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ABSTRACT
Peer Data Management Systems (PDMSs) have been intro-
duced as a solution to the problem of large-scale sharing of
semantically rich data. A PDMS consists of semantic peers
connected through semantic mappings. Querying a PDMS
may lead to very poor results, because of the semantic degra-
dation due to the approximations given by the traversal of
the semantic mappings, thus leading to the problem of how
to boost a network of mappings in a PDMS.

In this paper we propose a strategy for the incremental
maintenance of a flexible network organization that clusters
together peers which are semantically related in Semantic
Overlay Networks (SONs), while maintaining a high degree
of node autonomy. Semantic features, a summarized repre-
sentation of clusters, are stored in a “light” structure which
effectively assists a newly entering peer when choosing its se-
mantically closest overlay networks. Then, each peer is sup-
ported in the selection of its own neighbors within each over-
lay network according to two policies: Range-based selection
and k-NN selection. For both policies, we introduce specific
algorithms which exploit a distributed indexing mechanism
for efficient network navigation. The proposed approach has
been implemented in a prototype where its effectiveness and
efficiency have been extensively tested.

1. INTRODUCTION
In recent years, Peer-to-Peer (P2P) systems have known

an enormous success among Internet users. In these systems,
users, called peers, connect each other for data sharing pur-
poses. Notable examples are Napster, Kazaa, and Gnutella,
just to mention a few.

On the other hand, as envisioned by the Semantic Web [3],
the need of complementing the Web with more semantics
has spurred much efforts towards a rich representation of
data, giving rise to the widespread use of ontologies, XML
schemas, RDF schemas, aso.
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In this view, Peer Data Management Systems (PDMSs)
have been introduced as a solution to the problem of large-
scale sharing of semantically rich data [10]. In a PDMS,
peers are autonomous and heterogeneous data sources, hav-
ing their own content modeled upon schemas. Because of
the absence of common understanding of the vocabulary
used at each peer’s schema, semantic relationships are es-
tablished locally between peers, thus implementing a decen-
tralized schema mediation.

Being peers given more semantics, new potentialities are
available as to query formulation and, consequently, new
challenges arise for query processing. In a PDMS, queries are
answered globally on a network of semantically related peers:
The key issue is that peer mappings are specified locally
and answering a query posed at a peer may require piecing
together multiple peer mappings to locate the relevant data.
Query reformulation is thus a challenging task, since the
ability to obtain relevant data from other nodes in a network
depends on the existence of a semantic path from the queried
peer to that node. The semantic path needs to relate the
terms used in the query with the terms specified by the
node providing the data. Hence it is likely that there will be
information loss along long paths in the PDMS because of
missing (or incomplete) mappings, leading to the problem
of how to boost a network of mappings in a PDMS [10].

Thus, for a given peer, the linkage closeness to semanti-
cally similar peers is a crucial issue for query processing to
be both efficient and effective. A similar requirement has
already been evidenced by works on Semantic Overlay Net-
works (SONs)[6] for P2P systems, which propose to cluster
together peers with semantically similar content to improve
the efficiency of query answering. However, in the context
of a PDMS, this need is even more pressing and challenging
because of the heterogeneity of the vocabularies used at the
peers’ schemas, thus also arising effectiveness issues as to
the relevance of results.

The work presented in this paper aims to support the
creation and maintenance of a flexible network organization
for PDMSs that clusters together heterogeneous peers which
are semantically related. The approach we propose is

• scalable, in the way it gracefully copes with the changes
occurring in the network;

• incremental and self-adaptive, in the creation and main-
tenance of SONs as semantic clusters of peers;

• effective and efficient, in the way it supports the in-
teroperability of a set of fully autonomous peers inter-
connected through semantic mappings.
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Figure 1: DBLP schema

More precisely, we present a mechanism of semantic clus-
tering which assists each newly entering peer in the selection
of its neighbors in a two-fold fashion: First, in a coarse-
grained choice of the semantically closest overlay networks1;
Then, within each overlay network, in a fine-grained selec-
tion of its own neighbors among its most semantically related
peers.

The first step relies on a scalable structure which abstracts
out the essential features about the SONs available in the
network for an effective selection. This structure relies on
principles similar to the ones presented in [9] for clustering
large databasets and it incrementally evolves as new peers
enter the system.

An accurate choice of the neighbors is then supported
through the introduction of two kinds of selections, one
based on a semantic similarity threshold (range-based se-
lection) and the other one based on a maximum number of
neighbors (k-NN selection). Instead of adopting a broadcast-
based approach, we provide an efficient support to both
solutions by introducing algorithms which prune out non-
relevant peers and avoid useless computations. Our ap-
proach draws inspiration from the M-tree algorithms [4]. In
this way, we drastically lighten the network load needed for
an optimal insertion of new peers into each SON. This is an
essential aspect, as most of the PDMS resources are usually
taken up to solve the queries spanning simultaneously the
network.

The organization of the paper is as follows: Section 2
provides an overview of the approach which is then deep-
ened in Sections 3, 4, and 5. In Section 6 we briefly discuss
about the impact of the network organization we propose
on query processing. Section 7 discusses the experiments we
conducted on a prototype implementing the approach. Fi-
nally, in Section 8 we discuss literature and conclude with
future research directions to be explored.

2. OVERVIEW
The network we refer to is made up of a set of seman-

tic peers, each represented by a set of concepts {c1, ..., cm}
describing its main topics of interest. The process leading
to the representation of each peer is out of the main scope
of this paper. In principle, they derive from the peer’s local
schema as it describes the semantic content of the underlying
data. To this end, solutions like the one recently proposed in
[26] could be adopted. For instance, the concepts extracted
from the portion of the DBLP XML schema depicted in Fig.
1 could be {proceedings, article, author}.

The network is organized in a set of Semantic Overlay
Networks (SONs) [6] in such a way to assist each newly en-

1This is very common in P2P communities, where peers
share common interests, and a peer can belong to more than
one SON, depending on its own interests.

URome

DBLP

…{members, professors,…} SON2

…{article, proc.}SON1

URome

DBLP

…{members, professors,…} SON2

…{article, proc.}SON1
APSAPS

Semantic
Peers

ACM ACM 

SON1

SCIENTIFIC 
BIBLIOGRAPHY

EDBT Ass.EDBT Ass.EDBT Ass.EDBT Ass.UParisUParisUParisUParis URomeURomeURomeURome StanfordStanfordStanfordStanfordVLDB End.VLDB End.VLDB End.VLDB End.

