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ABSTRACT

In response to regulatory focus on secure retention of elec-
tronic records, businesses are using magnetic disks config-
ured as write-once read-many (WORM) compliance storage
devices to store business documents such as electronic mail
for their mandated retention periods. A document com-
mitted to a compliance storage device cannot be altered or
deleted even by a superuser until its retention period is over,
and hence is secure from attacks originating from company
insiders. Secure retention, however, is only a part of a doc-
ument’s lifecycle: it is often crucial to properly delete doc-
uments once their retention period ends. It is relatively
simple to delete a document, but much harder to remove
its index entries from WORM. Yet if these entries are not
obliterated, the contents of the deleted document can often
be reconstructed.

In this paper, we formally define secure deletion of docu-
ment entries from an inverted index on compliance storage.
We show that previously proposed deletion schemes for com-
pliance storage index entries do not meet the objectives of
secure deletion. On the other hand, the naive approach to
secure deletion results in very poor query performance. To
provide secure deletion of index entries without compromis-
ing lookup efficiency, we propose a novel indexing technique
that employs noise terms, merged posting lists, and deletion
epochs. Experiments with real-life data show that lookups
in our scheme are 5 times faster than the naive approach.

1. INTRODUCTION

Documents such as electronic mail, financial statements
and meeting memos are valuable assets. Ensuring that these
records are readily accessible, accurate, credible, and ir-
refutable is particularly important given recent legal and
regulatory trends. The US alone has over 10,000 regulations
that mandate how records should be managed [9]. Many of
those focus on ensuring that records are trustworthy during
their mandated multi-year retention periods (e.g., SEC Rule
17a 4 [8], HIPAA, and the Sarbanes-Oxley Act [1]).
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This has led to a rush to introduce write-once read-many
(WORM) compliance storage devices (e.g., [2, 4, 7]) for
proper data retention. Until the end of its retention pe-
riod, a file committed to the WORM device is read-only
and cannot be deleted or altered even by a superuser. A
WORM device hence secures critical documents from cer-
tain threats originating from company insiders or hackers
with administrative privileges.

Secure document retention, however, is only a part of the
requirement. The ability to properly dispose of electronic
records after a point in time is often as important, if not
more, as the act of maintaining them. Once a record passes
its mandatory retention period, the company is no longer
required to store it. At that point, the record can be a
liability—e.g., it can be subpoenaed in future lawsuits or
regulatory enquiries. Corporate policies hence often man-
date deletion of expired records. This requirement raises
a key question—how do we delete records that have been
committed to WORM media?

Fortunately, modern WORM devices are built atop con-
ventional re-writable magnetic disks, with write-once seman-
tics enforced through the firmware/software running inside
the device. These devices support term immutability—the
files on these devices are write-once for a specific period
of time. Every file committed to the device has an expiry
date (which can be infinity), either assigned explicitly by the
committing application or as a system default. Expiry dates
can be extended, but not moved forward in time. Once a file
expires, the device lets the file be deleted, so that external
cleanup applications can erase it. Every record is stored in
a separate file, so that it can be deleted or have its expiry
date extended independently of all other records.

The actual document itself is not the only source of in-
formation about its content. To quickly find records on a
specific topic in response to a subpoena, records must be
indexed. For example, an inverted index is typically built
over semi-structured records like email and memos to sup-
port keyword search. These indexes must also be kept on
WORM to secure them from tampering [11, 5].

The set of words in a record can be reconstructed from
an inverted index. To completely dispose of a record, its
index entries must also be erased. Unfortunately, it is hard
to support deletion of individual index entries using the file-
level expiration-based deletion provided by the WORM de-
vices. The files constituting an index over a group of records
should be physically erased only after all the records in that
group have expired. This creates a time window between
when a record expires and when its index entries can be



deleted. While this time window can be reduced by creat-
ing a separate index for each group of documents expiring at
approximately the same time, such a scheme leads to very
poor index lookup performance due to the many separate in-
dexes that must be scanned during querying. At the other
extreme, a single index over all the records will have good
query performance but will require us to retain the index
entries of all the documents in perpetuity.

In this paper we address the problem of securely deleting
entries from an inverted index on compliance storage. We
formally define secure deletion through an indistinguishabil-
ity game. We show that previously proposed compliance
indexing techniques either do not meet the requirements of
secure deletion or have very poor query performance. To
address this, we propose a novel technique for deleting in-
dex entries that relies on adding random noise terms to the
index. We analyze the spectrum of performance and secu-
rity tradeoffs provided by our scheme. Experimental results
on real-world data show that our deletion scheme is 5 times
faster than the naive approach, with less than a factor of 2
increase in the index size. This space overhead is reasonable
considering the fact that an inverted index usually occupies
only 10-15% of the space of the underlying document corpus.

This paper is organized as follows. In Section 2 we discuss
background work, specifically the data model, the storage
model and the threat model. Section 3 discusses related
work. In Section 4, we introduce our strongly secure deletion
scheme and compare it against the trivial deletion scheme.
We present experimental results in Section 5 and conclude
in Section 6.

2. BACKGROUND
2.1 Data Model

We use the term record to refer to business documents
with a fixed retention period, such as financial notes, email,
memos, reports, and instant messages. Ideally, a record
should be deleted immediately after it expires. However,
deletions require multiple overwriting passes to ensure that
the original data is nonrecoverable; this I/O can interfere
with the regular I/O activities of the WORM device. In
practice, it is usually acceptable to have a slight delay, such
as a week, between when a record expires and when it is
erased. The length of this disposition interval is dictated
by company policy. Deletion utilities are run at disposition
intervals as a batch operation, during non-peak load. The
set of records that are deleted in the same batch is called a
disposition group.

