
Online Recovery in Cluster Databases

WeiBin Liang
wliang2@cs.mcgill.ca

Bettina Kemme
kemme@cs.mcgill.ca

School of Computer Science, McGill University
Montreal, Canada

ABSTRACT
Cluster based replication solutions are an attractive mecha-
nism to provide both high-availability and scalability for the
database backend within the multi-tier information systems
of service-oriented businesses. An important issue that has
not yet received sufficient attention is how database replicas
that have failed can be reintegrated into the system or how
completely new replicas can be added in order to increase the
capacity of the system. Ideally, recovery takes place online,
i.e, while transaction processing continues at the replicas
that are already running. In this paper we present a com-
plete online recovery solution for database clusters. One
important issue is to find an efficient way to transfer the
data the joining replica needs. In this paper, we present two
data transfer strategies. The first transfers the latest copy of
each data item, the second transfers the updates a rejoining
replica has missed during its downtime. A second challenge
is to coordinate this transfer with ongoing transaction pro-
cessing such that the joining node does not miss any updates.
We present a coordination protocol that can be used with
Postgres-R, a replication tool which uses a group communi-
cation system for replica control. We have implemented and
compared our transfer solutions against a set of parameters,
and present heuristics which allow an automatic selection of
the optimal strategy for a given configuration.

1. INTRODUCTION
Over the years, we have witnessed an increasing demand

for scalable and highly reliable information systems. In par-
ticular in the emerging service economy, businesses have
to provide continuous access to their services to both cus-
tomers and trading partners. With an increasing number
of clients the IT infrastructure of these businesses is fac-
ing immense scalability and availability requirements. This
infrastructure typically consists of a multi-tier architecture
with a web-server tier providing the presentation logic, an
application server tier providing the business logic, and a
database tier providing persistence for business critical data.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT’08, March 25–30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003 ...$5.00.

For many applications, the I/O intensive database backend
is the performance bottleneck of the system. An attractive
way to provide scalability and at the same time increase the
availability of this tier, is to have a cluster of machines and
replicate the database on these machines, i.e., to have sev-
eral database instances each having a copy of the database.
When the workload increases, we can scale up the system
by simply adding more replicas to the cluster. Furthermore,
if one replica fails, its workload can be taken over by an-
other replica, providing fault-tolerance. Most replication ap-
proaches follow a read-one/write-all approach reading data
from one replica but performing write operations on all repli-
cas. In recent years, many cluster based replication solutions
have been proposed showing excellent performance in terms
of low response times and high throughput [1, 2, 4, 6, 7, 10,
14, 17, 20, 21, 22, 23, 24, 28].

Reconfiguration in cluster databases refers to the fact that
replicas can both leave and join the cluster. In most of the
existing approaches, when a replica fails, the other replicas
are informed appropriately and currently executing transac-
tions will not need to perform their writes on the crashed
replica. That is, they follow a read-one/write-all-available
approach. The protocols further guarantee that the trans-
actions committed at the crashed replica are a subset of
transactions committed at the available replicas. Some ap-
proaches even transparently redirect clients that were con-
nected to the crashed replica to an available replica.

Adding replicas efficiently and correctly to the system is
as important as proper failure handling. In order to guaran-
tee availability, failed sites have to be rejoined to the system.
Furthermore, is must be possible to add new sites to the sys-
tem in order to handle higher demands. In the following, we
refer to reconfigurations where replicas join the system as
recovery, although completely new replicas do not recover in
the strict sense, since they had not failed. Only few replica-
tion solutions had a closer look at recovery and we are not
aware of any proper overhead analysis. We discuss them in
the related work section.

The recovery process can be divided into two steps. First,
upon restart of a failed replica, local recovery brings the
database of the failed site back into a consistent state. This
is standard database technology which is also needed for
non-replicated database systems. It requires to potentially
redo some of the transactions that committed at the replica
before the crash and undo transactions that were aborted or
active at the time of the crash. A new replica does not need
to perform this step. To perform local recovery, database
systems usually maintain a log (also referred to as write-

121

ahead-log) during normal processing such that for each write
operation on a data item x, the before- and after-image of
x is appended to the log. Further, it contains information
about which transactions committed and aborted. Local
recovery is not the focus of this paper. Details can be found,
e.g., in [13].

After local recovery, distributed recovery provides the join-
ing node with the current state of the database. It has to
reflect the updates of all transactions that committed dur-
ing the downtime of the joining node. Typically one of the
available nodes in the system is responsible for this data
transfer. We explore two different data transfer mechanisms.
Firstly, a peer site can transfer the updates the joining site
has missed during its downtime to the joining site where
they are applied. The second approach takes a snapshot of
the data of a peer site and installs it at the joining site. For
completely new replicas that are added to the system, only
the second approach can be used. In this paper we explore
the significant factors that affect the performance of each
strategy, and how to choose one strategy over the other. In
particular, this paper presents a hybrid recovery mechanism
that is able to perform both types of recovery. Based on
heuristics, it dynamically chooses the strategy for which a
faster recovery is expected.

