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ABSTRACT
Estimating the number of distinct elements in a large mul-
tiset has several applications, and hence has attracted ac-
tive research in the past two decades. Several sampling and
sketching algorithms have been proposed to accurately solve
this problem. The goal of the literature has always been to
estimate the number of distinct elements while using mini-
mal resources. However, in some modern applications, the
accuracy of the estimate is of primal importance, and busi-
nesses are willing to trade more resources for better accu-
racy. Throughout our experience with building a distinct
count system at a major search engine, Ask.com, we re-
viewed the literature of approximating distinct counts, and
compared most algorithms in the literature. We deduced
that Linear Counting, one of the least used algorithms, has
unique and impressive advantages when the accuracy of the
distinct count is critical to the business. For other estima-
tors to attain comparable accuracy, they need more space
than Linear Counting. We have supported our analytical re-
sults through comprehensive experiments. The experimen-
tal results highly favor Linear Counting when the number
of distinct elements is large and the error tolerance is low.

1. INTRODUCTION
Modern Internet-based applications have imposed numer-

ous constraints on data management research. For many
such applications, when it comes to algorithm design, the
rate of Internet traffic, and the business nature of the appli-
cations impose extremely small margins for inefficiency and
inaccuracy. These challenges made the data streams model
widely adopted in both the research and the industrial com-
munities. This computational model assumes one-scan on
the data and in-memory algorithms, and requires tight er-
ror guarantees on the results.

In the context of search engines, these challenges are es-
pecially manifested. The search engines’ traffic rate is ex-

∗Supported by NSF under grants IIS 02-23022, and CNF
04-23336.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT’08, March 25–30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003 ...$5.00.

pected to be among the highest among all Internet-based
businesses, since they are the gateway of the entire Internet.
Thus, there is no wonder in them being among the most
popular sites, which entails assiduous search for optimal-
ity to handle their high traffic. Such huge and continuous
traffic requires more responsiveness than what is usually of-
fered by exact off-line analysis algorithms. Several one-pass
main-memory algorithms have been adopted to analyze traf-
fic online for time-critical functionalities, such as detecting
click fraud [35].

The accuracy constraints are not any less stringent. Very
crucial to the business of search engines is to understand the
high proportionality between the traffic utilization and the
revenue. For instance, estimating the market share of the
search engine by estimating its number of distinct surfers
(visitors) does not only impact strategic planning, but also
translates directly into the business value of the search en-
gine as discussed in Section 2.1. This necessitates extremely
accurate traffic analysis.

In the search context, this work deals with a challeng-
ing data management problem, which is counting distinct
elements in data streams. We report our experience with
building a distinct count system at a major search engine,
Ask.com, which abides by strict accuracy and efficiency con-
straints. This problem has received considerable attention
(e.g., [13, 14, 16, 21, 26]) that is reviewed in Section 3. Given
the strict accuracy and efficiency constraints of search en-
gines, we discovered much merit in Linear Counting [42], an
algorithm that is rarely used. We show analytically that
for some applications, Linear Counting is extremely accu-
rate given its space consumption when compared to other
algorithms. We have conducted comprehensive experiments
on the number of unique surfers, and the results came to be
in favor of Linear Counting when almost exact counting is
required.

The rest of the paper is organized as follows. In Section 2,
we motivate the need for highly accurate distinct counting
in the context of search engines. Section 3 is a quick review
and a high level classification of the algorithms that were
proposed to solve the distinct count problem. The algo-
rithms are discussed in more details in Sections 4 through 8.
We designate Section 9 for concluding our analysis of the al-
gorithms’ performance. In Section 10, we report the results
of our comprehensive set of experiments using real data.
Finally, we conclude and report our future directions in Sec-
tion 11.
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2. DISTINCT COUNTING AND
SEARCH ENGINES

In this section, we motivate the usefulness of accurate
distinct counting for search engines. In addition we touch
on some of the challenges imposed by the nature of the data.

2.1 Motivating Distinct Counting for
Search Engines

Conventional databases are well tailored for accessing in-
dexed data through application-centered automated simple
queries and updates. This OLTP operational mode is em-
ployed by store-based businesses. Estimating the number
of distinct customers in a time period is straightforward
through the distinct primitive of SQL. While this model
holds for brick and mortar businesses, it does not scale up
to handle the nine-digit number of daily searches, and the
seven-digit number of distinct surfers visiting a search en-
gine.

Once we realize the scale of the problem, it is under-
standable that conventional database and disk-based dis-
tinct counting techniques fail in such a scenario. Since the
data entries collected for estimation could be in billions,
which is too huge to fit in memory, the problem has to be
solved approximately. This brings another crucial factor into
play, the accuracy of the counting technique.

The number of distinct surfers visiting a search engine
translates into the value of the business. For advertisers, this
is a bound on the distinct Internet customers that will see
their advertisements. For the search engine, estimating the
number of distinct surfers accurately cannot be overempha-
sized when it comes to negotiating with advertisers about
the prices of showing advertisements and of clicks. If the
number of distinct surfers can be estimated within an error
of ±10%, then the advertisers can always bargain on the
lower estimate. This loss in bargaining power is minimized
as the estimation of the distinct surfer count becomes more
accurate.

2.2 Multidimensional Distinct Counting
The problem of distinct counting is aggravated by the

curse of dimensionality. The traffic of search engines can
be segmented according to several dimensions. Advertisers
are usually interested in a subset of values on each dimen-
sion. It is crucial to provide advertisers with estimates on
the distinct surfers satisfying their interests.

These dimensions are hierarchical in nature, and hence,
their ranges are overlapping. For instance, a specific surfer
querying the search engine on the 30th of January, 2007
should be counted for the day 01/30/2007, for the month
01/2007, and for the 5th week of 2007. Similarly, a search
query that is coming from a UCSB IP address should be
counted for California and for the County of Santa Bar-
bara. We give an example of the temporal and geographical
hierarchical traffic attributes in Figures 1(a) and 1(b), re-
spectively.

From the literature on multidimensionality and data cubes
[11, 24], the combination of hierarchical dimensions imposes
a lattice structure on the data space. Each lattice node cor-
responds to a sub-space with each dimension aggregated at a
specific level. For instance, the node (01/30/2007, SBCounty)
includes the traffic that arrived from UCSB on the 30th of
January, 2007. Meanwhile, a traffic entry can belong to

Day (e.g. 01/30/2007)

Month of Year(01/2007)Week of Year (e.g. W5/2007)

Year (e.g. 2007)

(a) The temporal hierarchy of
the traffic.

County (e.g. SBCounty)

State (e.g. California)

Country (e.g. USA)

(b) The geographical hierarchy
of the traffic.

(01/30/2007, SBCounty)

(01/2007, SBCounty)

(01/30/2007, CA)

(W5/2007, SBCounty)

(2007, SBCounty)

(01/2007, CA)(W5/2007, CA)

(01/30/2007, USA)(2007, CA)

(01/2007, USA)

(2007, USA)

(W5/2007, USA)

(c) The lattice induced by the temporal
and geographical hierarchies on the traffic
(01/30/2007, SBCounty).

