
Schema Merging and Mapping Creation
for Relational Sources

Rachel Pottinger
University of British Columbia

201-2366 Main Mall
Vancouver, BC V6T 1Z4, Canada

rap@cs.ubc.ca

Philip A. Bernstein
Microsoft Research
One Microsoft Way

Redmond, WA 98052-6399, USA

philbe@microsoft.com

ABSTRACT

We address the problem of generating a mediated schema from a
set of relational data source schemas and conjunctive queries that
specify where those schemas overlap. Unlike past approaches that
generate only the mediated schema, our algorithm also generates

view definitions, i.e., source-to-mediated schema mappings.

Our main goal is to understand the requirements that a mediated
schema and views should satisfy, such as completeness, preserva-
tion of overlapping information, normalization, and minimality.
We show how these requirements influence the detailed structure
of schemas and view definitions that are produced. We introduce
a normal form for mediated schemas and view definitions, show
how to generate them, and prove that schemas and views in this
normal form satisfy our requirements.

The view definitions in our normal form use stylized GLAV
mappings, for which query rewriting is easier than general GLAV
mappings. We demonstrate the efficiency of query rewriting in a
prototype implementation.

1. INTRODUCTION
In data integration, users query multiple sources using a unified,
mediated schema rather than querying each source separately.
Each query over the mediated schema is then translated into
queries over the source schemas. The results of these queries are
combined and returned to the user.

To enable this scenario, the system needs view definitions, that is,
mappings that relate the mediated schema to its data sources. In
this paper, we analyze what constitutes a good mediated schema
and mappings and show how to obtain them.

We focus on the case where one starts with a set of data source
schemas. Although the disjoint union of the data source schemas
could be used as the mediated schema, this is usually not what is
wanted because it is highly redundant. The reason why a mediated
schema over multiple data sources makes sense is that the data
sources are closely related. Thus, some information is represented
in two or more schemas, often in different ways. Even if a user

were willing to deal with this redundancy, the complexity of
accessing the information in different representations would make
the schema hard to use. Therefore, such overlapping information
should have just one representation in the mediated schema with a
mapping to each of its representations in the source schemas.

One step in the development of the mediated schema is
identifying the overlapping source-schema elements that should

be collapsed. This is the database designer’s job—to identify those

overlapping elements, possibly with the help of a schema match-
ing tool. The designer needs to explain how each overlapping
element is mapped to each of the data sources in which it appears.

Example 1 Suppose we want a mediated schema to integrate
two travel databases, Go-travel and Ok-travel. Go-travel has
three relations:

Go-flight(f-num, time, meal)

Go-price(f-num, date, price)

Go-airline(airline, phone)

The attribute f-num is the flight number and meal is a bool-

ean. The other attributes are self-explanatory. Ok-travel has

just one relation: Ok-flight(f-num, date, time, price, nonstop),

where nonstop is a boolean. The overlapping information in

Ok-travel’s and Go-travel’s schemas could be represented in a

mediated schema by Flight(f-num, date, time, price). �

The overlapping elements are only part of the mediated schema.
Some elements that are unique to a particular data source are also
passed through to the mediated schema. For example, if the
schemas are all relational, then a data source may have a relation

R that does not overlap any relation in any other data source and

should be made part of the mediated schema. In addition, even if

R does overlap a relation R′ of another data source, R may have an

attribute that does not appear in R′ or any other data source and

that may be valuable to pass through to the mediated schema.

In the previous paragraph, to be technically precise we should be

calling R a relation schema, not a relation. However, since this

paper is focused on schemas more than data, we usually use
“relation” to mean a relation schema. We use the more precise
terminology only when the meaning is not clear from the context.

Suppose one wants the mediated schema to expose all of the
information in the data sources. In that case, the mediated schema
should include all of the overlapping schema elements, plus all
source-specific elements. By source-specific, we mean that the
schema elements are not subsumed by overlapping elements.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EDBT’08, March 25-30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003...$5.00.

73

Example 2 Continuing with Example 1, suppose we want to
expose all of Ok-travel’s and Go-travel’s information in the
mediated schema. In addition to the overlapping information

in Flight(f-num, date, time, price), we see that OK-travel has

source-specific information about flights being nonstop,
which does not appear in Go-travel’s schema. There are two

choices on how to include nonstop. We can pass through Ok-

flight as a separate relation in the mediated schema. However,

since we already have most of Ok-flight’s attributes in the

Flight relation, it seems more natural to add nonstop to Flight,

yielding Flight(f-num, date, time, price, nonstop). A similar

issue arises with meal in Go-flight.

Go-travel also has source-specific data about airline phone

numbers, so we need to pass through Go-airline(airline,

phone). We could handle this just like nonstop, by adding the

attributes airline and phone to Flight. However, this would

represent two independent types of information in the same
relation, information about flights and about airlines. This
violates standard database design principles, which say that
independent relationships should be represented in different

relations. It is better simply to add a relation Airline(airline,

phone) to the mediated schema. �

So far, we have identified two issues that affect the design of
mediated schemas: (1) overlapping information should have a
unique representation in the mediated schema; and (2) source-
specific schema information can be passed through to the
mediated schema either by extending relations that represent the
overlapping information or by adding relations, depending on
whether the source-specific information is or is not closely
dependent on the overlapping information. Now let us look at the
mapping between the mediated schema and source schemas.

The database designer needs a language in which to express
overlapping schema elements. If the data sources are relational, a
natural choice is relational queries. The overlap is defined by a set
of queries, one over each data source, which return type-
compatible data.

In what follows, we frequently refer to global-as-view (GAV),
local-as-view (LAV), and global-local-as-view (GLAV)
mappings. We assume a basic understanding of these concepts. A
recent survey appears in [10].

Example 3 The overlapping flight information in Example 1
could be expressed by the following Datalog queries:

Flight(f-num, date, time, price) :- Go-flight(f-num, time, meal),

 Go-price(f-num, date, price)

Flight(f-num, date, time, price) :- Ok-flight(f-num, date, time,

 price, nonstop)

The Flight relation is a view of Go-travel and Ok-travel. The

above queries comprise a simple GAV mapping. The left side
of the mapping is a relation in the mediated schema, and the
right side is a query over the data sources. Hence these
queries appear to be the mapping we need between the

mediated schema Flight and the data sources.

However, if we pass through Go-flight.meal and Ok-

flight.nonstop to the mediated schema, we obtain Flight(f-

num, date, time, price, meal, nonstop). This situation is more

complex. One problem is that Ok-flight does not have a meal

attribute. Therefore, we are driven to represent the mapping

between Flight and Ok-flight using a LAV mapping: Ok-

flight(f-num, date, time, price, nonstop) :- Flight(f-num, date,

time, price, meal, nonstop). (More details are in Section 4.2.)

This mapping is different than what the database designer
specified in the second query above. Combined with the first
mapping, the overall mapping between the mediated schema

and data sources uses GLAV. �

Past work on mediated schema creation has focused on
identifying and collapsing overlapping elements. This is the
problem of schema merging. Certainly, schema merging is an
important ingredient. However, as the examples above show,
there is more to it. We need to pass through some source schema
elements to the mediated schema. There may be more than one
way to do this, and the resulting mapping may be more complex
than a simple GAV query. In this paper, we generalize these
observations into requirements for mediated schema and mapping
design and an algorithm for obtaining them. We call this problem
semantic merge.

The semantic merge problem is the following: Given mapping
expressions that define the overlapping parts of a set of relational
schemas that represent data sources, (i) generate a mediated
schema that collapses these overlapping elements according to a
given specification and passes through source schema elements as
appropriate and (ii) generate mappings between the mediated
schema and data sources. Our contributions are as follows:

• We propose conjunctive queries as a way of expressing over-
lapping information in data sources (Sections 2.2 and 2.3)

• We define technical requirements for mediated schema and
mapping design (Section 2.4).

• We define a normal form for mediated schemas and map-
pings (Sections 3.1 and 3.2), prove that it satisfies the
technical requirements (Section 3.4), and comment on its
properties (Section 4).