Distributed recovery can be performed both offline and
online. Offline recovery means that the system stops pro-
cessing client requests while a site is being brought into
the system. The system only resumes its normal operations
once recovery is done. Thus, the system is non-responsive
during recovery which is not acceptable for high-available,
high-throughput systems. Online recovery, in contrast, al-
lows the system to continue processing client requests even
during the recovery of sites. However, it requires recovery
to be synchronized with the execution of ongoing transac-
tions at other sites. A recovery coordination protocol has to
guarantee that the joining site does not miss the updates of
any transaction that is executing while the data transfer is
ongoing. For that, however, the recovery algorithm has to
be aware of how transaction execution is controlled in the
replicated system, i.e, it has to be adjusted to work with
the replica control mechanism in place. In this paper, we
focus on replication in Postgres-R [28], which provides repli-
cation for the open-source PostgreSQL database system. In
Postgres-R, a transaction is first executed at the local replica
to which it is submitted. At commit time, the local replica
multicasts the updates of the transaction in form of a write-
set to the other replicas. By using a total order multicast
provided by group communication systems (GCS) [9], each
replica receives writesets from different transactions in ex-
actly the same order. This total order is used to serialize
the transactions across the entire cluster. Our recovery co-
ordination protocol also takes advantage of the properties
of the GCS in order to synchronize recovery with ongoing
transaction processing and to determine when a joining site
is up-to-date.

The contributions of this paper can be summarized as
follows.

• We present two data transfer strategies for a replicated
database system that provide a crashed replica or a
completely new replica with the current state of the
database. The strategies can be used with all repli-
cation solutions that are based on the read-one/write-
all-available approach.

• We provide a recovery coordination protocol that fa-
cilitates that transactions can continue to execute in
the system during the recovery of a replica. The recov-
ery coordination protocol is appropriate for replication
approaches that use a group communication system
for replica communication. Our recovery coordination
protocol is combined with both data transfer strategies
and implemented in Postgres-R.

• We have performed an extensive performance evalua-
tion of our implementation and provide guidelines that
show when each of the approaches works best.

The rest of the paper is structured as follows. Section 2
gives an overview of Postgres-R and its concurrency and
replica control aglorithms. Section 3 provides a short intro-
duction to group communication systems. Section 4 presents
our recovery solution. It both presents the solution in algo-
rithmic form and discusses some interesting implementation
details. Section 5 gives an evaluation of this implementation
and compares the two recovery strategies. Finally, Section 6
presents related work and Section 7 concludes the work.

2. POSTGRES-R
In this section we give an overview of the Postgres-R sys-

tem. Although only the recovery coordination protocol and
not the data transfer strategies are dependent on the under-
lying replication tool, we present Postgres-R first in order
to give the reader a good understanding of the principles of
transaction execution in a replicated database system.

Postgres-R [28] is an extension of the open-source database
system PostgreSQL. PostgreSQL uses multi-version concur-
rency control providing snapshot isolation (SI) [3] as its high-
est isolation level. SI has become popular in recent years,
being also provided by Oracle and SQL Server. Each update
of transaction Ti on data item x creates a new version xi of
x. A transaction Ti reads the version of x created by transac-
tion Tj such that Tj committed before Ti started, and there
is no other transaction Tk that also wrote x, commits after
Tj but before Ti starts. That is, Ti reads from a committed
snapshot of the data as of Ti’s start time. However, if Ti

also updates x, then it later sees its own updates. Conflicts
are only detected between write operations of concurrent
transactions. Two transactions Ti and Tj are concurrent
if neither tcommitted/aborted before the other started. SI
disallows that two concurrent transactions update the same
data item x and both commit.

In Postgres-R each replica maintains a full copy of the
database. Each replica accepts both read-only and update
transactions. A transaction Ti is first executed at the local
PostgreSQL replica R it is submitted to. We say Ti is local
at R and R is Ti’s local replica. R uses its local concurrency
control mechanism to isolate Ti from other transactions run-
ning concurrently at R. When the application submits the
commit request the replication module of R sends a writeset
containing all records Ti has changed and multicasts it to all
replicas in the system. For that purpose it uses a group com-
munication system (GCS) [9], which provides a total order
delivery. That is, while different replicas might multicast
writesets concurrently, the GCS will deliver to all replicas
all writesets in exactly the same order. It will also deliver
a writeset back to the sender itself. We will talk about the
exact properties of GCS shortly. When a replica receives
a writeset for a transaction Ti it performs validation. It

122

checks whether there was any transaction Tj such that Tj ’s
writeset was delivered before Ti’s writeset, Ti is concurrent
to Tj , Tj passed validation, and Ti and Tj conflict (i.e., up-
date the same data item). If yes, then Ti does not pass
validation and may not commit. At Ti’s local replica R, Ti

is aborted, at the remote replicas the writeset is simply dis-
carded and Ti never started. If Ti passes validation, then R

simply commits Ti. At the other replicas, Ti is started as
a remote transaction, and the updates listed in the write-
set applied. The replication scheme guarantees that each
replica validates transactions exactly in the same order (the
total order determined by the GCS), and makes the same
commit/abort decision for all transactions. Furthermore,
transactions are committed at all replicas in the order in
which their writesets are delivered, hence, the commit order
is the same at all replicas.

