mediated schema by Flight(f-num, date, time, price).  � 

The overlapping elements are only part of the mediated schema. 
Some elements that are unique to a particular data source are also 
passed through to the mediated schema. For example, if the 
schemas are all relational, then a data source may have a relation 

R that does not overlap any relation in any other data source and 

should be made part of the mediated schema. In addition, even if 

R does overlap a relation R′ of another data source, R may have an 

attribute that does not appear in R′ or any other data source and 

that may be valuable to pass through to the mediated schema. 

In the previous paragraph, to be technically precise we should be 

calling R a relation schema, not a relation. However, since this 

paper is focused on schemas more than data, we usually use 
“relation” to mean a relation schema. We use the more precise 
terminology only when the meaning is not clear from the context. 

Suppose one wants the mediated schema to expose all of the 
information in the data sources. In that case, the mediated schema 
should include all of the overlapping schema elements, plus all 
source-specific elements. By source-specific, we mean that the 
schema elements are not subsumed by overlapping elements. 
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Example 2 Continuing with Example 1, suppose we want to 
expose all of Ok-travel’s and Go-travel’s information in the 
mediated schema. In addition to the overlapping information 

in Flight(f-num, date, time, price), we see that OK-travel has 

source-specific information about flights being nonstop, 
which does not appear in Go-travel’s schema. There are two 

choices on how to include nonstop. We can pass through Ok-

flight as a separate relation in the mediated schema. However, 

since we already have most of Ok-flight’s attributes in the 

Flight relation, it seems more natural to add nonstop to Flight, 

yielding Flight(f-num, date, time, price, nonstop). A similar 

issue arises with meal in Go-flight. 

Go-travel also has source-specific data about airline phone 

numbers, so we need to pass through Go-airline(airline, 

phone). We could handle this just like nonstop, by adding the 

attributes airline and phone to Flight. However, this would 

represent two independent types of information in the same 
relation, information about flights and about airlines. This 
violates standard database design principles, which say that 
independent relationships should be represented in different 

relations. It is better simply to add a relation Airline(airline, 

phone) to the mediated schema. � 

So far, we have identified two issues that affect the design of 
mediated schemas: (1) overlapping information should have a 
unique representation in the mediated schema; and (2) source-
specific schema information can be passed through to the 
mediated schema either by extending relations that represent the 
overlapping information or by adding relations, depending on 
whether the source-specific information is or is not closely 
dependent on the overlapping information. Now let us look at the 
mapping between the mediated schema and source schemas. 

The database designer needs a language in which to express 
overlapping schema elements. If the data sources are relational, a 
natural choice is relational queries. The overlap is defined by a set 
of queries, one over each data source, which return type-
compatible data.  

In what follows, we frequently refer to global-as-view (GAV), 
local-as-view (LAV), and global-local-as-view (GLAV) 
mappings. We assume a basic understanding of these concepts. A 
recent survey appears in [10]. 

Example 3 The overlapping flight information in Example 1 
could be expressed by the following Datalog queries: 

Flight(f-num, date, time, price) :-  Go-flight(f-num, time, meal),  

                                                            Go-price(f-num, date, price) 

Flight(f-num, date, time, price) :- Ok-flight(f-num, date, time, 

                                                                                  price, nonstop)  

The Flight relation is a view of Go-travel and Ok-travel. The 

above queries comprise a simple GAV mapping. The left side 
of the mapping is a relation in the mediated schema, and the 
right side is a query over the data sources. Hence these 
queries appear to be the mapping we need between the 

mediated schema Flight and the data sources. 

However, if we pass through Go-flight.meal and Ok-

flight.nonstop to the mediated schema, we obtain Flight(f-

num, date, time, price, meal, nonstop). This situation is more 

complex. One problem is that Ok-flight does not have a meal 

attribute. Therefore, we are driven to represent the mapping 

between Flight and Ok-flight using a LAV mapping: Ok-

flight(f-num, date, time, price, nonstop) :- Flight(f-num, date, 

time, price, meal, nonstop). (More details are in Section 4.2.)  

This mapping is different than what the database designer 
specified in the second query above. Combined with the first 
mapping, the overall mapping between the mediated schema 

and data sources uses GLAV.  � 

Past work on mediated schema creation has focused on 
identifying and collapsing overlapping elements. This is the 
problem of schema merging. Certainly, schema merging is an 
important ingredient. However, as the examples above show, 
there is more to it. We need to pass through some source schema 
elements to the mediated schema. There may be more than one 
way to do this, and the resulting mapping may be more complex 
than a simple GAV query. In this paper, we generalize these 
observations into requirements for mediated schema and mapping 
design and an algorithm for obtaining them. We call this problem 
semantic merge. 

The semantic merge problem is the following: Given mapping 
expressions that define the overlapping parts of a set of relational 
schemas that represent data sources, (i) generate a mediated 
schema that collapses these overlapping elements according to a 
given specification and passes through source schema elements as 
appropriate and (ii) generate mappings between the mediated 
schema and data sources. Our contributions are as follows: 

• We propose conjunctive queries as a way of expressing over-
lapping information in data sources (Sections 2.2 and 2.3) 

• We define technical requirements for mediated schema and 
mapping design (Section 2.4).  

• We define a normal form for mediated schemas and map-
pings (Sections 3.1 and 3.2), prove that it satisfies the 
technical requirements (Section 3.4), and comment on its 
properties (Section 4). 

• We give an algorithm that generates normal-form mediated 
schemas and mappings (Section 3.3). 

• We report on an implementation of the algorithm (Section 5). 

We discuss related work in Section 6. Section 7 is the conclusion. 

2. REQUIREMENTS 

2.1 Introduction 
The motivation and examples in Section 1 lead to the following 
five criteria that we propose as requirements for a mediated 
schema and mapping to satisfy: 

i. Completeness: All information in the source schema should 
be exposed in the mediated schema. 

ii. Overlap preservation: Each of the overlapping elements 
specified in the input mapping is exposed in a mediated 
schema relation. 

iii. Extended overlap preservation: Source-specific elements that 
are associated with a source’s overlapping elements are 
passed through to the mediated schema. 

iv. Normalization: Independent entities and relationships in the 
source schemas should not be grouped together in the same 

74



relation in the mediated schema. In particular, source-
specific schema elements should not be grouped with 
overlapping schema elements if the grouping co-locates 
independent entities or relationships. 

v. Minimality: If any elements of the mediated schema are 
dropped then the mediated no longer satisfies (i) – (iv) above 

We do not claim that users will want their mediated schema and 
mapping to satisfy all of these criteria in all scenarios. However, 
we do claim that these criteria are often desirable and that it is 
worthwhile to understand how these criteria influence the choice 
of mediated schema and mapping. We will have more to say about 
this in Section 4. We also show how these criteria correspond to 
hand-crafted mediated schemas in Section 5. 

To make the above requirements technically precise, we start by 
defining the language in which to express overlapping parts of the 
source schemas. Simple correspondences between elements are 
not enough, because we need a formal semantics of the 
overlapping parts to guide the development of an output mapping. 
We choose conjunctive queries for this purpose, which are defined 
in Section 2.2. They are expressive enough to demonstrate our 
design principles. Additionally, they comprise the mapping 
language that is most commonly used in the research literature on 
data integration (e.g., [8]). We explain how to use conjunctive 
queries to express overlapping schema elements in Section 2.3. 

Using this mapping language, we then define technical 
requirements for a mediated schema and mapping that correspond 
to the intuition developed in Section 1. 