• We give an algorithm that generates normal-form mediated
schemas and mappings (Section 3.3).

• We report on an implementation of the algorithm (Section 5).

We discuss related work in Section 6. Section 7 is the conclusion.

2. REQUIREMENTS

2.1 Introduction
The motivation and examples in Section 1 lead to the following
five criteria that we propose as requirements for a mediated
schema and mapping to satisfy:

i. Completeness: All information in the source schema should
be exposed in the mediated schema.

ii. Overlap preservation: Each of the overlapping elements
specified in the input mapping is exposed in a mediated
schema relation.

iii. Extended overlap preservation: Source-specific elements that
are associated with a source’s overlapping elements are
passed through to the mediated schema.

iv. Normalization: Independent entities and relationships in the
source schemas should not be grouped together in the same

74

relation in the mediated schema. In particular, source-
specific schema elements should not be grouped with
overlapping schema elements if the grouping co-locates
independent entities or relationships.

v. Minimality: If any elements of the mediated schema are
dropped then the mediated no longer satisfies (i) – (iv) above

We do not claim that users will want their mediated schema and
mapping to satisfy all of these criteria in all scenarios. However,
we do claim that these criteria are often desirable and that it is
worthwhile to understand how these criteria influence the choice
of mediated schema and mapping. We will have more to say about
this in Section 4. We also show how these criteria correspond to
hand-crafted mediated schemas in Section 5.

To make the above requirements technically precise, we start by
defining the language in which to express overlapping parts of the
source schemas. Simple correspondences between elements are
not enough, because we need a formal semantics of the
overlapping parts to guide the development of an output mapping.
We choose conjunctive queries for this purpose, which are defined
in Section 2.2. They are expressive enough to demonstrate our
design principles. Additionally, they comprise the mapping
language that is most commonly used in the research literature on
data integration (e.g., [8]). We explain how to use conjunctive
queries to express overlapping schema elements in Section 2.3.

Using this mapping language, we then define technical
requirements for a mediated schema and mapping that correspond
to the intuition developed in Section 1.

2.2 Conjunctive Queries
We express mappings over relational schemas as conjunctive
queries using Datalog notation, as in Example 3. A database

schema is a set of relation schemas. Each relation schema R has

a relation name and a sequence of attribute names, denoted

attr(R). The arity of a relation schema is the number of attribute

names it has.

A conjunctive query Q has the form q(X) :- e1(X1), …, en(Xn),

where q and e1, ..., en are relation names. The subgoals e1(X1), …,

en(Xn) are collectively the body of Q, denoted body(Q). The

predicate that appears on the left side of the query, q(X), is called

the head of query. The predicate name q of the head is the Inten-

sional Database (IDB) of Q, denoted IDB(Q). The tuples X, X1, …,

Xn have the same arity as the relations in which they appear. They

contain variables or constants. The query Q must be safe, meaning

that every variable in X also appears in body(Q). Vars(Q) refers to

the variables of Q. The variables in the body of Q but not the head

(i.e., Vars(Q)-X) are called existential variables. The answer to

query Q is an assignment of constants to the variables X such that

for some assignment of constants to Q’s existential variables,

body(Q) is true. The answer to a set of queries with a common

head is the union of the answers of the queries in the set. A
conjunctive query has the same expressive power as a SQL select-
project-join query without arithmetic comparisons.

Example 4 The following query asks for the prices of flights
that are listed in both Go-travel and Ok-travel:

Q(f,p) :- Go-price(f,d,p), Ok-flight(f,d,t,p,n)

Vars(Q) = {f, p, d, t, n}. Variables d, t and n are existential. �

Let Q1 and Q2 be two sets of queries whose heads have the same

arity. We say that Q1 is contained in Q2, denoted Q1 ⊆ Q2, if the

answer to Q1 is a subset of the answer to Q2 for all database

instances. Q1 and Q2 are equivalent if Q1 ⊆ Q2 and Q2 ⊆ Q1, i.e.,

they produce the same answer for every given database.

2.3 Conjunctive Mappings
A mapping is a relationship between the instances (i.e., the states)

of two schemas. Formally, let Inst(S) be the set of all instances of

a schema S. Then a mapping between database schemas U and V is

a subset of Inst(U) × Inst(V). In this paper, we use conjunctive

queries to define mappings.

Let S = {S1, … Sn} be a set of database schemas, one for each data

source. We express each overlapping part of a set of source
schemas by a set of two or more conjunctive queries with a
common IDB, where the body of each query is defined over one

schema in S. This is called an overlap specification (or, simply,

an overlap). For example, the queries in Example 3 comprise a

overlap specification over S = {Go-travel, Ok-travel}, where Flight

is the common IDB. We interpret each query in an overlap using
open world semantics, i.e., it computes a subset of the tuples
satisfied by the head.

Subgoals ei, ek of query Q are connected if ei has a variable in

common with ek or ei is connected to another subgoal of Q that is

connected to ek. For every query Q in an overlap, all subgoals of Q

must be connected. That is, Q has no Cartesian products.

To simplify the case analysis of definitions and theorems that
follow, we do not allow constants to appear in conjunctive map-
pings. None of our technical results depend on this assumption.

To avoid having to rename attributes and relations in the mediated
schema, we require that overlap specifications adhere to naming
conventions. The conventions do not affect the expressive power
of mappings; any set of conjunctive queries can be made to satisfy
them just by renaming variables. The conventions are as follows

i. In an IDB q(a1, …, am), each ai (1 ≤ i ≤ m) is called a variable

position. For each IDB name q in a set of overlap

specifications and for each variable position of q, the same

variable name must be used in all appearances in that varia-
ble position. For example, the following overlap violates this

requirement because name and aname appear in the only

variable position of Airline.

Airline(name) :- TravelOn-airline (name, phone)

Airline(aname) :- MyTravel-airline(aname, address)

This convention allows us to use, without ambiguity, the
variable name in each variable position as the name of the
corresponding attribute in the mediated schema.

ii. For a given IDB name in an overlap, an existential variable
name may appear in at most one conjunctive query with that
IDB name. For example, the following overlap violates this

requirement because phone is existential in both queries:

Airline(name) :- TO-airline(name, phone)

Airline(name) :- H-airline(name, phone, fax).

Like the previous convention, this allows us to use the name
of each existential variable as the name of the corresponding
attribute in the mediated schema.

75

iii. The relation names in S and the IDBs of overlaps are distinct.

That is, for each database schema Si in S if relation name R

appears in Si, then R does not appear in any other schema Sk

(i ≠ k) or as an IDB in any overlap.

An overlap specification that conforms to the above conventions
is said to be well-formed.

2.4 Technical Requirements
In this section, we make the correctness criteria of Section 2.1
more precise: completeness, overlap preservation, extended
overlap preservation, normalization, and minimality.

2.4.1 Completeness
We want to ensure there is no information loss in the mediated
schema. We can do this with the following completeness require-

ment: for each source relation R there is a query over the mediated

schema that is equivalent to the identity query over R. This corres-

ponds to the notion of query dominance in Hull’s information
capacity model [9], which is a common way to judge the informa-
tion preservation of one schema with respect to another [17].

This completeness criterion ensures that each source relation is
accessible by a query over the mediated schema. But it says noth-
ing about how complex that query might need to be. To ensure the
mediated schema is understandable and easy to use, we strengthen
completeness by requiring that the query over the mediated

schema M refers to only one relation in M. That is, we require that

for each source relation R there is a query over one relation in the

mediated schema that is equivalent to the identity query over R.

This requirement implies that for each relation R in a source, there

is a corresponding relation in the mediated schema that has all of

the attributes of R and possibly others. It also says something

about the mapping between R and the mediated schema, namely

that all data from the sources can be accessed and that similarly
structured data from different sources can be distinguished. For

example, suppose that in addition to the relation Go-airline(airline,

phone) in Go-travel there is a relation Ok-airline(airline, phone) in

Ok-travel. Then it is not enough to include a relation Airline in the

mediated schema defined as follows:

Airline(airline, phone) :- Go-airline(airline, phone)

Airline(airline, phone) :- Ok-airline(airline, phone)

because only the union of the two relations Go-airline and Ok-

airline can be queried in the mediated schema. We will show how

to create mediated schemas that avoid this problem in Section 3.