{issue, article}

{author}

{members, leaders, PhDStud}

DBLPDBLPDBLPDBLP

{author}

{article, proc., …}

{conf., exec. board, …} {conf., proc.,…}

{papers, pub.,…}

{people, students,…}

SON2

UNIVERSITY 
PEOPLE

{staff, professors,…}

Figure 2: Sample of network organization

tering peer in the selection of the semantically closest peers
as its neighbors. A SON is a group of semantically related
nodes locally connected through a link structure. A sam-
ple of network made up by two SONs supporting a web of
research-related data is shown in Fig. 2. It includes various
peers. Some of them, such as the EDBT Association (EDBT
Ass.) and the University of Rome (URome) are “monothe-
matic”, i.e. they only deal with publications and university
people, respectively. Other peers, instead, are concerned
with both themes, e.g. Stanford.

Peers are assigned to one or more SONs on the basis of
their own concepts. In a PDMS, this operation is a really
challenging one because of the lack of a common understand-
ing among the peer’s local dictionaries. This means that
similar or even the same contents in different peers are not
usually described by the same concepts. Our proposal is to
solve such heterogeneity by clustering together in the same
SON nodes with semantically similar concepts. Semantic
similarity is also at the basis of the approach we propose to
guide the selection of the neighbors within each SON.

The network evolves incrementally to assimilate entering
peers. When a peer joins the system, it first performs a
coarse-grained neighbor selection by accessing the Access
Point Structure (APS). This is a “light” structure which
maintains cumulative information about the SONs available
in the network. It is conceptually centralized but it can be
stored in a distributed manner among different peers, for in-
stance, by means of a Distributed Hash Table (DHT). The
APS helps the newly entering peer to decide which SONs
to join or whether to form new SONs by providing useful
information such as SON’s representative concepts (see the
third column of the APS in Fig. 2) which the peer compares
with its concepts.

After SON selection, the peer starts to navigate the link
structure within each selected SON from the entry-point
peer exemplified in the second column of the APS of Fig. 2.
We assist the peer in the selection of the semantically closest
peers by providing two policies: 1) Range-based, where the
new peer connects to all the peers in a given semantic sim-
ilarity range, and 2) kNN-based, where the k semantically
closest peers are chosen. For both policies, we introduce ef-
ficient algorithms which exploit index structures distributed
across the network to reduce the search space.
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3. ON DISTANCE DEFINITION
Similarities between pairs of concepts are captured by a

distance function d. Several alternatives are possible for
its implementation as we only require it is a metric, i.e.
it satisfies the triangle inequality, the symmetry and the
non-negativity properties. Although its definition is orthog-
onal to the proposed approach for SONs, the goodness of
the obtained results are heavily dependent from its effec-
tiveness. One of the best ways of exploiting the semantics
of the involved concepts is to correlate them by adopting
knowledge-based distances, which take advantage of linguis-
tic information extracted from external knowledge sources.
For this reason, in this paper we will consider two variants
of two of the most effective distances in the Computational
Linguistics field, exploiting the well-known and widely avail-
able WordNet (WN) thesaurus. Both measures quantify the
distance between two given concepts ci and cj by compar-
ing their WN hypernymy hierarchies. The first distance we
consider, straightly derived from the one presented in [8], is
obtained by computing the depths of the concepts in the WN
hypernymy hierarchy and the length of the path connecting
them as follows (GM distance in the following):

d(ci, cj) = 1− 2 ∗ depth of lca(ci, cj)

depth of ci + depth of cj
,

where lca(ci, cj) is the least common ancestor between ci

and cj . The other option we consider for d is an adaptation
of the Leacock-Chodorow [13] distance (LC distance in the
following):

d(ci, cj) =

(
len(ci,cj)

2·H if ∃ lca(ci, cj)

1 otherwise

where len(ci, cj) is the number of links connecting ci and cj

in the hypernymy hierarchy, and H is the height of the hier-
archy (16 in WordNet). Both distances take values between
0 (equal concepts or synonyms) and 1 (completely unrelated
concepts) and satisfy all the required properties.

The distance function d is extended to sets of concepts.
To this end, a function f should be defined which, given
two sets of concepts Ci and Cj and the set of distances
d(ci, cj) between each concept ci ∈ Ci and cj ∈ Cj , maps
to a distance value d(Ci, Cj) between the two sets. Such
a function must preserve the metric properties. Moreover,
we also require that, for a set of concepts C = {c1, . . . , cn}
such that d(ci, Cj) < d(ci, Ck) for each i = 1, . . . , n, then
d(C, Cj) < d(C, Ck) (monotonicity). Among the possible al-
ternatives, in the following we will adopt the function which
defines d(Ci, Cj) as the distance value d(Cli, Clj) between
the Ci’s clustroid, Cli, and Cj ’s clustroid, Clj .

In order to define the notion of clustroid [9], the centrally
located concept of a set of concepts, we first introduce the
notion of distance factor.

Definition 1 (DistFactor). Let C = {c1, ..., cn} be
a set of concepts. The DistFactor(c) of a concept c ∈ C is
defined as DistFactor(ck) =

Pn
i=1 d2(c, ci).

Then, the clustroid is defined as follows.

Definition 2 (Clustroid). Given a set of concepts C,
the clustroid of C is defined as the concept Cl ∈ C such that
∀c ∈ C : DistFactor(Cl) ≤ DistFactor(c).

4. CHOOSING SONS
This section describes the initial actions performed by a

newly entering peer.

4.1 APS: Access Point Structure
SONs are clusters of connected peers which share simi-

lar concepts and which evolve incrementally as new peers
join the network. The APS ignores link structures and pro-
vides an abstraction of the SONs as clusters of concepts (e.g.
issue, article, conference, etc. for SON1 in Fig. 2). In or-
der for the APS to be a “light” structure which scales to
the large, we do not keep all concepts at the APS level and
follow an approach similar to the one adopted in [9] for clus-
tering large datasets. For each SON, the APS treats its
concepts collectively through a summarized representation
called Semantic Feature (SF). SFs should meet the following
requirements:

• incremental updatability whenever a new peer joins
the SON;

• speed-up calculation of intra- and inter-cluster mea-
surements;

• adequateness for the computation of distances between
SONs and quality metrics of a SON.

Having in mind the above properties, we define the SFj

of a SON SONj , conceptually represented by the cluster of
concepts Cptj , as:

• nj , the Cptj cardinality;

• Clj , the Cptj ’s clustroid, together with DistFactor(Clj)
and the unique identifier CPj of the peer it belongs to
(e.g. the IP address);

• rj , the internal radius which is defined as follows.