2.2 Storage Model

In this paper, we consider a WORM device with a file sys-
tem interface [7], though our techniques are equally appli-
cable to object-based devices [2]. The interface allows users
to create new files and to append to existing files. Appends
are required for indexing and can be efficiently supported
since the underlying media are magnetic [5]. The append
feature should be restricted to the specific storage volume
holding the index, to prevent appends to committed files
that contain ordinary records.

For efficient read access, the WORM devices store files
contiguously on disk when possible and periodically defrag-
ment the file system to collate non-contiguous file fragments
created through multiple append operations. Other than
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assuming the existence of these internal optimizations, we
treat the WORM device as a black box that offers a file
system interface.

2.3 Inverted Indexes

Querying & Indexing.The standard query interface for
semi-structured and unstructured business records supports
keyword queries, where a user types an arbitrary set of terms
and obtains a list of the documents containing some or all
of the terms. Queries can be further constrained by a doc-
ument creation time interval, as in the following:

Find all documents containing “Martha” and “Ralph”
that were created between 06/2002 and 08/2002.

We call this temporal constraint the time interval of the
query; if none is specified, then all undeleted records must
be considered.

The standard implementation of keyword queries uses an
inverted index [10]. As shown in Figure 1(a), an inverted
index consists of a dictionary of terms and a posting list
of the identifiers (IDs) of the documents that contain that
term. In addition to an ID, each posting list element gives
the number of occurrences of that term in the document (its
term frequency), which is not shown in the figure. The doc-
ument IDs are usually assigned in order of document arrival,
through an increasing counter. Researchers have shown that
the individual posting elements can be compressed to about
2 bytes through appropriate encoding schemes [10].

Queries are answered by scanning the posting lists of the
terms in the query, thereby obtaining a list of documents
having some/all of the keywords. The resulting documents
are ranked based on the number of occurrences of the key-
words and their relative importance [10]. The I/O cost of
scanning the posting lists is the major component of the to-
tal query runtime cost. To support time-interval queries ef-
ficiently, an auxiliary index on creation times [5] (not shown
in the figure) is also maintained on each posting list. The
time index can be used to seek to the appropriate position in
each posting list, instead of scanning the list from the start.

Compliant Inverted IndexeSecause the volume of com-
pliance data is so large and no one wants to wait hours or
days for a query answer, index lookup is the only practical
record search method. But this means that an adversary can
make a record inaccessible by omitting its entries from the
index, or altering the index to point to a different version
of the record on WORM. Hence, a record can be logically
deleted or logically modified by suitably altering the index
structure. To prevent such tampering, the index must be
kept on WORM media [5, 11].

An inverted index can be stored on WORM by keeping
each posting list in an append-only WORM file. The in-
dex can be updated when a new document is added, by
appending its document ID to the posting lists of all the
keywords it contains. Unfortunately, this operation can be
prohibitively slow, as each file append will require a random
I/0O on average. To address this problem, researchers have
proposed merging the posting lists together (into a maxi-
mum of as many lists as the number of cache blocks in the
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Figure 1: Posting Lists. With each keyword, a posting list of documents containing that keyword is stored. After
merging, the keyword (or its hash) must also be stored in the posting list.

storage server [5]). Each merged list contains the union of
the document IDs from the individual posting lists that are
merged together. A keyword encoding is also stored in each
posting element, to identify which keyword in the merged
set appears in that document. An example of the resulting
index structure is shown in Figure 1(b).

Merging increases the length of the posting lists and hence
slows down queries. Uniform merging, in which keywords
are assigned randomly to posting lists, is the simplest merg-
ing scheme to implement and has reasonably good perfor-
mance, compared to more sophisticated schemes that require
prior knowledge of query or keyword probabilities. Experi-
mental results on two different real-world data sets of doc-
uments and queries showed that that uniform merging of
100-200 words into each posting list slows down query per-
formance by less than 10% [5] and can support online inser-
tions into the posting lists for typical real-world document
arrival rates. We extrapolated these results for use with our
own Enron email data set, and merged its 900K words into

900K ., . :
200~ 4096 posting lists.

2.4 Threat Model for Compliance Records

The three kinds of agents in our system are Alice, an hon-
est company employee; Bob, a regulatory authority who is
honest but inquisitive; and Mala, a company insider adver-
sary who may have superuser powers. Alice creates a record,
and the application she uses to create it automatically com-
mits it to the storage device. We assume that the commit
is trustworthy, that is, Alice properly creates the record and
it is committed to the compliance storage device. At some
point in the future, Bob queries the record committed by
Alice, e.g., as part of an regulatory investigation or litiga-
tion.

The record can be attacked by Mala at any point after
it is committed. For example, Mala might be the CEO
who retroactively wants to hide an illegal email conversa-
tion she had with her broker about whether to sell stock in
her company. As explained earlier, Mala cannot alter the
email itself, because it is on WORM storage. The compli-
ance storage server has built-in protection against reloading
the record from a tampered-with backup copy. Mala can
physically destroy the storage server, but such an attack
will draw attention and regulatory ire will follow any ap-
parent attempt to destroy data. To be successful, Mala’s
attack must remain undetected. Certain disk replacement
attacks are still possible with today’s WORM devices, but
the next generation of products is moving toward derailing
those attacks, so we will not consider them here.