2.2 Conjunctive Queries 
We express mappings over relational schemas as conjunctive 
queries using Datalog notation, as in Example 3. A database 

schema is a set of relation schemas. Each relation schema R has 

a relation name and a sequence of attribute names, denoted 

attr(R). The arity of a relation schema is the number of attribute 

names it has. 

A conjunctive query Q has the form q(X) :- e1(X1), …, en(Xn), 

where q and e1, ..., en are relation names. The subgoals e1(X1), …, 

en(Xn) are collectively the body of Q, denoted body(Q). The 

predicate that appears on the left side of the query,  q(X), is called 

the head of query.  The predicate name q of the head is the Inten-

sional Database (IDB) of Q, denoted IDB(Q). The tuples X, X1, …, 

Xn have the same arity as the relations in which they appear. They 

contain variables or constants. The query Q must be safe, meaning 

that every variable in X also appears in body(Q). Vars(Q) refers to 

the variables of Q. The variables in the body of Q but not the head 

(i.e., Vars(Q)-X) are called existential variables.  The answer to 

query Q is an assignment of constants to the variables X such that 

for some assignment of constants to Q’s existential variables, 

body(Q) is true. The answer to a set of queries with a common 

head is the union of the answers of the queries in the set. A 
conjunctive query has the same expressive power as a SQL select-
project-join query without arithmetic comparisons. 

Example 4 The following query asks for the prices of flights 
that are listed in both Go-travel and Ok-travel: 

Q(f,p) :- Go-price(f,d,p), Ok-flight(f,d,t,p,n)  

Vars(Q) = {f, p, d, t, n}. Variables d, t and n are existential.  � 

Let Q1 and Q2 be two sets of queries whose heads have the same 

arity. We say that Q1 is contained in Q2, denoted Q1 ⊆ Q2, if the 

answer to Q1 is a subset of the answer to Q2 for all database 

instances. Q1 and Q2 are equivalent if Q1 ⊆ Q2 and Q2 ⊆ Q1, i.e., 

they produce the same answer for every given database.  

2.3 Conjunctive Mappings 
A mapping is a relationship between the instances (i.e., the states) 

of two schemas. Formally, let Inst(S) be the set of all instances of 

a schema S. Then a mapping between database schemas U and V is 

a subset of Inst(U) × Inst(V). In this paper, we use conjunctive 

queries to define mappings. 

Let S = {S1, … Sn}  be a set of database schemas, one for each data 

source. We express each overlapping part of a set of source 
schemas by a set of two or more conjunctive queries with a 
common IDB, where the body of each query is defined over one 

schema in S. This is called an overlap specification (or, simply, 

an overlap). For example, the queries in Example 3 comprise a 

overlap specification over S = {Go-travel, Ok-travel}, where Flight 

is the common IDB. We interpret each query in an overlap using 
open world semantics, i.e., it computes a subset of the tuples 
satisfied by the head. 

Subgoals ei, ek of query Q are connected if ei has a variable in 

common with  ek or ei is connected to another subgoal of Q that is 

connected to ek. For every query Q in an overlap, all subgoals of Q 

must be connected. That is, Q has no Cartesian products. 

To simplify the case analysis of definitions and theorems that 
follow, we do not allow constants to appear in conjunctive map-
pings. None of our technical results depend on this assumption. 

To avoid having to rename attributes and relations in the mediated 
schema, we require that overlap specifications adhere to naming 
conventions. The conventions do not affect the expressive power 
of mappings; any set of conjunctive queries can be made to satisfy 
them just by renaming variables. The conventions are as follows 

i. In an IDB q(a1, …, am), each ai (1 ≤ i ≤ m) is called a variable 

position. For each IDB name q in a set of overlap 

specifications and for each variable position of q, the same 

variable name must be used in all appearances in that varia-
ble position. For example, the following overlap violates this 

requirement because name and aname appear in the only 

variable position of Airline. 

Airline(name) :- TravelOn-airline (name, phone) 

Airline(aname) :- MyTravel-airline(aname, address)  

This convention allows us to use, without ambiguity, the 
variable name in each variable position as the name of the 
corresponding attribute in the mediated schema. 

ii. For a given IDB name in an overlap, an existential variable 
name may appear in at most one conjunctive query with that 
IDB name. For example, the following overlap violates this 

requirement because phone is existential in both queries: 

Airline(name) :- TO-airline(name, phone)  

Airline(name) :- H-airline(name, phone, fax).  

Like the previous convention, this allows us to use the name 
of each existential variable as the name of the corresponding 
attribute in the mediated schema. 
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iii. The relation names in S and the IDBs of overlaps are distinct. 

That is, for each database schema Si in S  if relation name R 

appears in Si, then R does not appear in any other schema Sk 

(i ≠ k) or as an IDB in any overlap. 

An overlap specification that conforms to the above conventions 
is said to be well-formed. 

2.4 Technical Requirements 
In this section, we make the correctness criteria of Section 2.1 
more precise: completeness, overlap preservation, extended 
overlap preservation, normalization, and minimality. 

2.4.1 Completeness  
We want to ensure there is no information loss in the mediated 
schema. We can do this with the following completeness require-

ment: for each source relation R there is a query over the mediated 

schema that is equivalent to the identity query over R. This corres-

ponds to the notion of query dominance in Hull’s information 
capacity model [9], which is a common way to judge the informa-
tion preservation of one schema with respect to another [17]. 

This completeness criterion ensures that each source relation is 
accessible by a query over the mediated schema. But it says noth-
ing about how complex that query might need to be. To ensure the 
mediated schema is understandable and easy to use, we strengthen 
completeness by requiring that the query over the mediated 

schema M refers to only one relation in M. That is, we require that 

for each source relation R there is a query over one relation in the 

mediated schema that is equivalent to the identity query over R. 

This requirement implies that for each relation R in a source, there 

is a corresponding relation in the mediated schema that has all of 

the attributes of R and possibly others. It also says something 

about the mapping between R and the mediated schema, namely 

that all data from the sources can be accessed and that similarly 
structured data from different sources can be distinguished. For 

example, suppose that in addition to the relation Go-airline(airline, 

phone) in Go-travel there is a relation Ok-airline(airline, phone) in 

Ok-travel. Then it is not enough to include a relation Airline in the 

mediated schema defined as follows: 

Airline(airline, phone) :- Go-airline(airline, phone) 

Airline(airline, phone) :- Ok-airline(airline, phone) 

because only the union of the two relations Go-airline and Ok-

airline can be queried in the mediated schema. We will show how 

to create mediated schemas that avoid this problem in Section 3. 

2.4.2 Overlap preservation 
Overlap preservation requires that each of the overlapping 
elements specified in the input mapping is exposed in a mediated 
schema relation. Overlapping elements are defined by an overlap, 
which is a set of conjunctive queries. Therefore, this requirement 
can be stated in an analogous fashion to completeness, as follows: 

For each overlap, there is a query Q over one relation in the 

mediated schema that is equivalent to the overlap. 

2.4.3 Extended overlap preservation 
To satisfy completeness, we may want to add attributes to a 
mediated schema relation beyond those that are needed for 
overlap preservation. For example, consider the second query in 
the overlap specification of Example 3: 

Flight(f-num, date, time, price) :- Ok-flight(f-num, date,  

                                                                             time, price, nonstop) 

Overlap preservation implies that there is a relation in the 

mediated schema that includes the attributes f-num, date, time, 

price. Completeness requires that there is a query over one 

relation in the mediated schema that is equivalent to the identity 

query over Ok-flight. Since nonstop is the only attribute of Ok-

flight that does not appear in Flight, one way to satisfy 

completeness is simply to add nonstop to the mediated schema 

relation that includes Flight (we will call it M-Flight). This seems 

more economical than, and hence preferable to, adding Ok-flight 

to the mediated schema in addition to Flight. 