Figure 1: The temporal and geographical hierarchies
and an example on their Lattice.

several nodes, since such traffic also belongs to the node
(2007, California). A descendent lattice node can be aggre-
gated into another ancestor node if one dimension is aggre-
gated along its hierarchy. This ancestor-descendent relation-
ships correspond to the edges of the lattice graph. We give
an example in Figure 1(c). (01/30/2007, SBCounty) has the
ancestor nodes (01/2007, SBCounty), (01/30/2007, California),
and (W5/2007, SBCounty). Then, the distinct surfers in
the node (01/30/2007, SBCounty) are included in the node
(01/2007, SBCounty).

While small advertisers can be interested in showing their
advertisements at a specific geographical locality, or a spe-
cial day of the year, like the node (01/30/2007, SBCounty),
bigger advertisers might be interested in larger locality, or a
special season, like the node (01/2007, California). There-
fore, the distinct count estimation has to work at all the
lattice nodes. To address this problem there are two ap-
proaches.

• Simultaneously estimating distinct counts on
the fly at all nodes of the lattice. A distinct
counts estimation system is maintained for every com-
bination of dimensions’ values at all combinations of
dimensions’ aggregations. When a new traffic entry
arrives, all the distinct counts systems that this entry
belongs to are updated.

• Estimating distinct counts on the fly at the low-
est lattice granularity only. A distinct counts es-
timation system is maintained for each lattice nodes
with no descendants. When a tuple with this combi-
nation of dimensions’ values is encountered its corre-
sponding counting system is updated. When distinct
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counts at granularities higher in the hierarchies are
desired, the low-granularity estimates are combined to
obtain them.

The first approach calls for materializing a complete data
cube for distinct counts on all the dimensions. While this
problem has been studied in the context of stored data (e.g.
[5, 15, 28, 32, 33, 36, 40]), it is very costly and slow, and
hence does not fit in the streaming environment of search
engines. In practice, the number of lattice nodes for a mod-
erate number of dimensions and dimension cardinalities is
huge. In addition, not all the lattice nodes are used in reality
[34]. On the other hand, the second approach is very rudi-
mentary. Although we finds it wise to calculate the distinct
count at any lattice node from the distinct counts at its de-
scendants on demand, calculating nodes from grand-grand-
descendants, e.g., years from hours, could be very slow.

We follow a pragmatic solution on top of the second ap-
proach. We estimate the distinct counts at the lowest lat-
tice granularity. To answer queries on the distinct counts of
nodes higher in the hierarchy, aggregations are made using
a union-like predicate on the descendants. All the distinct
counts calculated along the path to the queried node are
cached for later aggregations. A similar approach has been
presented before by Han et al. [27].

Therefore, in addition to the high accuracy and efficiency
constraints, the lattice structure imposes another challenge
to distinct counting. The results of the distinct counts es-
timation system must be amenable to merrge. By anal-
ogy to constructing data cubes, a traffic entry should be
counted only once for any of the nodes containing it. For in-
stance, to estimate the number of distinct surfers in the node
(01/30/2007, California), the estimates of all the counties
of California on (01/30/2007) should be merged even though
some traveling surfers might have queried the search engine
from several counties. Such traveling surfers should be in-
cluded in the distinct count for (01/30/2007, California)
once.

The data management literature is rich with several al-
gorithms that can be employed in the search context to es-
timate the number of distinct elements in a multiset and
whose estimates are mergeable to estimate unions. We are
mainly concerned with the append only model of the data
streams, and hence we do not consider deletions of stream
entries. We review the literature in the Section 3.

3. DISTINCT COUNTING PRELIMINARIES
Having motivated the need for distinct counting in the

context of traffic analysis, we give a very high level classifi-
cation of the published algorithms. We follow by the mathe-
matical framework that we use in the sequel to contrast the
algorithms in order to select the most appropriate algorithm
for our context of traffic analysis.

3.1 High level Algorithm Classification
As shown in Figure 2, we classify the work on estimat-

ing the distinct count into two broad categories1 . The first
category [8, 25, 26, 29, 30, 31, 37, 38, 39] uses sampling for

1The work done in [10, 18, 19] estimates distinct counts on
streams with element insertions and deletions. We do not
consider this work any further since the extra complexity of
accommodating deletions does not benefit our append-only
traffic analysis application.

Distinct Counting Algorithms

Sampling Algorithms Sketch-Based Algorithms

Logarithmic Hashing Algorithms Uniform Hashing Algorithms

Hybrid Bucket-Based-Sampling AlgorithmsHybrid Bucket-Based-Logarithmic Algorithms

Bucket-Based AlgorithmsInterval-Based Algorithms

Hybrid-Bucket-Based AlgorithmsPure-Bucket-Based Algorithms

Figure 2: A classification of the distinct counting
algorithm.

estimation. Hence, the main advantage of this category is
not scanning the entire traffic dataset to estimate the dis-
tinct count, in addition to generating a sample of the traffic
as a byproduct. However, several negative results, includ-
ing [8, 26], were proved showing that almost all the dataset
needs to be sampled to bound the estimation error of the
distinct count to within a small constant.

The second category [1, 3, 9, 10, 13, 14, 16, 18, 19, 21, 23,
42] is a sketch-based approach that scans the entire traffic
and hashes each element into a sketch. The sketch is used at
query time to estimate the distinct count. Usually, indepen-
dent sketches and hash functions are employed in parallel to
reduce the estimation error.

The sketch-based algorithms can be classified further into
logarithmic hashing [1, 13, 16], and uniform hashing algo-
rithms. The uniform hashing algorithms comprise interval-
based [3, 9, 23] and bucket-based algorithms. The bucket-
based algorithms are either pure-bucket-based [3, 42] or hybrid-
bucket-based algorithms. Hybrid-bucket algorithms can be
further classified into hybrid-bucket-sampling algorithms [21,
4], and hybrid-bucket-logarithmic algorithms [14].

We discuss the sketch-based category in detail, in Sec-
tions 4 through 8, due to the fast per element processing,
and the tight error guarantees of these algorithms. Both
factors are crucial for our traffic analysis application. How-
ever, we first introduce the mathematical framework which
we subsequently use to analyze and contrast the algorithms.

3.2 The Mathematical Framework
Throughout the sequel and for any algorithm we discuss,

we denote the estimator of n, the distinct count, as n̂. We
are specifically interested in the random variable n̂

n
−1, which

represent the accuracy of the estimator. The bias of n̂ is
given by bias(n̂) = E

(
n̂
n
− 1

)
, and the standard error of n̂ is

given by the stderr(n̂) = σ
(

n̂
n
− 1

)
=

√
E

((
n̂
n

)2
)
−

(
E

(
n̂
n

))2
.

We disregard the bias of the estimators since all the algo-
rithms discussed are asymptotically unbiased. Given stderr(n̂)
in terms of the space usage of the algorithm, we can com-
pare algorithms by comparing their relative space that would
yield the same standard error, or by comparing their stan-
dard error given a specific space usage. We are assuming
that for any algorithm the estimation error decreases mono-
tonically with the space usage. That is, an algorithm never
improves its accuracy by using less space. In addition, we
compare the algorithms based on the time to process one
traffic element.