Bob needs to ensure that his query is executed properly
and that the records have not been tampered with inside
the query engine software. To ascertain this, Bob should
obtain direct read access to the WORM device and execute
the query using his own trusted search engine. As Bob is
law-abiding but inquisitive, after getting read access to the
device, he may try to reconstruct or extract information
about expired records. Even if the records have been prop-
erly erased from the WORM device, he can try to extract
information about the documents from the inverted index.

An inverted index contains sufficient information to recon-
struct the set of indexed terms in a document. For example,
from the index in Figure 1(a) Bob can learn that document
3 contains the words Query, Data, Base and Index. From
the set of words in a document, an adversary can often in-
fer its meaning (e.g., “fire Harriet tomorrow”). Thus it is
critical to clean up the index when documents are deleted.
If the deletion scheme prevents Bob from obtaining the set
of words in a deleted document, we call it content secure.
However, content secure deletion is not always sufficient, as
illustrated in the examples below.

e Non-occurrence. Bob may want to prove the absence
of a document with a certain set of keywords in a cer-
tain period of time. For example, in a litigation, he
might be interested in proving that no email was sent
to a particular customer between such and such dates,
contrary to the claim of the company.

o [requency. Bob may want to learn about changes in
the document frequencies of certain words, i.e., in the
number of documents containing that keyword. For
example, a sudden increase in the number of occur-
rences of the name of a dangerous chemical in deleted
documents may indicate that the company suspected
or knew that its products were contaminated with that
chemical, contrary to their claims.

e Probabilistic occurrence. Bob may be interested in
probabilistic claims. As we show later in the paper in
Section 3, one previously proposed deletion scheme [11]
allows Bob to learn a set of possible reconstructions of
a document. For example, Bob can determine that the
document had one of the words “carcinogen,” “puppy,”
or “stewart@msl.com,” with each equally probable. In
other words, the chance of the document containing
“carcinogen” is 33%, which is much higher than its
chances of occurring in a randomly selected document.
This in itself can be considered as circumstantial evi-
dence in a litigatory environment.
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e Contextual occurrence. Bob can have additional con-
text information that can help him to reconstruct the
document. In the above example, Bob may know that
“stewart@msl.com” was not present in the document
because Ms. Stewart had already left the company
when the email was sent.

e Dictionary. In a merged inverted index, the keyword
to posting list mapping is stored in a separate dictio-
nary data structure. Bob can learn the set of all key-
words used in documents from this dictionary, though
he cannot tell during which disposition intervals those
words were used. If desired, the rare words can be hid-
den by including only common words in the shared dic-
tionary, and assigning the rare words to posting lists
via a hash function. Thus we do not consider this
threat in the rest of the paper.

A compliance index deletion routine should be secure against

these and other attacks: Bob should not get any informa-
tion about the deleted documents from the index. This can
be formally defined through the following indistinguishabil-
ity game. Bob chooses a sequence of document set pairs
(D§, DY), (D§,D3), ..., (Dy,D?) and passes them to Al-
ice. The document sets D3 and D1 have expiry time ¢, D3
and D? have expiry time ¢z, and so on up to t,. Without
loss of generality, assume that t1 <tz <...<t,

Alice then privately chooses a random n-bit string b (where
the probability of a bit being 0 or 1 is 0.5 and is indepen-
dent of the other bits). Hidden from Bob, she then stores
and indexes the document sets Dyjo, Dy, - - -, Dyf, 1 on an

empty WORM storage device S. That is, for each (D§, D})
pair, Alice randomly stores and indexes one document set
from the pair. Alice then chooses an integer i such that
1 < i < n. She keeps S hidden from Bob until time ¢;,
invoking the appropriate index deletion routines as docu-
ment sets Dé[o] through D};[FH expire. Alice then gives the
storage server S to Bob.

To win the game, Bob must guess any document set Al-
ice stored and indexed on S after they have been deleted.
Specifically, Bob wins the game if he can successfully de-
termine the value of any one of D,f[k,H (1 <k <) for

which Df # DF. We say that an index deletion routine is
strongly secure if a computationally bound adversary Bob
cannot perform any better than random for all choices of
the document sets [3]. In other words, his probability of
correctly guessing whether S contained document set D§ or
DY for 1 < k <4, DE # D¥ is 50%. We say that an index
deletion routine is weakly secure if the above holds under the
constraint that Bob is only allowed to select document set
pairs (D}, DY) where D} and D% (1 <4 < n) have the same
number of documents.

The intuition behind this indistinguishability argument is
as follows. Consider a sequence of documents D1, ..., D,
committed on a storage server in consecutive disposition
groups. Suppose that all documents D; (5 < i) have ex-
pired. We claim that Bob cannot get any information about
the deleted document sets D1, ..., D; from a strongly secure
index. More formally, he would be able to extract exactly
the same information if a random sequence of documents

%,...D} was committed instead of the original sequence
D1, ..., D;. In other words, any property that Bob is able to
derive about some document set D; by looking at its erased
index on S should also be valid for a randomly-chosen doc-
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ument set.

We can prove this by setting up an indistinguishabilty
game with the above sequences (D;, Dj). If Bob is able to
get any information about the sequence D; which he cannot
get for D}, Bob can win the indistinguishability game.

3. PRIOR WORK

Zhu et al. proposed the concept of logical deletion from
an inverted index [11], as shown in Figure 2(a). In logi-
cal deletion, the posting elements of all the documents in a
disposition group (i.e., a set of documents that expire to-
gether) are encrypted using a disposition-group-specific key.
This key is stored in its own separate file, whose expiry time
is set to that of the disposition group. A pointer to the cor-
rect key file is stored at the first posting element for each
disposition group in each posting list. Once the disposition
group expires and the key file is deleted, Bob cannot decrypt
the posting list elements and hence cannot reconstruct the
contents of a document.