Another reason to add attributes to a mediated schema is 
convenience. For example, consider the first query in the overlap 
specification of Example 3: 

Flight(f-num, date, time, price) :- Go-flight(f-num, time, meal),  

                                                            Go-price(f-num, date, price) 

The attribute meal appears in Go-flight but not in Flight. By 

including meal in M-Flight, we enable the user to query this 

information without performing a join. Given that meal already 

appears in a source relation (namely, Go-flight) with the other 

attributes of Flight, we know that it has a strong relationship with 

those attributes. Therefore, including it in M-Flight seems like a 

worthwhile convenience. 

Unlike the previous example, we cannot claim completeness as a 

reason to include meal in M-Flight. One might think that meal 

would help us with completeness (along with the right mapping), 

because a projection query on M-Flight over f-num, time, meal 

would return the content of Go-flight. But this is incorrect. It only 

returns the subset of Go-flight that joins with Go-price, which does 

not help us with respect to completeness. 

Therefore, whether or not we include meal in M-Flight, for 

completeness we will need another mediated schema relation R 

such that a query over R is equivalent to Go-flight(f-num, time, 

meal). Thus, from a completeness standpoint, including meal in 

M-Flight is unnecessary. Still, from a convenience standpoint, it is 

desirable to include it, to avoid requiring a join with R to associate 

meal with the other attributes of M-Flight. The convenience 

attribute might even be a join variable, as in the following overlap 
specification: 

Flight(date, price, nonstop) :- My-flight(time, f-num, nonstop), 

                                    My-price(date, time, f-num, price) 

Flight(date, price, non-stop):- Auction-Flight(date, price, nonstop) 

For a flight in My-flight, it would be handy to get the flight 
number if you can get it (and the time, which is also existential) 
without performing a join. 

We capture the convenience aspect of adding attributes to an 

overlap as follows. If Q is a query in an overlap and has an 

existential variable, then we define the extended overlap query 

of Q to be a query Q′ whose IDB is augmented with all of the 

existential variables in body(Q). We then add the requirement that 

for each extended overlap query Q′, there is a query over one 

relation in the mediated schema that is equivalent to Q′. 
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2.4.4 Normalization 
Taking the logic of extended overlaps to the extreme, one could 
argue to make the mediated schema a universal relation, i.e., one 
relation that includes all of the attributes of all of the source 
relations. This is not the problem we are addressing. Sidestepping 
a debate about the merits of a universal relation, we simply 
remind the reader that our goal is to generate a mediated schema 
that collapses these overlapping elements according to a given 
specification. We therefore need a principle that limits the amount 
of source schema that is collapsed. 

One such principle could be that the mediated schema should 
satisfy fourth normal form (or pick your favorite stronger normal 
form). However, we do not recommend this because a user may 
want a mediated schema that violates a normal form. For example, 

in the overlap above, it might be that f-num is the key of Go-flight 

and (f-num, date) is the compound key of Go-price. So Flight vio-

lates second normal form. The main justification for normal forms 

relates to update behavior. We see no reason to prohibit Flight 

from appearing in a mediated schema that is used only for queries. 

We therefore define a weaker criterion whose goal is to avoid 
causing normalization violations beyond those introduced by the 
overlap specifications. The criterion is that for each mediated 

schema relation R that corresponds to an overlap specification O, 

every attribute of R appears in the head or a body of O. By R 

corresponds to O, we mean that R includes the attributes of 

IDB(O) and the query that projects R on those attributes is 

equivalent to O. 

2.4.5 Minimality 
We require that the mediated schema cannot be made smaller and 
still satisfy completeness, overlap preservation, extended overlap 

preservation, and normalization. We say that database schema V is 

minimal with respect to property P if there is no database schema 

U satisfying P such that:  

1. For all relations R ∈ U there exists a relation R′∈ V such that 

attr(R) ⊆ attr(R′), and 

2. For some relation R ∈ V, R ∉ U or attr(R) ⊂ attr(R′). 

Intuitively, the above definition says that V is minimal with 

respect to P if there is no smaller schema U satisfying P (condition 

1) that can be derived from V by deleting a relation from V or 

deleting an attribute of a relation of V (condition 2). 

2.4.6 Summary 
In Section 2.1 we presented informal requirements for a mediated 
schema and mapping. In the rest of Section 2, we formalized these 
requirements, which we restate here. The input to mediated 
schema creation consists of relation schemas for the data sources 
and a set of overlap specifications, which are conjunctive queries. 
The output is a relational mediated schema and a mapping 
between the mediated schema and data sources that satisfies the 
following mediated schema criteria: 

i. Completeness: For each source relation R, there is a query 

over the mediated schema that is equivalent to the identity 

query over R. 

ii. Overlap preservation: For each overlap, there is a query over 
one relation in the mediated schema that is equivalent to the 
overlap. 

iii. Extended overlap preservation: For each extended overlap 

query Q, there is a query over one relation in the mediated 

schema that is equivalent to Q. 

iv. Normalization: For each mediated schema relation R that 

corresponds to an overlap specification O, every attribute of 

R appears in the head or a body of O.   

v. Minimality: The mediated schema cannot be made smaller 
and still satisfy (i) – (iv) above. 

3. MEDIATED SCHEMA NORMAL FORM 
For a given set of source schemas S and a set of overlap 

specifications O, we define a normal form for a mediated schema 

M over S and O (in Section 3.1) and for a conjunctive mapping 

mapMS between M and S (in Section 3.2).  In Section 3.3, we show 

that this normal form satisfies the mediated schema criteria. 

3.1 The Mediated Schema 
In what follows, we often use the same relation names in the 
mediated schema and data sources, when they obviously 

correspond. To distinguish between them, we use the prefix “M.” 

for relation names in the mediated schema, M. 

The mediated schema criteria give us two main reasons to create a 

relation M.R in the mediated schema: 

a. Overlap Relation – M.R is derived by applying overlap 

preservation and extended overlap preservation to each 
overlap specification, mitigated by normalization. More 

concretely, R is the IDB of an overlap specification O and 

M.R’s attributes are the set of all variables in the bodies of all 

queries in O. We call M.R an overlap relation and say that 

M.R corresponds to O.  

b. Completeness Relation - R is a source relation whose content 

is not equivalent to a query over the relations defined by (a). 

In this case, add M.R to the mediated schema. We call M.R a 

completeness relation and say that M.R corresponds to R. 

If a mediated schema conforms to rules (a) and (b), we say it is in 
mediated schema normal form (MSNF). 

Example 5 Reconsider the overlap specification in Example 3 

Flight(f-num, date, time, price) :- Go-flight(f-num, time, meal),  

                                                            Go-price(f-num, date, price) 

Flight(f-num, date, time, price) :-   

                                 Ok-flight(f-num, date, time, price, nonstop)    

The mediated schema should include an overlap relation 

M.Flight(f-num, date, time, price, meal, nonstop), because 

Flight is the IDB of the overlap and {f-num, date, time, price, 

meal, nonstop} is the set of all variables in the bodies of all 

queries in the overlap. With a suitable mapping (which we 

have not defined yet), it is possible that a query on M.Flight 

that projects f-num, date, time, price, and nonstop would be 

equivalent to the content of Ok-flight. Therefore, case (b) does 

not apply to Ok-flight.  