The validation mechanism in Postgres-R has to guaran-
tee that snapshot isolation is guaranteed across the entire
replicated system. During local execution of a transaction
Ti, the local replica provides Ti with a snapshot and de-
tects conflicts between other transactions that are currently
executed at this site. The validation phase after writeset
delivery detects conflicts between transactions with differ-
ent local replicas. For this, a proper transaction identifi-
cation is needed. A transaction Ti actually creates one in-
dependent transaction at each replica: a local transaction
at the replica Ti is submitted to (which executes all SQL
statements), and remote transactions at the other replicas
(which apply the writeset). Each replica creates its own in-
ternal PostgreSQL transaction identifier TID. This makes
it hard to compare two logical transactions Ti and Tj and
determine whether they are concurrent. Therefore, a global
transaction identifier GID is needed, that links the transac-
tions that are executed at the different replicas on behalf of a
logical transaction Ti. For this purpose, each replica keeps a
GID counter. Whenever a writeset is delivered, the counter
is increased and the current value assigned as GID to the
corresponding transaction. Since each site delivers writesets
in the same order, all replicas assign the same GID value
to a given transaction. Each replica keeps an internal table
that allows for a fast matching between the internal identi-
fier TID for a transaction and its corresponding GID.

The details of how validation is performed, how the write
sets of remote transactions are applied, and how they are iso-
lated from concurrently running local transactions are not
important in the context of this paper, and we refer the
interested reader to [28]. In fact, the ideas behind the coor-
dination protocol presented in this paper are likely to work
with many replica control solutions based on GCS, probably
with only small adjustments.

3. GROUP COMMUNICATION SYSTEMS
(GCS)

In this section, we shortly introduce the properties of a
GCS that are important in the context of this paper. GCS
[9] manage groups of processes. A group member can mul-
ticast a message to the group which is then received by all
members including the sender. GCS provide different or-
dering guarantees. In this paper, we are only interested in
the total order multicast where the GCS delivers the same
stream of messages to all group members. GCS provide dif-
ferent levels of reliability in regard to message delivery. In

here, we assume uniform-reliable delivery. It guarantees that
whenever a member receives a message (even if it fails im-
mediately afterwards) all members receive the message un-
less they fail themselves. With this, it is impossible that a
replica sends a writeset, receives it back, commits the corre-
sponding transaction and then fails, while none of the other
replicas has received the writesets. Instead, if one replica re-
ceives a writeset, all other available replicas will also receive
the writeset. Thus, the transactions committed at a failed
replica are always a subset of the transactions committed at
the available replicas.

GCS also provide advanced group maintenance features.
A GCS automatically removes crashed members from the
view of currently connected members. The available mem-
bers receive a view change message V containing the list of
current members of the group. Similar view change messages
are delivered if a site explicitly joins or leaves the group.
Group reconfiguration provides the virtual synchrony prop-
erty: if members p and q receive both first view V and then
V ′, then they receive the same set of messages while mem-
bers of V . This means, if p receives a view change message
V , then a set of messages, and then a new view change mes-
sage V ′ containing a new member q, then p knows that q had
not received any message delivered after V but before V ′ but
it will receive the messages delivered after V ′ (unless a new
view change occurs). In an asynchronous environment (no
bounds on message delay), the GCS might wrongly exclude
a non-crashed member. In this case, Postgres-R requires the
affected replica to shut down and initiate recovery.

4. DISTRIBUTED RECOVERY

4.1 Data Transfer Strategies
We are looking at two different data transfer strategies:

the Total Copy Strategy (TCS) and the Partial Copy Strat-
egy (PCS). With TCS, a peer site Sp sends a complete copy
of its data to the joining site Sj . With PCS, only the up-
dates of committed transactions (i.e., the writesets) that
the joining site missed during its downtime are transferred.
Hence, in order to use PCS, the running system must main-
tain logs that keep this writeset information. This could
lead to additional overhead during normal processing. How-
ever, it might be possible to use the standard redo log – used
for local recovery – to extract the writeset information such
that there is no additional logging due to distributed recov-
ery. When a new site joins a running system, PCS cannot
be applied unless the current system keeps the writesets of
all transactions that have been committed since the original
start of the system, which is very unlikely. When a crashed
site rejoins the system, both TCS and PCS can be used.