Zhu et al. proposed encrypting the tuple consisting of
the document ID and the keyword hash. This is required
to prevent the same document ID in two posting lists from
being encrypted to the same ciphertext. Specifically, docI D
in keyword w’s posting list is encrypted as follows:

V = Ex((docID) ® H(w)),

where F is a fast symmetric key algorithm like AES, K is
a key, and H is a one-way hash function.

There are several problems with this scheme. Even after
the key is deleted, Bob can determine that a set of posting
elements belong to the same disposition group, by looking
at the pointers to the key files. For example, in Figure 2(a),
Bob learns that there were 5, 2, 4, and 3 occurrences of
keywords from Listl, List2, List3 and List4, respectively.
Although Bob cannot determine if these keywords occurred
in the same document, with additional context information
he might be able to argue about document contents. For ex-
ample, if posting elements for keywords “Martha”, “Ralph”,
“ImClone”, and “sell” occur in the same disposition group,
while the remaining keywords have nothing to do with that
topic, Bob might be able to claim that those keywords oc-
curred in the same document. Also, as pointed out earlier,
the nonoccurrence of a word in a disposition group may in
itself be sensitive information.

The deletion scheme of Zhu et al. is not strongly (or
weakly) secure. As an input to the indistinguishability game,
Bob can pick document set sequence (D;, D) such that the
keyword frequencies and hence keyword posting list lengths
of D; and D] are different. Even after the index decryption
key files are deleted, Bob can see the posting list lengths and
hence distinguish between indexes corresponding to D; and
D;.

Mitra et al. proposed a deletion scheme that exploits post-
ing list merging [6]. Their approach encrypts the keyword
encoding stored with each posting element by XORing it
with a key derived from a per-document secret key and the
keyword hash. The document ID itself is stored in plain
text. The document secret key is stored and deleted with
the document. Without this key, the adversary cannot de-
cipher the keyword encoding and hence cannot determine
the keyword in the merged set that this posting element
corresponds to.
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Figure 2: (a) Zhu’s index deletion scheme. The posting list elements are encrypted with a per-disposition interval

encryption key. The pointer to the encryption key is stored at the beginning of the posting list.

The crossed-out

elements in the figure show the posting elements that cannot be decrypted (and hence appear as random noise to the
adversary) when the key file 0 is deleted. The adversary still sees the document frequencies for each keyword for each
disposition group. (b) Mitra’s index deletion scheme. The encoding stored with each posting element is encrypted by
XORing it with a secret bit sequence (generated from a per document key). Once the key is deleted (along with the
document), Bob does not know which keyword in the merged set d had.

This scheme also lets Bob argue about the contents of a
document, if he has additional contextual information. For
example, if the same document ID appears in the merged
posting lists for keywords {Martha, Bush@whitehouse.gov}
and {Ralph, service@woodworkers.com} and most pairings
of these terms are unlikely to occur together in a single doc-
ument, then Bob can argue that the document probably
contained the words “Martha” and “Ralph”. Mitra et. al.
proposed heuristic merging strategies to address this prob-
lem. However, it is easy to show that these heuristic schemes
are not strongly or weakly secure. Furthermore, this scheme
is susceptible to all the attacks described in the previous sec-
tion.

The scheme of Mitra et al. also has high space overhead.
Unlike the normal merged inverted index, the keyword en-
codings stored with each posting element cannot be gen-
erated using a variable-length encoding scheme like Huff-
man coding—otherwise, Bob can guess the keyword from
the length of the encoding. A fixed-length encoding, on the
other hand, is space inefficient. For example, if 200 keywords
are merged together into one list, 8 bits will be required to
store the encoding. This increases the size of the index, and
hence the index scanning time, by more than a factor of 1.5.

4. STRONGLY SECURE SCHEMES

We use the term “baseline approach” to refer to an ordi-
nary (merged) inverted index on compliance storage. The
baseline approach is not weakly secure, but has excellent
lookup performance. We also slightly abuse the word post-
ing list of a keyword k to actually refer to merged posting
lists which can have multiple keywords.

4.1 Split Index

The easiest way to provide strongly secure deletion is to
create a separate index for every disposition group, as shown
in Figure 3(a). The expiry time of a posting list file is set
to that of the corresponding disposition group. Once the
disposition group expires, the posting list files are deleted.
This deletion scheme is strongly secure: after the posting
lists are deleted, the adversary cannot get any information
about the deleted documents.

Unfortunately, this split index approach has very poor
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query performance. A single-keyword query requires scan-
ning as many posting list files as the number of disposition
groups spanned by the query interval. Each such access in-
curs at least one disk seek plus the additional file system
overhead of reading in the metadata for the file. For most
queries, this will be much slower than the baseline approach,
particularly when the disposition interval is small.

We measured the performance of the split index approach
on the Enron email corpus (described in detail later). In Fig-
ure 3, the y axis shows the time to scan a keyword posting
list, averaged across all the keywords. The x axis shows the
number of disposition groups that overlap the query’s time
interval; this determines the number of posting list files that
must be scanned. The different curves correspond to differ-
ent sizes of disposition groups. The baseline curve “baseline”
shows the baseline approach, where a single posting list file
is created for each keyword, regardless of the number of dis-
position groups.

