
Multi-Dimensional Search for Personal Information
Management Systems

Christopher Peery, Wei Wang, Amélie Marian, Thu D. Nguyen
Department of Computer Science, Rutgers University
110 Frelinghuysen Rd, Piscataway, NJ 08854, USA

{peery, ww, amelie, tdnguyen}@cs.rutgers.edu

ABSTRACT
With the explosion in the amount of semi-structured data users ac-
cess and store in personal information management systems, there
is a need for complex search tools to retrieve often very heteroge-
neous data in a simple and efficient way. Existing tools usually in-
dex text content, allowing for some IR-style ranking on the textual
part of the query, but only consider structure (e.g., file directory)
and metadata (e.g., date, file type) as filtering conditions. We pro-
pose a novel multi-dimensional approach to semi-structured data
searches in personal information management systems by allowing
users to provide fuzzy structure and metadata conditions in addition
to keyword conditions. Our techniques provide a complex query
interface that is more comprehensive than content-only searches as
it considers three query dimensions (content, structure, metadata)
in the search. We propose techniques to individually score each
dimension, as well as a framework to integrate the three dimen-
sion scores into a meaningful unified score. Our work is integrated
in Wayfinder, an existing fully-functioning file system. We per-
form a thorough experimental evaluation of our techniques to show
the effect of approximating individual dimensions on the overall
scores and ranks of files, as well as on query performance. Our ex-
periments show that our scoring strategy adequately takes into ac-
count the approximation in each dimension to efficiently evaluate
fuzzy multi-dimensional queries. In addition, fuzzy query condi-
tions in non-content dimensions can significantly improve scoring
(and thus ranking) accuracy.

1. INTRODUCTION
Dataspaces, large collections of heterogeneous data, and per-

sonal information management systems have recently received a lot
of attention in the Database and Information Retrieval (IR) commu-
nities [8, 12, 15]. Unlike the very structured DBMSs, or the rela-
tively unstructured document model from IR, dataspaces allow for
flexible management of data with varying degree of structure, and
coming from possibly different sources. In addition, potentially
useful metadata information can be stored alongside data. Allow-
ing for powerful and flexible search in such information manage-
ment systems is a critical issue; with the explosion in the amount

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT’08, March 25–30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003 ...$5.00.

of data users access and store there is a need for complex search
tools to access often very heterogeneous data in a simple and ef-
ficient way. Numerous third-party search tools have been devel-
oped to perform keyword searches and locate personal information
stored in personal information management systems such as the
commercial file system search tools Google Desktop[17] and Spot-
light [23]. However, these tools usually index text content, allowing
for some ranking on the textual part of the query—similar to what
has been done in document search in the Information Retrieval (IR)
community—but only consider structure (e.g., file directory) and
metadata (e.g., date, file type) as filtering conditions.

In this paper, we present scoring and searching techniques to
access files in a personal information system scenario. While the
research community has considered the problem of search in simi-
lar scenarios [15, 8, 12], as is the case with commercial tools, these
work focus on IR-style keyword queries and use other system in-
formation, such as metadata, to guide the keyword-based search.
Unfortunately, simple keyword-only searches are often insufficient,
as illustrated by the following example:

EXAMPLE 1. Consider a user saving personal information on
a computing device. In addition, some of the data available on
the device may come from external sources (such as other users
in a network setting) and therefore may not be familiar to the user.
Alongside the data, the systemmay store (a potentially large amount
of) metadata information (e.g., access time, file type), as well as
some navigational structure information (e.g., directory structure).
In such a scenario, it is possible to ask the query: Find a pdf

file created on March 21, 2007 that contains the words “proposal
draft.”
Keyword-based search tools would answer this query by return-

ing all files of type *.pdf created on 03/21/2007 (filtering condi-
tions) that have content similar to “proposal draft" (ranking ex-
pression), ranked based on how close the content matches the text
“proposal draft" using some underlying text scoring mechanism.
These tools would therefore miss any relevant file that do not strictly
adhere to the date and file type filtering conditions; for example,
*.tex documents created on 03/19/2007 would not be returned even
if their content match the query keywords.

We believe that allowing flexible conditions on structure and
metadata can significantly increase the quality and usefulness of
search results in many search scenarios. For instance, for the Ex-
ample 1 query, the user might not remember the exact creation date
of the file of interest—or may not be the original creator of the
file—but remembers that it was created around 03/21/2007. Sim-
ilarly, the user might be primarily interested in files of type *.pdf
but might also want to consider relevant files of different but re-
lated types (e.g., *.tex, or *.txt). In this case, the date and file type

464

conditions should not only be considered for filtering purposes but
should also be part of the ranking conditions of the queries.

The challenge is then to adequately score the search results by
taking into account flexibility in the textual component together
with some flexibility in the structural and metadata components of
the query. Once an adequate scoring mechanism is chosen, efficient
algorithms to identify the best query results, without considering all
the data in the system, are also needed.

In this paper, we propose a novel approach that allows users to
provide fuzzy conditions on three query dimensions: content, meta-
data, and structure. We describe individual IDF-based scoring ap-
proaches for each dimension and present a unified scoring frame-
work for multi-dimensional queries over personal information file
systems. Our techniques are based on an IDF-based interpretation
of scores for each dimension. There has been some discussions in
both the Database and the Information Retrieval communities on
integrating technologies from both fields [1, 2, 6, 10] to combine
content-only searches with structure-based query results. Our tech-
niques provide a step in this direction as they integrated IR-style
content scores with DB-style structure approximation scores.

While our work could be extended to a variety of dataspace ap-
plications and queries, we focus on a file search scenario in this
paper. That is, we consider the granularity of the search results to
be a single file in the personal information system. Of course, our
techniques could be extended to a more relaxed query model where
subset of files (such as individual sections or XML subtrees) could
be returned as a result.

In this paper, we make the following contributions:

• We propose IDF-based scoring mechanisms for individual
query dimensions (content, metadata, structure). Our scor-
ing techniques take into account the specificity of each di-
mension, as well as the data distribution, to efficiently assign
relevance scores to query answers.

• We propose a framework to combine individual dimension
scores into a unified multi-dimensional score.

• We adapt existing top-k query processing algorithms to our
scenario.

• We integrated our work into Wayfinder [20], an existing fully-
functioning file system.

• We evaluated our scoring framework experimentally and show
that our IDF-based scoring approach preserves the specificity
of each dimension and that our unified scoring framework ac-
curately captures multi-dimensional query flexibility. We re-
port on the impact of multi-dimensional scoring on the query
answers returned to the user and show that our techniques
result in good overall query performance.

The rest of the paper is organized as follows: in Section 2, we
present our multi-dimensional scoring framework. Section 3 de-
scribes the overall architecture of our system and the algorithms we
use to aggregate scores and return the best answers to the queries.
We present our experimental results in Section 4. Finally, we dis-
cuss related work in Section 5 and conclude in Section 6.

2. A UNIFIED MULTI-DIMENSIONAL
SCORING FRAMEWORK

In this section, we present our unified framework for assigning
scores to files based on how closely they match individual query
dimension conditions. We distinguish three scoring dimensions:

content for conditions on the textual content of the files, metadata
for conditions on the system information related to the files, and
structure for conditions on the directory path to access the file.