The same approach would not work for Go-flight(f-num, time, 

meal), since the body of the first query in the overlap includes 

a join with Go-price. So a query on M.Flight that projects f-

num, time, and meal would return the subset of Go-flight that 
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joins with Go-price. Therefore, following (b) above, we need 

to include completeness relations M.Go-flight(f-num, time, 

meal) and M.Go-price(f-num, date, price) in the mediated 

schema. Due to (b), we also need to include M.Go-

airline(airline, phone), which is in the schema in Example 1 

but not in any overlap at all.                                                  � 

Example 5 suggests that we need to add a source relation to M 

unless it appears alone in the body of a query in an overlap. But 
this is not quite enough, as the following example shows. 

Example 6 Suppose we add the following query to the 
overlap specification of Example 3: 

Flight(f-num, date, time, price) :- US-flight(f-num,date,time,price)    

The mediated schema would still be M.Flight(f-num, date, 

time, price, meal, nonstop). A query on M.Flight that projects 

f-num, date, time, and price would return a relation that 

includes the content of US-Flight. But it would also include 

the projection of Ok-flight on f-num, date, time, and price and 

of Go-flight(f-num, time, meal) joined with Go-price(f-num, 

date, price). Thus, (b) tells us to add M.US-flight(f-num, date, 

time, price) to M.  � 

We say that a source relation R is subsumed by an overlap O if R 

appears alone in the body of a query Q in O and R has at least one 

existential variable in Q. In Example 5 Ok-flight is subsumed by 

Flight, since it appears alone in the second query of the overlap 

and has an existential variable nonstop. As was shown for Ok-

flight in Example 5, when R is subsumed by an overlap O, case (b) 

above does not apply. Notice that it is important that O is well-

formed (see Section 2.3), so that the existential variable is unique-

ly named. This ensures that the projection query on attr(R) applied 

to the completeness relation returns the tuples of R and no other 

source relation.  

This property of the projection query also explains why we 
defined an extended overlap query only for cases where there is 
an existential variable in the body of the overlap query. If there is 
no existential variable, then the projection of the overlap relation 

on the attributes returns tuples in addition to those of R and hence 

doesn’t help us with respect to completeness. 

Given the definition of subsumed, we can now restate case (b):  

b. Completeness Relation – If R is a source relation that is not 

subsumed by an overlap, then add R to the mediated schema. 

Suppose two completeness relations have the same set of 
attributes, such as the example  

Airline(airline, phone) :- Go-airline(airline, phone) 

Airline(airline, phone) :- Ok-airline(airline, phone) 

that we saw at the end of Section 2.4.1.These could be combined 

into a single mediated schema relation by adding a tag attribute, 

such as Airline(airline, phone, tag). For each tuple, the tag 

identifies which source relation(s) contain the relevant tuple. This 
is a valid alternative to our completeness relations. However, it 
makes the mediated schema less self-describing by hiding the 

corresponding source in the value of the tag attribute. For clarity, 

we therefore use completeness relations in what follows. 

Notice that according to our definition of minimality, the database 

schema {Airline(phone, airline, tag)} does not contradict the 

minimality of the database schema  {Go-airline(phone, airline), 

Ok-airline(phone,airline), Airline(phone, airline)}, because the 

former cannot be obtained from the latter by deleting relations 
and/or attributes. Thus, our notion of minimality is that of a local 
minimum, not a global minimum.  

3.2 The Mapping between Mediated and 
Source Schemas 
In Example 3 we showed that the use of an extended overlap in 
the mediated schema made it desirable to use a GLAV mapping 
between a mediated schema and data sources. In this section, we 

define a stylized GLAV mapping between M and S, called an 

MSNF mapping, which has two nice properties: it ensures the 
mediated schema and mapping satisfy the mediated schema 
criteria; and it ensures that it is easy to produce exact rewritings of 
the queries required by completeness, overlap preservation, and 
extended overlap preservation. 

Let M be an MSNF schema derived from source schemas S and 

overlap specifications O. The MSNF mapping mapMS between M 

and S is defined using a schema I, called the intermediate 

schema, that is distinct from M and S. Schema I is a “helper sche-

ma” that sits between M and S. The relations of I with respect to 

(w.r.t.) M and O are (1) copies of the completeness relations in M 

and (2) the heads of the extended overlap queries of all overlaps in 

O. The latter relations are named by adding to the IDB of the 

overlap a subscript that is the index of the query in the overlap. 

For example, I would include the following two relations for the 

overlap in Example 3: I.Flight1(f-num, date, time, price, meal) and 

I.Flight2(f-num, date, time, price, nonstop). More precisely: 

i. For each completeness relation M.R in M, there is a relation 

I.R′ in I that has the same attributes as M.R. We say that I.Ri 

corresponds to M.R. 

ii. For each overlap O in O, for each query Qi in O (1 ≤ i ≤ |O|) 

there is a relation I.Ri in I where R = IDB(Qi) and I.Ri has the 

same attributes as body(Qi). We say that I.Ri corresponds to  

Qi in O .  

The MSNF mapping mapMS between M and S has LAV and 

GAV queries for completeness relations and for extended overlap 
queries, both of which are expressed using the intermediate 

schema I. They are defined as follows: 

a. LAV: 

1. For each completeness relation M.R in M, mapMS 

includes the following query: 

I.R(attr(M.R)) :- M.R(attr(M.R)).  

2. For each relation I.Ri in I that corresponds to some 

overlap O in O, mapMS includes the following query: 

I.Ri(attr(I.Ri)) :- M.R(attr(M.R)) where M.R corresponds 

to O. 

b. GAV:  

1. For each completeness relation I.R in I, mapMS includes 

the following query: 

I.R(attr(I.R)) :- R(attr(I.R)). 
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2. For each relation I.Ri in I that corresponds to some query 

Qi in overlap O in O, mapMS includes the following 

query: I.Ri(attr(I.Ri)) :- body(Q). 

Cases (a1) and (b1) apply to completeness relations. Each 
completeness relation is identical to its corresponding source 
relation and intermediate relation. For example, the source 

relation Go-flight(f-num, time, meal) has a corresponding 

mediated schema relation M.Go-flight(f-num, time, meal) (see 

Example 5) and a corresponding intermediate schema relation 

I.Go-flight(f-num, time, meal). Therefore, by (a1), mapMS includes 

the LAV query I.Go-flight(f-num, time, meal) :- M.Go-flight(f-

num, time, meal). And by (b1), mapMS includes the GAV query 

I.Go-flight(f-num, time, meal) :- Go-flight(f-num, time, meal). 

Cases (a2) and (b2) apply to extended overlap queries. Consider 

the ith query Qi in an overlap O whose IDB is R. The head of Qi’s 

overlap or extended overlap query has IDB R and its attributes are 

Ai = attr(body(Qi)). The corresponding intermediate schema 

relation is I.Ri(Ai). Hence, Qi’s GAV query in (b2) is its overlap or 

extended overlap query with a slightly different IDB, namely I.Ri. 

By contrast, the mediated schema relation M.R that corresponds to 

O has the union of attributes in the heads of all overlap queries 

and extended overlap queries for O. So in general, M.R’s attributes 

are a proper superset of Ai. Hence the LAV query for Qi’s overlap 

or extended overlap query is a projection of M.R on Ai. For 

example, consider the second query (call it Q2) in the overlap of 

Example 5: Flight(f-num, date, time, price) :- Ok-flight(f-num, 

date, time, price, nonstop). The corresponding intermediate 

schema relation is I.Flight2(f-num, date, time, price, nonstop). The 

corresponding extended overlap relation in the mediated schema 

is M.Flight(f-num, date, time, price, meal, nonstop); it includes 

meal which comes from the other overlap query in Example 5. So 

the LAV query for I.Flight2 is I.Flight2(f-num, date, time, price, 

nonstop) :- M.Flight(f-num, date, time, price, meal, nonstop), and 

the GAV query for  Q2 is I.Flight2(f-num, date, time, price) :-  Ok-

flight(f-num, date, time, price, nonstop). 