The key observation from Figure 3 is that even by choos-
ing a disposition interval of almost 4 months, the split index
is slower by a factor of 5 than the baseline approach when
the query interval is 2 yrs. Further, the choice of the dis-
position interval will be dictated by company policies and
cannot be chosen arbitrarily. For a 1-week disposition in-
terval, the split index approach is slower than the baseline
approach by a factor of 15.

4.2 Overflow Index

Let’s revisit the indistinguishability game. In the split
index approach, the index is deleted when the documents
expire. Without the index (and the documents), Bob can
only perform as well as a random adversary in guessing the
document set on a storage server. The same level of indistin-
guishability can be achieved if Alice can somehow make the
index structures of every document set appear exactly the
same after the documents have expired. For example, if for
every document set, the posting lists are the same length,
and all the posting list entries are random bits, Bob will
not be able to guess which one of document sets D§ or D¥
does the index structure correspond to. This is the main
idea behind our next scheme, the overflow index, shown in
Figure 4.

As in Zhu et al.’s scheme, in an overflow index we encrypt
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all the posting list elements using a per-disposition-group
key. Additionally, the posting list length for keyword k is
set to cover length I, for all disposition groups, as follows:

e [f the total length of k’s posting list for a disposition in-
terval is less than [, then a special start-of-noise-term
marker is appended to the posting list. The marker
itself is encrypted as for an ordinary posting list ele-
ment. Then random noise posting elements are added
to make the posting list length equal to [f.

e If the posting list length exceeds lx, the additional
posting elements are stored in an overflow area and a
pointer to the area is introduced at the end of the list.
A separate overflow area is created for each posting
list that overflows in each disposition group. In Fig-
ure 4, overflow areas store the overflowing keywords
from posting lists 4 and 3. Each overflow area occu-
pies a separate file whose expiry date is set to that of
the corresponding disposition group. Once the dispo-
sition group expires, its overflow files are deleted. The
total length of the non-overflow posting list, including
the overflow pointer, is kept at .

During query processing, each posting list is scanned as
usual, except that elements beyond a start-of-noise-term
marker are ignored. If there is an overflow area for the post-
ing list, then that overflow area file is read, which costs a
random I/O.

The overflow index approach is strongly secure because
Bob only sees posting list lengths that are the same across
all the disposition groups. We formally argue the security
of this scheme later.

Choosing,

The big challenge in the overflow index approach is to choose
appropriate posting list lengths I;,. The choice of I offers a
tradeoff between index size and query performance. A large
lr reduces the number of overflow accesses and thus has
better query performance!. On the other hand, a large I
requires more noise to be added to too-short lists, and hence
exhibits poor space efficiency. Choosing the correct [; values
can be framed as the following optimization problem.

! Although it requires more noise terms to be read it, the
overhead is usually negligible as compared to the additional
seek time.



Let K be the set of (merged) posting lists. Consider a
posting list £ € K. Suppose that k’s length in the differ-
ent disposition groups comes from a probability distribution
function Py, where Py (7) is the probability of this length be-
ing ¢. The expected length B;, (per disposition group) of
the overflow area for the kth posting list can be written as
follows:

By, = Y (i — L) Pe(i)

P>l

The expected total size Sy, (per disposition group) of k’s
posting list, including the overflow area is (using linearity of
expectations):

S, =l + By,

Hence, the total expected size S of the index is

Z Slk = Z I + Z Z(’L — lk)Pk(’L)

kEK kEK keK i>1y

Now consider the query performance. A posting list scan
for a keyword k has the following components:

e The initial seek to the start position of the first dispo-
sition group (in the query interval) in the posting list.
This seek time is incurred only once per posting list

scan.
e A possible seek to the start of the overflow area. The

expected time Oy, for this (per disposition group) is the
seek time, multiplied by the probability of overflow:

Olk = Cseek X Z Pk(l)
P>l

e Disk transfer time to transfer the actual posting ele-
ments (including some from the overflow area) and the
noise elements (from the main posting list). The ex-
pected transfer time per disposition group is the prod-
uct of the expected posting list length Sj, and the disk
transfer speed:

,le - Ctrans X Slk

The expected total run time Ry, for scanning d disposition
groups is obtained by summing the above components:

le = Cseek +d x (Olk +ﬂk)

The total run time for a given query probability distribu-
tion can be estimated as follows. Let @ be the probability
of the keyword k occurring in a query. Also, assume that
the time interval (i.e., the restrictions on the document cre-
ation time) for a query has expected value d that is chosen
independently of the start time of the interval.

QCost(K) = Z Ry, x Q
kEK
= > Cocek X Qr+dx > (O, +Ti,) x Qi
kEK keK

The optimization problem is to choose i for each k € K,
in a way that minimizes the total query run time QCost(K),
given the space constraint

d s, <c

ke K
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Figure 5: Two example posting list length probability
distributions. The graph shows [; values that have the
same probability of overflow for the two distributions.
The distribution with a higher variance has more space
overhead.

The problem function exhibits an optimal substructure.
Let OptCost(K, C) be the optimal total query run time un-
der space constraint C. If [, is the optimal threshold length
for a posting list k£ € K and S;, is the expected space over-
head, then the optimal total query run time OptCost(K —
{k},C —S;,) for the posting lists K — {k} under space con-
straint C' — 5, is also optimal for the entire set. That is,

OptCost(K,C) = Ry, X Qi + OptCost(K — {k},C — Si,)

This optimization problem can be solved by dynamic pro-
gramming. One needs to iterate over all different choices of
li for a keyword k, and choose the one with the minimum
total query run time, as given below:

(leQk + OptCOSt(K — {k’}, C - Slk))

min
0<ly,Sp, <C
The solutions to the optimal subproblems OptCost(K, C)
can be stored in a table to avoid recomputation. We omit
the pseudocode due to lack of space.