Our scoring strategy is based on an IDF-based interpretation of
scores for each dimension. Traditionally, the IDF score of a docu-
ment for a keyword in the IR world is a function of how many doc-
uments contain the keyword [24]. The content IDF scoring strategy
has been widely adopted in IR systems as it considers the data dis-
tribution to assign scores. We extend this idea to each of our search
dimension and assign a score to a file in a query dimension based
on how many files match the query dimension condition. The unifi-
cation aspect of our scoring framework comes from this IDF-based
scoring approach; for each dimension, the score of a file is a func-
tion of the document frequency. The multi-dimensional score of
the file is then a combination of the individual dimension scores.
It is our belief that using a unified IDF framework allows us to
meaningfully combine scores on several orthogonal dimensions to
provide a single result, as we will show experimentally in Section 4.

We first give a brief overview of our query model (Section 2.1),
we then present our IDF-based scoring strategies for each dimen-
sions: content (Section 2.2), metadata (Section 2.3), and structure
(Section 2.4). Finally, we show how we aggregate scores across
dimension in Section 2.5.

2.1 Query model
To perform multi-dimensional queries, we need a query language

that can express metadata and structure conditions in addition to
content searches. To this end, we use a simplified version of
XQuery [25] as our query language. For instance, the query for
Example 1 would be expressed as follows:

FOR $i in /File[FileSysMetadata/FileDate
= ’03/21/07’]

FOR $j IN /File[ContentSummary/WordInfo/Term
= ’proposal’
AND ContentSummary/WordInfo/Term
= ’draft’]

FOR $m IN /File[FileSysMetadata/FileType
= ’pdf’]

WHERE $i/@fileID = $j/@fileID
AND $i/@fileID = $m/@fileID
RETURN $i/fileName

An answer to the query is a file that is relevant to one or more
of the query parameters. Internal flags are used to specify whether
only exact matches are allowed (filtering conditions), or whether
approximate matches are considered (ranking conditions). If ap-
proximate matches are allowed, a score is assigned to each query
parameter based on how close the match is to the condition (exact
matches for filtering conditions have a score of 1).

In the rest of this section, we discuss our scoring strategies for
approximating query matches in each dimension.

2.2 Scoring Content
We use standard indexing structures and scoring mechanisms

from the IR literature [24] for query conditions involving text.
Specifically, we have implemented inverted indices for identifying
files containing query terms and use a TF · IDF scoring strategy for
scoring text conditions, as described below.

DEFINITION 1 (CONTENT TF.IDF SCORE OF A FILE). For
a given keyword query, Q, consisting of the terms t1, t2, . . . , tn,
the content score of a file F , with respect to Q is computed as:

scoreContent(Q, F) =

Pn
i=1(IDFti · TFti,F)

p|F |

465

All Files

Executable Media Document Unknown Type

... Video Image Music

... .avi

Code .docpdf

... .cpp .java

All Dates

Year - 2006 Year - 2007

Month - 8 Month - 3

Day - 5 Day - 25 Day - 19 Day - 21

Hour - 19 Hour - 5Hour - 15 Hour - 19 Hour - 21 Hour - 19

(a) (b)

Figure 1: Fragments of the indexing DAGs for (a) file type (extension) metadata, and (b) file date metadata. Solid lines represent
parent-child relationships. Dotted lines represent ancestor-descendant relationships, with intermediate nodes removed for simplicity
of presentation.

with

TFt,F = 1 + log(Ft) IDFt = log(1 +
N

Nt
)

where |F | is the total number of terms in the file, Ft is the number
of times the term t appears in file F , Nt is the number of files
containing the term t, and N is the total number of files.

Note that to stay consistent with traditional IR system, in this
dimension we consider the TF score of a match as well as its IDF
score. This stays in the spirit of our overall IDF-based framework,
as the TF score is only used to give additional weight information
on the quality of the matches.

2.3 Scoring Metadata
Dataspaces and personal information systems allow for the stor-

age of metadata information alongside files. Such metadata may
include file sizes, file owners, and various file timestamps (e.g.,
date created and date last modified). File extensions can also hint
at the corresponding file types. Users often want to enhance their
query with metadata conditions (e.g., file was accessed last week,
file is a pdf document), but may not accurately remember the exact
metadata values for which they are looking. Therefore, allowing
for some approximation in metadata conditions is desirable.

In this section we discuss our scoring strategies for metadata in-
formation. We develop the concept of metadata relaxation to score
and retrieve approximate matches to metadata query conditions.

2.3.1 DAG Representation of Metadata Relaxations
We use a DAG indexing structure to support the scoring of relax-

ations on metadata conditions. In particular, we construct a DAG-
based index for each type of searchable metadata to support both
the retrieval and the scoring of results. In these indexes, possible
metadata values that files can have are stored in the leaves of the
DAG. Internal nodes of the DAG then represents progressive hier-
archical generalizations of their children.

For example, Figure 1 represents (subgraphs of) the DAGs as-
sociated with file types (Figure 1(a)) and file dates (Figure 1(b)).
For the file type DAG, each leaf represents a specific file type (e.g.,
.doc and .pdf) and contains a count as well as references to all files
of that type. Each internal node represents a more general file type
that is a union of the types of its children (e.g.,Media is the union of
Video, Image, and Music types) and thus a relaxation of its descen-
dants. Correspondingly, each internal node contains the sum of the

file counts of its descendant leaves. Note that the count maintained
at each internal node is thus guaranteed to be greater than or equal
to the count at any of its children. Similarly, in the DAG for file
dates, individual timestamps are represented at the leaf node level
and internal nodes represent larger time periods spanning those rep-
resented by their descendants. A similar DAG is built to represent
file sizes.

2.3.2 Scoring Metadata Relaxations
As mentioned, the metadata DAG indexes are used for scoring.

Our IDF-based framework requires the score of a file to depend
on how many files match a given relaxation of a query condition.
Given a specific metadata condition, the path from the matching
leaf to the root of the DAG index for a metadata type represents
all of the approximations that we can score for that condition. For
instance, the query condition FileType=’pdf’ in Example 1
would exactly match the leaf .pdf in the DAG example of Fig-
ure 1(a). The leaf’s ancestor nodes, Documents and All Files, rep-
resent approximate matches.

Continuing the example, our IDF-based scoring approach then
scores matching files as follows. Files of type .pdf would have
the highest score as they are exact matches to the query condition.
Files of type Document, other than type .pdf, e.g., .doc and Code,
would be assigned a lower score. Finally, files of type All Files,
other than type Document, which would consist of all remaining
files in the system, would be assigned yet a lower score. The latter
two assigned scores are for the two approximations of the query
condition as they are assigned to files that do not match the query
condition exactly.

DEFINITION 2 (METADATA CONDITION SCORE OF A FILE).
For a given metadata query, Q, consisting of a target value vQ for
a metadata condition C, the metadata score of a file F , with corre-
sponding metadata value vF , with respect to Q is computed as:

scoreMetaData(Q, F, C) =
log(N

|fileDesc(commonAnc(vQ,vF))|)

log(N)

whereN is the total number of files, commonAnc(x, y) returns
the closest common ancestor of nodes x and y, and fileDesc(x)
returns the files that can be reached through the descendants of
node x in the metadata DAG. The score is normalized by log(N)
so that a single perfect match would have the highest possible score

466

of 1. The most relaxed matches to the condition C will have a score
of 0 as their closest common ancestor with vQ is the root node of
the DAG which contains all N files as its descendants.

Intuitively, we find the closest common ancestor of vQ and vF

in the metadata DAG, and count the number of files that can be
reached through descendants of this common ancestor. The higher
this number is, the lower the score of F for Q will be as many other
files share the same level of approximation with Q as F .

2.3.3 Aggregating Metadata Scores
For queries involving multiple metadata conditions (e.g., our ex-

ample query, with a condition on date and a condition on filetype)
the individual condition scores have to be aggregated to produce a
unified metadata score.