In general, one can assume that when the database is small
or if the joining site Sj has been down for a long time and
has missed many transactions, then TCS will outperform
PCS. This is true because in this case, TCS sends less data
than PCS. Furthermore, if the log of the peer site Sp does
not contain all the writesets that are needed by Sj , TCS
must be used. This can happen, if Sp truncated its log, or if
Sp joined itself via TCS and only after Sj had failed. Also,
one must keep in mind that PCS requires to log the update
information which might result in increased overhead during
normal processing.

However, if the database size is large or the joining node
was down for only short time and has only missed few trans-

123

actions, then PCS will transfer less data than TCS, and
hence outperform TCS. Hence, our system aims in a flexible
solution that allows at runtime to choose the appropriate
transfer strategy according to the configuration.

There exist alternatives to these data transfer strategies,
and we want to discuss them shortly. In case that a failed
site rejoins the system, data transfer would be minimized
if only the data items that were changed during the down-
time are transferred to and updated at the recovering site.
This is very attractive when many transactions were exe-
cuted during the downtime of the recovering site, but they
only changed a small active part on a huge database (i.e.,
hot-spot data). In this case, PCS has to apply many trans-
actions, although for each data item only the last change is
relevant. TCS will copy a lot of data that has actually not
changed. We will discuss later how such an approach can
be implemented as an extension of PCS. Another alterna-
tive would be to transfer the latest version of a data item
to the joining node only when it is needed for the first time
or when the next update on the data item occurs. However,
keeping track of what has already been updated can be quite
complicated in a relational database system where the gran-
ularity of a data item is a record. Also, requesting individual
records whenever needed during query execution is a com-
plex process and might result in high delays for queries if
they have to wait for a set of records to arrive. Thus, we do
not further consider this alternative.

4.2 Synchronization
If recovery is performed completely offline no node may ex-

ecute transactions while the joining node receives the data.
This is clearly undesirable. Using online recovery, the rest of
the system continues executing transactions. The question
is how to handle these transactions. There are basically two
options: the updates of these transactions are included in
the state transferred by the peer to the joining site or the
joining site applies them after recovery is completed as stan-
dard remote transactions. In any case, some synchronization
protocol has to decide for a given transaction T which of the
two options is used. In our case, we take advantage of the
total order of update transactions determined by the GCS.
Peer and joining site decide on a delimiter transaction T such
that updates of missed transactions delivered and commit-
ted before T are reflected in the data transferred from the
peer site to the joining site as part of recovery while T and
all transactions that committed after T are applied at the
joining site as standard remote transactions.

4.3 Algorithm Overview
Our distributed recovery algorithm for Postgres-R com-

bines both TCS and PCS. The algorithm uses a heuristic to
choose the best strategy to perform the distributed recov-
ery. We refer to the writeset of a transaction as WS, and to
the log containing the WSs of committed transactions as the
Writeset Log or WSL. Each entry consists of a writeset WS
and the GID of the corresponding transaction. We allow a
replica to delete the oldest update information so that WSL

does not grow indefinitely.
The distributed recovery begins when a new site joins a

running system or after a previously failed site restarted and
finished local recovery. This joining replica Sj first joins the
GCS group composed of sites of the running system. Then,
Sj locates one of the group members Sp as the peer that will

assist the distributed recovery process. Most communication
between Sj and Sp is via a direct connection and not via
GCS. Sj can locate potential peer sites by either looking at
the membership of the current GCS or by being provided by
a list of candidates via a configuration file specified, e.g., by
the system administrator. Sj asks each potential candidate
whether it is willing to become the peer. A site can deny the
request because it is heavily loaded, for instance. After the
connection is set up to a willing peer Sp, Sj informs Sp about
the GID (lastGid) of the last transaction that it committed
before it failed. If Sj is a new site, it sends -1 as predefined
value. Recall that transactions are committed at all sites in
exactly the same order and with monotonically increasing
GID. When Sp receives lastGid it looks in its WSL for an
entry tagged with lastGid. If no entry can be found, TCS
has to be used. This can happen because lastGid is set to -1,
because Sp truncated its log, or because Sp itself joined the
system after Sj failed. Hence, Sp does not have the update
information of all committed transactions that Sj missed,
and thus, TCS is needed. If an entry is found, both TCS and
PCS can be used. Sj estimates the costs for TCS and PCS
recovery and chooses the one with smaller estimated cost. Sp

retrieves the maximum GID maxGid contained in its WSL.
The difference between lastGid and maxGid represents the
number of committed transactions missed by Sj so far. If the
difference is greater than a threshold, which is determined
by a heuristic, it is assumed TCS will outperform PCS, and
TCS is chosen. If the difference is smaller than the threshold,
PCS will be used.

4.3.1 PCS
If PCS is used, Sp retrieves all WSs whose GID are greater

than lastGid from WSL and sends them to Sj in multiple
rounds. At each round, Sp packs a certain number of WSs
into one message and sends it to Sj . Upon receipt of the
message, Sj unpacks the WSs one by one from the message
and applies them. After all WSs in the message have been
processed, Sj notifies Sp to send more WSs.