3.3 An Algorithm to Generate MSNF 
The definitions of MSNF schema and mapping are, in effect, algo-
rithms that generate the schema and mapping. For completeness, 
we restate them in a more procedural format in Figure 3-1. 

3.4 Correctness 
In this section, we prove that every MSNF schema and mapping 
satisfy the mediated schema criteria of Section 2.4. A reader can 
skip this section without loss of continuity. 

Theorem 1: Let S be a set of source schemas and O a set of 

overlap specifications. Every MSNF mediated schema M over S 

and O and mapping mapMS satisfy the mediated schema criteria. � 

We prove Theorem 1 in Lemmas 2-6 below, showing that each of 
the five mediated schema criteria is satisfied. To do this, we need 
to weaken slightly the notion of query equivalence that appears in 
the mediated schema criteria. Since MSNF uses GLAV mappings 

to relate M and S, we instead use maximally-contained rewritings, 

which return the maximal set of sound answers that can be 

obtained given the sources in S, which are not assumed to be 

complete [8]. For example, completeness says that “For each 

source relation R, there is a query over the mediated schema that is 

equivalent to the identity query over R.” Instead, we will show 

there is a query over the mediated schema whose maximally-

contained rewriting is the identity query over R. 

We start with a technical result about maximally-contained 
rewritings of projection queries over the mediated schema. This is 
used in the proof since the queries required for completeness and 
overlap preservation are projection queries. The result says that to 

Procedure MSNFMappingCreation(S, O, M) 

// S is a set of schemas, O is an overlap 

// M is the output from MSNFSchemaMerge(S, O) 

LAV-viewsM = ∅ 

GAV-viewsM = ∅ 

For each relation m ∈ M 

    If e ∈ S and e corresponds to m  

         Let q be a fresh IDB name 

         //  i.e., q is an IDB name that does not appear as an  

         //  IDB name elsewhere in O or mapMS. 

         Let lavm  = q(attr(m)) :- m(attr(m)) 

         Let gavm = q(attr(m)) :- e(attr(e)) 

          // The relations m and e in the definition of lavm  

          //  and gavm respectively are the same (from the  

          //  definition of MSNFSchemaMerge).  

          //  Similarly, attr(m) = attr(e).  

         Add lavm to LAV-viewsM 

         Add gavm to GAV-viewsM 

      For each overlap query oq ∈O  

          Let cname = IDB(oq) 

          Let m be the relation in M such that cname  

                corresponds to m 

          Let q be a fresh IDB name 

           lavc  = q(Vars(oq)) :- m(attr(m)) 

           gavc = q(Vars(oq)) :- body(oq) 

         Add lavc to LAV-viewsM 

         Add gavc to GAV-viewsM 

Return LAV-viewsM and GAVviewsM. 

 

Figure 3-1 Algorithms to generate an MSNF schema and 

mapping 

Procedure MSNFSchemaMerge(S, O) 

// S is the set of schemas to be merged  

// O is a set of overlaps between them 

M = ∅   //the merged schema to create 

Let R = {r ∈ S | r is not subsumed by an overlap in O} 

For each relation r ∈ R 

    Let m be a new relation 

    name(m) = M.name(r) 

    attr(m) = attr(r) 

    Add m to M 

For each IDB name q ∈ IDB names in O 

    Let m be a new relation 

    Let Varsq be the duplicate-free union of the variables  

                          of queries that define q in O 

    name(m) = name(q) 

    attr(m) = Varsq 

    Add m to M 

Return M 
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rewrite a projection query Q over M.R to be a query over I, replace 

it by the union of the set of all queries whose head is Q and whose 

body is an intermediate relation that includes all of Q’s attributes 

and that has an associated LAV view whose body is R.  

Lemma 1: Let M be an MSNF schema derived from source 

schemas S and overlap specifications O. Let I be the intermediate 

schema w.r.t. M and O. Let mapMI be the LAV part of the MSNF 

mapping between M and S. Let Q be a projection query over a 

relation M.R such that the variables of M.R in Q match the names 

of the attributes of M.R. Let {I1, …, In} be the set of all 

intermediate relations Ii such that (i) the body of Ii’s LAV view is 

M.R(attr(R))
1, and (ii) Vars(head(Q)) ⊆ Vars(head(Ii)). Then  

∪1≤j≤n (head(Q) :- Ij(attr(Ij)) is a maximal rewriting of Q w.r.t. 

mapMI. 

Proof: Let Q be “Q(A′) :- M.R(A′)”. By [12], answering queries 

using views can be used to construct a maximally-contained 

rewriting of Q; we consider the MiniCon algorithm which 

produces maximally-contained rewritings (see proof in [19]). Due 

to the simple structure of the LAV views and the fact that Q has 

only one subgoal, the MiniCon algorithm is nearly trivial. There 

is only one subgoal to consider, which is for M.R. Each MiniCon 

Description (MCD) thus contains Ii for each LAV view whose 

body is M.R(attr(R)); since the query is a projection query, the 

head homomorphism is the identity homomorphism. Since the 
query is one subgoal long, the combination step will simply re-

turn the MCD. The resulting query is  ∪1≤j≤n (Q :- Ij), as desired. � 

Lemma 2: (Completeness): For each source relation R, there is a 

query over the mediated schema whose maximally-contained 

rewriting is the identity query over R.  

Proof: There are two cases, depending on whether R is subsumed 

by an overlap. Case (1): If R is not subsumed by an overlap, then 

it appears in M. We show that the identity query over R is a 

maximally-contained rewriting of the identity query over M.R. 

Let Q(attr(M.R)) :- M.R(attr(R)) be the identity query over M.R. 

There is only one view in mapMS that refers to M.R, a LAV view 

I(attr(M.R)) :- M.R(attr(M.R)). By Lemma 1, Q(attr(M.R)) :- 

I(attr(M.R)) is a maximally-contained rewriting of Q.  The only 

other view that mentions I is the GAV view I(attr(R)) :- R(attr(R)). 

By unfolding the GAV view into Q, we conclude that Q(attr(M.R)) 

:- I(attr(M.R)) is equivalent to Q(attr(M.R)) :- R(attr(R)) as desired. 

Case (2): If R is subsumed by an overlap O, then R appears alone 

in the body of a query Q in O and R has at least one existential 

variable in Q. Let R′ be the extended overlap relation for O. We 

show that the identity query over R is a maximally-contained 

rewriting of the projection query of M.R′ over attr(R). 

Let Q′(attr(R)) :- M.R′(attr(M.R′)). Since R′ is an extended-overlap 

relation, it corresponds to an overlap O. Hence, for each query Qi 

in O (1 ≤ i ≤ |O|) there is a relation I.Ri in I where name(Ri) = 

name(R′) = IDB(Qi) and attr(I.Ri) = the duplicate-free union of the 

variables of Qi. By definition of mapMS, there are LAV views 

                                                                 

1 By the construction in Section 3.2, attr(head(Q)) uses the same 

naming scheme as the variables of any corresponding relation R, 

so a renaming step is not required. 

I.Ri(attr(I.Ri)) :- M.R′(attr(M.R′)) for 1 ≤ i ≤ |O|. Moreover, these 

are the only LAV views that refer to M.R′. 