We aggregate individual metadata scores by considering both the
query and the document as vectors of dimension n, where n is the
number of individual metadata conditions C1, ..., Cn. The docu-
ment vector �VF consists of the individual scoreMetaData(Q,F, Ci)

(1 ≤ i ≤ n). The query vector �VQ has value 1 (exact match) for
each dimension. The unified metadata score is then the normalized
length of the projection of the document vector on the query vector.

DEFINITION 3 (METADATA SCORE OF A FILE). For a given
metadata query Q with corresponding query vector �VQ, consist-
ing of several metadata value conditions C1, ..., Cn, the metadata
score of a file F with corresponding document vector �VF , with re-
spect toQ is computed as:

scoreMetaData(Q,F) =
�VF · �VQ

| �VQ|
Note that if only one metadata condition C is present in Q, then
scoreMetaData(Q, F) = scoreMetaData(Q, F, C).

2.4 Scoring Structure
Most users typically organize their files into a hierarchical direc-

tory structure for navigation. In addition, the structure within a doc-
ument can be seen as an extension of the directory path structure
and used for more complex query searches [12]. However, users
are notoriously bad at remembering where they stored a particular
file or how the files are structured [11]. When a user searches for a
file using structure information such as directory path information,
the query is likely to be incorrect, as users often confuse or mis-
remember the order of the directories, their relationships, or their
labels. However, it is common that users do correctly remember
some portion of the path whether it be a prefix or several (possi-
bly non-consecutive and out-of-order) directory names. Therefore,
allowing for a method of approximation that leverages any correct
information in an otherwise incorrect (when taken as a whole) path
is desirable.

In this section we discuss our scoring strategies for the struc-
ture information of files. While our main focus is on directory path
structure, our structure scoring techniques could easily be adapted
for structural information within a document. Our structure scoring
strategy is based on work on XML structural query relaxations [3,
5, 4]; as described below, we introduce new types of structural re-
laxations to handle the specific needs of user searches in a personal
information management system.

2.4.1 Notations
We first introduce a few notations that we use to define relax-

ations of directory structure query conditions.

• Directory Tree: A directory tree D is a hierarchical repre-
sentation of a navigational directory structure, rooted at the
top of the directory hierarchy, and where each directory is a
node in the tree.

• Path Node: Given a directory tree D, a path node N is ei-
ther: (a) a single directory with a given label l, (b) the root of
the directory tree, or (c) a wildcard directory (i.e., a directory
with any possible label) noted ∗.

• Path Query: A path query P is a simple non-cyclic path
where each node in the path is either a path node or a node
group (see below) and each edge in P is either a parent-child
edge (/) or an ancestor-descendant edge (//).

For example, root/a//b, root//a/b//(c/d), and
root//a/b//∗ are path queries. For simplicity, we consider
/a//b, //a/b//(c/d), and //a/b//∗ to be equivalent to
root/a//b, root//a/b//(c/d) and root//a/b//∗ respec-
tively.

• Node Group: To represent possible permutations in path
queries, we introduce the notion of node groups. A node
group is a simple non-cyclic path where all nodes are (la-
beled) nodes and each edge in the path is either a parent-
child edge or an ancestor-descendant edge. The placement of
edges is fixed within the group, however the (labeled) nodes
may permute. The extension of a node group n is the set of
all path queries that are contained in n and do not contain any
node groups. Note that by definition the root node is always
at the head of a path query and a wildcard node is always
at the tail of a path query. Thus, the root node and * node
are not allowed in a node group. Any other definitions or
relaxation rules should always keep this property.

For example (a/b) is a node group, which corresponds to
the extension set containing a/b and b/a, and (a//b/c) is a
node group, which corresponds to the extension set contain-
ing a//b/c, a//c/b, b//a/c, b//c/a, c//a/b and c//b/a.

The set of exact answers to a path query P is the set of files that
can be reached through the path(s) defined in P , i.e., P and any
extensions of P . The set of all answers to P is the set of files that
can be reached through path(s) defined in P or in a relaxation of P
as defined below.

2.4.2 Structure Relaxations
We consider four different relaxation operations to derive ap-

proximations of structural query conditions. While our relaxations
are inspired from the work on XML structural relaxation [3, 4, 5],
our needs differ from work on approximate XML queries in two
significant ways:

• We consider path queries instead of twig queries. As such,
we do not need specific twig relaxations such as subtree pro-
motion [3]. In contrast, we need to be able to delete or ex-
tend any directory node contained within the path query to
include any files included in the directory subtree rooted at
the directory node.

• Permutations of nodes within a path query is very common in
file search scenarios. For this purpose, we introduce the node
inversion operation, as well as the node group notation. Most
work on XML query relaxation have ignored node inversion,
although they may be able to simulate some node inversion
cases with relaxed twig query patterns [4, 5].

467

As in [4, 5], we require that answers to a path query P be con-
tained in the set of answers to a relaxation of P to ensure mono-
tonicity of scores when relaxing a query (since scores depend on
the number of files that are answers to the path query). We con-
sider the following four structural relaxation operations:

• Edge Generalization is used to relax a parent-child edge to
an ancestor-descendant edge. It can be used in a path query
or a node group.

• Path Extension is used to extend a path query P that does
not end in //∗ to P//∗ so that all files within the directory
subtree rooted at P can be considered as answers. Answers
to paths that do not end in //∗ only return files that are lo-
cated in the exact directory rooted at P (and at the extensions
of P).

• Node Deletion is used to drop a node from a path query.
Node deletion can be applied to any path query or node group
but cannot be used to delete the root node or the ∗ node.

– To delete a node n in a path query P :

∗ If n is a leaf node, n is dropped from P and P −n
is extended with //∗. This is to ensure contain-
ment of the exact answers to P in the set of an-
swers to P ′, and monotonicity of scores.

∗ If n is an internal node, n is dropped from P and
parent(n) and child(n) are connected in P with
//.

For example, deleting node c from a/b/c results in
a/b//∗ because a/b//∗ is the most specific relaxed
path query containing a/b/c that does not contain c.
Similarly, deleting c from a/c/b//∗ results in a//b//∗.

– To delete a node n that is within a node group N in a
path query P , the following steps are required to ensure
answer containment and monotonicity of scores:

∗ n and one of its adjacent edge in N are dropped
from N . Every edge within N becomes an ancestor-
descendant edge. If n is the only node left in N ,
N is replaced by that node in P .

∗ Within P the surrounding edges of N are replaced
by ancestor-descendant edges.

∗ If N is a leaf node group, the result query is ex-
tended with //∗.

For example, deleting node a in x/(a/b//c/d)/y re-
sults in x//(b//c//d)//y because the extension set of
x/(a/b//c/d)/y contains 24 path queries, which in-
clude x/a/b//c/d/y and x/b/c//d/a/y; after delet-
ing node a, these two path queries become x//b//c/d/y
and x/b/c//d//y. Therefore, x//(b//c//d)//y is the
only most specific path query which contains the com-
plete extension set and does not contain a.

• Node Inversion is used to permute nodes within a path query
P . Permutations can be applied to any adjacent nodes or
node groups except for the root and ∗ nodes. A permuta-
tion combines adjacent nodes, or node groups, into a single
node group while preserving the relative order of edges in
P . For example, applying node inversion to nodes a and b in
x/a/b/y//∗ results in x/(a/b)/y//∗.

Our relaxation operations can be composed to provide increas-
ingly relaxed versions of the original path query. For any path query

P , the most general relaxation is //∗ and //∗ matches any path in
the directory tree.

Note that path extensions and node inversions were not consid-
ered in [4, 5]. In particular, node inversions significantly compli-
cate and increase the number of possible query relaxations and re-
quire the introduction of the node group notation (Section 2.4.1) to
represent path permutations.