Definition 3 (Internal Radius). Given a set C
of n concepts with clustroid Cl, its Internal Radius r

is defined as: r =
q

DistFactor(Cl)
n

.

• sampj , a set of p sample concepts selected from Cptj ,
together with their DistFactor values. The number
p is appropriately fixed. sampj is the set of p-nearest
concepts from the clustroid Clj and have consequently
the lowest DistFactor values.

4.2 Exploiting APS for SONs selection
The information stored in the APS provide a summa-

rized description of the existing SONs, SON1, . . . , SONk,
and thus they are the semantic “beacon” guiding each newly
enetring peer Pnew in selecting its closest SONs.

In particular, when Pnew = {cnew
1 , ..., cnew

m } accesses the
APS, it uses clustroids as shown in Algorithm 1 “Choos-
eSON”. The outcome is the placement function ψnew which
associates each peer’s concept to at most one SON.

The algorithm first computes the matrix DIST of the
distances between the m Pnew’s concepts and the clustroids
of the k SFs. Starting from the DIST matrix, several cri-
terions could be applied in order to solve the problem of
finding the semantically closest SONs for Pnew. According
to classical proposals in the field of clustering (e.g. [9]), the
BestSelection function assigns each Pnew’s concept cnew

i to
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Algorithm 1 ChooseSON

Require: Pnew = {cnew
1 , ..., cnew

m }: joining peer, APS: Ac-
cess Point Structure, T : threshold

Ensure: ψnew list of selected SONs
1: DISTk×m matrix of the distances;
2: for all cnew

i (i = 1...m) do
3: for all Clj ∈ SFj (j = 1...k) do
4: compute d(cnew

i , Clj);
5: if d(cnew

i , Clj) ≤ T then
6: DIST [j, i] = d(cnew

i , Clj);
7: else
8: DIST [j, i] = ∞;
9: ψnew = BestSelection(DIST );

10: return ψnew;

the SON SONj for which the distance d(cnew
i , Clj) from

SONj ’s clustroid Clj is the lowest one.
Notice that in the computation of the DIST matrix a

threshold requirement T is used to control the SON tightness
or quality. In fact, the distances greater than the threshold
T are set to ∞ and ignored in the BestSelection computa-
tion. The main idea is that each concept cnew

i is inserted
into the SON SONj closest to cnew

i if the threshold require-
ment T is not violated due to the insertion. Otherwise, cnew

i

forms a new cluster. Therefore, the value of T can be ap-
propriately chosen in order to control the number of SONs
and their sizes. In particular, low values of T produce a high
number of small and tight SONs. An opposite behavior can
be observed with high values of T .

4.3 APS Evolution
The information stored in the APS describes the current

setting of the system and should consequently be kept up-
dated to reflect the changes possibly occurring in the net-
work. The evolution of the APS is managed in an incremen-
tal fashion as follows.

We first consider an already established network. Each
peer Pnew entering the system executes Algorithm 1 which
partially instantiates its placement list ψnew by associating
each Pnew’s concept to the semantically closest SON, if it ex-
ists. Then, concepts mapped to the same SON are grouped
together. Finally, the peer enters each SON SONj which
is associated to with a non-empty set of concepts, CptPnew

j .
Notice that Algorithm 1 works on single concepts, however
the monotonicity property of d guaranties that if SONj is
the best choice for each concept in CptPnew

j , then it is the

best choice for the whole set CptPnew
j .

This results in SONj to be conceptually represented by
the cluster of concepts Cptj ∪ Cptnew

j and its SFj has to
be updated accordingly. The number of concepts nj is aug-
mented and the DistFactor value of each concept in CptPnew

j

must be computed for the incremental maintenance of the
p sample concepts and the clustroid. Notice that the exact
computation of the above value would require all the SON’s
concepts, which are not available at the APS level. Nev-
ertheless, an approximate computation for c ∈ Cptnew

j is
possible, which only uses the clustroid Clj :

DistFactor(c) =

njX
k=1

d2(c, ck)

≈ nj ∗ r2
j + nj ∗ d2(c, Clj)

The correctness of this heuristic is shown in [9]. Then, also
the DistFactor values of the clustroid Clj and the p sample
concepts are updated under the c insertion. Finally, the
concept with the lowest DistFactor value among the new
concepts c, the p sample concepts and the old clustroid Clj
becomes the new clustroid, and the p sample concepts are
updated similarly. Finally, the internal radius is updated
accordingly.

As to the Pnew’s concepts for which no corresponding SON
has been found, they are clustered in groups and each group
forms a new SON. In this case, we adopt a standard agglom-
erative approach by defining the distance between clusters
as an average group linkage [11]. Then a new SF is com-
puted for each newly added SON and inserted in the APS.
The above approach is also the one adopted by the first
peer entering the system, as no SON exists and algorithm
“ChooseSON” returns a void list.

5. CHOOSING NEIGHBORS
When a newly entering peer Pnew has chosen its seman-

tically closest SONs, it navigates the link structure within
each selected SON with the aim of searching for its preferred
neighbors, i.e. the semantically nearest peers. In particular,
we support two types of neighbor selection: Each peer is
allowed to select either the k semantically nearest peers (k-
NN selection) or the peers in the SON for which the distance
between their SON’s concepts and the peer SON’s concepts
are below a given threshold (range-based selection). The
topology of the network is heavily influenced by the kind of
neighbor selection each peer executes when it joins the net-
work. A k-NN selection limits the number of neighbors and
thus controls the degree of connectivity. This is not possi-
ble in a range-based selection where we can only provide an
estimation of the number of neighbors based on the SON
statistics we maintain at the APS level.

Adopting a broadcast-based approach to search neighbors
could imply wasting precious resources. Indeed, a network of
peers is usually required to solve many tasks simultaneously.
Instead, we propose that the neighbor selection process be
guided by a distributed index mechanism which maintains
at each node specifically devised indices named Semantic
Clustering Indices (SCIs). The collection of SCIs distributed
across the peers Pnew visits, drives its navigation towards
the peers in the same SON containing the concepts nearest
to its concepts.