Since R is subsumed by O, R appears alone in the body of a query 

Q″ in O and R has an existential variable in Q″. Since the input 

mapping is well-formed, that existential variable appears only in 

Q″. Hence, among all of the intermediate relations, only one Ij has 

the property that Vars(head(Q″)) ⊆ attr(Ij), namely, the intermedi-

ate relation that corresponds to Q″. Hence, by Lemma 1, Ij(attr(R)) 

:- M.R′(attr(M.R′)) is a maximally-contained rewriting of Q′.       � 

Lemma 3: (Overlap preservation) For each overlap O, there is 

a query Q over one relation in the mediated schema such that O is 

a maximal rewriting of Q. 

Proof: Let M.R be the overlap relation for O. Let QO = {QO1, …, 

QOm} be the set of all overlap queries for O. We will show that 

Q(attr(head(O)) :- M.R(attr(R)) is the required query by showing 

QO1 ∪ … ∪ QOm is a maximal rewriting of Q. To rewrite Q w.r.t. 

mapMI, conditions (i) and (ii) of Lemma 1 apply, so by Lemma 1 

∪1≤k≤m (head(Q) :- Ik(attr(Ik)) is a maximal rewriting of Q w.r.t. 

mapMI. By definition of the GAV views (b2) in MSNF mapping, 

each Ik corresponds to a query QOk in the overlap and hence can 

be replaced by body(QOk), yielding ∪1≤k≤m (head(Q) :- body(QOk), 

which is  QO1 ∪ … ∪ QOm as desired.                                          � 

Lemma 4: (Extended overlap preservation) For each extended 

overlap query Q′, there is a query Q″ over one relation in the 

mediated schema whose maximal rewriting is Q′. 

Proof: Suppose Q′ is the extended overlap query of query Q in 

some overlap O. Let M.R be the overlap relation for O and let 

Q″(Vars(head(Q′))) :- M.R(attr(R)) be the required query over M. 

We first rewrite Q″ w.r.t. mapMI. Since Q has an existential 

variable, there is a unique relation Ii in I that satisfies conditions (i) 

and (ii) of Lemma 1. Hence, by Lemma 1 head(Q″) :- Ii(attr(Ii)) is 

a maximal rewriting of Q w.r.t. mapMI. Since Ii corresponds only 

to Q, by definition of the GAV views (b2) in MSNF mapping, 

Ii(attr(Ii)) :- body(Q) is the only query in mapIS with IDB Ii. 

Unfolding that query into head(Q″) :- Ii(attr(Ii)) we get head(Q″) :- 

body(Q) as the maximal rewriting of Q as desired.                      � 

Lemma 5: (Normalization) For each mediated schema relation 

R that corresponds to an overlap specification O, every attribute of 

R appears in the head or a body of O. 

Proof: Follows directly from the definition of overlap relation. � 

Lemma 6: (Minimality) The mediated schema is minimal with 
respect to mediated schema criteria (i) – (iv). 

Proof: Partition M into the set of overlap relations MO and the set 

of completeness relations MS. We show that if any relation or 

attribute is deleted from MO or MS then M does not satisfy one of 

the mediated schema criteria (i) – (iv). 

MO: To satisfy overlap preservation, there must be a relation m ∈ 

M for each overlap O ∈ O. Due to normalization, we cannot 

combine two relations in MO because they are not in the same 

overlap. Overlap and extended overlap preservation require every 

overlap and extended overlap query qo ∈ O to be answered using 

one relation. Therefore, attrs(m) ⊇ Vars(O). MSNF defines 
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attrs(m) = Vars(O), so no attributes of m may be deleted. Hence 

MO is minimal given the mediated schema criteria. 

MS: By definition of completeness relation, every  ms ∈ MS is not 

subsumed by an overlap. Suppose ms corresponds to s ∈ S. There 

are two cases: (1) s is not in the body of any overlap; (2) for every 

overlap query qo where ms∈body(qo), either qo has no existential 

variables or body(qo) has more than one subgoal. 

Case (1): Relation ms is the only completeness relation that 

corresponds to s. There can be no overlap relation that corres-

ponds to an overlap whose body contains s, because s is not in the 

body of any overlap. Hence, the only queries that relate s to M are 

the LAV and GAV queries for the completeness relation ms (see 

definitions a1 and b1 in MSNF mapping). Hence, deleting ms or 

any of its attributes from M would violate completeness. 

Case (2): By completeness, at least one relation must contain 

attr(s). The only relations in M besides ms that contain attr(s) are 

the overlap relations. Let O be the overlap with qo ∈ O, and let  

mO be the overlap relation corresponding to O. We claim the 

projection query Q(attr(s)) :- mo(attr(mo)) is not a maximal rewrite 

of Q′(attr(s)) :- s(attr(s)). By definition of case (2), either (a) qo 

has no existential variables or (b) body(qo) has more than one 

subgoal. If (a), then by Lemma 1 Q returns the union of s and the 

other queries in O. If (b), then since qo is connected (see defini-

tion of overlap), Q returns the subset of s that joins with another 

relation in body(qo). Thus Q is not a maximal rewrite of Q. Since 

no overlap relation satisfies completeness for s, ms cannot be 

deleted from M without violating completeness.          � 

4. DISCUSSION 
In this section, we discuss several issues related to the choice of 
MSNF schemas and mappings and their effect on query 
processing performance and completeness. 

4.1 Is MSNF Always Needed? 
In Section 3.4 we proved that MSNF schemas and mappings have 
a number of desirable properties, characterized by the mediated 
schema criteria. A database designer may not require all of the 
criteria and hence may not want an MSNF schema and mapping 
in all application scenarios. Still, we believe the criteria are at 
least a worthwhile starting point to consider which criteria are 
relevant in a particular scenario. To help one decide which criteria 
are relevant, Sections 2 and 3 show how each criterion affects the 
choice of mediated schema and mappings. Moreover, as will be 
shown in Section 5.2, there are practical examples where every 
type of MSNF relation and mapping is needed. 

Even when MSNF is not needed, it may be useful to develop an 
MSNF schema as an early step of the mediated schema creation 
process. This yields a complete, minimal schema with a complete 
set of mappings. One can then prune portions of the meditated 
schema that are not needed for the given application and modify 
the mapping accordingly. However this is just a proposal. A user 
study is needed to determine if such a methodology has merit. 

4.2 Why GLAV Views? 
Section 1 showed examples to motivate the need for GLAV views 
for mapping sources to a mediated schema. Now that we have the 
precise definition of MSNF, we can reconsider the issue in more 
detail. The question is, why not use GAV or LAV instead? 

GAV breaks down as a mapping language for mediated schemas 
when there are overlapping concepts in the source schemas that 
have additional non-overlapping information. For schemas that 
adhere to MSNF, this comes up when there is an existential 
variable in an overlap query. For example, take the mapping in 

Example 3. Most concepts of Flight are in common, but Go-travel 

contains additional information about meals. 

In MSNF, the corresponding mediated schema relation in M for 

Flight is M.Flight(f-num, date, time, price, meal, nonstop). A 

GAV mapping must provide a value for each attribute in M.Flight. 

However, no conjunctive query can do this for Flight unless it 

populates nonstop with NULL. But this is undesirable as it leads 

to the usual ambiguity between two interpretations of NULL, 

namely “irrelevant” for tuples coming from Flight vs. “missing” 

for tuples coming from OK-Flight that have nonstop = NULL. 

E.g., these two interpretations are not supported by SQL. 