2.4.2 Overlap preservation
Overlap preservation requires that each of the overlapping
elements specified in the input mapping is exposed in a mediated
schema relation. Overlapping elements are defined by an overlap,
which is a set of conjunctive queries. Therefore, this requirement
can be stated in an analogous fashion to completeness, as follows:

For each overlap, there is a query Q over one relation in the

mediated schema that is equivalent to the overlap.

2.4.3 Extended overlap preservation
To satisfy completeness, we may want to add attributes to a
mediated schema relation beyond those that are needed for
overlap preservation. For example, consider the second query in
the overlap specification of Example 3:

Flight(f-num, date, time, price) :- Ok-flight(f-num, date,

 time, price, nonstop)

Overlap preservation implies that there is a relation in the

mediated schema that includes the attributes f-num, date, time,

price. Completeness requires that there is a query over one

relation in the mediated schema that is equivalent to the identity

query over Ok-flight. Since nonstop is the only attribute of Ok-

flight that does not appear in Flight, one way to satisfy

completeness is simply to add nonstop to the mediated schema

relation that includes Flight (we will call it M-Flight). This seems

more economical than, and hence preferable to, adding Ok-flight

to the mediated schema in addition to Flight.

Another reason to add attributes to a mediated schema is
convenience. For example, consider the first query in the overlap
specification of Example 3:

Flight(f-num, date, time, price) :- Go-flight(f-num, time, meal),

 Go-price(f-num, date, price)

The attribute meal appears in Go-flight but not in Flight. By

including meal in M-Flight, we enable the user to query this

information without performing a join. Given that meal already

appears in a source relation (namely, Go-flight) with the other

attributes of Flight, we know that it has a strong relationship with

those attributes. Therefore, including it in M-Flight seems like a

worthwhile convenience.

Unlike the previous example, we cannot claim completeness as a

reason to include meal in M-Flight. One might think that meal

would help us with completeness (along with the right mapping),

because a projection query on M-Flight over f-num, time, meal

would return the content of Go-flight. But this is incorrect. It only

returns the subset of Go-flight that joins with Go-price, which does

not help us with respect to completeness.

Therefore, whether or not we include meal in M-Flight, for

completeness we will need another mediated schema relation R

such that a query over R is equivalent to Go-flight(f-num, time,

meal). Thus, from a completeness standpoint, including meal in

M-Flight is unnecessary. Still, from a convenience standpoint, it is

desirable to include it, to avoid requiring a join with R to associate

meal with the other attributes of M-Flight. The convenience

attribute might even be a join variable, as in the following overlap
specification:

Flight(date, price, nonstop) :- My-flight(time, f-num, nonstop),

 My-price(date, time, f-num, price)

Flight(date, price, non-stop):- Auction-Flight(date, price, nonstop)

For a flight in My-flight, it would be handy to get the flight
number if you can get it (and the time, which is also existential)
without performing a join.

We capture the convenience aspect of adding attributes to an

overlap as follows. If Q is a query in an overlap and has an

existential variable, then we define the extended overlap query

of Q to be a query Q′ whose IDB is augmented with all of the

existential variables in body(Q). We then add the requirement that

for each extended overlap query Q′, there is a query over one

relation in the mediated schema that is equivalent to Q′.

76

2.4.4 Normalization
Taking the logic of extended overlaps to the extreme, one could
argue to make the mediated schema a universal relation, i.e., one
relation that includes all of the attributes of all of the source
relations. This is not the problem we are addressing. Sidestepping
a debate about the merits of a universal relation, we simply
remind the reader that our goal is to generate a mediated schema
that collapses these overlapping elements according to a given
specification. We therefore need a principle that limits the amount
of source schema that is collapsed.

One such principle could be that the mediated schema should
satisfy fourth normal form (or pick your favorite stronger normal
form). However, we do not recommend this because a user may
want a mediated schema that violates a normal form. For example,

in the overlap above, it might be that f-num is the key of Go-flight

and (f-num, date) is the compound key of Go-price. So Flight vio-

lates second normal form. The main justification for normal forms

relates to update behavior. We see no reason to prohibit Flight

from appearing in a mediated schema that is used only for queries.

We therefore define a weaker criterion whose goal is to avoid
causing normalization violations beyond those introduced by the
overlap specifications. The criterion is that for each mediated

schema relation R that corresponds to an overlap specification O,

every attribute of R appears in the head or a body of O. By R

corresponds to O, we mean that R includes the attributes of

IDB(O) and the query that projects R on those attributes is

equivalent to O.

2.4.5 Minimality
We require that the mediated schema cannot be made smaller and
still satisfy completeness, overlap preservation, extended overlap

preservation, and normalization. We say that database schema V is

minimal with respect to property P if there is no database schema

U satisfying P such that:

1. For all relations R ∈ U there exists a relation R′∈ V such that

attr(R) ⊆ attr(R′), and

2. For some relation R ∈ V, R ∉ U or attr(R) ⊂ attr(R′).

Intuitively, the above definition says that V is minimal with

respect to P if there is no smaller schema U satisfying P (condition

1) that can be derived from V by deleting a relation from V or

deleting an attribute of a relation of V (condition 2).

2.4.6 Summary
In Section 2.1 we presented informal requirements for a mediated
schema and mapping. In the rest of Section 2, we formalized these
requirements, which we restate here. The input to mediated
schema creation consists of relation schemas for the data sources
and a set of overlap specifications, which are conjunctive queries.
The output is a relational mediated schema and a mapping
between the mediated schema and data sources that satisfies the
following mediated schema criteria:

i. Completeness: For each source relation R, there is a query

over the mediated schema that is equivalent to the identity

query over R.

ii. Overlap preservation: For each overlap, there is a query over
one relation in the mediated schema that is equivalent to the
overlap.

iii. Extended overlap preservation: For each extended overlap

query Q, there is a query over one relation in the mediated

schema that is equivalent to Q.

iv. Normalization: For each mediated schema relation R that

corresponds to an overlap specification O, every attribute of

R appears in the head or a body of O.

v. Minimality: The mediated schema cannot be made smaller
and still satisfy (i) – (iv) above.

3. MEDIATED SCHEMA NORMAL FORM
For a given set of source schemas S and a set of overlap

specifications O, we define a normal form for a mediated schema

M over S and O (in Section 3.1) and for a conjunctive mapping

mapMS between M and S (in Section 3.2). In Section 3.3, we show

that this normal form satisfies the mediated schema criteria.

3.1 The Mediated Schema
In what follows, we often use the same relation names in the
mediated schema and data sources, when they obviously

correspond. To distinguish between them, we use the prefix “M.”

for relation names in the mediated schema, M.

The mediated schema criteria give us two main reasons to create a

relation M.R in the mediated schema:

a. Overlap Relation – M.R is derived by applying overlap

preservation and extended overlap preservation to each
overlap specification, mitigated by normalization. More

concretely, R is the IDB of an overlap specification O and

M.R’s attributes are the set of all variables in the bodies of all

queries in O. We call M.R an overlap relation and say that

M.R corresponds to O.

b. Completeness Relation - R is a source relation whose content

is not equivalent to a query over the relations defined by (a).

In this case, add M.R to the mediated schema. We call M.R a

completeness relation and say that M.R corresponds to R.

If a mediated schema conforms to rules (a) and (b), we say it is in
mediated schema normal form (MSNF).

Example 5 Reconsider the overlap specification in Example 3

Flight(f-num, date, time, price) :- Go-flight(f-num, time, meal),

 Go-price(f-num, date, price)

Flight(f-num, date, time, price) :-

 Ok-flight(f-num, date, time, price, nonstop)

The mediated schema should include an overlap relation

M.Flight(f-num, date, time, price, meal, nonstop), because

Flight is the IDB of the overlap and {f-num, date, time, price,

meal, nonstop} is the set of all variables in the bodies of all

queries in the overlap. With a suitable mapping (which we

have not defined yet), it is possible that a query on M.Flight

that projects f-num, date, time, price, and nonstop would be

equivalent to the content of Ok-flight. Therefore, case (b) does

not apply to Ok-flight.