5.1 SCIs
In order to guide a peer joining the network towards its

best position in the selected SONs, each SCI maintains sum-
marized information about the SONs’concepts available in
each direction. In particular, the SCI, SCIP , of a peer P
is a matrix with n + 1 rows and m columns, where n is the
number of P ’s neighbors and m the number of SONs after
P joined the network 2. Each column j contains non-null
values in correspondence of each peer belonging to SONj .
More precisely, the first row refers to peer P and thus if P
belongs to SONj then SCIP [0, j] refers to the set of con-
cepts CptP

j through which P joined SONj . As to the other
rows, if the i-th neighbor is a SONj ’s peer then SCIP [i, j]

2For ease of explanation, we define SCIs as sparse matrices
as each peer usually does not belong to all SONs. Obviously,
this does not correspond to their actual implementation.
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refers to the set of SONj ’s concepts which are reachable in
the subnetwork rooted at the i-th neighbor. It indeed cor-
responds to a sub-SON SONi,j of SONj

3. Similarly to
the definition of SF, each cell SCIP [i, j] stores the following
information about SONi,j :

• Cli,j , the clustroid of the sub-SON SONi,j , together
with DistFactor(Cli,j);

• r∗i,j , the external radius, i.e. the maximum distance
between Cli,j and the SONi,j ’s concepts;

• sampi,j , a set of 2p sample concepts, the p nearest
and the p farthest concepts from the clustroid, selected
from SONi,j and the corresponding DistFactor val-
ues.

One possible configuration of peer Stanford’s SCI is shown
in Fig. 3.

SON1 SON2
Stanford (papers,0.6,. . . ) (people,0.3,. . . )

DBLP (article,0.86,. . . ) null
UParis null (members,0.5,. . . )
URome null (staff,0.25,. . . )

Figure 3: The Stanford’s SCI

5.2 Using SCIs for Neighbor Selection
When a newly entering peer joins a SON, the neighbor

selection process starts from the clustroid peer of the SON
and navigates the SON’s link structure by visiting (some
of) the peer’s immediate neighbors, then their immediate
neighbors, and so on, with the aim of finding its semantically
nearest peers.

The SCIs distributed across the above mentioned peers
provide an abstraction of the network of peers forming the
SON as trees. More precisely, if P belongs to SONj then P
is the root node and it has as many children as the number
of its neighbors in SONj , i.e. the number of non-null cells in
SCIP [∗, j]. The i-th (non-null) neighbor of P roots the sub-
SON SONi,j whose properties are described in SCIP [i, j].
In particular, all concepts in SONi,j are within the distance
r∗i,j from the clustroid Cli,j . With reference to SON2 in Fig.
3, Fig. 4 depicts this tree-based abstraction from the Stan-
ford point of view. SCIs are used to lighten the neighbor
selection process. The objective is to reduce the network
load, i.e. the number of accessed peers and the computa-
tional effort which is required to each accessed peer. To this
end, the information stored in the SCIs are appropriately ex-
ploited to effectively apply the triangular inequality to prune
out non-relevant peers and to avoid useless distance compu-
tations. In this sense, our approach and the algorithm we
devised are similar to the work in [4].

5.2.1 Range-based Selection

Definition 4 (Range-based selection). Given the set
of Pnew’s concepts CptPnew

j through which Pnew joins SONj

and a maximum semantic distance r(Pnew), the range-based
selection process Range(CptPnew

j , r(Pnew), SONj) selects all

3In the following, we will abuse notation by denoting with
SON0,j the set of SONj ’s concepts in P

Stanford

UParis Rome

(a) Tree abstraction

people
0.3

d(people,members)

members

0.5

staff

0.25

d(people,staff)

(b) Relationships among con-
cepts

Figure 4: Abstraction of SON2 from peer Stanford
point of view

the peers P in SONj such that d(CptP
j , CptPnew

j ) ≤ r(Pnew),

where CptP
j is the set of P ’s concepts associated to SONj.

Algorithm 2 RangeSelection

Require: CptPnew
j : concepts, r(Pnew): radius, SONj : se-

lected SON
1: if d(CptP

j , CptPnew
j ) ≤ r(Pnew) then

2: send(Pnew, connection request);
3: for all i = 1, . . . , n: SCIP [i, j] 6= null and the i-th

neighbor is unvisited do
4: if |d(CptP

j , CptPnew
j )−d(Cli,j , CptP

j )| ≤ r(Pnew)+r∗i,j
then

5: compute d(Cli,j , CptPnew
j );

6: if d(Cli,j , CptPnew
j ) ≤ r(Pnew) + r∗i,j then

7: send(Pi, RangeSelection(CptPnew
j , r(Pnew), SONj));

// Pi is the i-th neighbor

The code each peer executes in order to implement the
range-based selection is depicted in Algorithm 2 “RangeSe-
lection”. First, it is executed by the clustroid peer Clj of
the selected SON SONj . Then, it is recursively executed on
all the paths in SONj originating at Clj which cannot be
excluded from leading to peers satisfying the range-based se-
lection. Peers interaction is implemented through a message
exchange protocol. More precisely, for each contacted peer
P , first the condition of the range-based selection is tested
(lines 1-2) and, in case, a “connection request” message is
sent to Pnew. Then, the information stored in the column
SCIP [∗, j] are used in the distance computation process and
the triangular inequality is exploited to avoid the explo-
ration of useless subnetworks (lines 3-7). In particular, if
d(Cli,j , CptPnew

j ) > r(Pnew) + r∗i,j then, for each concept c

in SONi,j , d(c, CptPnew
j ) > r(Pnew) (line 7). Moreover, line

4 prunes subnetworks without computing any new distance,
since d(Cli,j , CptP

j ) can be computed at compile time and

d(CptP
j , CptPnew

j ) has already been computed by the call-
ing peer, but the first. The correctness of lines 4 and 6 are
shown in [4].

Choosing the range.
One of the main issues related to range-based selection is

the choice of the range. Indeed, small ranges run the risk of
not finding neighbors whereas large ranges could prove lit-
tle selective. Furthermore, the selectivity of a range query
may vary widely both over time, as the SON evolves, and
as a function of location in the SON, which could contain
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subgroups that are not well-separated enough to stand as
autonomous SONs, although each subgroup contains peers
dealing with closely related topics. For this reason, the query
range should adapt to the local “density” of the SON. In
statistical nonparametric kernel density estimation [22], the
density at a space point x is computed as a weighted sum of
the distances between x and its neighbouring data objects,
where weights are monotonically decreasing with distance,
i.e., a neighbouring data object exerts more influence on x
than any data object that is farther from x. The rate of
decrease of the weights is determined by a kernel function.
Usually, such functions have bounded support or decay very
rapidly with distance from x. Thus, in practice only objects
in the close neighbourhood of x are involved in the com-
putation of the estimate at x. Using the distance between
the sets of representative concepts of peers in kernel esti-
mate, the density value at Pnew can be used as an adjusting
factor for the query range. However, computing the esti-
mate requires a query to determine the peers located in the
neighbourhood of Pnew . An approximate, more efficient ap-
proach is, for each SON, to add a description of a small set
of well-scattered peers in the SON’s APS. For each of these
peers, its topics (associated to SONj) and its density esti-
mate values are maintained too. The range of the query is
then a decreasing function of the mean density at the near-
est m well-scattered peers, where m is a parameter. The
clustroid peer updates the values of the density estimates in
the APS for all well-scattered peers that are located in the
close neighbourhood of Pnew .