For some of the algorithms that we discuss in the sequel,
the authors did not provide a closed form on stderr(n̂). In-
stead, the guarantees of some algorithms are given in the
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form Pr
[
f1(n) ≥ n̂

n
≥ f2(n)

]
≤ const. We try to trans-

form this error guarantee to the Chebyshev’s inequality form
Pr

[∣∣ n̂
n
− 1

∣∣ ≥ f3(n)
]

≤ const′. We use Chebyshev’s in-
equality and work backward to estimate a lower bound on
the standard error for such algorithms. We can safely derive
that stderr(n̂) ≥ f3(n)×

√
const′, if we assume the analysis

of the authors provides a tight bound on the failure probabil-
ity. The reason is that Chebyshev’s inequality holds for all
random variables and is tight only under some conditions.
The one sided Chebyshev’s inequality can also be used in a
similar manner.

After introducing the mathematical framework of our study,
we start by discussing the sketch-based distinct counting al-
gorithms. We overview the logarithmic hashing algorithms,
the interval-based algorithms, the pure-bucket algorithms,
the hybrid-bucket-sampling algorithms, and the hybrid-bucket-
logarithmic algorithms in Sections 4 through 8, respectively.
We comment on the analytics of the algorithms in Section 9.

4. LOGARITHMIC HASHING ALGORITHMS

Bitvector

Traffic Entry ID

Hashing Probabilities

Figure 3: Logarithmic hashing algorithms employ a
bitvector and a hash function from each traffic entry
id to a single bit. The probability of hashing the id
to a specific bit is proportional to the thickness of
the arrow to this bit.

The insight of this class of algorithms is to keep track of
the most uncommon element (traffic entry id) seen so far.
If this most uncommon element is extremely uncommon,
then this indicates that the algorithm has scanned so many
distinct elements.

To achieve this, the algorithms define the commonness of
an element using hashing. As shown in Figure 3, this class
of algorithms assumes a bitvector, B, even though not all
the algorithms store the bitvector. The bitvector, B, is of
length log2(|N |) bits, where N is the domain of elements.
Each traffic entry id in the domain is hashed using a hash
function into this bitvector. The probability of hashing a
traffic id to a specific bit decreases exponentially as the bit
significance increases.

Initially, all bits are set to 0. As the traffic stream is
observed, each traffic id is hashed, and its hashed-to bit
is set to 1. After hashing all the elements in the stream,
S, into the bitvector, the bitvector is queried for the bits
that correspond to uncommon traffic IDs. Hence, the total
number of distinct traffic IDs can be estimated from how
common these bits are.

4.1 The PC Algorithm
The Probabilistic Counting (PC) algorithm [16] uses a

hash function, h, to map each element, e, to the space
[1 . . . log2(|N |)] with a geometric distribution. That is, for
each bit b in B, Pr [h(e) = b] = 2−b, where b ∈ [1 . . . log2(|N |)].

The algorithm scans the traffic entries. For each ele-
ment (traffic entry id), e, the algorithm sets the bit in B
corresponding to h(e) to 1. For notational purposes, we
use trail1(.) to denote the number of trailing 1 bits. Af-
ter hashing all the traffic stream, into B, the algorithm
scans B from the least to the most significant bit, and finds
the index of the first bit that was not flipped to 1, which
is at position trail1(B) + 1. Notice that trail1(B) is an
estimate of the uncommonness of the observed elements
seen in the traffic stream. The estimate of n is given by
n̂ = 1.29281×2trail1(B)+1, where 1.29281 is a statistical cor-
rection factor. However, the standard deviation of trail1(B)
is 1.12127. Hence, the standard error of n̂ is a factor of at
least 2 [16].

To reduce the variance of trail1(B), [16] proposed us-
ing I independent bitvectors, B1, . . . , BI , populated by I
independent hash functions, h1, . . . , hI . n̂ = 1.29281 ×
2avg(trail1(Bi))+1, where avg(.) is the average function. Tak-

ing the average reduces stderr(n̂), by a factor of O(
√

I).
However, the processing cost and space usage increase by a
factor of I , since I hash functions are used and I bitvectors
are maintained.

4.2 The PCSA Algorithm
To offset this increase in cost of PC by a factor of I , [16]

proposed the Probabilistic Counting with Stochastic Aver-
aging (PCSA) algorithm. PCSA employs a hash function,
g, to distribute each element id into one of the I bitvec-
tors. When scanning an element, e, the bitvector corre-
sponding to g(e) is updated using h(e). Hence, each bitvec-
tor is only responsible for around n/I distinct elements, and

n̂ = 1.29281 × I × 2avg(trail1(Bi))+1. Notice that all the
bitvectors use the same function, h, which reduces the mem-
ory used for storing the hash functions by a factor of I . The
expected standard error of the PCSA estimator is given by
stderr(n̂) = 0.78/

√
I. However, the PCSA estimator is only

asymptotically unbiased as n → ∞. The bias is given by
bias(n̂) = E( n̂

n
− 1) = 0.31

I
, which is negligible when com-

pared to the standard error.

4.3 The AMS Algorithm
The hash functions assumed by [16] are ideal, and could

be unrealistic, as argued in [1]. Alon et al. [1] proposed an
algorithm for estimating the distinct count based on linear
(pair-wise independent) hashing. The algorithm employs a
linear hash function of the form h(e) = (a× e + b) mod p2.
Let trail0(.) be the number of trailing 0 bits. Notice that
trail0(h(e)) is geometrically distributed since h(e) is uni-
formly distributed.

The algorithm does not store the bitvector, B. Instead,
for each traffic entry, e, in the traffic dataset, the algorithm
scans h(e) from the least to the most significant bit, finds
trail0(h(e)), and keeps track of max(trail0(h(e))). We de-
fine max(trail0(h(e))) to be the maximum trail0(h(e)) over
all the traffic entries in S. The estimate of n is given by n̂ =
2max(trail0(h(e))). Using Markov and Chebyshev’s inequali-
ties, the authors showed that Pr

[
n
c

< n̂ < n × c
]

< 2
c
, for

any real c > 2. The authors use the one-sided Chebyshev’s
inequality to prove Pr [n̂ > n × c] < 1

c
. By working back-

2The performance of linear hashing is acceptable in real life
if N ⊆ {1, . . . , p}, N , p → ∞, p is a prime, a and b are
chosen at random, and a 6= 0. This yields acceptable pair-
wise independence [7, 6].
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ward, Pr
[

n̂
n
− 1 > c − 1

]
< 1

c
. Thus, stderr(n̂) ≥ 1, since

c > 2. In fact, it was shown in [13] that σ(max(trail0(h(e)))) =
1.87.