P, (i) Distribution. The above optimization problem re-
quires the probability distribution Py as input. There are
two ways to estimate Pj: one can start with a probability
model (e.g., binomial or Poisson) and estimate the model
parameters from a training set of documents using learning
techniques like MLE. The other option is to estimate the
Py values directly from a training set. The second option is
inaccurate, as posting list lengths that do not occur in the
training set are assigned 0 probability. However, it is much
simpler than the first option. Coming up with a posting list
length probability model is a separate research topic in it-
self, and we leave it as future work. In our experiments, we
have used 10% of the data as a training set and evaluated
our scheme in the remaining 90%.

The performance of an overflow index is sensitive to the
posting list length distribution P (7). For example, the over-
flow index performs best when the posting lists are the same
length across all the disposition groups for each k. To see
what happens when we move away from this ideal state,
consider two uniform distributions with the same mean but
different variance, as illustrated in Figure 5. The query per-
formance of the index is governed by the probability of over-
flow, which is given the area under the curve to the right of
I (all posting lists with length more than l; overflow). To
have the same probability of overflow for both distributions,
one must pick a larger [ for the higher variance curve than
for the lower variance curve. On the other hand, the space
overhead of the index is determined by the number of noise



terms added to too-short posting lists. Thus for the above
choices of [i, the higher variance curve will have higher space
overhead. In other words, a posting list length distribution
with low variance leads to better space/query performance.

4.3 Normalizing i,

If Py has a large variance and the cover lengths [, are con-
stant across all disposition groups, the overflow index will
not perform well during lookups. Unfortunately, this was
the case for our test data set of Enron email. Figure 6(a)
shows the posting list length distribution for Enron list 0;
the other lists had similar distributions. Figure 6(b) plots
the number of emails per disposition group and Figure 6(c)
plots the posting list lengths normalized by the number of
emails. The key observations from this figure are, first, that
there is a huge variation in the number of emails per dis-
position group, ranging from 500 in disposition group 0 to
over 10000 in group 52. This results in a huge variance in
the posting list length distribution. Second, the normalized
posting list lengths distribution has a low variance. In other
words, the fraction of emails containing a particular term
remains relatively stable across disposition groups. This ob-
servation leads us to a possible solution to this problem:
since the posting list lengths scale up/down with the num-
ber of emails in almost the same proportion, one can scale
i, by the number of emails. Specifically, if Ng is the num-
ber of emails in the current disposition group and N, is the
average number of emails in the training set, we use LpxNg

as the threshold value for that disposition group.? Exper-
iments reported in the next section show that this scheme
performs substantially better than the keeping the same I,
across all groups.

The number of records that will be created in a disposition
group is not known in advance. However, one can use the
number from the last disposition group as an approximation
to the expected number of records in the current group. We
call this a normalized overflow index. The other option is to
commit the records to the index at the termination of the
disposition group, when the number of records is known. We
adopt the former technique in our evaluation.

Security Properties

Let’s first consider a non-normalized overflow index. The
encryption keys and the overflow areas are deleted after the
disposition group expires. The adversary only sees the post-
ing list lengths which are same across all the disposition
groups. He hence cannot deduce anything about the docu-
ment keyword frequencies for a specific deleted disposition
group. Formally, this scheme achieves strongly secure dele-
tion. The deleted indexes corresponding to two different
document sets look exactly the same. An adversary having
access to just the deleted index cannot distinguish between
the document sets.

The overflow scheme does leak some information. The
adversary can learn about the posting list length distribu-
tions Py from the cover lengths [, used to create the index.
For example, if Iy, > I, for two different posting lists k1
and k2 and the posting lists are equally likely to be queried,

2The alternative is to reformulate the optimization problem
with the distribution of the number of emails as a param-
eter. We leave this as an option for future work, though
this distribution is often very hard to estimate, as for Enron
email.
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the adversary will know that E(Py,) > E(Pk,). However,
this information is not sensitive. The P, distribution is an
underlying property of the document corpus that remains
stable over relatively long periods of time. Thus the adver-
sary can learn those distributions from the set of non-expired
documents on the storage server.

Finally, if there is a change in the Py distribution, a new
index must be created. A change in distribution can be de-
tected by comparing the current Py distribution (learnt over
the last few disposition groups) with the training distribu-
tion using standard techniques, such as computing the KL-
divergence between the distributions. If the KL-divergence
exceeds a certain threshold, the cover lengths I are recom-
puted and a new index is created. Once all the documents
in the old index have expired, the old posting list files can
be discarded. This prevents the adversary from learning the
old Py distribution.

The normalized overflow index, where the [ cover lengths
are scaled up according to the number of documents in the
previous disposition group, is weakly secure but not strongly
secure. Since the new [, values depend on the number of
emails in the document set, Bob can distinguish between the
indexes corresponding to documents sets that have different
sizes. After the index is erased, the adversary can learn the
number of documents that have been committed since index
creation, based on the total length of the posting list. After
the disposition group key is deleted, the adversary cannot
identify the disposition group start point in the posting list.
Hence, he only learn the total posting list length and not
the posting list lengths corresponding to each disposition
group. In most cases, the number of documents that have
been created since disposition group 0 will not be considered
sensitive.

5. EXPERIMENTS

Our experiments focus on evaluating the query perfor-
mance of split, overflow, and normalized overflow indexes.
Insertion performance is also important; we do not need to
measure it here as insertions into all three kinds of inverted
indexes will take the same amount of time as insertions into
an ordinary merged inverted index.