The same approach would not work for Go-flight(f-num, time,

meal), since the body of the first query in the overlap includes

a join with Go-price. So a query on M.Flight that projects f-

num, time, and meal would return the subset of Go-flight that

77

joins with Go-price. Therefore, following (b) above, we need

to include completeness relations M.Go-flight(f-num, time,

meal) and M.Go-price(f-num, date, price) in the mediated

schema. Due to (b), we also need to include M.Go-

airline(airline, phone), which is in the schema in Example 1

but not in any overlap at all. �

Example 5 suggests that we need to add a source relation to M

unless it appears alone in the body of a query in an overlap. But
this is not quite enough, as the following example shows.

Example 6 Suppose we add the following query to the
overlap specification of Example 3:

Flight(f-num, date, time, price) :- US-flight(f-num,date,time,price)

The mediated schema would still be M.Flight(f-num, date,

time, price, meal, nonstop). A query on M.Flight that projects

f-num, date, time, and price would return a relation that

includes the content of US-Flight. But it would also include

the projection of Ok-flight on f-num, date, time, and price and

of Go-flight(f-num, time, meal) joined with Go-price(f-num,

date, price). Thus, (b) tells us to add M.US-flight(f-num, date,

time, price) to M. �

We say that a source relation R is subsumed by an overlap O if R

appears alone in the body of a query Q in O and R has at least one

existential variable in Q. In Example 5 Ok-flight is subsumed by

Flight, since it appears alone in the second query of the overlap

and has an existential variable nonstop. As was shown for Ok-

flight in Example 5, when R is subsumed by an overlap O, case (b)

above does not apply. Notice that it is important that O is well-

formed (see Section 2.3), so that the existential variable is unique-

ly named. This ensures that the projection query on attr(R) applied

to the completeness relation returns the tuples of R and no other

source relation.

This property of the projection query also explains why we
defined an extended overlap query only for cases where there is
an existential variable in the body of the overlap query. If there is
no existential variable, then the projection of the overlap relation

on the attributes returns tuples in addition to those of R and hence

doesn’t help us with respect to completeness.

Given the definition of subsumed, we can now restate case (b):

b. Completeness Relation – If R is a source relation that is not

subsumed by an overlap, then add R to the mediated schema.

Suppose two completeness relations have the same set of
attributes, such as the example

Airline(airline, phone) :- Go-airline(airline, phone)

Airline(airline, phone) :- Ok-airline(airline, phone)

that we saw at the end of Section 2.4.1.These could be combined

into a single mediated schema relation by adding a tag attribute,

such as Airline(airline, phone, tag). For each tuple, the tag

identifies which source relation(s) contain the relevant tuple. This
is a valid alternative to our completeness relations. However, it
makes the mediated schema less self-describing by hiding the

corresponding source in the value of the tag attribute. For clarity,

we therefore use completeness relations in what follows.

Notice that according to our definition of minimality, the database

schema {Airline(phone, airline, tag)} does not contradict the

minimality of the database schema {Go-airline(phone, airline),

Ok-airline(phone,airline), Airline(phone, airline)}, because the

former cannot be obtained from the latter by deleting relations
and/or attributes. Thus, our notion of minimality is that of a local
minimum, not a global minimum.

3.2 The Mapping between Mediated and
Source Schemas
In Example 3 we showed that the use of an extended overlap in
the mediated schema made it desirable to use a GLAV mapping
between a mediated schema and data sources. In this section, we

define a stylized GLAV mapping between M and S, called an

MSNF mapping, which has two nice properties: it ensures the
mediated schema and mapping satisfy the mediated schema
criteria; and it ensures that it is easy to produce exact rewritings of
the queries required by completeness, overlap preservation, and
extended overlap preservation.

Let M be an MSNF schema derived from source schemas S and

overlap specifications O. The MSNF mapping mapMS between M

and S is defined using a schema I, called the intermediate

schema, that is distinct from M and S. Schema I is a “helper sche-

ma” that sits between M and S. The relations of I with respect to

(w.r.t.) M and O are (1) copies of the completeness relations in M

and (2) the heads of the extended overlap queries of all overlaps in

O. The latter relations are named by adding to the IDB of the

overlap a subscript that is the index of the query in the overlap.

For example, I would include the following two relations for the

overlap in Example 3: I.Flight1(f-num, date, time, price, meal) and

I.Flight2(f-num, date, time, price, nonstop). More precisely:

i. For each completeness relation M.R in M, there is a relation

I.R′ in I that has the same attributes as M.R. We say that I.Ri

corresponds to M.R.

ii. For each overlap O in O, for each query Qi in O (1 ≤ i ≤ |O|)

there is a relation I.Ri in I where R = IDB(Qi) and I.Ri has the

same attributes as body(Qi). We say that I.Ri corresponds to

Qi in O .

The MSNF mapping mapMS between M and S has LAV and

GAV queries for completeness relations and for extended overlap
queries, both of which are expressed using the intermediate

schema I. They are defined as follows:

a. LAV:

1. For each completeness relation M.R in M, mapMS

includes the following query:

I.R(attr(M.R)) :- M.R(attr(M.R)).

2. For each relation I.Ri in I that corresponds to some

overlap O in O, mapMS includes the following query:

I.Ri(attr(I.Ri)) :- M.R(attr(M.R)) where M.R corresponds

to O.

b. GAV:

1. For each completeness relation I.R in I, mapMS includes

the following query:

I.R(attr(I.R)) :- R(attr(I.R)).

78

2. For each relation I.Ri in I that corresponds to some query

Qi in overlap O in O, mapMS includes the following

query: I.Ri(attr(I.Ri)) :- body(Q).

Cases (a1) and (b1) apply to completeness relations. Each
completeness relation is identical to its corresponding source
relation and intermediate relation. For example, the source

relation Go-flight(f-num, time, meal) has a corresponding

mediated schema relation M.Go-flight(f-num, time, meal) (see

Example 5) and a corresponding intermediate schema relation

I.Go-flight(f-num, time, meal). Therefore, by (a1), mapMS includes

the LAV query I.Go-flight(f-num, time, meal) :- M.Go-flight(f-

num, time, meal). And by (b1), mapMS includes the GAV query

I.Go-flight(f-num, time, meal) :- Go-flight(f-num, time, meal).

Cases (a2) and (b2) apply to extended overlap queries. Consider

the ith query Qi in an overlap O whose IDB is R. The head of Qi’s

overlap or extended overlap query has IDB R and its attributes are

Ai = attr(body(Qi)). The corresponding intermediate schema

relation is I.Ri(Ai). Hence, Qi’s GAV query in (b2) is its overlap or

extended overlap query with a slightly different IDB, namely I.Ri.

By contrast, the mediated schema relation M.R that corresponds to

O has the union of attributes in the heads of all overlap queries

and extended overlap queries for O. So in general, M.R’s attributes

are a proper superset of Ai. Hence the LAV query for Qi’s overlap

or extended overlap query is a projection of M.R on Ai. For

example, consider the second query (call it Q2) in the overlap of

Example 5: Flight(f-num, date, time, price) :- Ok-flight(f-num,

date, time, price, nonstop). The corresponding intermediate

schema relation is I.Flight2(f-num, date, time, price, nonstop). The

corresponding extended overlap relation in the mediated schema

is M.Flight(f-num, date, time, price, meal, nonstop); it includes

meal which comes from the other overlap query in Example 5. So

the LAV query for I.Flight2 is I.Flight2(f-num, date, time, price,

nonstop) :- M.Flight(f-num, date, time, price, meal, nonstop), and

the GAV query for Q2 is I.Flight2(f-num, date, time, price) :- Ok-

flight(f-num, date, time, price, nonstop).