2.4.3 DAG Representation of Structure Relaxations
As proposed in [4], we use a DAG to represent all possible struc-

tural relaxation of a path query condition. The DAG structure is
used not only to compute and store score information but also for
query processing, as it allows us to incrementally access increas-
ingly relaxed answers during query processing (Section 3). Fig-
ure 2 shows an example relaxation DAG, along with example IDF
scores (see Section 2.4.4 for details), for the structure query condi-
tion Personal/Ebooks/JackLondon. This DAG is rooted at the exact
query condition itself, with each non-root node representing a re-
laxed form of the exact query condition. Note that this structure
DAG is a representation of the query and all possible relaxed forms
of that query given the above relaxation operations, rather than an
index of data in the file system like the indexing metadata DAGs
in Figure 1. Matches for the exact query P/E/J have a score of
1, while matches to increasingly relaxed versions of the query, as
we go down the DAG, have lower scores, with matches to the most
general relaxation of P/E/J : //∗ having a score of 0.

We present Algorithm 1 to build the DAG in a top-down fashion
given a path query P . The DAG creation algorithm starts by cre-
ating a node containing the exact path query P and incrementally
applies simple relaxation steps to create new DAG nodes, merging
identical DAG nodes on the fly.

Algorithm 1 buildPQDAG Function
function buildPQDAG(currentDAGNode)
begin

P = getQuery(currentDAGNode)
for each edge e in P do
if isParentChildEdge(e) then

newDAGNode = getDAGNode(edgeGeneralize(e,P))
{getDAGNode checks if a DAG node containing P with the edge
generalization exists, and creates such a DAG node if it does not.}

end if
end for
for each node or node group n in P do
if not isWildcardNode(n) and parent(n) exists and

not isRootNode(parent(n)) then
newDAGNode =

getDAGNode(invertNode(n, parent(n), P))
end if

end for
for each node or node group n in P do
if requireNodeDeletion(n) then
if isNode(n) then

newDAGNode = getDAGNode(nodeDeletion(n, P))
else

{n is a node group.}
for each node m in n do

newDAGNode =
getDAGNode(nodeDeletion(m, P))

end for
end if

end if
end for

end

To ensure the relaxation is done incrementally, we create an edge
from a DAG node P to a more relaxed DAG node P ′ if and only

468

Idf=0.775

P//E/J
Idf=1.0

P/(E/J)
Idf=0.798

(P/E)/J
Idf=0.826

P/E/J//*
Idf=0.862

P/E//J
Idf=1.0

P/E/J
Idf=1.0

P//E//J
Idf=1.0

P//E/J//*
Idf=0.862

(P//E)/J

Idf=0.445

E//*
Idf=0.306

P//*
Idf=0.334

J//*
Idf=0.297

//*
Idf=0

Legend
P – Personal
E – Ebooks
J – JackLondon

Idf=0.724
P//(E/J)

Idf=0.688
E/J

Idf=0.433
(P//E)//* (P//J)//*

Figure 2: The structure DAG for the structural query condition Personal/Ebooks/JackLondon. Solid lines represent parent-child
relationships. Dotted lines represent ancestor-descendant relationships, with intermediate nodes removed for simplicity of presenta-
tion.

if there is no DAG node P ′′ such that P ′′ is a relaxed query of
P and P ′ is a relaxed query of P ′′. To achieve this, Algorithm 1
always applies edge generalization, path extension, and node inver-
sion first when possible. Node deletion is only applied when no
other relaxation is possible anymore.

The function requireNodeDeletion(n) checks whether a node
deletion relaxation needs to be applied. Node deletion is only ap-
plied on a path node n if its surrounding edges are ancestor-
descendant edges. If n is a node contained in a node group, node
deletion is only applied if all surrounding and internal edges of the
node group are ancestor-descendant edges.

2.4.4 Scoring Structural Relaxations
To score files based on approximate structural conditions, we use

an adaptation of IDF to structure relation that is similar to the one
presented in [4].

DEFINITION 4 (STRUCTURAL IDF OF A PATH QUERY). For
a path query P and a directory tree D, the IDF score of any file f
in D that is a valid answer to P is computed as:

IDFD(P, f) =
log(N

|F (D,P)|)

log(N)

where N is the total number of files in D and F (D, P) is the set of
all files that can be reached through P and its extensions in D.

Figure 2 shows an instance of the normalized IDF scores corre-
sponding to each DAG node path query relaxation for an example
data instance. All files that match the same specific path relax-
ations have the same structure IDF score. Note that in Figure 2
path queries P/E/J , P//E/J , and P//E//J have exactly same
IDF scores. This occurs because the number of files that can be
reached through them and their extensions in D are the same (Def-
inition 4). Because answers to a path query P are contained in the
set of answers to any relaxation of P , this implies that P/E/J ,
P//E/J , and P//E//J have the same set of answers, i.e., these

relaxations do not result in more approximate matches. This obser-
vation is useful for our query processing algorithm (Section 3.2),
as we can use this information to “skip" some DAG nodes while
traversing the DAG.

DEFINITION 5 (STRUCTURE SCORE OF A FILE). For a given
structure query Q, the structure score of a file f , with respect to Q
is computed as:

scoreStructure(Q, f) = max
P ′ {IDFD(P ′, f)|f ∈ F (D, P ′)}

where P ′ is any path query that is a relaxation ofQ and F (D, P ′)
is the set of all files that can be reached through P ′ and its exten-
sions in D.

2.5 Aggregating Multi-dimensional Scores
A strength of our scoring framework is that all dimensions are

scored using a similar IDF metric, which takes into account the
number of files that match a particular query condition (or relax-
ation of that condition). This unified framework allows us to mean-
ingfully aggregate scores across different query dimensions.

The individual dimension scores are aggregated to produce the fi-
nal score of a file for a query. We use a vector projection for the ag-
gregation of multi-dimension scores, similar to the one we used for
aggregating individual metadata condition scores (Section 2.3.3).
We build a 3-dimension file vector �VF , which consists of the (nor-
malized) three dimension (content, metadata, and structure) scores.
For a query Q and a file F , we have:

�VF = (scoreContent(Q, F), scoreMetaData(Q, F),

scoreStructure(Q, F))

The query vector �VQ has value 1 (exact match) for each dimen-
sion. The file multi-dimensional score is the normalized length of
the projection of the document vector on the query vector.

469

DEFINITION 6 (QUERY SCORE OF A FILE). For a given query,
Q with corresponding query vector �VQ, the score of a file F with
corresponding document vector �VF , with respect to Q is computed
as:

score(Q,F) =
�VF · �VQ

| �VQ|
Note that our aggregation assigns the same importance to each

dimension in the query. We could easily incorporate weights in
our aggregation function to give more importance to one or more
dimension.

3. IMPLEMENTATION
To experimentally evaluate our approach, we have implemented

the above multi-dimensional scoring framework in the Wayfinder
file system [20]. We have also implemented a top-k query process-
ing algorithm to efficiently find the top k relevant results using our
scoring framework. This section briefly describes our implementa-
tion.

3.1 Indexing Structures
We choose Wayfinder as the hosting platform for an implementa-

tion of our scoring framework mostly based on convenience.
Wayfinder is a user-level file system, which makes it significantly
easier to modify. In addition, Wayfinder already implements a
TF · IDF-based content search engine (along with the necessary
indexes).

In this work, we have extended Wayfinder to include the follow-
ing set of data tables and inverted indexes to support the processing
of query conditions in the metadata and structural dimensions.