5.2.2 k-NN Selection

Definition 5 (k-NN selection). Given the set of Pnew’s
concepts CptPnew

j through which Pnew joins SONj and an

integer k ≥ 1, the k-NN selection process NN(CptPnew
j , k, SONj)

selects the k peers {P1, . . . , Pk} in SONj whose concepts as-

sociated to SONj, CptPi
j , i=1 . . . k, have the shortest dis-

tance from CptPnew
j .

The limit k can be conveniently chosen according to the
degree of connectivity we want in the SON and, thus, in the
network. As in general, the size of SONs in a network vary
widely, it would be inconvenient to set k to a fixed value
for all SONs. A starting point to set k could be a slowly
increasing sublinear function of the number of peers in the
SON the new peer is entering.

For the implementation of the k-NN selection mechanism
(see Algorithm 3 “KNNSelection”), we adopt a branch-and-
bound technique that is similar to the one devised for the
M-Tree [4] and that utilizes two structures: A priority queue
PR and a k-elements array NN which, at the end of the
execution, contains the results (i.e. the selected neighbors).

PR is a queue of pointers to active subnetworks, i.e. sub-
networks where the k nearest neighbors of Pnew can possibly
be found. Each entry of this structure maintains a pointer
to the subnetwork (i.e. the peer N from which the subnet-
work originates), the clustroid ClN5 of the subnetwork and
a lower bound dmin(N) on the distance of any peer in the
subnetwork from the joining peer Pnew:

dmin(N) = max{d(ClN5, CptPnew
j )− r(N5), 0}

where r(N5) is the external radius of the subnetwork. This
bound is used by the ChoosePeer function (line 13) to ex-
tract from PR the next subnetwork to be examined in the

searching process. The function (not specified here) simply
implements an heuristic criterion which selects from PR the
node N with the minimum value for dmin(N).

As to the NN array, at the end of the execution, the i-th
position will contain the value associated to the i-th nearest
neighbor of Pnew, P : NN [i] = [P, d(CptPnew

j , CptP
j )]. If we

denote with di the distance value in the i-th entry, we have
that dk is the largest distance value in NN and thus dk can
be used as a dynamic search radius, since any subnetwork
N5 for which dmin(N) > dk can be safely pruned.

Algorithm 3 KNNSelection

Require: CptPnew
j : concepts, k: integer, SONj : selected

SON
1: for all i = 1, . . . , n: SCIP [i, j] 6= null and the i-th

neighbor is unvisited do
2: if |d(CptP

j , CptPnew
j ) − d(Cli,j , CptP

j )| ≤ dk + r∗i,j
then

3: compute d(Cli,j , CptPnew
j );

4: if dmin(Pi) ≤ dk then // Pi is the i-th neigh.
5: add [Pi, dmin(Pi)] to PR;
6: if dmax(Pi) < dk then
7: dk = NNUpdate([−, dmax(Pi)]);
8: remove from PR all entries for which

dmin(N) > dk;
9: if d(CptP

j , CptPnew
j ) ≤ dk then

10: dk = NNUpdate([P, d(CptP
j , CptPnew

j )]);
11: remove from PR all entries for which dmin(N) > dk;
12: if PR 6= ∅ then
13: NextPeer = ChoosePeer(PR);
14: send(NextPeer, KNNSelection(CptPnew

j , k, SONj);
15: else
16: for all i = 1, . . . , k do
17: send(Pi, connect to Pnew) // Pi is the peer in

the i-th entry of NN

Initially, the priority queue PR is empty and each entry
of NN is set to [−,∞], i.e. the peers are undefined and the
distances are set to ∞. Algorithm 3 is first executed by the
clustroid peer CPj of the selected SON SONj . Then, it is
recursively executed by each peer the ChoosePeer function
extracts from PR (lines 13-14).

For each contacted peer, the algorithm first determines
the active subnetworks and inserts them into the PR queue
(lines 1-5). Notice that the same pruning condition as for
the range-based selection is exploited at line 2, where the
dynamic search radius dk is used instead of the search radius.
Then, if needed, it calls the NNUpdate function to perform
an ordered insertion in the NN array and receives back a
(possibly new) value of dk (lines 6-7 and line 9-10). The
newly computed dk values are then used in lines 8 and 11 to
remove from PR all subnetworks for which the dmin lower
bound exceeds dk. In particular, for lines 6-7 the idea is
to compute an upper bound dmax(Pi) on the distance of
any peer in the Pi’s subnetwork from Pnew: dmax(N) =
d(ClN5, CptPnew

j ) + r(N5). Then, line 7 inserts dmax(Pi)
in appropriate position in the NN -array, just leaving the
other field undefined. Lines 9-10, instead, checks whether to
add the current peer P in the NN array.

At the end of the process, NN contains the k-nearest
neighbors of Pnew and the connections are created (lines 16-
17).
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5.3 SCIs Construction and Evolution
Since SCIs maintain summarized information about SONs,

they change whenever the SONs themselves are modified by
the joining or leaving of peers. In particular, SCIs creation
and evolution is managed in an incremental fashion as fol-
lows.

As a base case, the SCI of an isolated peer P has a single
row, referring to the peer P itself. This row expresses the
information about the local knowledge of P and contains in
each cell SCIP [0, j] the description of the SONj which only
contains peer P . The clustroid and the 2p sample objects
are selected from set of concepts CptP

j which has been de-
termined when accessing the APS (see Sec. 4.3) and the
external radius is computed accordingly.