3.3 An Algorithm to Generate MSNF
The definitions of MSNF schema and mapping are, in effect, algo-
rithms that generate the schema and mapping. For completeness,
we restate them in a more procedural format in Figure 3-1.

3.4 Correctness
In this section, we prove that every MSNF schema and mapping
satisfy the mediated schema criteria of Section 2.4. A reader can
skip this section without loss of continuity.

Theorem 1: Let S be a set of source schemas and O a set of

overlap specifications. Every MSNF mediated schema M over S

and O and mapping mapMS satisfy the mediated schema criteria. �

We prove Theorem 1 in Lemmas 2-6 below, showing that each of
the five mediated schema criteria is satisfied. To do this, we need
to weaken slightly the notion of query equivalence that appears in
the mediated schema criteria. Since MSNF uses GLAV mappings

to relate M and S, we instead use maximally-contained rewritings,

which return the maximal set of sound answers that can be

obtained given the sources in S, which are not assumed to be

complete [8]. For example, completeness says that “For each

source relation R, there is a query over the mediated schema that is

equivalent to the identity query over R.” Instead, we will show

there is a query over the mediated schema whose maximally-

contained rewriting is the identity query over R.

We start with a technical result about maximally-contained
rewritings of projection queries over the mediated schema. This is
used in the proof since the queries required for completeness and
overlap preservation are projection queries. The result says that to

Procedure MSNFMappingCreation(S, O, M)

// S is a set of schemas, O is an overlap

// M is the output from MSNFSchemaMerge(S, O)

LAV-viewsM = ∅

GAV-viewsM = ∅

For each relation m ∈ M

 If e ∈ S and e corresponds to m

 Let q be a fresh IDB name

 // i.e., q is an IDB name that does not appear as an

 // IDB name elsewhere in O or mapMS.

 Let lavm = q(attr(m)) :- m(attr(m))

 Let gavm = q(attr(m)) :- e(attr(e))

 // The relations m and e in the definition of lavm

 // and gavm respectively are the same (from the

 // definition of MSNFSchemaMerge).

 // Similarly, attr(m) = attr(e).

 Add lavm to LAV-viewsM

 Add gavm to GAV-viewsM

 For each overlap query oq ∈O

 Let cname = IDB(oq)

 Let m be the relation in M such that cname

 corresponds to m

 Let q be a fresh IDB name

 lavc = q(Vars(oq)) :- m(attr(m))

 gavc = q(Vars(oq)) :- body(oq)

 Add lavc to LAV-viewsM

 Add gavc to GAV-viewsM

Return LAV-viewsM and GAVviewsM.

Figure 3-1 Algorithms to generate an MSNF schema and

mapping

Procedure MSNFSchemaMerge(S, O)

// S is the set of schemas to be merged

// O is a set of overlaps between them

M = ∅ //the merged schema to create

Let R = {r ∈ S | r is not subsumed by an overlap in O}

For each relation r ∈ R

 Let m be a new relation

 name(m) = M.name(r)

 attr(m) = attr(r)

 Add m to M

For each IDB name q ∈ IDB names in O

 Let m be a new relation

 Let Varsq be the duplicate-free union of the variables

 of queries that define q in O

 name(m) = name(q)

 attr(m) = Varsq

 Add m to M

Return M

79

rewrite a projection query Q over M.R to be a query over I, replace

it by the union of the set of all queries whose head is Q and whose

body is an intermediate relation that includes all of Q’s attributes

and that has an associated LAV view whose body is R.

Lemma 1: Let M be an MSNF schema derived from source

schemas S and overlap specifications O. Let I be the intermediate

schema w.r.t. M and O. Let mapMI be the LAV part of the MSNF

mapping between M and S. Let Q be a projection query over a

relation M.R such that the variables of M.R in Q match the names

of the attributes of M.R. Let {I1, …, In} be the set of all

intermediate relations Ii such that (i) the body of Ii’s LAV view is

M.R(attr(R))
1, and (ii) Vars(head(Q)) ⊆ Vars(head(Ii)). Then

∪1≤j≤n (head(Q) :- Ij(attr(Ij)) is a maximal rewriting of Q w.r.t.

mapMI.

Proof: Let Q be “Q(A′) :- M.R(A′)”. By [12], answering queries

using views can be used to construct a maximally-contained

rewriting of Q; we consider the MiniCon algorithm which

produces maximally-contained rewritings (see proof in [19]). Due

to the simple structure of the LAV views and the fact that Q has

only one subgoal, the MiniCon algorithm is nearly trivial. There

is only one subgoal to consider, which is for M.R. Each MiniCon

Description (MCD) thus contains Ii for each LAV view whose

body is M.R(attr(R)); since the query is a projection query, the

head homomorphism is the identity homomorphism. Since the
query is one subgoal long, the combination step will simply re-

turn the MCD. The resulting query is ∪1≤j≤n (Q :- Ij), as desired. �

Lemma 2: (Completeness): For each source relation R, there is a

query over the mediated schema whose maximally-contained

rewriting is the identity query over R.

Proof: There are two cases, depending on whether R is subsumed

by an overlap. Case (1): If R is not subsumed by an overlap, then

it appears in M. We show that the identity query over R is a

maximally-contained rewriting of the identity query over M.R.

Let Q(attr(M.R)) :- M.R(attr(R)) be the identity query over M.R.

There is only one view in mapMS that refers to M.R, a LAV view

I(attr(M.R)) :- M.R(attr(M.R)). By Lemma 1, Q(attr(M.R)) :-

I(attr(M.R)) is a maximally-contained rewriting of Q. The only

other view that mentions I is the GAV view I(attr(R)) :- R(attr(R)).

By unfolding the GAV view into Q, we conclude that Q(attr(M.R))

:- I(attr(M.R)) is equivalent to Q(attr(M.R)) :- R(attr(R)) as desired.

Case (2): If R is subsumed by an overlap O, then R appears alone

in the body of a query Q in O and R has at least one existential

variable in Q. Let R′ be the extended overlap relation for O. We

show that the identity query over R is a maximally-contained

rewriting of the projection query of M.R′ over attr(R).

Let Q′(attr(R)) :- M.R′(attr(M.R′)). Since R′ is an extended-overlap

relation, it corresponds to an overlap O. Hence, for each query Qi

in O (1 ≤ i ≤ |O|) there is a relation I.Ri in I where name(Ri) =

name(R′) = IDB(Qi) and attr(I.Ri) = the duplicate-free union of the

variables of Qi. By definition of mapMS, there are LAV views

1 By the construction in Section 3.2, attr(head(Q)) uses the same

naming scheme as the variables of any corresponding relation R,

so a renaming step is not required.

I.Ri(attr(I.Ri)) :- M.R′(attr(M.R′)) for 1 ≤ i ≤ |O|. Moreover, these

are the only LAV views that refer to M.R′.

Since R is subsumed by O, R appears alone in the body of a query

Q″ in O and R has an existential variable in Q″. Since the input

mapping is well-formed, that existential variable appears only in

Q″. Hence, among all of the intermediate relations, only one Ij has

the property that Vars(head(Q″)) ⊆ attr(Ij), namely, the intermedi-

ate relation that corresponds to Q″. Hence, by Lemma 1, Ij(attr(R))

:- M.R′(attr(M.R′)) is a maximally-contained rewriting of Q′. �

Lemma 3: (Overlap preservation) For each overlap O, there is

a query Q over one relation in the mediated schema such that O is

a maximal rewriting of Q.

Proof: Let M.R be the overlap relation for O. Let QO = {QO1, …,

QOm} be the set of all overlap queries for O. We will show that

Q(attr(head(O)) :- M.R(attr(R)) is the required query by showing

QO1 ∪ … ∪ QOm is a maximal rewriting of Q. To rewrite Q w.r.t.

mapMI, conditions (i) and (ii) of Lemma 1 apply, so by Lemma 1

∪1≤k≤m (head(Q) :- Ik(attr(Ik)) is a maximal rewriting of Q w.r.t.

mapMI. By definition of the GAV views (b2) in MSNF mapping,

each Ik corresponds to a query QOk in the overlap and hence can

be replaced by body(QOk), yielding ∪1≤k≤m (head(Q) :- body(QOk),

which is QO1 ∪ … ∪ QOm as desired. �

Lemma 4: (Extended overlap preservation) For each extended

overlap query Q′, there is a query Q″ over one relation in the

mediated schema whose maximal rewriting is Q′.