Metadata:

• A metadata table, where each row contains the typical meta
data, e.g., owner, size, date of creation, etc., for each file in
the system. (In current file systems, this information is typi-
cally dispersed throughout the file system, making it difficult
to find files that match specific metadata query conditions.)

• Five indexes of the metadata table to support efficient searches
on the size, type, date-of-creation, last-modified-time, and
last-accessed time attributes. Each of these index corresponds
to a DAG indexing structure similar to the ones presented for
file type and file date in Section 2.3.

Structural:

• Two name-binding tables to hold “parent directory → chil-
dren” and “child → parent directory” bindings.

• An inverted index that maps terms to full directory path-
names that contain these terms for quickly finding directo-
ries that match a structural query conditions and its relaxed
forms.

Wayfinder is written in Java. Tables and indexes are persistently
stored using the Berkeley DB [21]. Search queries are specified
using a small subset of the XQuery language (Section 2.1).

3.2 Query Processing
Our query model (Section 2.1) supports ranked retrieval of an-

swers based on how closely they match a query. Numerous work
on top-k query processing has shown that evaluating all possible
matches to return the k best answers is prohibitively expensive. In

our scenario, this would lead to scoring and ranking every single
file in the system for each query. Several top-k query processing
techniques have been proposed in the Database community in re-
cent years. We decided to use an existing and popular algorithm for
evaluating top-k answer: the Threshold Algorithm (TA) [14].

The focus of the current paper is on scoring strategies. Due to
lack of space, we will not detail our implementation of query op-
timization strategies (although we report on experimental perfor-
mance results in Section 4.6). However, we have implemented spe-
cific optimizations to the TA algorithm for our scenario, as well as
efficient index traversal techniques to help speed up query execu-
tion. In particular, as observed in [4] for the XML scenario, the
size of structure relaxation DAGs is exponential to the size of the
structure query. To avoid materializing large DAGs, we have imple-
mented a lazy traversal of the DAG which only materializes those
nodes that are needed during query processing. We plan to report
on these optimizations and their impact on query performance in
future work.

4. EXPERIMENTAL EVALUATION
We now experimentally validate our IDF-based scoring approach

and evaluate the potential for the corresponding multi-dimensional
fuzzy search approach to improve relevance ranking. We also re-
port on query performance to show that multi-dimensional search
is practical to use.

4.1 Experimental Setting
Platform. All experiments were performed using the Wayfinder
file system. Experiments were run on a PC with a 64-bit hyper-
threaded 2.8 MHz Intel Xeon processor, 2GB of memory, and a
10K RPM 70 GB SCSI disk, running the Linux 2.6.16 kernel and
Sun’s Java 1.4.2 JVM.

Data Set. As noted in [12], there is a lack of synthetic data sets
and benchmarks to evaluate search over personal information man-
agement systems; therefore we used a real user data set comprised
of (a representative subset of) files and directories from the work-
ing environment of one of the authors. This data set contained
24,926 files in 2,338 directories. 24% of this data set were multi-
media files (e.g., music and pictures), 17% document files (e.g.,
pdf, text, and MS Office), 14% email messages,1 and 12% source
code files. The average directory depth was 3.4 with the longest
being 9. On average, directories contained 11.6 sub-directories
and files, with the largest—a folder containing emails—containing
1013. Wayfinder extracted 347,448 unique stemmed content terms.2

File modification dates spanned 10 years. 75% of the files were
smaller than 177 Kbytes, and 95% of the files were smaller than
4.1 MBytes.

4.2 Behaviors of Scoring Functions
We start by studying the behaviors of our scoring functions. Fig-

ure 3 plots the scores of all relevant files as a function of their
ranking for three 1-dimensional queries targeting three different di-
mensions as follows. Figure 3(a) plots the normalized scores for
four content queries that contain from one to seven keywords. For
each query, the scores of matching files were normalized against the
highest score since content scoring is based on TF · IDF as opposed
to just IDF. Figure 3(b) plots the scores for three structure queries.
The first query is a standard path query that corresponds to a path
that exists in the directory tree (of the form /a/b/c/d), the second is
1Email messages are stored in the Maildir format in which each
email is stored in a separate file.
2Content was extracted from MP3 music files using their ID3 tags.

470

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000 10000

R
el

ev
an

ce
 S

co
re

File Rank

7 keywords
5 keywords
3 keywords
1 keyword

 1
 0.9
 0.8
 0.7
 0.6
 0.5
 0.4
 0.3
 0.2
 0.1

 0
 1 10 100 1000 10000

R
el

ev
an

ce
 S

co
re

File Rank

path-original
path-node-deleted

path-nodes-permuted

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000 10000

R
el

ev
an

ce
 S

co
re

File Rank

1 KB
100 KB

1 MB

(a) Content Queries (b) Structure Queries (c) Size Metadata Queries

Figure 3: Relevance score plotted as a function of ranking for (a) four content queries (b) three structure queries, and (c) three size
metadata queries

the original path query after deleting a node (/a/b/d), and the third
is the original path query after permuting two nodes (/a/b/d/c). We
choose these queries to exhibit common user mistakes in querying
structure. Finally, Figure 3(c) plots the scores for three metadata
queries for three different file sizes.

First and foremost, we observe that all scoring functions have
similar behaviors. In all cases, the relevance scores monotonically
decrease (by design) as files become less similar to the query condi-
tions. Most critically, all scoring functions allow a large number of
files that do not exactly match the query conditions to be scored and
ranked, providing the desired flexibility over filtering. This is par-
ticularly important when a query condition such as a non-existing
directory is provided in the query; in such cases, filtering would not
consider any file in the system as being relevant to the query.

On the other hand, there are several interesting differences be-
tween the scoring function for content and the scoring functions for
the other dimensions. In particular, the scoring functions for struc-
ture and metadata (Figures 3(b-c)) are noticeably plateau-shaped
because of our DAG-based approach to computing IDF. In this ap-
proach, each relaxation step is likely to bring a set of files that are
deemed to be equally similar to the query condition. For instance,
in Figure 3(c), each plateau corresponds to a discrete relaxation in-
terval to which a range of file sizes has been mapped.

Plateaus in the scoring function, where many files are assigned
the same score, can make a query dimension less useful for ranking.
For metadata, we can arbitrarily smooth the scoring function as
long as files do not have exactly the same attributes (e.g., same
size) by considering increasingly smaller relaxation intervals. In
contrast, this is not possible to do for structure, as the relaxation
intervals are defined by the matching directories and the number of
files inside each directory, which is under user control. (Users can
aid the search engine by using sparser directory structures.)

The content scoring function also differ from the other two in
its sharp drop from the top several ranked results to the 10th-100th
ranked results and its non-zero scoring of a much smaller subset of
the files in the system. These differences do not seem fundamental,
however. For example, if we choose a set of content terms that
appear in most files, then the content scoring function would likely
look more like the other two.

Thus, despite the differences, we conclude that the data in Fig-
ure 3 makes a strong case for combining relevance scores from or-
thogonal query dimensions using our framework as it places these
dimensions into a common setting to be compared. The differences
mentioned likely provide opportunities to explore more complex
score aggregation approaches. We leave such exploration as future
work.

4.3 Scores and Rankings for Approximate An-
swers

We now show how scoring (and the corresponding ranking) is af-
fected by inaccurate query conditions. For this purpose, we choose
a target file that is an exact match for the query conditions of a par-
ticular query, resulting in a high score and rank. We then modify
the target file so that it is progressively farther away from the query
conditions; that is, the file will only match increasingly relaxed ap-
proximations of the query conditions. While relaxing the target file,
we alter several other files as needed to ensure that any global statis-
tics used in scoring computations are kept constant. This ensures
that scores for files unrelated to our relaxation process are unaf-
fected, providing a stable background for interpreting the changing
score (and rank) of the target file.