Applying a WS for recovery is basically the same as ap-
plying a WS of a remote transaction. In principle, no locks
need to be held since there are no concurrent transactions,
and no version checks are needed, since there are no concur-
rent transactions. However, we do not distinguish between
applying WSs during recovery and during normal processing
for simplicity of description.

If recovery were offline, i.e., when no transaction process-
ing were done in the system during recovery, recovery would
simply be done when all missed writsets are sent to Sj and
applied. In online recovery, new transactions are simultane-
ously executed in the running system. Since both Sj and Sp

are members of the group, they receive the corresponding
WSs. Sp applies the WSs and adds them to its WSL, and
hence, potentially also sends them to Sj during the data
transfer. Thus, Sj may receive the same WS both from Sp

and the GCS. It needs to know when and how it should
switch from applying WSs received from Sp to verifying and
applying WSs received from the GCS. Sp needs to know up
to which WS it should send to Sj . This means, a synchro-
nization protocol is needed here. In our protocol, when Sp

perceives that there are only a few more WSs left to be sent
to Sj , it multicasts a special message in total order to all
sites. That is, this message is ordered along with all the
writesets multicast in the system. Sp is now responsible for

124

transferring the WSs received before this special message
in total; and Sj starts to buffer WSs received from GCS
after the receipt of the special message. The switch will
then be straightforward. When Sj has applied all WSs from
Sp, it starts to apply the buffered WSs as standard remote
transactions. When all buffered WSs have been applied, the
recovery is done, and Sj can start to act as a normal site
and to handle client requests.

4.3.2 TCS
Our TCS solution takes advantage of the snapshot based

concurrency control provided by PostgreSQL. Our TCS data
transfer starts a read-only recovery transaction TS on the
peer site Si that takes a snapshot of the current state of its
local database and transfers it to Sj . According to snapshot
isolation this state contains the updates of all transactions
that committed before TS started. Transactions can con-
tinue to execute and commit at Sp while TS reads the data.
It is guaranteed that their updates are not reflected in the
snapshot transfered to Sj . We keep track of these transac-
tions, and transfer their writesets after Sj has installed the
database copy. This basically means that a TCS is followed
by a short PCS that transfers these missing writesets up to
the delimiter transaction.

When Sp starts TS, it keeps track of maxGID, the GID
of the last transaction that committed before TS started.
It sends it to Sj which then leaves the group. Sj stores
the result of TS into a file. After TS has completed, the
system administrator copies this snapshot data file from Sp

to Sj , restarts Sj in non-replication mode, and installs the
snapshot into its local database. Note that it is important
to use the non-replicated mode as otherwise installing the
snapshot would trigger the system to propagate the changes
to the other replicas. After the snapshot is installed, Sj

contains data that is consistent with the data of Sp when
the snapshot was taken. The system administrator restarts
Sj again in replication mode. Sj joins the system, performs
distributed recovery using PCS, with the maxGid received
previously from Sp as its lastGid. This will transfer all
updates that were made while and after TS was executed.
A script could replace the tasks of the system administrator.

For both TCS and PCS, clients may not connect to Sj

during recovery, since it does not yet have the up-to-date
state of the database. Sp, however, may execute local and
remote transactions as any other non-recovering site during
the recovery process.

4.4 Detailed Description
We first present the recovery algorithm that uses only

PCS, and then show the extension needed to allow for both
PCS and TCS. Descriptions of some parameters and func-
tions used in the algorithm can be found in Table 1.

4.4.1 PCS algorithm
Figure 1 shows the recovery steps at the joining (recover-

ing) site Sj , and Figure 2 shows the recovery steps at peer
site Sp for PCS. As shown in Figure 1, the joining site first
performs local recovery, sets up some variables and then
joins the replication group. In our system, the list of po-
tential peers in line 8 is read from a configuration file which
allows the administrator to set the preferred peer site to
be the first to be contacted. Alternatively, Sj could sim-
ply use the view change message delivered by the GCS to

Parameters/Functions Description

N The number of WSs in
one message.