4.4 The LogLog Algorithms
Durand and Flajolet [13] introduced a PCSA-like exten-

sion to reduce the standard error of AMS by a factor of
O(

√
I) by using I bitvectors, B1, . . . , BI , each of which is re-

sponsible for around n/I distinct elements3. For each bitvec-
tor, Bi, the LogLog algorithm maintains max(traili0(h(e))),
the maximum trail0(h(e)) over all elements in S that hashed
to Bi. The estimate of n is given by n̂ = 0.39701 × I ×
2avg(max(traili0(h(e)))+1). it was shown that n̂ is asymptoti-
cally unbiased and that stderr(n̂) = 1.30√

I
.

Maintaining the maximum trail of 0 bits for the I hash
functions only require I×log log(N ) bits, and hence the algo-
rithm naming. The authors modifies LogLog into the Super-
LogLog algorithm by suggesting two pragmatic improve-
ments. First, Super-LogLog averages only on the smallest
0.7×I of the bitvectors4. Empirically, this reduces stderr(n̂)
to 1.05√

I
. Second, Super-LogLog uses small registers of size

log2

(
dlog2

(
nmax

I

)
+ 3e

)
bits, where nmax is an upper bound

on n.

4.5 Analytically Comparing
Logarithmic Hashing Algorithms

The PC algorithm performs I hashes for every element to
reduce its stderr(n̂). This is inefficient in terms of processing
time. To prove our point experimentally, we implemented
PC and we show that its run time is around 3 orders of
magnitude more than the other logarithmic hashing algo-
rithms in Section 10. AMS is a theoretical algorithm with
high variance. We used it to explain the LogLog algorithms
built on top of it, and we do not consider it further.

Super-LogLog has the smallest stderr(n̂) as shown by the

authors. While the standard error of PCSA is 0.78/
√

I ,

and the standard error of Super-LogLog is 1.05/
√

I, Super-
LogLog uses a lot smaller sketches of log2

(
dlog2

(
nmax

I

)
+ 3e

)

bits, while PCSA uses sketches of size log(N ) bits. In our
application, log(N ) ≥ 128, and nmax is 1.5×106, the number
of daily distinct surfers. To attain a standard error of 0.001,
PCSA needs 608400 sketches, each of size 128 bits, i.e.,
9734400 Bytes, while Super-LogLog needs 1102500 sketches,
each of size 4 bits, i.e., 551250 Bytes.

5. INTERVAL-BASED ALGORITHMS
The idea behind this class of algorithms is to hash the

traffic entries into a finite interval. The number of distinct
elements can be estimated based on how packed the interval
is. If the interval is highly packed with elements, then this is
an indication that the algorithm has seen so many distinct
elements.

To achieve this, the algorithms distributes the entries to
the finite interval using a uniform hash function as shown in
Figure 4. The algorithms vary in the nature of the interval
and how to estimate the density of the interval after hashing
the entire traffic stream into it.

3Like AMS, the LogLog Algorithms do not materialize the
bitvectors.
4The authors use another statistical correction factor in-
stead of 0.39701. This constant was not mentioned in the
paper. We empirically found 1.09295 to minimize the bias.

Interval

Traffic Entry ID

Hashing Probabilities

Figure 4: Interval-based algorithms employ a finite
interval and a uniform hash function from each traf-
fic entry id to a specific spot along the interval.

5.1 The Cohen Algorithm
Cohen [9] proposed an algorithm that uses a hash func-

tion, h, to hash5 N → [0 . . . 1]. The algorithm estimates the
density of the interval [0 . . . 1] based on hmin, the minimum
image of all the stream elements under h. The estimate of
n is given by the unbiased estimator n̂ = 1

hmin
− 1. The al-

gorithm has the right approximation (from the expectation
sense) since by dissecting the unit interval with n bound-
aries into n + 1 random segments, the smallest boundary
is expected to be at 1

n+1
. To reduce the standard error by

a factor of O(
√

I), for some constant I , the algorithm em-
ploys I parallel hash functions, h1, . . . , hI . n is estimated
by n̂ = I

I∑
i=1

hmini

− 1, where hmini is the minimum image of

all the stream elements under hi.

5.2 The BJKST1 Algorithm
Bar-Yossef et al. [3] proposed BJKST1, a modification of

Cohen’s algorithm [9] that uses a linear hash function, h, to
hash N → [1 . . . |N |3], instead of the interval [0 . . . 1]. To
estimate the density of the interval, BJKST1 maintains a
sample of the c1 elements with the least hash values, where
c1 = 96. The estimate of n is given by n̂ = c1

hmax
× |N |3,

where hmax is the largest hash value in the sample. In-
tuitively, n independent elements, distributed uniformly in
the interval [1 . . . |N |3], have around c1 elements not greater
than hmax. We note that this estimator is asymptotically
unbiased with bias(n̂) = 1

n
.

To reduce the standard error by a factor of O(
√

T ), for
some constant I , BJKST1 increases the number of samples
to c1×T , and estimates n by n̂ = c1×T

hmax
×|N |3. The analysis

in [3] shows that using c1×T samples, Pr
[
|n̂ − n| ≥ n/

√
T )

]
<

1/3. Using Chebyshev’s inequality, and working backward,

stderr(n̂) ≥
√

1
3×T

. The algorithm runs I copies and takes

the median result to reach a failure probability of δ, where
I is O(log(δ)).

5.3 The Giroire Algorithm
Giroire proposed an alternative approach in [23] to reduce

the standard error using I independent copies of the algo-
rithm. Instead of averaging the results of the I independent
copies of the algorithm, like in BJKST1, each copy is respon-
sible for n/I elements. The results of the copies are com-
bined in a stochastic averaging manner like in PCSA [16].
Alternative estimators were also proposed and analyzed by
Giroire in [23] based on the same idea of the minimum hash6.

5Alternative hashing distributions were considered in [9].
6Another analysis in [23] that does not consider pair-
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Stochastic averaging coupled with the alternative estimators
in [23] give lower stderr(n̂) than BJKST1 when the num-
ber of samples is small. However, as the number of samples
increases, the stderr(n̂) of Giroire algorithm degenerates to
that of BJST17.

5.4 Analytically Comparing
Interval-Based Algorithms

When compared to Cohen’s algorithm, BJKST1 is O(T/ log(T ))
times faster since it hashes the stream elements only once,
and inserts the hashed values in the sample using binary
search trees in O(log(T )) time. Giroire’s modification makes
the algorithm even faster by hashing every traffic element
twice, to choose the sketch and insert the element into the
sketch, instead of I times. In addition, the estimators in
[23] give lower stderr(n̂) than BJKST1 for limited space
consumption, and are not any less accurate as the space us-
age increases. Therefore, we prefer Giroire’s version of the
BJKST1 algorithm over Cohen.

6. PURE-BUCKET-BASED ALGORITHMS
Like interval-based algorithms, pure-bucket-based algo-

rithms employ uniform hashing. However, the elements do-
main is hashed to a set of buckets as shown in Figure 4. Ini-
tially, all buckets are empty. After hashing the entire traffic
stream into the buckets, the number of distinct elements is
estimated based on the probability that a bucket is empty
(non-empty). The higher this estimate of this probability,
the less (more) likely it is that many distinct elements were
observed. The algorithms vary in the nature of the buckets
and how to estimate the probability of emptiness.