Figures 4(a-b) and (d-e) plot the score and rank, respectively, of
the target file for two representative 2-dimensional queries cover-
ing the four dimensions of content, structure, size metadata, and
(last modified) date metadata. In the content dimension, we relax
the file by progressively removing occurrences of the query term
from within the file. In the structure dimension, we relax the file
by progressively moving the file up the directory tree (represent-
ing simple relaxations steps) from its original location. In the size
metadata dimension, we relax the file by progressively decreasing
its size (we also relax in the opposite direction but do not plot the re-
sults because they are not significantly different). In the date meta-
data dimension, we relax the file by progressively moving its date
backward from the query condition.

It should be noted that in Figure 4, the target file is not the only
exact match to the query condition in the structure, size, and date
dimensions, leading to a relevance score of less than 1 in each of
these dimensions even before relaxation of the file. Also, the tar-
get file is not returned as the top result to the content-only query
leaving again a score of less then 1. This arises from the fact that
our data set has several small files that contain a subset of the query
terms. As our TF · IDF scores are normalized by file lengths, these
smaller files achieve higher scores than the target file, which is a
novel containing over 100,000 terms.

Figures 4(a-b) show that the combined scoring functions for a
multi-dimensional query behave as expected; that is, they preserve
the trends of the 1-dimensional scoring functions, decreasing as the
file is relaxed away from the query conditions in either dimension;
we plot the score and rank of the target file as it is relaxed against
1-dimensional content and structure queries in Figures 4(c) and (f)
for comparison purposes. Although the results are not shown here,
scoring for 3-dimensional queries also display similar behaviors.

More interestingly, we observe that providing query conditions

471

-7t-6t-5t-4t-3t-2t-1torig Exact
1

2

 0
 0.2
 0.4
 0.6
 0.8

 1

Relevance Score

.543

.173

Content Structure

Relevance Score

-1m
-3d

-12h
-1hExact

-8%-4%-2%1%Exact

 0
 0.2
 0.4
 0.6
 0.8

 1

Relevance Score
.932

.348

Mod. DateFile Size

Relevance Score

 0

 0.2

 0.4

 0.6

 0.8

 1

-7t-6t-5t-4t-3t-2t-1torig
 0

 50

 100

 150

 200

R
el

ev
an

ce
 S

co
re

R
an

k

Content Relaxation Steps (keywords Count)

rank
score

(a) Content & Structure (b) Size & Date Metadata (c) Content

-7t-6t-5t-4t-3t-2t-1torig Exact
1

2

 1

 10

 100

Rank

107

Content Structure

Rank

-1m
-3d

-12h
-1hExact

-8%-4%-2%1%Exact

 1

 10

 100

Rank

32

Mod. DateFile Size

Rank

 0

 0.2

 0.4

 0.6

 0.8

 1

4321Exact
 0

 50

 100

 150

 200

R
el

ev
an

ce
 S

co
re

R
an

k

Path Relaxation Steps

rank
score

(d) Content & Structure (e) Size & Date Metadata (f) Structure

Figure 4: Score (a-b) and rank (d-e) of a target file returned as a result of a constant 2-dimensional query as the file is relaxed away
from the query conditions across the two query dimensions. Score and rank of the same target file plotted for (c) a content-only
query and (f) a structure-only query.

for other dimensions in addition to content, even when the provided
query values are somewhat inaccurate, can significantly improve
ranking accuracy. For example, when the target file contains only 5
of the 7 terms (-2t) in the content query, its rank drops to around 50
(Figure 4(c)). When we provide an approximate structural value,
the parent directory of the directory containing the target file, the
ranking jumps to close to 10 (Figure 4(d)). Similarly, if we provide
information on the file’s size and date, even when the size is 8% off
and the date is incorrect by 1 month, the target file is ranked 32nd
(Figure 4(e)). Interestingly, sometimes inaccurate query conditions
on one dimension do not affect ranking, as is shown in (Figure 4(e))
where a slight approximation in the query condition of one dimen-
sion, provided the other dimension is exact, still results in a rank of
1 since few exact matches to each individual dimension exist in the
data set.

Of course, providing incorrect query values can hurt ranking as
well. For example, providing an ancestor directory two level up
pulls the rank of the target file down to around 100, even when
the file contains all 7 query terms in the content dimension. Keep
in mind, however, that providing incorrect non-content query val-
ues to current filtering approaches may prevent the target file from
being ranked at all. Thus, in these cases, our approach may not
improve on the current filtering approaches (users typically do not
look at returned results beyond some top K ranked items) but is no
worse than filtering.

4.4 Impact of Flexible Multi-Dimensional
Search

In the last section, we have shown the general trends of multi-
dimensional scoring to validate that our combined scoring function
behaves as desired. We also argued that providing fuzzy query con-

ditions in non-content dimensions has the potential to significantly
improve scoring (and thus ranking) accuracy. In this section, we
explore this latter potential and compare our approach against cur-
rent filtering approaches in more detail.

In this study, we initially construct a content-only query intended
to retrieve a specific target file and then expand this query along
several other dimensions. We start with a base content-only query
because content-only queries are the standard search interface in
many real world systems. For each query, we consider the ranking
of the target file by our approach together with whether the target
file would be ranked at all by today’s typical filtering approaches
on non-content query conditions.

Table 1 summarizes the results of our study. The target file is the
novel Sea Wolf by Jack London and the set of query content terms,
C, in our initial content-only query, Q1, contains the four terms
sea, wolf, jack, and london. While the query is quite reasonable, the
terms are generic enough that they appear in many files, leading to
a ranking of 49 for the target file. Query Q2 augments Q1 with the
exact matching values for file type, date, and containing directory.
This brings the rank of the target file to 1. Of course, this result
by itself is not meaningful because it is unlikely that the user will
remember the file attributes with such precision.

In the remainder of the table, we explore what happens when we
modify the query in two different ways for the non-content dimen-
sions: (1) instead of the precise correct value we provide a range
around the precise value, and (2) we provide an incorrect value.3

3We do not consider incorrect ranges, that is, a range that does not
include the value of the target file, because the results are similar to
incorrect values; filtering would not rank the target file and in our
approach, while the scores change, the ranking does not change
significantly.

472

Query Evaluation Results
Query Conditions Ranked With Comments on Relaxation

Query Content Type Date Structure Rank Filtering from Query Q1
Q1 C - - - 49 Y Base Query
Q2 C .txt 26 Feb 07 16:08 /p/e/n/j 1 Y Correct Values (all dim.)
Q3 C .txt - - 6 Y Correct Value
Q4 C .pdf - - 1026 N Incorrect Value
Q5 C .doc - - 45 N Incorrect Value
Q6 C Docs. - - 21 Y Relaxed Range
Q7 C 26 Feb 07 - 5 Y Relaxed Range (Day)
Q8 C - 25-28 Feb 07 - 5 Y Relaxed Range (Week of month)
Q9 C - Feb 07 - 7 Y Relaxed Range (Month)

Q10 C - 27 Feb 07 16:08 - 9 N Incorrect Value (off by 1 day)
Q11 C - 19 Feb 07 16:08 - 14 N Incorrect Value (off by 1 week)
Q12 C - 26 Mar 07 16:08 - 150 N Incorrect Value (off by 1 month)
Q13 C - - /p/e/n/j 3 Y Correct Path
Q14 C - - /p/e 13 Y Prefix of Correct Path
Q15 C - - /j/e 3 N Incorrect Order/Correct Names
Q16 C - - /p/e/n/h 11 N Incorrect Path
Q17 C Docs. Feb 07 /p/e/n 3 Y Relaxed Range (all Dim.)
Q18 C .pdf 19 Feb 07 16:08 - 36 N Incorrect Values
Q19 C .pdf 19 Feb 07 16:08 /j/e 2 N Incorrect Values (all Dim.)