Nthreshold determines whether to
use PCS or TCS

send(receiver, type, content) Sends a message.
recv(sender, type, content) Receives a message.
mcast(type, content) Multicasts a message.
mcast recv(type, content) Receives a multicast

message.
applyWS(WS) Performs the updates

captured in the WS.
This includes logging
the WS itself

endAssistance() cleanup of data struc-
tures at peer site

Table 1: Paramters, variables and functions

determine the potential peers. Once the joining site finds
a peer site that is willing to transfer the data, it sends it
the GID of the last transaction committed before the crash.
If no site is willing to serve as peer, recovery fails (lines 8-
18). During recovery, clients may not connect to Sj (lines
20-21). WSs that are received from the GCS are ignored
(lines 23-24), or, if recovery is close to be finished, they
are buffered (lines 25-26). Sp receives writesets from Sj in
the set NWS. After applying them, it requests more from
Sp (lines 27-29). When Sj receives the MSG SY NC mes-
sage, it knows that recovery is nearly done and it has to
start buffering WS coming from the GCS (line 30-32). After
Sj receives the MSG RECOV ERY DONE message from
Sp and processes all WSs that are included in the message
(line 33-34), a transitional phase starts (line 35-38). Sj first
blocks the communication channel with GCS, that is, does
not listen to the messages from GCS. It then processes all
WSs that were buffered during the recovery phase, and then
reopens the communication channel again. So, during this
transitional phase, WSs that are multicast by other sites are
buffered in the GCS. This simplifies synchronization.

We could have chosen a simpler synchronization point by
letting Sj start buffering messages immediately after it re-
ceives the view change message indicating that it has suc-
cessfully joined the system. Recall that Sj receives all mes-
sages delivered in the system after receiving the view change
message that informs about its join (virtual synchrony). In
this case, Sp would only need to send all WSs received be-
fore the view change message. The synchronization message
MSG SY NC would not be necessary. Instead, Sj would
simply execute all WSs in the buffer as remote transaction
after the data transfer from Sp is completed. However, since
the recovery can take a long time, it might be that Sj has to
buffer many messages. Thus, this strategy requires to imple-
ment a persistent buffer because not all buffered WSs might
fit into main memory. In contrast, we wanted to make sure
that Sj has to buffer only few WSs. In all tests conducted in
our implementation, only one WS is buffered in WSBuffer

and needs to be processed if no more than 10 WS are sent
in one single message from Sp.

Figure 2 shows the actions at the peer site. After agree-
ing to help with recovery (line 3-7), it sends WSs in several
rounds (line 8-15). It first appends all WSs that have to be

125

1. Sj starts up

2. Performs Local Recovery
3. START BUFFER := false

4. WSBuffer := emptylist

5. Joins the communication group

6. Retrieves maxGid from WSL

7. lastGid := maxGid

8. For each potential peer Sp {

9. send(Sp, MSG REQUEST)
10. recv(Sp, type)

11. IF type = MSG APPROV E

12. send(Sp, MSG LAST TXN, lastGid)
13. BREAK;

14. ELSE
15. // type = MSG DENY

16. IF all potential peers have been tried

17. System exists with recovery failure
18. }

19. FOR (; ;) {
20. Upon connection request from a client

21. Declines the request;

22. Upon mcast recv(MSG WS,WS) from GCS
23. IF START BUFFER = false

24. Drops WS
25. ELSE

26. Appends WS to WSBuffer

27. Upon recv(Sp, MSG UPD, NWS)
28. For each WS in NWS: apply(WS)

29. send(Sp, MSG CONTINUE)
30. Upon mcast recv(MSG SY NC, NIL)

31. IF the message was multicast by Sp

32. START BUFFER := true

33. Upon recv(Sp, MSG REC DONE, NWS)

34. For each WS in NWS: applyWS(WS)
35. Blocks GCS channel

36. For each WS in WSBuffer

37. applyWS(WS)
38. Unblocks GCS channel

39. // Recovery is done; accept client requests
40. BREAK;

41. }

Figure 1: PCS recovery at joining site Sj

transferred to a WSList (lines 16-24). Then it takes WSs
from WSList and sends them in sets of N messages to Sj

(lines 27-28). Since new WSs might be added to WSL dur-
ing this process, WSList is updated accordingly whenever
needed (lines 12-13). Once WSList contains less than N

messages and there are also no new messages in WSL, the
synchronization point is found. Sp sends first the synchro-
nization message, waits until it receives it back, and then
sends all WSs that were delivered before the synchroniza-
tion message to Sp (lines 30-36). This completes Sp’s tasks.

4.4.2 TCS algorithm
When TCS is performed, recovery first reads and transfers

1. new WSList()

2. FOR (; ;) {
3. Upon recv(Sj , MSG REQUEST)

4. IF assisting another site for recovery

5. send(Sj , MSG DENY)
6. ELSE

7. send(Sj , MSG APPROV E)
8. Upon recv(Sj , MSG LAST TXN, gid)

9. buildWSList(gid,−1)

10. sendWS()
11. Upon recv(Sj , MSG CONTINUE)

12. IF WSList.size <= N

13. buildWSList(0,−1);

14. sendWS()

15. }

16. buildWSList(fromGid, toGid)

17. IF fromGid = 0

18. maxGid := max GID in WSList

19. ELSE

20. maxGid := fromGid

21. IF toGid = −1

22. Appends WSs where GID > maxGid to WSList

23. ELSE
24. Appends WSs where toGid ≥ GID > maxGid to

WSList

25. sendWS()