LAV enables us to handle this situation elegantly by expressing 

Flight and OK-Flight as projections of M.Flight. However, LAV too 

has a limitation. It cannot map a mediated schema relation to the 

join of relations in a source. An example of this is Go-Flight and 

Go-price in Example 3. The obvious LAV mapping for this 

example would be:  

Go-flight(f, t, m) :- M.Flight(f, d, t, p, m, n) 

Go-price(f, d, p) :- M.Flight(f, d, t, p, m, n) 

Ok-flight(f, d, t, p) :- M.Flight(f, d, t, p, m, n) 

While this would allow queries on M.Flight to access Go-flight or 

Go-price to answer some queries, it would not allow easy access 

to their join. For example, it could not answer the query 

All-flight-info(f, t, m, d, p) :- Flight (f, d, t, p, m, n). 

Due to these limitations of LAV and GAV, MSNF uses a stylized 
combination of LAV and GAV mappings, which are a subset of 
GLAV mappings. This allows both GAV and LAV views between 
the source and mediated schema. The subset of GLAV required is 
very limited; the local views are only projections. 

4.3 Query Rewriting 
GLAV views require a query rewriting algorithm for answering 
queries using views. For conjunctive queries and views this 
problem is NP-Complete in the number of query subgoals [12]. 
Nevertheless, rewriting queries is often fast enough in practice, as 
was shown in [19] and as is known from the widespread use of 
materialized views for data warehousing. Moreover, query 
rewriting for our limited GLAV views is more efficient than the 
general case; e.g., each of our LAV views has only one subgoal. 
In Section 5.3, we show some experiments to provide further 
evidence that query rewriting is fast enough. 

Some additional improvement in query rewriting performance 
may be attainable by replacing MSNF views by pure GAV views 
where possible. For example, completeness relations could be 
mapped using GAV views. We avoided this optimization in the 
definition of MSNF because the lack of symmetry complicates the 
proof of correctness by requiring a case analysis.  

4.4 Completeness 
Completeness ensures that all queries that can be asked over the 
source schemas can be asked over the mediated schema. Naïvely, 
one might expect this to require that all source relations be 
retained in the mediated schema. However, as we showed in 
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Example 5, this is not true. Some source relations can be made 
accessible in the mediated schema simply by adding attributes to a 
mediated schema relation that is needed for other reasons.  

5. IMPLEMENTATION & EVALUATION 
We implemented an algorithm to generate MNSF in Java. With 
this implementation, we tested a number of hypotheses: 

• Is the expressiveness of the input mapping necessary and 
sufficient? 

• Can this method reproduce a mediated schema that has been 
created independently? 

• Can queries over the mediated schema be rewritten efficiently? 

To test these hypotheses, we used 4 of the 5 available data sets in 
the Illinois Semantic Integration Archive [1]: “Courses” (5 
schemas), “Inventory” (3 schemas), “Real Estate 1” (5 schemas) 
and “Real Estate 2” (3 schemas). All schemas in the fifth data set, 
“Faculty,” are isomorphic, so we excluded it. All schemas are in 
XML that is readily translatable to relational schemas. Data is 
available for each source to resolve ambiguities. The source 
schemas have an average of 2.9 relations and each relation has an 
average of 11 attributes. In each experiment, we merged the 
schemas pair-wise to create the final mediated schema. 

5.1 Implementing Mediated Schema Creation 
First we investigated whether conjunctive queries are rich enough 
to express the common cases in mediated schema creation, and 
whether that richness is necessary. Conjunctive queries could 
express most relationships required. There were two types of 
relationships that semantic merge could not reproduce: 
concatenation of data values and arithmetic manipulation.  

This experiment also showed that the power of conjunctive 
queries was required to fully express how the schemas related to 
one another. Of the 16 overlaps created in this experiment, 11 
(69%) required joins, and all required the use of existential 
variables. 

5.2 Mimicking Hand-Crafted Schemas 
To evaluate whether MSNF schemas are understandable and 
useful, we compared them to hand-crafted mediated schemas in 
the “Courses” and “Real Estate 1” data sets. These given mediated 
schemas were created with the sources in mind, but they differed, 
sometimes substantially, from the input schemas. We tried to rep-
licate these mediated schemas as closely as possible using MSNF. 

For the “Courses” dataset, MSNF came very close to creating the 
provided mediated schema. Of the six relations in the mediated 
schema, our approach replicated two of them exactly. The remain-
ing four MSNF relations were similar to the given mediated 
schema but they included extra attributes—at least one attribute 
that only appeared in one source. Still, the given mediated schema 
included some of the attributes that correspond to existential 
variables in an overlap query and that appeared in the MSNF 
relations. So extended overlap preservation must be considered 
when developing a mediated schema.  

The same four mediated schema relations also required joins in 
the input mappings. Thus, neither GAV nor LAV would have 
been an appropriate choice for a mapping language between the 
mediated schema and source schemas (see Section 4.2). 

The mediated schema provided for “Real Estate 1” differed 
substantially from the sources, and hence the MSNF generation 
algorithm had more difficulties. As in the “Courses” domain, most 
of the generated MSNF relations contained additional attributes. 
Of the 105 attributes in the given mediated schema there were 22 
attributes that the MSNF generation algorithm could not create. 
These fell into three categories: 

• Fourteen attributes had no corresponding source schema data. 
For example, the “Superstructure” relation in the mediated 
schema included an “elevator” attribute, but no source included 
elevator information. 

• Two attributes required more complex manipulation, as in the 
previous experiment. For example, the given mediated schema 
included an attribute for “number of bathrooms” which would 
have required adding “half baths” and “full baths” attributes. 

• The remaining six attributes required examining data values. 
For example, one relation included “mountain view”, “city 
lights view”, and “water view” attributes, but the sources only 
included “view” attributes. 

Hence MSNF generation generated 83 of the 91 attributes (91%) 
for which there was information available in data source schemas. 

5.3 Rewriting Queries 
Our goal was to show that queries could be translated efficiently 
enough for the method to be considered; our goal was not to show 
how fast the algorithm was, so the code was un-optimized. Since 
unfolding GAV mappings is trivial, we only compared against 
LAV rewriting times. We created an MSNF version of the schema 
that could express as much of the mediated schema as was possi-
ble in LAV. As explained in Section 4.2, the LAV mapping is less 
expressive, so we limited our tests to queries that could be asked 
over both schemas. As shown in Figure 5-1, despite the fact that 
both algorithms are asymptotically the same, since the LAV views 
also contained only one relation, LAV was in practice much slow-
er as more query subgoals were added. The Course and RealEstate 
lines show rewriting times for the schemas created using the 
MSNF; for queries that contain 6 subgoals, both finish in under 2 
seconds on a 850 MHz single-cpu PC with 256MB of RAM. 

To summarize the results on the practicality of MSNF: MSNF 
schemas are similar to hand-crafted mediated schemas. The 
examples required at least the expressiveness of conjunctive 
queries for overlap specification and of GLAV mappings for 
views. More expressive overlaps and views that express 
arithmetic and concatenation are needed. Finally, we showed that 
query rewriting over MSNF mediated schemas is fast.   

Figure 5-1 Query rewriting time is modest 
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6. RELATED WORK 

6.1 Requirements 
Mediated schema criteria for schema merging were introduced by 
Batini, Lenzerini, and Navathe in their 1986 survey of schema 
integration methods [2]. Their criteria are as follows: 

• Completeness and correctness: users can get the same data 
from the mediated schema as they can from the sources. 

• Understandability: the mediated schema is comprehensible 
to the user; i.e., queries that the user wants to ask should be 
easy to ask. 