Proof: Suppose Q′ is the extended overlap query of query Q in

some overlap O. Let M.R be the overlap relation for O and let

Q″(Vars(head(Q′))) :- M.R(attr(R)) be the required query over M.

We first rewrite Q″ w.r.t. mapMI. Since Q has an existential

variable, there is a unique relation Ii in I that satisfies conditions (i)

and (ii) of Lemma 1. Hence, by Lemma 1 head(Q″) :- Ii(attr(Ii)) is

a maximal rewriting of Q w.r.t. mapMI. Since Ii corresponds only

to Q, by definition of the GAV views (b2) in MSNF mapping,

Ii(attr(Ii)) :- body(Q) is the only query in mapIS with IDB Ii.

Unfolding that query into head(Q″) :- Ii(attr(Ii)) we get head(Q″) :-

body(Q) as the maximal rewriting of Q as desired. �

Lemma 5: (Normalization) For each mediated schema relation

R that corresponds to an overlap specification O, every attribute of

R appears in the head or a body of O.

Proof: Follows directly from the definition of overlap relation. �

Lemma 6: (Minimality) The mediated schema is minimal with
respect to mediated schema criteria (i) – (iv).

Proof: Partition M into the set of overlap relations MO and the set

of completeness relations MS. We show that if any relation or

attribute is deleted from MO or MS then M does not satisfy one of

the mediated schema criteria (i) – (iv).

MO: To satisfy overlap preservation, there must be a relation m ∈

M for each overlap O ∈ O. Due to normalization, we cannot

combine two relations in MO because they are not in the same

overlap. Overlap and extended overlap preservation require every

overlap and extended overlap query qo ∈ O to be answered using

one relation. Therefore, attrs(m) ⊇ Vars(O). MSNF defines

80

attrs(m) = Vars(O), so no attributes of m may be deleted. Hence

MO is minimal given the mediated schema criteria.

MS: By definition of completeness relation, every ms ∈ MS is not

subsumed by an overlap. Suppose ms corresponds to s ∈ S. There

are two cases: (1) s is not in the body of any overlap; (2) for every

overlap query qo where ms∈body(qo), either qo has no existential

variables or body(qo) has more than one subgoal.

Case (1): Relation ms is the only completeness relation that

corresponds to s. There can be no overlap relation that corres-

ponds to an overlap whose body contains s, because s is not in the

body of any overlap. Hence, the only queries that relate s to M are

the LAV and GAV queries for the completeness relation ms (see

definitions a1 and b1 in MSNF mapping). Hence, deleting ms or

any of its attributes from M would violate completeness.

Case (2): By completeness, at least one relation must contain

attr(s). The only relations in M besides ms that contain attr(s) are

the overlap relations. Let O be the overlap with qo ∈ O, and let

mO be the overlap relation corresponding to O. We claim the

projection query Q(attr(s)) :- mo(attr(mo)) is not a maximal rewrite

of Q′(attr(s)) :- s(attr(s)). By definition of case (2), either (a) qo

has no existential variables or (b) body(qo) has more than one

subgoal. If (a), then by Lemma 1 Q returns the union of s and the

other queries in O. If (b), then since qo is connected (see defini-

tion of overlap), Q returns the subset of s that joins with another

relation in body(qo). Thus Q is not a maximal rewrite of Q. Since

no overlap relation satisfies completeness for s, ms cannot be

deleted from M without violating completeness. �

4. DISCUSSION
In this section, we discuss several issues related to the choice of
MSNF schemas and mappings and their effect on query
processing performance and completeness.

4.1 Is MSNF Always Needed?
In Section 3.4 we proved that MSNF schemas and mappings have
a number of desirable properties, characterized by the mediated
schema criteria. A database designer may not require all of the
criteria and hence may not want an MSNF schema and mapping
in all application scenarios. Still, we believe the criteria are at
least a worthwhile starting point to consider which criteria are
relevant in a particular scenario. To help one decide which criteria
are relevant, Sections 2 and 3 show how each criterion affects the
choice of mediated schema and mappings. Moreover, as will be
shown in Section 5.2, there are practical examples where every
type of MSNF relation and mapping is needed.

Even when MSNF is not needed, it may be useful to develop an
MSNF schema as an early step of the mediated schema creation
process. This yields a complete, minimal schema with a complete
set of mappings. One can then prune portions of the meditated
schema that are not needed for the given application and modify
the mapping accordingly. However this is just a proposal. A user
study is needed to determine if such a methodology has merit.

4.2 Why GLAV Views?
Section 1 showed examples to motivate the need for GLAV views
for mapping sources to a mediated schema. Now that we have the
precise definition of MSNF, we can reconsider the issue in more
detail. The question is, why not use GAV or LAV instead?

GAV breaks down as a mapping language for mediated schemas
when there are overlapping concepts in the source schemas that
have additional non-overlapping information. For schemas that
adhere to MSNF, this comes up when there is an existential
variable in an overlap query. For example, take the mapping in

Example 3. Most concepts of Flight are in common, but Go-travel

contains additional information about meals.

In MSNF, the corresponding mediated schema relation in M for

Flight is M.Flight(f-num, date, time, price, meal, nonstop). A

GAV mapping must provide a value for each attribute in M.Flight.

However, no conjunctive query can do this for Flight unless it

populates nonstop with NULL. But this is undesirable as it leads

to the usual ambiguity between two interpretations of NULL,

namely “irrelevant” for tuples coming from Flight vs. “missing”

for tuples coming from OK-Flight that have nonstop = NULL.

E.g., these two interpretations are not supported by SQL.

LAV enables us to handle this situation elegantly by expressing

Flight and OK-Flight as projections of M.Flight. However, LAV too

has a limitation. It cannot map a mediated schema relation to the

join of relations in a source. An example of this is Go-Flight and

Go-price in Example 3. The obvious LAV mapping for this

example would be:

Go-flight(f, t, m) :- M.Flight(f, d, t, p, m, n)

Go-price(f, d, p) :- M.Flight(f, d, t, p, m, n)

Ok-flight(f, d, t, p) :- M.Flight(f, d, t, p, m, n)

While this would allow queries on M.Flight to access Go-flight or

Go-price to answer some queries, it would not allow easy access

to their join. For example, it could not answer the query

All-flight-info(f, t, m, d, p) :- Flight (f, d, t, p, m, n).

Due to these limitations of LAV and GAV, MSNF uses a stylized
combination of LAV and GAV mappings, which are a subset of
GLAV mappings. This allows both GAV and LAV views between
the source and mediated schema. The subset of GLAV required is
very limited; the local views are only projections.

4.3 Query Rewriting
GLAV views require a query rewriting algorithm for answering
queries using views. For conjunctive queries and views this
problem is NP-Complete in the number of query subgoals [12].
Nevertheless, rewriting queries is often fast enough in practice, as
was shown in [19] and as is known from the widespread use of
materialized views for data warehousing. Moreover, query
rewriting for our limited GLAV views is more efficient than the
general case; e.g., each of our LAV views has only one subgoal.
In Section 5.3, we show some experiments to provide further
evidence that query rewriting is fast enough.

Some additional improvement in query rewriting performance
may be attainable by replacing MSNF views by pure GAV views
where possible. For example, completeness relations could be
mapped using GAV views. We avoided this optimization in the
definition of MSNF because the lack of symmetry complicates the
proof of correctness by requiring a case analysis.

4.4 Completeness
Completeness ensures that all queries that can be asked over the
source schemas can be asked over the mediated schema. Naïvely,
one might expect this to require that all source relations be
retained in the mediated schema. However, as we showed in

81

Example 5, this is not true. Some source relations can be made
accessible in the mediated schema simply by adding attributes to a
mediated schema relation that is needed for other reasons.