Buckets

Traffic Entry ID

Hashing Probabilities

Figure 5: Pure-bucket-based algorithms employ a
finite number of buckets and a uniform hash function
from each traffic entry id to a specific bucket.

6.1 The BJKST2 Algorithm
BJKST2 [3] linearly hashes N to R buckets, where 2×n ≤

R ≤ 2c2 × n, and c2 = 25. BJKST2 estimates n based on
the probability r = 1 − (1 − (1/R))n, that a designated
bucket, say bucket 0, is not empty. The authors handle the
issue that R can be estimated only after the entire stream

is processed8 as we explain later. n̂ = ln(1−r̂)
ln(1−(1/R))

, where r̂

is an estimate of r.

wise hashing collisions shows that using c1 × I samples,

stderr(n̂) ≥
√

1
c1×I

, instead of
√

1
3×I

.
7Built on top of the algorithms in [23], an algorithm for es-
timating distinct elements on sliding windows [12] was pro-
posed in [17]. [17] has the same space complexity of the
algorithm in [22], which is based on GT [21], but has less
processing complexity per stream element.
8The authors use the AMS algorithm to estimate R to re-

We argue that estimating the probability r through us-
ing only one hash function (h), scanning the dataset, and
checking if any element hashed to bucket 0, is a Bernoulli
trial with a standard deviation of up to 1

2
. To reduce this

standard deviation of r̂, and consequently the standard er-
ror of n̂, by a factor of O(

√
I), the authors pick I pair-wise

independent hash function to hash the entire traffic. Let the
number of hash functions that hashed any element in S to
bucket 0 be J . BJKST2 estimates r by r̂ = J

I
.

The authors handle the unknown R value by assuming
that R is a power of 2, and by calculating r̂ for all R’s in
[21, . . . , 2dlog2(N )e]. To simultaneously calculate r̂ for all pos-
sible R’s for each hash function, hi, it suffices to maintain
the maximum number of trailing 0 bits for hi over all ele-
ments in S, max(trail0(hi(e))). To calculate r̂ for Rj = 2j ,
BJKST2 calculates the ratio of the hash functions whose
max(trail0(hi(e))) ≥ j. Storing max(trail0(hi(e))) for all
hi’s consumes I × log log(N ) bits.

6.2 The Linear Counting Algorithm
Whang et al. proposed the simple Linear Counting (LC)

in [42]. The algorithm keeps a bitvector, B, of size m =
nmax

ρ
bits, where 0 < ρ ≤ 12 is the load factor. Each bit

in B efficiently represents one bucket. Initially, all bits in B
are set to 0. That is, all buckets are empty. The algorithm
hashes every element in the traffic stream to a bit in the
bitvector, which is set to 1, flagging that the corresponding
bucket is not empty anymore. Assuming uniform hashing,
the expected probability that a bucket is empty after insert-
ing n distinct traffic entries is V = (1 − 1

m
)n ≈ e−

n
m . This

probability can be estimated by V̂ , the ratio of 0 bits in the
bitvector. Hence, n is estimated by the maximum likelihood

estimator n̂ = −m ln(V̂ ). The bias and the standard error

of the estimator are eρ−ρ−1
2nmax

and
√

eρ−ρ−1
ρnmax

, respectively.

6.3 Analytically Comparing
Pure-Bucket-Based Algorithms

BJKST2 runs I independent copies of the algorithm to
reduce the standard error. Therefore, we do not expect its
run time to be better than that of PC. On the other other
hand, LC hashes each element only once. This run time
difference is enough to recommend LC for any traffic analysis
application.

We will not compare the standard errors for both algo-
rithms here. Rather, we comment on the stderr(n̂) and
how it compares to the rest of the algorithms in Section 9.

7. HYBRID-BUCKET-SAMPLING
ALGORITHMS

This class of algorithms employs a uniform hashing scheme
to dissect the domain into buckets of almost equal number
of elements. While scanning the traffic stream, the algo-
rithms designates one of the buckets and counts the number
of distinct traffic elements that hashed to this bucket. After
scanning the entire traffic stream, the algorithm scales the
number of elements in the designated buckets by the number
of buckets to estimate the total distinct count in the entire
traffic stream.

duce the space usage. AMS is run in parallel to the algo-
rithm.
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7.1 The GT Algorithm
Gibbons and Tirthapura [21] presented an algorithm for

counting distinct elements in the context of distributed streams
using a linear hash function, h that hashes each traffic el-
ement into a number of buckets. The number of buckets
used is 2j , where j could be any number in the interval
[0 . . . dlog2(N )e]. For every j, GT counts sj , the number
of elements that hashed to a designated bucket, let it be
bucket 0. The algorithm then scales up sj by the number
of buckets, 2j , to estimate n. The bigger the value of j,
the more the buckets, the smaller the number of elements
hashing to bucket 0, the better the space complexity of the
algorithm, and the higher the risk of undersampling. While
undersampling is irreversible, oversampling is wasteful. The
algorithm has to select a suitable j.

Let 2j∗ be the minimum number of buckets such that
sj∗ = |h−1

j∗ (0)| ≤ d, where d = 192. GT estimates n by

n̂ = sj∗ × 2j∗ . To find j∗, GT initially assumes ĵ∗ = 0,
and scans each element e in S and inserts it, along with
trail0(h(e)), in a buffer of size d. At any point, if the buffer
overflows, the algorithm discards from the buffer any ele-
ments, e, whose trail0(h(e)) = ĵ∗, and increments ĵ∗. By
the end of the stream, an element, e, is sampled in the buffer
if and only if trail0(h(e)) ≥ ĵ∗. The transition from one ĵ∗

to the next can be enhanced by grouping the elements in
linked lists by their trails. Hence, when GT increments ĵ∗,
it deletes the linked list containing all the elements whose
trail equals the old value of ĵ∗. This yields a constant amor-
tized processing time per stream element. GT further im-
proves the processing time by not deleting the list whose
trail equals the old value of ĵ∗ in bulk. Rather, the memory
allocated for elements in this list is reused for new elements
inserted in lists with larger trail values. This lazy discarding

technique yields constant expected time9.

By maintaining d × T samples, Pr
[
|n̂ − n| ≥ n/

√
T )

]
<

1/3, for some T ≥ 1. Using Chebyshev’s inequality, and

working backward, we deduce that stderr(n̂) ≥
√

1
3×T

. The

algorithm runs I copies and takes the median result to reach
a failure probability of δ, where I is O(log(δ)).

7.2 The BJKST3 Algorithm
The BJKST3 [3], an improvement on the algorithm in [4],

highly resembles GT [21]. BJKST3 deviates from GT by
storing each element, e, in the buffer in a hashed form, g(e),
using some linear function g : [N ] → [3×((log(N ) + 1) × T )2],

for some T ≥ 1, where stderr(n̂) is O(1/
√

T ). This in-
creases the probability of error due to collisions on g. To
make up for this source of error, BJKST3 keeps a buffer of
size c3 = 576 instead of d = 192. The analysis in [3] is al-
most identical to that in [21] and shows that using c3 × T

samples, Pr
[
|n̂ − n| ≥ n/

√
T

]
< 1/3. Hence, we deduce

that stderr(n̂) ≥
√

1
3×T

.