• Minimality: the mediated schema does not contain multiple 
ways of accessing the same concept or have any data beyond 
what is required for completeness and understandability. 

They distinguish between view integration and data integration. 
View integration defines a database schema that can support a 
given set of views. Data integration defines a database schema to 
query a given set of data sources. Both require merging the input 
schemas into a schema that covers the input. The main difference 
is whether it is meaningful to define constraints between the given 
schemas. For view integration, the given views are views of one 
database. In this case, the integration process can be driven by 
constraints between the given views, such as referential 
constraints (e.g., the full-time-students view is contained in the 
all-students view). For data integration, the data sources are 
independent (e.g., student databases of different universities). In 
this case, there are no constraints between the given source 
schemas that describe how their instances are related. Rather, 
there are relationships that explain where the given schemas 
represent the same information and therefore can be collapsed. 

6.2 Generating View Definitions 
Among the many papers on view and data integration, to our 
knowledge only one other paper gives an algorithm to generate 
both a merged schema and view definitions (i.e., mappings) to 
support it, namely Melnik et al. [15]. They give formal properties 
that a merged schema and views must satisfy for view integration. 
They show that the output of their algorithm in [16] satisfies these 
formal properties provided that the input schemas are snowflake 
schemas and the input mappings are “path morphisms.” A path 
morphism is a set of equality constraints between a pair of snow-
flake schemas, each of which says that a query over one input 
schema equals a query over the other schema. The query is limited 
to using join expressions that follow the snowflake relationships. 

Melnik et al.’s work differs from ours in several ways: First, they 
address view integration, not schema integration. This has a major 
effect on correctness criteria. For example, in [15], they require 

that the input mapping between the two source schemas S1, S2 is 

equivalent to the composition of the two view definitions between 

the source schemas and mediated schema M. That is, mapping S1- 

S2 is equivalent to the composition of S1-M and M-S2. This makes 

sense for view integration, where S1 and S2 are views of the same 

source, but not for data integration where the instance data of S1 

and S2 are unrelated. 

Second, in [15] the inputs are limited to snowflake schemas and 
path morphisms. By contrast, we allow arbitrary relational 
schemas and conjunctive queries. And third, since their input does 
not characterize overlaps as conjunctive queries, they have no 

notion of extended overlap or extended overlap preservation in 
either their correctness criteria or merge algorithm. 

An extension of the merge algorithm of [15] with reverse 
engineering support is in [7]. 

6.3 Conflict-driven Schema Merge 
There are many papers on schema merging algorithms that pro-
duce an integrated schema from the source schemas. Since there 
are too many to cover here, we discuss just a few from the last 
decade as a representative sample. We refer the reader to the 
Batini et al. survey [1] for most earlier ones. 

Schema merging’s goal is to collapse overlapping schema 
elements in the output schema. This may not be straightforward 
due to conflicting representations in the sources. For example, 
Buneman, Davidson, and Kosky [4] merge two schemas by 
collapsing classes and attributes having the same name. If a class 

C appears in both input schemas S1 and S2, but C has two different 

attributes in S1 and S2 that have the same name but different 

ranges, then the naming conflict has to be solved in the merged 
schema. They describe a merge algorithm that solves this type of 
conflict and prove that it produces a unique output independent of 
the order in which the conflicts were resolved. In our model, such 
a naming conflict would show up as a violation of well-formed-
ness of the overlap specification (see Section 2.3). We assume 
such conflicts are eliminated in a preliminary renaming step. 

A later algorithm by Spaccapietra and Parent treats a broader class 
of conflicts [22]. Unlike [4], they assume an explicit set of 
correspondences between the input schema elements. They 
describe merge procedures as a sequence of integration rules: 
integrate objects, integrate links, integrate paths, etc. They create 
correspondences between the merged schema and input schemas, 
but do not show how to turn those correspondences into views. 

We followed a similar approach in a merge algorithm we pre-
sented in a previous paper [20]. We allowed more expressive 
input mappings than [1], where the mapping itself was a schema, 
and resolved other conflict types in addition to those of [4] and 
[1]. Like [1], [20] generates correspondences but not views 
between the merged schema and input schemas. In fact, the 
present paper started as an attempt to extend [20] to generate 
views, which led us to the more general question of choosing 
correctness criteria and proving the merged schema and views 
satisfy them. The algorithm in [20] can simulate the algorithm in 
Section 3.3 of this paper by interpreting the output 
correspondences as view definitions. Some details are in [18]. 

Both-As-View (BAV) focuses on updating a mediated schema 
based on the integration of new source schemas [14]. A BAV 
mapping calls for adding, deleting, and renaming attributes and 
relations in the mediated schema. Our work differs from theirs in 
several ways. First, our work creates the mapping between the 
mediated schema and the sources. Second, their method does not 
guarantee that the resulting mediated schema adheres to many of 
our mediated schema criteria. Finally, our work creates the 
mediated schema based on the relationship of the sources to each 
other, not to a previously existing mediated schema. 

6.4 Constraint-Driven Merge 
Two early works, by Casanova and Vidal [6] and by Biskup and 
Convent [3], study view integration using constraints between two 
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given view schemas. In both papers the goal is to create a merged 
schema that is complete, reduces redundancy, and is minimal. 

In [6], Casanova and Vidal assume an input consisting of view 
schemas that are in Boyce-Codd Normal Form and have 
constraints within and between views: key constraints, inclusion 
(i.e., foreign key) constraints, exclusion constraints (the key 
values in two relations are disjoint.), and union-key constraints 

(given attribute A in relations R1 and R2 with common key K, 

πK(R1) = πK(R2) implies πA(R1) = πA(R2), where πK(R) is the 

projection of  R on attributes K). To create the merged schema, 

they start with the disjoint union of the view schemas and then 
apply optimizations to reduce the number of relations and 
columns based on the constraints. For example, union-key con-
straints may indicate that a set of relations can be replaced by one 
relation. They do not produce view definitions (i.e., mappings). 

In [3], Biskup and Convent extend [6] by using a formal notion of 
completeness that is essentially Hull’s query dominance [9]. Their 
integration constraints between views are inclusions, exclusions, 
identities (i.e., bidirectional inclusions), and selection constraints 
(identities on a subset of tuples satisfying a selection condition). 
They optimize to reduce the size of the schema by applying 
constraints between views. Relations connected by exclusion, 
identity and selection constraints are combined, provided that this 
does not break any constraints within views. The algorithm 
defines the output merged schema, but there is only an example of 
a mapping between the view schema and global schema, not an 
algorithm for generating it. However, the output mappings 
between the views and the global schema are essentially the same 
as the input mappings for most of the given constraints, so an 
algorithm to cover these cases would be straightforward.    

7. CONCLUSION AND FUTURE WORK 
We have presented the first algorithm for generating a mediated 
schema and view definitions for data integration from a given set 
of source schemas and specifications of overlapping information. 
We defined a new normal form for a mediated schema and its 
view definitions, called Mediated Schema Normal Form (MSNF). 
We developed formal correctness criteria for a mediated schema 
and view definitions and proved that an MSNF mediated schema 
and view definitions satisfy the criteria. We presented an algo-
rithm that generates an MSNF schema and views and described 
what we learned from its implementation. 

We see several opportunities for future work. First, it would be 
useful to enrich the mapping language beyond conjunctive 
queries, include functions and constraints, especially key and 
foreign key constraints. Second, we would like to incorporate our 
algorithm into a tool for developing integrated schemas, so that a 
user study could evaluate its utility. Third, we feel that enough 
new work has appeared since Batini et al.’s survey [1] that a new 
survey of schema integration techniques would be worthwhile. 
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