When an entering peer Pi joins SONj with its concepts

CptPi
j and selects Pk with its concept Cpt

Pk
j as its neighbor,

a new connection is created.
In particular, each of the connecting peers (say Pi) in-

forms the other peer (say Pk) of the sub-SON that can be
accessed through it. To this end, Pi aggregates its own SCI
by rows and sends the j-th column to Pk. It represents the
sub-SON SONi,j and it is obtained by merging the clusters
of concepts represented in each cell of the j-th column. The
merge of two clusters represented as (Cls, r

∗
s , samps) and

(Clt, r
∗
t , sampt) is the cluster (Clu, r∗u, sampu) obtained as

follows. The clustroid Clu and the sample peer sampu are
chosen among the clustroids, Cls and Clt, and sample peers,
samps and sampt, on the basis of the DistFactor values
which are computed on the above set of concepts. The ex-
ternal radius is computed according to the definition given
in section 5.1 and on this set of concepts too.

After Pk receives such knowledge, it puts the received in-
formation in the cell SCIPk [i, j] (i.e. it adds peer Pi to its
SONj ’s neighbors), after having extended its SCI with a
new row for Pi, if Pi is a newly added neighbor.

Afterwards, both peers Pi and Pk need to inform their own
reverse neighbors that a change occurred in the network and
thus they have to update their SCIs accordingly. To this
end, each peer, say Pi, sends to each reverse neighbor Ph

which belongs to the SON SONj , i.e. for which SCIPi [h, j]
is not empty, an aggregate of its j-th column excluding the
Ph’s cell. When Ph receives such aggregated information, it
updates the cell SCIPh [i, j] with the received information.

Disconnections are treated in a similar way as connec-
tions. When a node disconnects from the network, each of
its neighbors must delete the row of the disconnected peer
from its own SCI and then informs the remaining neighbors
that a change on its own subnetwork has occurred by send-
ing new aggregates of its SCI to them.

6. QUERY PROCESSING
Most works on SONs mainly focus on how query process-

ing in a P2P network can be made more efficient in a well-
arranged network (see Sec. 8 for related works). Indeed, a
well-clustered network undoubtedly influences positively the
query answering process: The search would primarily be di-
rected towards peers belonging to the SONs of interest, thus
reducing the number of contacted peers in the network, as
well as increasing the chance of finding relevant results.

It is important to emphasize that this paper is more prop-
erly concerned with the efficient construction and mainte-
nance of well-clustered SONs with the aim of reducing se-

mantic degradation during query processing. In a PDMS, a
query is formulated over a peer’s schema, the peer’s map-
pings are used to reformulate the query over its immediate
neighbors and the same recursively applies to each receiv-
ing peer. Therefore the ability to obtain relevant data from
other nodes depends on the existence of a semantic path of
mappings to that node. In this context, semantic degrada-
tion is due to the information loss along long paths, because
of missing or incomplete mappings, and can even imply the
loss of relevant nodes at all. In a PDMS which adopts the
network organization we propose instead of a random one,
it is more likely that closely associated peers are relevant to
the same queries thus reducing semantic degradation. The
main idea is that each query concept will be “solved” by the
SON which is responsible for it. To this end, besides map-
pings, also the SCI could be exploited to select the right
neighbors, i.e. those ones belonging to the involved SONs.

Query execution can be further improved by query rout-
ing, i.e. the process of selecting a small subset of relevant
peers to forward a query to. This is a crucial issue, since ap-
proaches which flood the SON with lots of messages are not
adequate, primarily for efficiency reasons. For this purpose,
the semantic infrastructure we presented in this paper can
be conveniently complemented with our previous work on
Semantic Routing Indices (SRIs) [17], a fully distributed in-
dexing mechanism which summarizes the semantics underly-
ing whole subnetworks. SRIs are exploited to select the best
directions to which forward each query to, according to the
estimated semantic degradation of information they main-
tain [18]. As a proof of the applicability of our proposal, we
employed the SRIs in the simulations we conducted in the
experimental evaluation described in the following section.

7. EXPERIMENTS
In this section we discuss a selection of the experiments

we performed to test the effectiveness and the efficiency of
the presented approach.

7.1 Experimental Setting
For our experiments we used the SUNRISE simulation

framework [19] through which we were able to reproduce
the main conditions characterizing a PDMS environment.
Through this framework we modelled and generated scenar-
ios corresponding to networks of semantic peers, each with
its own schema describing a particular reality. The schemas
are derived from real-world data sets, collected from many
different available web sites, such as the DBLP Computer
Society Bibliography and the ACM SIGMOD Record, and
enlarged with new schemas created by introducing variations
on the original ones. Among the collections we employed
to test our approach, we selected two of them, Collection1
and Collection2, differing for their grade of semantic hetero-
geneity: each schema in Collection2 covers a higher number
of topics than a schema in Collection1, resulting in a more
complex scenario. The representation of each peer is derived
from its schema by following an approach similar to [26]. For
both collections, each representation contains about a dozen
of concepts, while the collection’s size is in the order of some
hundreds of schemas. Further, in order to avoid the pres-
ence of cyclic paths in the SCI updates propagation, a cycle
detection mechanism based on global unique identifiers is
adopted.
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7.2 Effectiveness
In the following we demonstrate the effectiveness of our

approach from two different points of view: Firstly, we mea-
sure the quality of the generated SONs, considered as clus-
ters of concepts, by means of well known quality metrics.
Then, we evaluate the quality of the resulting network both
by means of theoretical quality indices and by executing
complex query processing simulations.

7.2.1 Clustering Quality Indices
In order to assess the quality of the generated SONs on the

basis of well-known data clustering quality indices, we first
considered SONs as simple clusters of concepts. In particu-
lar, we evaluated internal, i.e. intrinsic, quality by means of
the Silhouette indices [24] and external, i.e. w.r.t. an ideal
clustering, quality by means of the Rand Index [23]. As to
internal quality, two were the aspects which interested us:
The homogeneity of each cluster and the separation between
the obtained clusters (the higher are their homogeneity and
separation the better is the clustering). Figure 5-a and 5-b
show the different Silhouette values (a,b and s) for Collec-
tion1 and Collection2, respectively, using the GM distance
and for different threshold values. While Silhouette a factor
captures homogeneity by means of a value between 0 (com-
plete homogeneity) and 1 (null homogeneity), Silhouette b
factor indicates separation (0 for null separation, 1 for com-
plete separation). Finally, Silhouette s factor captures both
aspects in a global internal quality value between -1 (bad
clustering) and 1 (very good clustering). As can be seen at
first glance from the two figures, the clustering quality of-
fered by our approach is very high for both collections, with
low a and high b and s values. More specifically, Figure 5-a
shows very good clustering performance for central values
of T (from 0.3 to 0.7); for values of T which are too low
(e.g. 0.1) cluster separation drops, while for T ≥ 0.9 clus-
ter homogeneity is no longer optimal. Figure 5-b confirms
the goodness of the resulting clustering also for the more
complex Collection2, in particular for central values of T .