9Due to the importance of sampling algorithms to con-
ventional database systems, in [20], Gibbons combine the
GT algorithm with reservoir sampling [41] to sample rows
from a database. The goal is to enable counting distinct
multi-attribute records satisfying subsequent predicates, by
not destroying the database records by hashing. For every
sample, e, in the buffer maintained by GT, Gibbons’ algo-
rithm apply reservoir sampling to collect a uniform sample
of bounded size

BJKST3 improves on GT by indexing the elements in the
buffer on their trails using balanced search trees, instead of
the linked lists used by GT, to purge the buffer when incre-
menting ĵ∗. When observing an element in the stream, the
balanced search tree reduces the time to look up the element
to know if it was already sampled. The lazy discarding tech-
nique can still be used to avoid deleting groups of elements
at one time, and the expired balanced trees do not need to
be re-balanced. However, BJKST3 pays the space penalty
of the NULL pointers at the leaves of the tree.

7.3 Analytically Comparing
Hybrid-Bucket-Sampling Algorithms

These algorithms have the advantages of generating a
sample of the data that can be used later for other purposes.
This can be valuable for some applications like database
query optimization. However, in our application of traf-
fic analysis, the problem with hybrid-bucket-sampling algo-
rithms is that storing the samples can be very expensive,
since the data space, N , is huge, even though not all the
traffic IDs exist in reality. This is why the BJKST3 algo-
rithm stores samples in a hashed form. Now, we compare
BJKST3 to GT, and show that BJKST3 is of limited benefit
for traffic analysis.

BJKST3 resembles GT but uses 2 log(T
√

3(log(N ) + 1))
bits to store each element. Thus the total space for storing
the sample is 576 × T × 2 log(T

√
3(log(N ) + 1)) bits, i.e.,

288 × T log(T
√

3(log(N ) + 1)) Bytes, while GT uses 192 ×
T × log(N ) bits, i.e., 24 × T × log(N ) Bytes. In the case
of search engines, cookie IDs identifying surfers are at least
128 bits. By substituting log(N ) = 128, GT is more space
efficient in cases where T > 7.275. Therefore, if stderr(n̂) is
required to be less than 0.2141, GT is preferred. In our case,
this standard error is very high and we prefer GT always.

8. HYBRID-BUCKET-LOGARITHMIC
ALGORITHMS

The only algorithm in this category is the Multiresolution
Bitmap (MRB) Algorithm by Estan et al. [14]. The MRB
and GT [21] algorithms were independently proposed. How-
ever, at a high level, the LC algorithm was used to compress
the sampling buffer of GT.

The Multiresolution Bitmap Algorithm
The MRB, like GT, uses a hash function, h, and dissects the
hash space to 2j buckets10, where j ∈ [1 . . . l] and l will be
specified shortly. For every j, MRB counts sj = |h−1

j (0)|,
the number of elements that hash to bucket 0. Scaling up sj

by 2j yields an estimate of n. MRB deviates from GT by not
physically keeping the sample of sj elements, but by using
a Linear Counting sketch with m bits to calculate ŝj , an
estimate of sj . Notice that GT keeps h−1

j (0), the elements

that hash to bucket 0 when the number of buckets is 2j , from
which it can extract h−1

j+1(0) when the number of buckets

becomes 2j+1. This is not possible for MRB since only an
LC sketch of h−1

j (0) is maintained. To remedy this problem,
MRB keeps parallel LC sketches for every possible j. All
the LC sketches contain the same number of bits, m, but are
responsible for ranges that are exponentially decreasing in j.

10In the paper, the authors considered dissecting the space
to kj buckets, and then optimized k to the value 2.
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The LC sketches of the smaller j’s are responsible for larger
ranges, and hence can accurately estimate smaller distinct
counts. Such LC sketches might have all their bits set to 1 if
the distinct count is large, and only the LC sketches of the
larger j’s can estimate such larger distinct counts.

Keeping parallel m-bit LC sketches for every possible j
results in any elements, e, being inserted in potentially sev-
eral LC sketches. This is remedied by inserting e only in the
LC sketch with the least possible range (the largest possible
j) that contains h(e). Since e ∈ h−1

j+1(0) =⇒ e ∈ h−1
j (0),

by inserting e only once in the LC sketch with the largest
possible j containing e, half the space is saved, constant pro-
cessing time per element is achieved, and all the LC sketches
containing e can still be reconstructed at query time.

At query time, to estimate n, MRB scans all the LC
sketches in a decreasing order in j until it finds a base LC
sketch, as will be specified shortly. Let the base LC sketch
be responsible for bucket 0 when the number of buckets is
2j∗ . Since MRB inserts an element e only once in the LC
sketch with the largest possible j containing e, it estimates
sj∗ = h−1

j∗ (0), the number of elements hashing to bucket

0 when the number of buckets is 2j∗ , by summing up the
estimates of all the elements inserted in the LC sketches

whose j ≥ j∗. That is, ŝj∗ =
l∑

j=j∗
−m ln(Vj), where Vj is

the ratio of 0 bits in the LC sketch with 2j buckets. Thus,
n̂ = ŝj∗ × 2j∗ .

Now, we explain how MRB determines the base sketch.
It was shown that the estimate of MRB is asymptotically

unbiased, and stderr(n̂) =

√
eρ+eρ/2+2eρ/4−4

2ρ
√

m
, which is min-

imized when ρ = 1.9491, where ρ is the average number of
elements hashing to a bit. Hence, j∗ is chosen such that ρj∗

is the closest possible to 1.9491, where ρj∗ is ρ of the base
LC sketch.

MRB allocates m bits for every LC sketch. A larger num-
ber of bits was specified for j = l. The number of bits,
m, allocated in all the levels including the last level, ml, as
well as the number of levels, l, is determined by an initial-
ization procedure that minimizes the memory usage given a
bound on stderr(n̂). The number of LC sketches is l = 2 +
dlog2(

nmax
ρmax×m

)e. Hence, the total bit consumption is ((l −
1)×m + ml) =

((
1 + dlog2(

nmax
ρmax×m

)e
)
× m + ml

)
. Based

on the experimental data used by Estan et al., Durand et al.

[13] crudely estimated stderr(n̂) ≈ 4.4√(
1+dlog2( nmax

ρmax×m
)e

)
×m+ml

.

9. ANALYTICAL EVALUATION
Now, we complete the analytical discussion of the algo-

rithms aforementioned in Sections 4 through 8, and we make
an analytical conclusion that Linear Counting is the most
appropriate algorithm for our traffic analysis application.

9.1 Comparing the Best Candidate
of each Category

We compare the candidates from each category that are
most appropriate to the traffic analysis application. To start
with, a quick comparison between interval-based candidates
and hybrid-bucket-sampling candidates deems the hybrid-
bucket-sampling candidates more space efficient. The reason
is that Bar-Yossef et al. [3] compared their first algorithm,
BJKST1, to their third algorithm, BJKST3, and concluded

that the space consumption by BJKST3 is significantly less.
Both algorithms have the same amortized per-element pro-
cessing complexity. The Giriore’s optimization on BJKST1
does not make up for this difference in space usage since
it does not improve the asymptotic standard error as the
space usage increases. In addition, GT is yet preferable over
BJST3.