26. IF WSList.size > N

27. Moves the first N WS from WSList to NWS

28. send(Sj , MSG TXN UPD, NWS)

29. ELSE
30. mcast(MSG SY NC, NIL)

31. mcast recv(MSG SY NC, NIL)
32. upToGid := GetCurrGID()

33. buildWSList(0, upToGid)
34. Moves all WS from WSList to NWS

35. send(Sj , MSG REC DONE, NWS)

36. endAssistance()

Figure 2: PCS Recovery at the peer site Sp

a snapshot of the database and then performs PCS transfer-
ring the remaining transactions. For the peer site, we can
insert the code displayed in Figure 3 into Figure 2 between
line 8 and 9. The peer site first decides whether to use PCS
or TCS (lines 2-5). If the joining site has missed more than
Nthreshold update transactions, TCS will be used. TCS
must also be used if Sj is a new site. Recall that when a
new site joins the system, its WSL is empty. When such
site retrieves maxGid from its WSL (in Figure 1 at line 5),
maxGid is assigned −1. Then, the joining site sends −1 as
the lastGid in MSG LAST TXN message. When Sp re-
ceives it and tries to find it from its WSL (in Figure 3 at
line 5), it cannot be found. Hence TCS will be used. Fi-
nally, if Sj has joined via TCS after Sp failed, we also have

126

1. //Upon receipt (Sj , MSG LAST TXN, gid)

2. //Determines which recovery strategy to use
3. maxGid = the max GID in WSL

4. diff := maxGid − gid

5. IF (diff > Nthreshold

OR gid cannot be found in WSL
OR lastTCSrecovery > gid)

6. // Uses TCS

7. Starts snapshot transaction TS
8. toGid := GID of last txn committed before TS starts

9. send(Sj , MSG USE TCS, toGid)

10. Waits until TS completes and saves snapshot to a file
11. endAssistance(); ’

12. ELSE
13. // Uses PCS

Figure 3: Extension for the peer site

1. Upon receipt (Sp, MSG USE TCS, lastGid)

2. Writes lastGid to a file
3. Prints to screen that TCS is used

4. System exits

Figure 4: Extension 1 for the joining site

to use TCS. For that, each site keeps track in the variable
lastTCSrecovery the GID of the last transaction that was
included in the transferred snapshot when it joined the sys-
tem via TCS. If Sj has lastTCSrecovery > gid then Sj ’s
own TCS recovery took place after Sj crashed. Therefore,
Sj has also to recover via TCS.

If TCS is used, Sp takes a snapshot as described above. It
then informs Sj about the last transaction included in this
snapshot. Then the recovery is finished for the peer (line
6-11).

For the joining site, the code displayed in Figure 4 needs
to be added to Figure 1 between lined 19 and 20. When the
joining site receives the MSG USE TCS message, it stores
the gid in a file, signals on the screen that TCS needs to be
used, and then shuts itself down. The system administra-
tor’s help is now needed. When the system administrator
gets the signal, he/she waits until the snapshot is taken at
the peer site, copies it to the joining site, restarts Sj in non-
replication mode and installs the snapshot. Sj may not run
in replication mode because applying the snapshot may not
lead to writesets sent to the other replicas. After the snap-
shot installation is completed, the administrator shuts down
Sj and restarts it in replication mode. When now Sj again
restarts, it must know whether a snapshot was installed. For
that we have to also replace lines 6 and 7 of Figure 1 with
the code in Figure 5.

4.4.3 Failures
The algorithm can be easily extended to handle crashes

during recovery. If the peer site fails at any time during the
recovery, the joining site terminates the recovery and exits.
This will require the system administrator to restart the
site again. In case of PCS, the WSs that have already been
transferred to the joining site and applied do not need be

1. IF lastGid is specified in the configuration file
2. Retrieves lastGid from the file

3. lastTCSrecovery := lastGid

4. ELSE
5. Retrieves maxGid from WSL

6. lastGid := maxGid

Figure 5: Extension 2 for the joining site

retransferred during the next round of recovery. Similarly, if
the joining site itself crashes during the recovery, the system
administrator just starts the site again.

4.4.4 Optimized PCS
In some cases, PCS can be extended to further reduce re-

covery time. The idea is that for each data item that was
updated during the downtime of the recovering site Sj , Sj

only applies the final version of the data item. For instance,
one could scan in reverse order through all relevant write-
sets and take for each data item only the latest version and
apply it at Sj . Applying all intermediate version, as done
by PCS, could be avoided. This scanning could be done by
the peer site Sp who than only sends the last data versions
to Sj . Alternatively, Sp would send all relevant writesets
and then Sj performs the scanning. The first solution has
the advantage that less messages are sent. The second has
the advantage that Sj receives all writesets – an important
pre-requisite for Sj to become a peer in future PCS. Further-
more, the burden of scanning and analyzing is not put on
Sp. As Sp concurrently serves client requests, it is desirable
to keep the recovery overhead at Sp low. In contrast Sj is
not yet serving any clients and thus is likely to have more
available resources.