5.1 Data

Privacy and confidentiality concerns make it very difficult
to get real business documents and queries. As test data,
we used a collection of 422,000 emails from the Enron email
corpus at www.cs.cmu.edu/~enron/enron\_mail\_030204.
tar.gz. These emails were exchanged in the 2 year period
from January 2000 to December 2001; we omitted the other
50,000 emails in the corpus because they were sprinkled very
thinly across the time periods of 1994-2000 and 2002-3. Each
email has a metadata tag identifying the sender, receiver,
and the time the email was sent. We use this time informa-
tion to divide the email documents into disposition groups.
In most experiments, we set the disposition group interval
to 1 week, for a total of 104 disposition groups.

5.2 Query Model

No query log is available for the Enron email corpus, so we
use two synthetic query models. Under the uniform query
model, each posting list is equally likely to be scanned. This
assumption is reasonable because we are using merged post-
ing lists; the merging process can be used to even out the
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Figure 7: Posting list query frequencies for a corpo-
rate intranet data set.

access probabilities of the posting lists. In particular, in-
stead of using uniform merging, we can merge keywords so
that each posting list was equally likely to be queried in the
workload of the recent past.

To validate the uniform query model, we used a set of a
million HTML documents obtained from the intranet of a
large company, and a set of 300,000 keyword queries sub-
mitted by real users on the intranet. (The documents have
no associated creation times and hence could not be used
in our evaluation of deletion techniques, as there is no jus-
tifiable way to split the documents into disposition groups.)
We built a merged inverted index, using uniformly random
merging of terms. In Figure 7, we plot the posting list query
frequencies of this data set. The y axis plots the number
of times a given posting list (i.e., any term that has been
merged into the list) is queried in the query log. The z axis
shows the posting lists ordered by their lengths; the Oth list
is the shortest while the 4095th list is the longest. The figure
shows that longer lists are queried more often than shorter
lists. More importantly, 70% of the posting list query fre-
quencies are within the fraction 0.7 and 1.5 of the mean.
Thus a uniform query model is not an unreasonable approx-
imation to the real-world distribution, even without careful
merging of terms to even out access probabilities.

Our second query model is called the query log model, and
it is based on the query probability distribution in Figure 7.
We sorted the Enron posting lists by size and assigned each
list a query frequency as a function of its rank, as given by
Figure 7.

5.3 Estimating Seek & Transfer Times
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Figure 8: Query performance when the entire data
set is used to estimate the P, values for the overflow
index.

Most current generation WORM devices run a regular file
system internally, with the file write option disabled for com-
mitted files. As we do not have access to a WORM storage
system, we carried out our experiments on ReiserF'S, a high
performance Linux file system. We created the posting list
files in the same order as they would have been created in the
real world, and then scanned them in that same order. For
example, for the split index, all the posting list files of the
same disposition group were created consecutively on Reis-
erF'S. We computed the average seek time for the split index
(needed for our simulations) as the average latency between
opening successive files of a posting list, corresponding to
successive disposition groups. For the overflow index, we
measured the average seek time after creating the overflow
area files of the same disposition group successively on the
file system. The main posting lists were created as consec-
utive files on a separate partition. A WORM system that
periodically reorganizes the file blocks to make them con-
tiguous on disk is likely to create such a file organization.

5.4 Results

Complete KnowledgeDur first experiment evaluates the
hypothetical case where the posting list lengths for each dis-
position group are known in advance. This experiment gives
the best performance improvement that can be achieved by
an overflow index, compared to the split index scheme.

We use the keyword document frequencies of all 104 dis-
position groups to learn the Py distribution and solve the
optimization problem. The index query performance is eval-



uated using the uniform query model, described above. Fig-
ure 8 plots the query performance of the resulting indexes.
The y axis shows the slowdown of the overflow and split in-
dexes, compared to the baseline (insecure) approach where
a single index is created for all the disposition groups. The
x axis plots the queried time interval as the number of one-
week disposition groups. The different curves correspond to
the different space overheads S given to the DP optimiza-
tion problem; the p% curve is for an overflow index that uses
p% more space than the baseline index. As evident from the
figure, the overflow index is better than the split index by a
factor of 3, even with a mere 30% space overhead. With a
100% space overhead the speedup is over a factor of 12.

Learning the keyword query distributiom our next
set of experiments, we evaluate the effectiveness of learning
Py values from a portion of the document corpus. We use
10% of the dataset (10 epochs) as a training set and the
remaining as the test set. We solve the optimization problem
based on the Py values learned from the training set, and
evaluate the resulting overflow index on the test set. This
experiment also uses a uniform query model.

Figure 9(a) compares the query performance of the result-
ing index with that of a split index. As before, the different
curves correspond to the different space overhead parame-
ters passed to the optimization function. With such minimal
training, the overflow index performs only marginally better
than the split index.

Another interesting observation is the space overhead of

the overflow index on the test data, as plotted in Figure 9(b)*.

The x axis plots the time interval in disposition groups, and
the y axis plots the space overhead of the index. The graph
shows the space overhead of the cumulative index, which is
the index containing entries from the Oth disposition group
up to the current z axis disposition group. The overflow in-
dex created with a 150% space overhead on the training set
has an actual space overhead of less than 10% on the test
set.

As explained before, the cause of this phenomenon lies
in the number of emails per disposition group, as shown
in Figure 6(b). From an average of 500 emails in the first
10 disposition groups, which are our training set, the count
jumps to about 10,000 emails per group in the subsequent
70 groups. The posting list lengths in the subsequent groups
also scale by the same factor.