We follow by comparing the most prominent logarithmic
hashing algorithm to the most prominent hybrid-bucket-
sampling algorithm, GT. Super-LogLog is more space ef-
ficient than GT. The standard errors of Super-LogLog and

GT are 1.05/
√

I and ≥
(

1√
3

)
/
√

I, respectively, where I is

the number of times the algorithms are replicated. For each
sketch, Bi, Super-LogLog does not store d trails along with
their corresponding elements. Super-LogLog only keeps the
maximum trail, max(trail0(h(e))). Clearly, Super-LogLog
is more accurate if both algorithms are run using the same
space.

We compare LC, the most appealing candidate in the
pure-bucket-based category, to Super-LogLog, the best can-
didate so far. Assuming nmax is 1.5× 106, and the required
standard error is 0.001, Super-LogLog runs in 551250 Bytes.
If 551250 Bytes are allocated to LC, its standard error is
3.5694 × 10−4.

It is very difficult to analytically compare the accuracy
of MRB to any other algorithm since the initialization pro-
cedure that determines the space consumption is complex.
Thus, it is difficult to analytically reason about the standard
error in relation to the space usage. Even more, in our real
data experiments in Section 10, we noticed that often times
the initialization procedure of MRB finds that l = 1 min-
imizes the space for stringent standard error requirements
that are required for traffic analysis. In such cases, MRB
transforms into LC with some extra overhead. We leave
comparing MRB to other algorithms to Section 10.

9.2 The Advantage of Linear Counting
LC has a stderr(n̂) of

√
eρ−ρ−1
ρnmax

, where ρ = nmax/m, and

m is the number of bits used. Assuming 10 ≥ ρ ≥ 1, then
LC achieves very low stderr(n̂) of O(1/

√
n).

All of the algorithms discussed above, except for MRB
that relies on LC, employ I independent copies of the es-
timators and average them, or collect a sample of O(I),

to reduce their constant standard errors by a factor of
√

I.
Hence, to achieve the low standard error of LC, these al-
gorithms need to set I to O(n). Thus, the space usage of
LC would almost be a lower bound on the space usage of
these algorithms. This conforms with the lower bound of
Õ( 1

ε2
) bits that was established in [43] on the space used

by any approximation algorithm, for any error bound of ε
of Ω( 1√

N ), and suppressing the dependence on the failure

probability δ.

10. EXPERIMENTAL RESULTS
In this section we motivate carrying out experiments for

evaluating the discussed algorithms in traffic analysis envi-
ronment. We follow by reporting our experimental results.

10.1 Motivating Experiments to
Complement Theoretical Analysis

The theoretical analysis gives us good estimate of the ac-
curacy of the algorithms given the space they use, as well as
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their per-traffic element processing complexity. However, it
does not serve as a sole basis for selecting an algorithm for
our high accuracy and efficiency constraints. We mention
some reasons why we need comprehensive experiments to
select an algorithm.

• The theoretical analysis is not unified among all the al-
gorithms. For instance some research works gave their
space usage in terms of big-O notation ignoring the
overhead of data structures (e.g. [21]) or that of stor-
ing hash functions (e.g. [9, 16]).

• Some works (e.g. [1, 3, 21]) made a clear distinc-
tion in their analysis between perfectly uniform hash-
ing and linear (pair-wise independent) hashing, while
other works (e.g. [14]) assumed perfectly uniform hash-
ing which is not realizable. For instance, BJKST1 had
a different stderr(n̂) than that of Giriore, even though
they are essentially the same algorithm. The reason is
that Giriore assumed perfectly uniform hashing, while
BJKST1 assumed linear hashing.

• In addition, not all works provided a concise form of
their standard error (e.g., [1, 3, 21]). This is what
made us estimate their standard error from their prob-
abilistic analysis by using Chebyshev’s inequality and
working backward. This technique assumes the prob-
abilistic analysis to be tight, which might not be true.

10.2 The Need for New Experimental Analysis
This is not the first experimental comparison between sev-

eral distinct counting algorithms. In [2], Linear Counting
was compared against PCSA; in [14], MRB was compared
against PCSA; and in [13], LogLog, Super-LogLog, MRB,
and PCSA were compared against each other. However, pre-
vious comparisons were not delineating in our application.
In [2], the distinct counts estimated were of limited sizes
not exceeding 24,359. For the more recent work, the accu-
racy regions considered are far from our needs. For instance,
[13] considered 4% accuracy with probability of around 88%,
while [14] experimented with various error ranges up to 10%.

10.3 Experimental Setup
In order to have a better practical comparison of the algo-

rithms, we implemented eight prominent algorithms to com-
pare their performance. We implemented Linear Counting,
PC, PCSA, LogLog, Super-LogLog, MRB, GT (with some
BJKST3 modifications), and BJKST1 (with all Giroire mod-
ifications). The algorithms we did not implement are AMS,
Cohen, and BJKST2. Clearly, we implemented all the al-
gorithms discussed above except AMS, which is originally
proposed as a theoretical algorithm with high variance, as
well as the algorithms performing I hashes for every ele-
ment. However, we implemented one such algorithm, PC,
to show the run time drawback of such algorithms.

The algorithms were implemented in VC++. All the hash
functions used were linear of the form h(e) = a × e + b
mod p, where a and b are 64-bit numbers selected at random.
Smaller a and b did not perform well for all algorithms. The
experiments were run on a Personal Computer with Cen-
trino Duo processor running at 2.0GHz with 1GB of main
memory. The experiments were run using real surfer’s cookie
IDs from Ask.com with 1,925,423 distinct surfers, which is
significantly larger than datasets of previous experiments.

10.4 Implementation Details
The sanitized dataset had the elements hashed from their

domain of 256 bits to a smaller domain of 32 bits. The pur-
pose of this domain reduction was to make it harder to guess
the original cookie IDs. However, this actually biases the re-
sults to favor some logarithmic hashing algorithms like PC,
PCSA, and with a lesser degree, the sampling algorithms,
GT and BJKST1. For logarithmic hashing algorithms, the
size of the sketches is dropped from 256 to 32 bits. For
sampling algorithms, the samples’ sizes are reduced from
256 bits 32 bits, though the overhead of the data structures
keeping the samples are not reduced. The other algorithms
whose memory consumption relies on the upper bound on
the distinct count, nmax, such as LogLog, Super-LogLog,
LC, and MRB, are not affected by this domain shrinking.

For MRB, we had difficulty constraining MRB to run in
a predetermined space, since its input parameters are nmax

and the required standard error. To limit MRB to a specified
space usage, several runs were made with different standard
errors until it used space that roughly equals the required
space. We find this an inconvenience in usability.