Since clustering quality is heavily affected by the choice of
the distance d, we also tested it for the LC distance: Figure
6-a shows the obtained results for Collection2 (Collection 1
produced a similar trend and will not be presented). Again,
the clustering quality is very high; in this case, values of T
between 0.4 and 0.6 appear as the best choice, since clus-
tering homogeneity and separation are still high (low a and
high b, respectively).

In order to further evaluate clustering quality, we also
analyzed external quality by computing the Rand Index be-
tween the obtained clustering and an ideal clustering situ-
ation, where we manually created clusters of related con-
cepts. Rand Index is a measure of similarity ranging from
0 to 1 and since we compute it w.r.t. an ideal situation,
values near 1 will denote optimal clusterings. Figure 6-b de-
picts the results for different values of T and for the same
collections and distances we previously considered for the
internal quality tests. The very high values we obtain (near
1 for Collection2, 1 for Collection1) denote very good clus-
tering effectiveness. In particular, both collections achieve
optimal clustering with the GM distance and for values of
T between 0.3 and 0.7. On the other hand, confirming the
internal quality results and considerations, the LC distance
seems to benefit from lower T values (between 0.2 and 0.4),
producing nonetheless very satisfying results in this range

(for instance Rand Index = 0.913 for T = 0.3). Since, as we
have shown, both distances deliver very good and similar
results, for the following tests we will consider only the GM
one; however, all the considerations that will be made are
general and also apply to the LC one.

7.2.2 Network Quality Index
Similarly to the Rand Index tests for clustering quality, in

order to perform a preliminary theoretical quality evaluation
of the resulting link structures, we manually designed ideal
networks of peers considering small subsets (some dozens of
schema descriptions) of the collections. Those networks are
ideal from a semantic point of view, i.e. they connect all
and only the peers with highly related concepts and topics.
Then, we computed the similarity between the automati-
cally generated topologies and the ideal ones, by means of
a specifically devised index we called NetIndex. The index
is computed as follows: For each direct connection between
two peers in the ideal network, the shortest path between
them in the real network is found (in the optimal case this
would be 1 step long, i.e. no additional semantic approxi-
mation is introduced); then the inverse of the mean of these
shortest paths lengths is calculated. Thus, an index of 1
denotes a semantically ideal network configuration.

We computed NetIndex for both collections; Figure 7 shows
the obtained results for the most complex Collection2 and
for both Range (Figure 7-a) and k-NN (Figure 7-b) selec-
tions and for different values of threshold T . Let us start
by considering, for instance, a typical value for T , T = 0.5.
As we expected, the NetIndex trends are growing for in-
creasing values of radius (range) and k (k-NN), since the
semantically ideal networks are very complex and thus the
high number of connections is better approximated by larger
radiuses and ks. However, as we can see, a radius of 0.2 or a
k of 6, while avoiding to produce over-connected and, thus,
possibly inefficient networks, already achieve very good se-
mantic optimality grades (NetIndex values of 0.97 and 0.83,
respectively). Finally, different thresholds such as T = 0.3
and T = 0.7 produce equally good results, while too high
(T = 0.9) or too low ones (T = 0.1) produce semantically
inferior network configurations.

7.2.3 Network Quality for Query Processing
In order to evaluate the impact of the network organiza-

tion we propose on query answering, we simulated a query-
ing process on the networks produced by our algorithms.
The results we present here refer to the execution of our k-
NN selection algorithm on both collections. In particular,
we choose a value of k=6, since, as shown by the previ-
ous experiments, it allows us to have networks with a high
NetIndex value, while maintaining the low grade of connec-
tivity required in a realistic context. However, the results
we show here are indeed representative of the entire set of
obtainable networks organizations.

As to the querying process, we simulated it by instan-
tiating different queries on randomly selected peers where
each query is a combination, through logical connectives, of
a small number of predicates specifying conditions on con-
cepts. More precisely, we quantified the advantages on query
processing by propagating each query until a specific stop-
ping condition is reached [18]: We evaluated the effective-
ness improvement by measuring the quality of the results
(satisfaction) when a given number of hops (hop) has been
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performed or, in a dual way, the efficiency improvement by
measuring the number of hops required to reach a given
satisfaction goal. Satisfaction is a specifically introduced
quantity that grows proportionally to the goodness of the
results returned by each queried peer. The search strategy
employed is the depth-first search (DFS).

For the selection of the most promising neighbor, besides
the simplest random strategy (Rnd), SRI [17] is experienced
too (see Sec. 6). For both these routing strategies, we com-
pared the results measured in the clustered network (Cls)
generated with our k-NN selection process with a random
one (Rnd). Notice that all the results we present are com-
puted as a mean on several hundreds query executions.

Figures 8-a and 8-b show the trend of the obtained sat-
isfaction when we gradually vary the stopping condition on
hops for Collection1 and Collection2, respectively. As we
expected, in Figure 8-a we can see that both for the random
and the SRI routing strategies, the obtained values of satis-
faction are higher in the clustered network. Further, notice
that even in Figure 8-b, which refers to the very complex
scenario represented by Collection2, the clustered network
shows a better behaviour.

Figure 9 represents the dual situation, where the number
of hops required to reach a given satisfaction goal is mea-
sured. For both these graphs we can see that the curves
associated to the clustered network outperform in efficiency
the corresponding ones for the un-clustered situation. For
example, for a satisfaction goal of 4, we obtained 35% of
saved hops for the random routing strategy and even 50%
of saved hops for the SRI one.

Figures 10-a and 10-b show another measure of effective-

ness, which quantifies the percentage of satisfied queries (i.e.
the queries for which the given satisfaction goal is reached)
for different satisfaction level. Clearly, for all the depicted
curves, the percentage of satisfied queries decreases for in-
creasing values of satisfaction, since they are more difficult
to reach. Nevertheless, the curves corresponding to the clus-
tering networks always outperform the random ones.

7.3 Efficiency
In order to evaluate the efficiency of our approach we

firstly considered the CPU load generated on each peer by
the execution of our algorithms of neighbors selection. In
particular, we wanted to quantify the percentage (saved-
CPU ) of useless distance computations that we are able to
avoid thanks to the exploitation of the triangular inequality
(see Section 5.1).