5. IMPLEMENTATION & EVALUATION
We implemented an algorithm to generate MNSF in Java. With
this implementation, we tested a number of hypotheses:

• Is the expressiveness of the input mapping necessary and
sufficient?

• Can this method reproduce a mediated schema that has been
created independently?

• Can queries over the mediated schema be rewritten efficiently?

To test these hypotheses, we used 4 of the 5 available data sets in
the Illinois Semantic Integration Archive [1]: “Courses” (5
schemas), “Inventory” (3 schemas), “Real Estate 1” (5 schemas)
and “Real Estate 2” (3 schemas). All schemas in the fifth data set,
“Faculty,” are isomorphic, so we excluded it. All schemas are in
XML that is readily translatable to relational schemas. Data is
available for each source to resolve ambiguities. The source
schemas have an average of 2.9 relations and each relation has an
average of 11 attributes. In each experiment, we merged the
schemas pair-wise to create the final mediated schema.

5.1 Implementing Mediated Schema Creation
First we investigated whether conjunctive queries are rich enough
to express the common cases in mediated schema creation, and
whether that richness is necessary. Conjunctive queries could
express most relationships required. There were two types of
relationships that semantic merge could not reproduce:
concatenation of data values and arithmetic manipulation.

This experiment also showed that the power of conjunctive
queries was required to fully express how the schemas related to
one another. Of the 16 overlaps created in this experiment, 11
(69%) required joins, and all required the use of existential
variables.

5.2 Mimicking Hand-Crafted Schemas
To evaluate whether MSNF schemas are understandable and
useful, we compared them to hand-crafted mediated schemas in
the “Courses” and “Real Estate 1” data sets. These given mediated
schemas were created with the sources in mind, but they differed,
sometimes substantially, from the input schemas. We tried to rep-
licate these mediated schemas as closely as possible using MSNF.

For the “Courses” dataset, MSNF came very close to creating the
provided mediated schema. Of the six relations in the mediated
schema, our approach replicated two of them exactly. The remain-
ing four MSNF relations were similar to the given mediated
schema but they included extra attributes—at least one attribute
that only appeared in one source. Still, the given mediated schema
included some of the attributes that correspond to existential
variables in an overlap query and that appeared in the MSNF
relations. So extended overlap preservation must be considered
when developing a mediated schema.

The same four mediated schema relations also required joins in
the input mappings. Thus, neither GAV nor LAV would have
been an appropriate choice for a mapping language between the
mediated schema and source schemas (see Section 4.2).

The mediated schema provided for “Real Estate 1” differed
substantially from the sources, and hence the MSNF generation
algorithm had more difficulties. As in the “Courses” domain, most
of the generated MSNF relations contained additional attributes.
Of the 105 attributes in the given mediated schema there were 22
attributes that the MSNF generation algorithm could not create.
These fell into three categories:

• Fourteen attributes had no corresponding source schema data.
For example, the “Superstructure” relation in the mediated
schema included an “elevator” attribute, but no source included
elevator information.

• Two attributes required more complex manipulation, as in the
previous experiment. For example, the given mediated schema
included an attribute for “number of bathrooms” which would
have required adding “half baths” and “full baths” attributes.

• The remaining six attributes required examining data values.
For example, one relation included “mountain view”, “city
lights view”, and “water view” attributes, but the sources only
included “view” attributes.

Hence MSNF generation generated 83 of the 91 attributes (91%)
for which there was information available in data source schemas.

5.3 Rewriting Queries
Our goal was to show that queries could be translated efficiently
enough for the method to be considered; our goal was not to show
how fast the algorithm was, so the code was un-optimized. Since
unfolding GAV mappings is trivial, we only compared against
LAV rewriting times. We created an MSNF version of the schema
that could express as much of the mediated schema as was possi-
ble in LAV. As explained in Section 4.2, the LAV mapping is less
expressive, so we limited our tests to queries that could be asked
over both schemas. As shown in Figure 5-1, despite the fact that
both algorithms are asymptotically the same, since the LAV views
also contained only one relation, LAV was in practice much slow-
er as more query subgoals were added. The Course and RealEstate
lines show rewriting times for the schemas created using the
MSNF; for queries that contain 6 subgoals, both finish in under 2
seconds on a 850 MHz single-cpu PC with 256MB of RAM.

To summarize the results on the practicality of MSNF: MSNF
schemas are similar to hand-crafted mediated schemas. The
examples required at least the expressiveness of conjunctive
queries for overlap specification and of GLAV mappings for
views. More expressive overlaps and views that express
arithmetic and concatenation are needed. Finally, we showed that
query rewriting over MSNF mediated schemas is fast.

Figure 5-1 Query rewriting time is modest

82

6. RELATED WORK

6.1 Requirements
Mediated schema criteria for schema merging were introduced by
Batini, Lenzerini, and Navathe in their 1986 survey of schema
integration methods [2]. Their criteria are as follows:

• Completeness and correctness: users can get the same data
from the mediated schema as they can from the sources.

• Understandability: the mediated schema is comprehensible
to the user; i.e., queries that the user wants to ask should be
easy to ask.

• Minimality: the mediated schema does not contain multiple
ways of accessing the same concept or have any data beyond
what is required for completeness and understandability.

They distinguish between view integration and data integration.
View integration defines a database schema that can support a
given set of views. Data integration defines a database schema to
query a given set of data sources. Both require merging the input
schemas into a schema that covers the input. The main difference
is whether it is meaningful to define constraints between the given
schemas. For view integration, the given views are views of one
database. In this case, the integration process can be driven by
constraints between the given views, such as referential
constraints (e.g., the full-time-students view is contained in the
all-students view). For data integration, the data sources are
independent (e.g., student databases of different universities). In
this case, there are no constraints between the given source
schemas that describe how their instances are related. Rather,
there are relationships that explain where the given schemas
represent the same information and therefore can be collapsed.

6.2 Generating View Definitions
Among the many papers on view and data integration, to our
knowledge only one other paper gives an algorithm to generate
both a merged schema and view definitions (i.e., mappings) to
support it, namely Melnik et al. [15]. They give formal properties
that a merged schema and views must satisfy for view integration.
They show that the output of their algorithm in [16] satisfies these
formal properties provided that the input schemas are snowflake
schemas and the input mappings are “path morphisms.” A path
morphism is a set of equality constraints between a pair of snow-
flake schemas, each of which says that a query over one input
schema equals a query over the other schema. The query is limited
to using join expressions that follow the snowflake relationships.

Melnik et al.’s work differs from ours in several ways: First, they
address view integration, not schema integration. This has a major
effect on correctness criteria. For example, in [15], they require

that the input mapping between the two source schemas S1, S2 is

equivalent to the composition of the two view definitions between

the source schemas and mediated schema M. That is, mapping S1-

S2 is equivalent to the composition of S1-M and M-S2. This makes

sense for view integration, where S1 and S2 are views of the same

source, but not for data integration where the instance data of S1

and S2 are unrelated.

Second, in [15] the inputs are limited to snowflake schemas and
path morphisms. By contrast, we allow arbitrary relational
schemas and conjunctive queries. And third, since their input does
not characterize overlaps as conjunctive queries, they have no

notion of extended overlap or extended overlap preservation in
either their correctness criteria or merge algorithm.

An extension of the merge algorithm of [15] with reverse
engineering support is in [7].

6.3 Conflict-driven Schema Merge
There are many papers on schema merging algorithms that pro-
duce an integrated schema from the source schemas. Since there
are too many to cover here, we discuss just a few from the last
decade as a representative sample. We refer the reader to the
Batini et al. survey [1] for most earlier ones.