Table 1: The rank of a target file—the novel Sea Wolf by Jack London—returned by a set of related queries. The queried di-
mensions include Content, Type (Metadata), Date (Metadata), and Structural. The initial content query Q1 provides the set C
containing the 4 query terms {jack, london, sea, wolf}. Structural values are abbreviated. The complete path of our target file is
/Personal/Ebooks/Novels/JackLondon/. The column Ranked by Filtering indicates whether the target file would be considered as a
relevant answer given today’s typical filtering approach.

The results are quite promising. For example, in query Q15, just
getting a couple of components correct in the directory name—
note that the components are given in an incorrect order—brings
the ranking up to 3. Providing an incorrect directory that shares a
common prefix with the correct directory brings the ranking to 11
(query Q16). In contrast, if such directories were given as filter-
ing conditions, the target file would be considered irrelevant to the
query and not ranked at all!

Similar results can be seen for most other queries marked with
an N for the Ranked with Filtering column. Two exceptions in-
clude queries Q4 and Q12. In these queries, the incorrect values for
the other dimensions reduce the ranking of the target file below that
achievable with only content. For query Q4, this decreased rank-
ing is because there are many pdf documents that achieve a higher
metadata score than the target file. Similarly, for query Q12, many
files with dates closer to the query condition achieve higher meta-
data scores. Given that the ranking in these two cases are 1026 and
150, our approach is not meaningfully different from filtering since
users are unlikely to look that far down a ranking list.

Using ranges also give promising results although our approach
is unlikely to outperform filtering (when the matching value of the
file attribute is included in the range so that the file is not filtered).
Intuitively, however, we believe it is easier to provide an approx-
imate query condition and allowing the search engine to rank all
files based on their similarity to the condition than it is to guess at
the correct filtering range, which may require overfitting or increas-
ing the range in several query iterations.

Based on the above results, we conclude that our approach of
providing flexible query conditions for non-content search dimen-
sions has the potential to considerably improve search accuracy
over current filtering approaches. We intend to validate this po-
tential in more extensive user studies in future work.

4.5 Impact of Multi-dimensional Scoring on
Results

To complement the last section, where we studied the ranking of
a single target file with respect to a set of related queries, we now
consider the impact of our scoring approach on the entire set of
top-k files returned in answer to a query. Specifically, we compare
the query results for several multi-dimensional queries with those
of a content-only query. To measure the impact of our techniques,
we use the minimized Spearman’s rho as described in [13]. The
standard Spearman’s rho (ρ) measures the distance between l1 and
l2, two permutations of the same list. The minimized Spearman’s
rho (ρmin) is an adaptation of the standard Spearman’s rho to top-k
lists, which may not overlap. We normalize the minimized Spear-
man’s rho between -1 and 1, where a score of -1 means that objects
in the two top-k lists are disjoint, and a score of 1 means the two
lists are identical:

ρmin = 1 − 6 ∗ P
d2

i

k(k + 1)(2k + 1)

where k is the number of results returned, di is the difference
in rank between each object that appears in l1 or l2; an object that
does not appear in one of the list is considered to have a rank of
k + 1 in that list.

Figure 5 shows the ρmin values for various multi-dimensional
queries as a function of k. We use two different queries, A and B,
to which we add dimension conditions. For Query B we see that
the addition of either metadata or structure conditions has only a
slight effect on the overall results (indicated by the respective lines
staying above 0.5). The combination of both, however, results in
significant changes to the set of results. In contrast, for Query A
the addition of the metadata dimension provides us with a spear-
man score ranging from 1.0 to -0.4 indicating that as we increase k
the results change significantly. This indicates that the set of files
relevant to the content condition of the query and the meta-data
condition are quite different. The addition of the structural condi-

473

-1

-0.5

 0

 0.5

 1

20010050251051

M
in

im
iz

ed
 S

pe
ar

m
an

’s
 r

ho

k

query A:content,metadata
query A:content,structure

query A:content,structure,metadata
query B:content,metadata
query B:content,structure

query B:content,structure,metadata

Figure 5: ρmin value for various multi-dimensional queries as
a function of k.

Total Query Time (ms)
Query Dimensions Index

In-Memory Persistent
Content 68.29 224.05
Structure 75.85 466.11

Size 17.43 70.33
Date 18.31 80.53

Content and Size 261.81 1329.66
Date and Size 206.17 2194.17

Structure and Size 689.15 1875.08
Content and Structure 383.93 1115.25

Content, Structure and Size 1099.44 2887.83
Content, Structure. Size and Date 2078.78 6221.49

Table 2: Query performance for various single- and multi-
dimensional queries for both in-memory indexes and persistent
indexes.

tion lessens this trend.
Our results show that the multi-dimensional scoring modifies the

top-k results with the impact being the most visible for smaller val-
ues of k. We have also shown that the degree of change is depen-
dent on the conditions with which the query is extended. Set of
conditions whose relevant files are similar will result in very little
movement, or introduction of new results, into the final top-k files.

4.6 Query Performance
While the focus of this paper is on a unified scoring framework

and its impact on query results, query performance is an important
aspect. We have implemented several top-k query optimization
techniques to speed up query evaluation (Section 3.2). Our tech-
niques ensure that the correct top k answers for a query, according
to our unified scoring framework, are returned to the user.

Table 2 shows the query performance of several single- and multi-
dimensional top-200 queries using both completely in-memory in-
dexes and persistent indexes. Recall that our persistent indexes
were implemented using the Berkeley DB [21] via its Java API.
Each number reported is an average of 50 query evaluations.

Immediately noticeable are the larger times for both content and
structure when compared to either size and date. The large content
times result from our current unoptimized index design. Processing
a query for each term currently requires the retrieval of the entire
list of all files that contain that term. For structure, the larger times
result from constructing and evaluating the structural DAG at run
time.

The increases in time between the in-memory and persistent in-
dex stems from the need to read data from the Berkley database.
We have implemented several simple caching mechanisms to mini-
mize these accesses. We believe, however, significant opportunities
for optimization remain.

The difference in times between one dimension and the multi-
dimensional searches is largely due to the overhead of top-k pro-
cessing. While it may be cheap to access the top results for a single
dimension using sorted indexes, a multi-dimensional search may
require to access (via more expensive random accesses) files that
have low scores in one or more dimensions.

We are currently investigating various methods to further im-
prove performance as future work. Among these are more ag-
gressive caching techniques to further minimize access to disk, ad-
justments to our top-k algorithm that will reduce it computational
cost, and probabilistic evaluation of the structural DAG. Our results
show reasonable query response time. Given that these measure-
ments were taken in an early, mostly unoptimized prototype, we
believe our fuzzy multi-dimensional scoring approach is practical
for implementation in real systems.

5. RELATED WORK
Several works have focused on the user perspective of personal

information management [8, 19]. These works allow users to or-
ganize personal data semantically by creating associations between
files or data entities and then leveraging these associations to en-
hance search.

Other works [12, 26] address information management by propos-
ing generic data models for heterogeneous and evolving informa-
tion. The works are aimed at providing users with generic and
flexible data models to accessing and storing information beyond
what is supported in traditional files system. Instead, we focus on
querying information that is already present in the file system. An
interesting future direction would be to include entity associations
in our search and scoring framework.