Then, we focused on the number of peers that is necessary
to contact in order to solve our neighbors selection processes.
In particular, since the solution of a naive k-NN or range
selection would require the exploration of all the peers in
the considered SON, we were interested in quantifying the
percentage (savedPeers) of useless peers that we can prune
out thanks to our algorithms.

Figures 11-a and 11-b show the savedCPU and savedPeers
values obtained for Collection2 executing range and k-NN
selection processes, respectively. The results are collected
for different values of radius and k. As we can see, for both
graphs the obtained results are high, signifying a great sav-
ing for the CPU load and the number of contacted peers.
For example, for a range selection process with a radius of
0.05 we have 48.75% of savedCPU and 77.39% of saved-
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Figure 8: Network quality for query processing: Reached satisfaction for a given number of hops

Peers, while for a k-NN selection with k=4 we have 49.24%
of savedCPU and 25% of savedPeers. Finally, notice that
the savedPeers factor decreases with the radius and k val-
ues, since augmenting them results in a higher number of
peers to connect to and, consequently, to contact (while the
number of peers in the SONs remains unchanged).

8. RELATED WORK AND CONCLUSIONS
PDMSs [10] naturally support the autonomy of peers in

the network, allowing for a personalized semantic marking
up of data to cohabit nicely with a collaborative exchange of
data, which is possible thanks to the use of semantic map-
pings established between the peers. The work presented in
this paper relies on a PDMS as a reference scenario. One
crucial issue in a PDMS is about query processing which may
lead to very poor results. In such a context, the neighbor-
hood of semantically similar peers is of decisive importance.

In P2P systems, being able to improve the retrieval of
data while maintaining a high degree of peers’ autonomy is
exactly the goal pursued by one of the most recent evolution
in network organization strategies: Semantic Overlay Net-
works (SONs). The key idea is to exploit self-organization
principles in order to “cluster” together semantically similar
peers and, thus, similar contents. The original SON idea first
appeared in [6], where peers are assigned to SONs according
to classification hierarchies which are defined a-priori and
shared in the network. In a PDMS scenario this approach
is not applicable because of autonomy of peers in defining
their schemas and the absence of a common agreement as
to the vocabularies used at the peers’ schemas. A further
difference with our proposal is that classification hierarchies

maintain a direct reference to each peer belonging to the
overlay networks, thus making the approach not much scal-
able. Finally, [6] ignores the link structure within the overlay
network and a SON is represented just by a set of peers.

Other works address the problem of building SONs. In the
following, we will discuss those ones sharing some aspects
with our approach.

The papers [1, 5, 15] adopt gossip-based membership pro-
tocols to derive neighborhoods and, then, SONs translate to
the sets of those peers which are logically interconnected. In
the schema-based P2P scenario considered in [1], semantic
gossiping is applied to derive semantic neighborhoods, i.e.
sets of peers that have annotated their data according to
the same schema. This approach imposes the peers in the
network to conform their data to local schemas derived by
inheritance from a set of base schemas. A similar approach
is also adopted in [5] where the resulting unstructured net-
work coexists with a DHT-based structured one in an hybrid
topology. In [15], a metric distance for Language Models
is adopted to compare the peers’ local collections of doc-
uments. Whenever a meeting occurs for a k-NN selection,
the two peers decide whether they should become neighbors.
Then they exploit the triangular inequality property to com-
pute a lower-bound on the distance between each peer and
the other peer’s neighbors.

Clustering principles similar to the ones presented in this
paper are explored in [16] with application to Web-scale data
integration. However, only a general discussion is provided
and no details are given about the underlying technical chal-
lenges. Also the works in [2, 7, 14, 25] found on principles
of clustering but with the aim of providing answers to the
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Figure 9: Network quality for query processing: Required number of hops for a given satisfaction goal
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Figure 10: Network quality for query processing: % of satisfied queries for a given satisfaction goal

issue of how to actually create SONs of autonomous peers
for efficient IR search. In [7] the clustering method is guided
by description of peers in terms of processing power, storage
capacity, etc., and seems not to exploit semantic similarity
criteria on the peers’ contents. Then, the network of peers
results in a hierarchical organization. Instead, [2, 14] pro-
pose to cluster together peers sharing objects with similar
representations and maintains intra- and inter-cluster con-
nections. However, both approaches do not support multi-
ple classifications and policies to select neighbors. Each peer
within a cluster chooses neighbors at random [2] or knows
each other [14]. Moreover, the clustering approach proposed
in [2] is not incremental and clustroids are recomputed at
regular intervals of time. In [25], the main focus is to en-
sure load balancing in a network where nodes are logically
organized into a set of clusters and where a set of super-
peer nodes maintains information about which documents
are stored by which cluster nodes.

Hierarchical organization are also adopted in [20, 12] with
the aim of providing an efficient query processing support
in schema-based P2P networks. In both approaches a set
of designed nodes (named super-peers in two-level hierar-
chies [20] or root-nodes in multi-level hierarchies [12]) are
connected to a main channel that provides communication
among them. Then, peers with similar characteristics popu-
late the same hierarchy. Such kinds of network organization
are too restrictive for our connection purposes.

In [21] a different perspective is considered. The approach
relies on caching high quality peers to be remembered as
“friends” to be connected to. However, friend lists have a
fixed length, thus imposing to the peers a predefined max-

imum number of neighbors. Then, semantic similarity be-
tween peers is based on term frequency distributions, thus
implicitly assuming a common vocabulary in the network. A
further difference with [21] is that in our proposal the choice
of the neighbors is efficiently supported by specifically de-
vised algorithms which exploit a semantic-based distributed
indexing mechanism.

Our approach takes up the clustering purpose originally
proposed in [6] by effectively and efficiently supporting the
peers to locate their semantically best connections in a SON.
As to the process of creation and maintenance of a SON, we
inspired to the BUBBLE framework [9], a seminal work in
the field of incremental clustering of large datasets in met-
ric spaces. Indeed, BUBBLE stands out as one of the very
few approaches offering incrementality, scalability and small
memory requirements, and the ability to cluster objects de-
scribed by heterogeneous vocabularies, since no assumptions
are made on the distance function, and the distance of any
concept pair is user-definable. For what concerns the in-
dexing mechanism used when navigating the SON in search
of the semantically best neighbors, the spirit of our work is
similar to the proposal for metric spaces presented in [4].

In our future work, we plan to enhance the proposed ap-
proach by adding merging and splitting in the SON manage-
ment and by deepening the problem of range and k selection.
Moreover, we will investigate strategies for query processing
in this context.
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