The posting list cover lengths [, are learned from the short
posting lists of the training set, and hence are too short to
work well for the long-listed test set. As a result, most of
the test set posting lists overflow. Scanning the resulting
index requires almost one random I/O per epoch to fetch
the overflow area from disk. At the same time, because of
the large number of overflows, very little space is wasted in
storing the noise terms. In effect, this reduces the overflow
index to the split index both in terms of query time and
space overhead.

Normalized Overflow Indexwe address the problem of
poor training data by using a normalized overflow index,
which scales up the cover lengths [, based on the number of

3The curves in Figure 9(a) are the space overhead of the
overflow index on the training data for which the optimiza-
tion problem is solved.
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documents in the previous disposition group. Specifically,
if the previous disposition group had N documents, then
Ik X Nﬂt is the cover length for the current disposition interval.
N, the average number of documents per disposition group
in the training set, was 1514 in our case. Figure 9(c) plots
the query performance of the normalized overflow index on
the same data and queries as in Figure 9(a). As before,
the different curves correspond to different space overhead
parameters. The normalized overflow index outperforms the
split index by almost a factor of 6, with less than 100% space
overhead. The space overhead of the normalized overflow
index on the test set was 12.9%, 19%, 27%, 34%, 50% and
65%, corresponding to 20%, 30%, 40%, 50%, 70% and 100%
space overhead allowed on the training set.

Uniform Length SubsetTlo further investigate the effect
of document arrival rates on index lookup performance, we
evaluated the unnormalized overflow index on a portion of
the data for which the number of documents per disposition
group was relatively constant—the period between weeks 40
and 80. Figure 10(a~c) compares the query performance of
the overflow index with the split (baseline) index for different
sizes of the training and test sets. On this data, the overflow
index outperforms the split index by almost a factor of 5,
while incurring less than a factor of 2 space overhead.

Varying the Disposition Group Siz&y choosing a larger
disposition interval, we can reduce the number of separate
indexes that have to be maintained in the split index scheme.
A larger disposition interval also reduces the number of over-
flow areas for the overflow index. Hence, the query perfor-
mance of both these indexing schemes should improve as the
disposition interval increases.

Figure 11 plots the index query performance for disposi-
tion intervals of 4, 8 and 16 weeks. Although the split index
performance improves as the interval grows, the overflow
index is still 2-4 times faster than the split index.

Varying the Query DistributionIn the next set of exper-
iments, we evaluate the index performance under the query
log model of query patterns. Figure 12(a) shows the query
performance of the overflow index under the query log dis-
tribution shown in Figure 7. The query distribution is used
as an input to the cover length optimization problem and
is also used to generate the queries used to test the index’s
performance on the Enron email. The overflow index still
outperforms the split index under this distribution.

We also evaluate the effect of using one query probability
distribution for choosing the cover lengths for the overflow
index and a different distribution at run time. Such changes
are important to consider, because query patterns can shift
during the multi-year retention periods of compliance data.
Figure 12(b) shows the case where cover lengths are based on
a uniform query distribution but the actual workload follows
the query log distribution. The key observations from the
figure are as follows.

e The overflow index is still a factor of 5-6 faster than the
split index. The overflow scheme reduces the random
I/Os incurred in a posting list scan, which more than
offsets the additional I/O time required to read the
noise terms.

e The split index performs better for the query log distri-
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bution than for the uniform query distribution. The
longer posting lists have relatively higher query fre-
quencies under the query log model, which is not the
case with the uniform query model. At the same time,
longer lists incur relatively less performance penalty
in the split index, as for such lists the transfer time
dominates the seek time, and the transfer time is the
same for the split index and the baseline index. This
has an overall positive effect on the performance of the
baseline index.

CONCLUSION

To date, the work on compliance storage has focused pri-
marily on ensuring that documents and their associated in-
verted index entries are immutable during their retention
periods. For many applications of compliance storage, how-
ever, it is equally important to eradicate the (potentially
incriminating) documents and index entries once their re-
tention periods are over. It is extremely hard to remove
entries from an inverted index for compliance storage; in
this paper we have shown that previously proposed schemes
either leave dangerous traces of the index entries, or else
lead to extremely poor lookup performance. As a solution,
we proposed overflow indexes, which combine good query
performance, a moderate space overhead, and good security
guarantees. Overflow indexes achieve these goals by hav-
ing each posting list represent a set of terms rather than a
single term, assigning a predetermined cover length to each
posting list, adding noise entries to posting lists that do not
reach their predetermined lengths after a certain period, and
using overflow files for posting lists that exceed their prede-
termined lengths during a certain period (the disposition in-
terval). For workloads with fairly steady document arrival
rates and a given size limit for the posting lists, optimal
cover lengths can be predetermined for all future disposi-
tion intervals using a dynamic programming approach; the
resulting overflow index is strongly secure, in the sense that
an adversary will not be able to infer anything about the
content of the set of documents created during a disposition
interval, once those documents have been deleted from the
index. An overflow index is 5-6 times faster for processing
queries than the naive approach of keeping a separate index
for each disposition interval, with a factor of 2 storage over-
head. This space overhead is very reasonable considering
the fact that an inverted index occupies only 10-15% of the
space of the underlying corpus.

For workloads with highly variable arrival rates, good
query performance requires scaling the cover lengths for the
current disposition interval, based on the total number of
documents that were inserted during the previous disposi-
tion interval. The resulting normalized overflow indez is
weakly secure, in the sense that it leaks a small amount of
information about the number of documents inserted during
each interval.
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