Other file system related projects have tried to enhance the qual-
ity of search within file system by leverage the context in which in-
formation is accessed to find related information [22] or by altering
the model of the file system to a more object-orientated database
system [7]. These differ from ours in that they attempt to lever-
age additional semantic information to locate relevant files while
our focus is in determining the most relevant piece of information
based solely on a user-provided query.

Recently there has been a surge in projects attempting to improve
Desktop search [23, 17]. These projects provide search capabilities
over content and then employ other pieces of information such as
size, date, or types as filtering conditions.

The INitiative for the Evaluation of XML retrieval (INEX) [18]
promotes new scoring methods and retrieval techniques for XML
data. INEX provides a collection of documents as a testbed for
various scoring methods in the same spirit as TREC was designed
for keyword queries. While many methods have been proposed in
INEX, they focus on content retrieval and typically use XML struc-
ture as a filtering condition. As a result, the INEX datasets and
queries would need to be extended to account for structural het-
erogeneity. Therefore, they could not be used to validate our scor-
ing methods. As part of the INEX effort, XIRQL [16] presents a
content-based XML retrieval query language based on a probabilis-
tic approach. While XIRQL allows for some structural vagueness,
it only considers edge generalization, as well as some semantic
generalizations of the XML elements. Similarly, JuruXML [9] pro-
vides a simple approximate structure matching by allowing users to
specify path expressions along with query keywords and modifies

474

vector space scoring by incorporating a similarity measure based
on the difference in length, referred to as length normalization,

XML structural query relaxations have been discussed in [3, 5,
4]. These works focus on the XML documents. In contrast, we are
looking at personal information file system which have more vari-
ations in the types of semi-structured data they handle. Our work
uses ideas introduced in the XML context, such as the DAG in-
dexing structure to represent all possible structural relaxations [4],
or the relaxed query containment condition [5, 4]. Our techniques
differ from these work as we consider relaxations specific to path
queries and ignore twig queries. In particular, we introduce specific
relaxations for path queries in a directory-based file system.

6. CONCLUSION AND FUTUREWORK
We presented a unified scoring framework for multi-dimensional

queries over personal information file systems. We proposed indi-
vidual IDF-based scoring approaches for content, metadata, and
structure queries. In particular, we defined structure and metadata
relaxation tools for our scenario. Our scoring approaches take into
account the number of files that match a particular query condi-
tion (or relaxation of that condition) to assign scores to each query
dimensions. Individual dimension scores can then easily be aggre-
gated.

We implemented and evaluated our scoring framework as part
of the Wayfinder file system. Our evaluation has shown that our
IDF-based scoring approach provides a meaningful distribution of
scores that captures the specificity of each dimension. Addition-
ally, we have shown that our multi-dimensional score aggregation
technique preserves the properties of individual dimension scores
and has the potential to significantly improve ranking accuracy. We
reported on the impact of our multi-dimensional scoring on query
answers and on query performance. We are currently working on
query processing optimization techniques to improve the perfor-
mance of our system.

In the future, we plan to extend our scoring dimensions to in-
clude file context information, in the spirit of [22]. We also plan to
qualitatively evaluate our scoring methodology through user evalu-
ations.

7. REFERENCES
[1] S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis. Automated

Ranking of Database Query Results. In Proc. of the
Conference on Innovative Data Systems Research (CIDR),
2003.

[2] S. Amer-Yahia, P. Case, T. Rölleke, J. Shanmugasundaram,
and G. Weikum. Report on the DB/IR panel at SIGMOD
2005. SIGMOD Record, 2005.

[3] S. Amer-Yahia, S. Cho, and D. Srivastava. Tree Pattern
Relaxation. In Proc. of the International Conference on
Extending Database Technology (EDBT), 2002.

[4] S. Amer-Yahia, N. Koudas, A. Marian, D. Srivastava, and
D. Toman. Structure and Content Scoring for XML. In Proc.
of the International Conference on Very Large Databases
(VLDB), 2005.

[5] S. Amer-Yahia, L. V. S. Lakshmanan, and S. Pandit.
FleXPath: Flexible Structure and Full-Text Querying for
XML. In Proc. of the ACM International Conference on
Management of Data (SIGMOD), 2004.

[6] R. A. Baeza-Yates and M. P. Consens. The Continued Saga
of DB-IR Integration. In Proc. of the International
Conference on Very Large Databases (VLDB), 2004.

[7] C. M. Bowman, C. Dharap, M. Baruah, B. Camargo, and
S. Potti. A File System for Information Management. In
Proc. of the International Conference on Intelligent
Information Management Systems (ISMM), 1994.

[8] Y. Cai, X. L. Dong, A. Halevy, J. M. Liu, and J. Madhavan.
Personal Information Management with SEMEX. In Proc. of
the ACM International Conference on Management of Data
(SIGMOD), 2005.

[9] D. Carmel, Y. S. Maarek, M. Mandelbrod, Y. Mass, and
A. Soffer. Searching XML Documents via XML Fragments.
In Proc. of the ACM International Conference on Research
and Development in Information Retrieval (SIGIR), 2003.

[10] S. Chaudhuri, R. Ramakrishnan, and G. Weikum. Integrating
DB and IR Technologies: What is the Sound of One Hand
Clapping? In Proc. of the Conference on Innovative Data
Systems Research (CIDR), 2005.

[11] W. B. Croft, P. Krovetz, and H. Turtle. Interactive Retrieval
of Complex Documents. Information Processing and
Management, 1990.

[12] J.-P. Dittrich and M. A. V. Salles. iDM: A Unified and
Versatile Data Model for Personal Dataspace Management.
In Proc. of the International Conference on Very Large
Databases (VLDB), 2006.

[13] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k
lists. SIAM Journal on Discrete Mathematics, 2003.

[14] R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation
Algorithms for Middleware. Journal of Computer and
System Sciences, 2003.

[15] M. Franklin, A. Halevy, and D. Maier. From Databases to
Dataspaces: A New Abstraction for Information
Management. SIGMOD Record, 2005.

[16] N. Fuhr and K. Großjohann. XIRQL: An XML Query
Language Based on Information Retrieval Concepts. ACM
Transactions on Information Systems (TOIS), 2004.

[17] Google desktop. http://desktop.google.com.
[18] INEX.

http://inex.is.informatik.uni-duisburg.de/.
[19] D. R. Karger, K. Bakshi, D. Huynh, D. Quan, and V. Sinha.

Haystack: A Customizable General-Purpose Information
Management Tool for End Users of Semistructured Data. In
Proc. of the Conference on Innovative Data Systems
Research (CIDR), 2005.

[20] C. Peery, F. M. Cuenca-Acuna, R. P. Martin, and T. D.
Nguyen. Wayfinder: Navigating and Sharing Information in
a Decentralized World. In Proc. of Databases, Information
Systems and Peer-to-Peer Computing (DBISP2P), 2004.

[21] Sleepycat Software. Berkeley DB.
http://www.sleepycat.com/.

[22] C. A. N. Soules and G. R. Ganger. Connections: Using
Context to Enhance File Search. In Proc. of the Symposium
on Operating Systems Principles (SOSP), 2005.

[23] Apple MAC OS X spotlight.
http://www.apple.com/macosx/features/spotlight.

[24] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes:
Compressing and Indexing Documents and Images. Morgan
Kaufmann Publishers, Inc, 1999.

[25] An XML Query Language.
http://www.w3.org/TR/xquery/.

[26] Z. Xu, M. Karlsson, C. Tang, and C. Karamanolis. Towards a
Semantic-Aware File Store. In Proc. of the Workshop on Hot
Topics in Operating Systems (HotOS), May 2003.

475

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