Schema merging’s goal is to collapse overlapping schema
elements in the output schema. This may not be straightforward
due to conflicting representations in the sources. For example,
Buneman, Davidson, and Kosky [4] merge two schemas by
collapsing classes and attributes having the same name. If a class

C appears in both input schemas S1 and S2, but C has two different

attributes in S1 and S2 that have the same name but different

ranges, then the naming conflict has to be solved in the merged
schema. They describe a merge algorithm that solves this type of
conflict and prove that it produces a unique output independent of
the order in which the conflicts were resolved. In our model, such
a naming conflict would show up as a violation of well-formed-
ness of the overlap specification (see Section 2.3). We assume
such conflicts are eliminated in a preliminary renaming step.

A later algorithm by Spaccapietra and Parent treats a broader class
of conflicts [22]. Unlike [4], they assume an explicit set of
correspondences between the input schema elements. They
describe merge procedures as a sequence of integration rules:
integrate objects, integrate links, integrate paths, etc. They create
correspondences between the merged schema and input schemas,
but do not show how to turn those correspondences into views.

We followed a similar approach in a merge algorithm we pre-
sented in a previous paper [20]. We allowed more expressive
input mappings than [1], where the mapping itself was a schema,
and resolved other conflict types in addition to those of [4] and
[1]. Like [1], [20] generates correspondences but not views
between the merged schema and input schemas. In fact, the
present paper started as an attempt to extend [20] to generate
views, which led us to the more general question of choosing
correctness criteria and proving the merged schema and views
satisfy them. The algorithm in [20] can simulate the algorithm in
Section 3.3 of this paper by interpreting the output
correspondences as view definitions. Some details are in [18].

Both-As-View (BAV) focuses on updating a mediated schema
based on the integration of new source schemas [14]. A BAV
mapping calls for adding, deleting, and renaming attributes and
relations in the mediated schema. Our work differs from theirs in
several ways. First, our work creates the mapping between the
mediated schema and the sources. Second, their method does not
guarantee that the resulting mediated schema adheres to many of
our mediated schema criteria. Finally, our work creates the
mediated schema based on the relationship of the sources to each
other, not to a previously existing mediated schema.

6.4 Constraint-Driven Merge
Two early works, by Casanova and Vidal [6] and by Biskup and
Convent [3], study view integration using constraints between two

83

given view schemas. In both papers the goal is to create a merged
schema that is complete, reduces redundancy, and is minimal.

In [6], Casanova and Vidal assume an input consisting of view
schemas that are in Boyce-Codd Normal Form and have
constraints within and between views: key constraints, inclusion
(i.e., foreign key) constraints, exclusion constraints (the key
values in two relations are disjoint.), and union-key constraints

(given attribute A in relations R1 and R2 with common key K,

πK(R1) = πK(R2) implies πA(R1) = πA(R2), where πK(R) is the

projection of R on attributes K). To create the merged schema,

they start with the disjoint union of the view schemas and then
apply optimizations to reduce the number of relations and
columns based on the constraints. For example, union-key con-
straints may indicate that a set of relations can be replaced by one
relation. They do not produce view definitions (i.e., mappings).

In [3], Biskup and Convent extend [6] by using a formal notion of
completeness that is essentially Hull’s query dominance [9]. Their
integration constraints between views are inclusions, exclusions,
identities (i.e., bidirectional inclusions), and selection constraints
(identities on a subset of tuples satisfying a selection condition).
They optimize to reduce the size of the schema by applying
constraints between views. Relations connected by exclusion,
identity and selection constraints are combined, provided that this
does not break any constraints within views. The algorithm
defines the output merged schema, but there is only an example of
a mapping between the view schema and global schema, not an
algorithm for generating it. However, the output mappings
between the views and the global schema are essentially the same
as the input mappings for most of the given constraints, so an
algorithm to cover these cases would be straightforward.

7. CONCLUSION AND FUTURE WORK
We have presented the first algorithm for generating a mediated
schema and view definitions for data integration from a given set
of source schemas and specifications of overlapping information.
We defined a new normal form for a mediated schema and its
view definitions, called Mediated Schema Normal Form (MSNF).
We developed formal correctness criteria for a mediated schema
and view definitions and proved that an MSNF mediated schema
and view definitions satisfy the criteria. We presented an algo-
rithm that generates an MSNF schema and views and described
what we learned from its implementation.

We see several opportunities for future work. First, it would be
useful to enrich the mapping language beyond conjunctive
queries, include functions and constraints, especially key and
foreign key constraints. Second, we would like to incorporate our
algorithm into a tool for developing integrated schemas, so that a
user study could evaluate its utility. Third, we feel that enough
new work has appeared since Batini et al.’s survey [1] that a new
survey of schema integration techniques would be worthwhile.

8. Acknowledgements
We thank Xun Sun for helping with the experiments in Section 5.

9. REFERENCES
[1] C. Batini, M. Lenzerini, and S. B. Navathe, "A Comparative

Analysis of Methodologies for Database Schema Integra-
tion," ACM Computing Surveys 18(4), pp. 323-364, 1986.

[2] P. A. Bernstein, "Applying Model Management to Classical
Meta Data Problems," CIDR 2003, pp. 209-220.

[3] J. Biskup and B. Convent, “A formal view integration
method,” SIGMOD 1986, pp. 398-407.

[4] P. Buneman, S. B. Davidson, and A. Kosky, "Theoretical
Aspects of Schema Merging," EDBT 1992, pp. 152-167.

[5] A. Cali, D. Calvanese, G. D. Giacomo, and M. Lenzerini,
"On the Expressive Power of Data Integration Systems," ER
2002, pp. 338-350.

[6] M. A. Cassanova and V.M.P. Vidal, “Towards a Sound View
Integration Methodology,” PODS 1983, pp. 36-47.

[7] M. Gubanov, P.A. Bernstein, M. Moshchuk, “Model
Management Engine for Data Integration with Reverse-
Engineering Support,” ICDE 2008, to appear.

[8] A. Y. Halevy, "Answering Queries Using Views: A Survey,"
VLDB J. 10(4), pp. 270-294, 2001.

[9] R. Hull, “Relative Information Capacity of Simple Relational
Database Schemata,” SIAM J. Comput. 15(3): 856-886,1986.

[10] Illinois Semantic Integration Archive.
http://pages.cs.wisc.edu/~anhai/wisc-si-archive/.

[11] M. Lenzerini, "Data Integration: A Theoretical Perspective,"
PODS 2002, pp. 233-246.

[12] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava,
"Answering Queries Using Views," PODS 1995, pp. 95-104.

[13] A. Y. Levy, A. Rajaraman, and J. J. Ordille, "Querying
Heterogeneous Information Sources Using Source
Descriptions," VLDB 1996, pp. 251-262.

[14] P. McBrien, A. Poulovassilis, "Data Integration by Bi-Direc-
tional Schema Transformation Rules," ICDE 2003, 227-238.

[15] S. Melnik, P. A. Bernstein, A. Halevy, and E. Rahm,
"Supporting Executable Mappings in Model Management,"
SIGMOD 2005, pp. 167-178.

[16] S. Melnik, E. Rahm, and P. A. Bernstein, "Rondo: A
Programming Platform for Generic Model Management,"
SIGMOD 2003, pp. 193-204.

[17] R. J. Miller, Y. E. Ioannidis, and R. Ramakrishnan, "The Use
of Information Capacity in Schema Integration and
Translation," VLDB 1993, pp. 120-133.

[18] R. Pottinger, Processing Queries and Merging Schemas in

Support of Data Integration, PhD thesis, Univ. of Washing-
ton, 2004, http://www.cs.ubc.ca/~rap/publications/thesis.pdf

[19] R. Pottinger and A. Levy, "A Scalable Algorithm for
Answering Queries Using Views," VLDB 2000, pp. 484-495.

[20] R. A. Pottinger and P. A. Bernstein, "Merging Models Based
on Given Correspondences," VLDB 2003, pp. 862-873.

[21] R. A. Pottinger and A. Y. Halevy, "MiniCon: A scalable
algorithm for answering queries using views," VLDB J.10 (2-
3), pp. 182-198, 2001.

[22] S. Spaccapietra and C. Parent, "View Integration: A Step
Forward in Solving Structural Conflicts," TKDE 6(2), pp.
258-274, 1994.

84