The implementations of Linear Counting, PC, and PCSA
were exactly like discussed in their respective papers. For
LogLog, and Super-LogLog, the sketches were of size 8 bits.
For GT, we stored the samples in an AVL tree as suggested
in [3]. However, contrary to what [3] suggests, we stored the
elements, rather than their signatures, as discussed in Sec-
tion 7.3. In addition, we incorporated the lazy discarding

technique in [21] to have an expected constant processing
time per stream element. For BJKST1, we implemented
both modifications suggested by Giriore. Specifically, we
used the logarithmic estimator proposed in [23] and the re-
sults of the sketches were stochastically avergaed.

10.5 Comparing Algorithms’ Run Times
This section is intended to show the run time drawback

of the algorithms performing I hashes for every element,
PC, Cohen and BJKST2. We only implemented one such
algorithm, PC. Figure 6 shows the run time, averaged on
50 runs, for all the algorithms using various spaces. Most
algorithms ran in roughly the same time, with LC being
the fastest (around 1 second), since it performs only one
hash per element, and BJKST1 being the slowest (around
5 seconds). The reason BJKST1 is relatively slow is that it
inserts each element in two independent structures, the heap
that keeps track of the minimum elements and the balanced
tree that is used to check if an element has been sampled
before or not in logarithmic time. This speed difference
is not critical in real life, since all the algorithms are fast
enough to handle the traffic arrival rate.

The only exception was PC. The run time of PC was larger
than most algorithms by at least two orders of magnitude
when the space usage was the least (1,250 sketches that con-
sumed 25K). As more space was given to the algorithms,
PC used more sketches and more hash functions, and its
run time increased linearly. When the space usage was the
most (12,500 sketches that consumed 250K), the run time
of PC increased from 7.9 minutes to 1.3 hours, which is an
increase by a factor of 10. We expect Cohen and BJKST2
to demonstrate similar behavior as their accuracy and space
usage increase. This behavior is not suitable for applications
with high data arrival rates like search engines.
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Figure 6: Average Run Time of 50 Experiments
(Time axis has logarithmic scale)

10.6 Comparing Algorithms’ Accuracy
To compare the accuracy of the discussed algorithms, we

fixed the space usage of all the algorithms and ran them 50
times on the real dataset. We repeated this for several space
usages and recorded the maximum, and median error of esti-
mation. The maximum and the median errors in estimation
are plotted in the Figures 7 and 8, respectively.

10.6.1 Comparing the Algorithms to each other
with Different Spaces

From Figures 7 and 8, it is worth noting that when the
space usage was limited to 25KB, MRB had the least max-
imum error, followed by LogLog and Super-LogLog. The
maximum error of BJKST1 was the worst. followed by GT,
LC, PC and PCSA. However, When the space usage was
limited to 50KB, both the maximum and the median errors
of LC were the second best after MRB, which maintained
only 2 levels of LC sketches. The difference between LC
and MRB is very minor with the maximum and the median
errors of LC being 9.1637 × 10−3 and 2.2863 × 10−3, and
those of MRB being 8.9430 × 10−3 and 1.3311 × 10−3, re-
spectively. BJKST1, GT, PC and PCSA continued to have
the highest maximum errors. As is clear from Figure 7, this
ranking continued to be true when the space usage was lim-
ited to 75KB, with the exception that Super-LogLog did not
perform well and replaced PCSA in the list of bottom four
algorithms.

As the space usage limit grew to 100KB, the MRB initial-
ization procedure that minimizes the memory usage given
a specific bound on the standard error found it more space
efficient to keep only one level of LC sketches. Hence, MRB
practically reduced to LC with some minor overhead in hash-
ing and storage. Since then, LC was the most accurate es-
timation algorithm, which is clear from Figures 7 and 8. In
all these figures, LC clearly had the lowest maximum and
median estimation errors. MRB followed.

The list of bottom four algorithms continued to have BJKST1,
GT, PC and PCSA with Super-LogLog entering this list oc-
casionally. We attribute the poor performance of BJKST1,
GT and PC to the high waste of space used to store the hash
functions, in the case of PC, and the samples in the cases
of GT, and BJKST1. GT and BJKST1 have very attrac-
tive theoretical space complexity. However, we expect them
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Figure 7: The Maximum Error of 50 Experiments
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to be only valuable for applications that need to collect a
sample of the dataset, like database optimization.

Between the space usages of 100KB and 225KB, BJKST1
performed the worst. However, GT performed the worst
only when the space usage was 250KB. PCSA usually per-
formed better then PC. We found Super-LogLog not to per-
form significantly better than LogLog on our dataset. The
optimization of considering only the smallest 0.7×I sketches,
where I is the number of sketches used, was based on em-
pirical findings based on the dataset used in [13], which con-
trasts our results.

Notice that most of these experimental results conform
with our analysis. As discussed in Section 9.1, Super-LogLog
performs better than GT, and BJKST1 is expected to per-
form worse than GT. LC is expected to perform the best,
as discussed in Section 9.2.

10.6.2 Commenting on the Change in some
Algorithms’ Accuracy with Different Spaces

We comment on how the maximum and median errors of
some algorithms changed with the increase in space usage.
From Figure 7, the maximum error of LC reduced the most
with the increase in space usage. The maximum errors of
LC, MRB, BJKST1, GT and PC were the most stable. That
is, they did not have unexplained peaks as the space usage
varied. The maximum error of PCSA peaked when the space
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usage was 50KB, and that of Super-LogLog peaked when the
space usage was 175KB.

Again, from Figure 8, the median error of LC reduced the
most with the increase in space usage. This is explained in
Section 9.2. All algorithms had a stable median error except
Super-LogLog. Super-LogLog had unexplained peaks when
the space usages were 75KB, and 175KB.

11. DISCUSSION AND FUTURE WORK
In this paper, we have reviewed the literature of estimat-

ing the distinct count of a huge dataset under the constraints
of a modern application that pushes for highly accurate es-
timates. We explained how search engines benefit from this
stream analysis problem, and have motivated the need for
using an algorithm whose sketches are accurate and merge-
able. We have described the algorithms proposed to accu-
rately solve this problem, and have selected Linear Counting
due to its superb accuracy, and run time, and ease of imple-
mentation. While this algorithm has always been discarded
as using linear space in most research works, we have shown
both analytical and experimental comparison to other algo-
rithms favor Linear Counting when highly accurate results
are required. For other estimators to attain comparable ac-
curacy, they need space that is more than what is used by
Linear Counting.

It is straightforward to verify that the merging of two
sketches of any of the aforementioned algorithms yields the
same accuracy as running the algorithm on the union of the
two streams. However, the merging process could be faster
for some algorithms than others. The first future work di-
rection is to analytically and experimentally compare the
processing time for merging the sketches of different algo-
rithms. We expect Linear Counting to be the fastest at
merging sketches, since its merging process is a mere OR-ing
of the space used by the sketches with no added complexity.

We also plan to devise a variant of Linear Counting for
sliding windows. In addition, we like to analytically and
empirically examine the tradeoff between running several
parallel images of the algorithm and averaging the results
versus running one image of the algorithm if the same space
is used.
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