The optimized PCS, however, can increase the complexity
of the implementation considerably. A first problem arises,
if a writeset does not contain the entire modified data item.
In some circumstances, a writeset might contain for an up-
dated record only the new values of the attributes that were
changed by the update. For instance, if the writeset is ex-
tracted from the redo log, this is likely the case. If the write-
set only contains the updated attributes, one has to assemble
different writesets in order to capture for a given data item
the updates on all attributes. This can be quite complicated.
A second disadvantage is that the existing functionality of
applying writesets cannot be reused. Postgres-R (and other
replication solutions) applies writesets on remote sites dur-
ing normal processing and PCS can simply reuse this func-
tionality. This also helps in not restarting recovery from
scratch if the peer site fails during the recovery procedure
(see above). In contrast, using optimized PCS, a completely
new function needs to be implemented to apply all final ver-
sions of data items.

4.5 Implementation Details
Postgre-R itself is an extension of the open-source database

management system PostgreSQL. As depicted in Figure 6,
a Postgres-R system is a cluster of nodes, and each node is
composed of the following processes: postmaster, local back-
end, replication manager, replication backend and communi-
cation manager. The group communication system, in this

127

Figure 6: Architecture of Postgres-R

case Spread [25], is not part of the system but used for mem-
bership services and total order, uniform reliable multicast.
Postmaster and local backends are the only processes that
exist in a non-replicated system. Local clients connect to the
postmaster that creates a new local backend specifically for
this client. A local backend accepts SQL statements from
its client, executes them locally and generates the writeset.
The replication backend is responsible to apply writesets of
remote transactions. The replication manager coordinates
the work of the other processes and the communication be-
tween them. The communication manager simply provides
an abstraction of the GCS to the replication manager.

For distributed recovery, we added a new component, the
recovery backend. At the peer site, it is responsible to re-
trieve the WSs from the WSL for PCS or to execute the
snapshot transaction for TCS. At the joining site it is re-
sponsible for applying the WSs in PCS. The replication
manager also has some tasks during PCS recovery. It for-
wards the MSG SY NC message through the GCS, deter-
mines upToGid and maintains the WS Buffer list.

Writeset Log We were not able to reconstruct writesets
from PostgreSQL’s write-ahead-log that had been developed
for local recovery. This was due because the system some-
times writes entire pages instead of only after-images of the
updated records. Thus, we stored the writesets together
with their GIDs in a system catalog as part of the transac-
tion. PostgreSQL uses system catalogs to record meta-data
of the database. Access to the system catalog occurs within
the boundaries of a transaction. This eases the implemen-
tation of the WSL dramatically. Only after a transaction
commits does its WS become visible in the system catalog.
The system catalog has a column storing the GID and a col-
umn storing the serialized writeset as a Binary Large Object.
PostgreSQL automatically compresses it before it is stored
into the catalog to save storage space. A B-tree index is built
on the GID column to support the range queries needed by
the buildWSList() function to retrieve sets of writesets.

Alternatively to a system catalog, we could have used a
standard file where writesets and their GIDs are inserted.
Since transactions commit sequentially according to their
GID, a simple append file should be sufficient. This would
have probably been more efficient during normal process-
ing than using a system catalog. The problem is that it is

difficult to make the append operation transactional. That
means, the file might contain writesets of transactions that
eventually did not commit. However, if the joining replica,
when applying the writesets received from the peer replica,
performs validation as it does during normal processing when
applying writesets (and it does so in our implementation),
then it would be able to determine unsuccessful transactions.
We are planning to compare the system catalog solution with
the file-based solution in our next version of the system.

Snapshot Transaction To use TCS, we first take a snap-
shot of the peer, transfer it to the joining site, and then
install the snapshot at the joining site. PostgreSQL pro-
vides two functions to front-end users: pgdump and pgre-
store. These functions are often used for backup or system
migration.

Pgdump starts a read-only transaction and takes a con-
sistent snapshot of the database as discussed before. Pgre-
store basically converts the snapshot into SQL statements
and feeds them to PostgreSQL. Pgrestore must be executed
with PostgreSQL running in non-replication mode, since no
writesets need to be built and be propagated to other run-
ning sites. We used the Unix function scp to copy the snap-
shot file from the peer to the joining site.

A disadvantage of pgdump and pgrestore is that it is con-
siderably slower than simple file copy techniques. On the
other hand, if a full copy of the files of the database are
made, it would not be possible to run transactions concur-
rently, and the peer node would need to be shut down for
this purpose (and recovered later on).

One challenge was that the joining node must receive to-
gether with the version of each data item the GID of the
transaction that created this version. This is needed to per-
form validation for writesets received from the GCS after
recovery has completed.

Optimized PCS We did not implement the optimized PCS
for complexity reasons. In Postgres-R, a writeset contains
for an updated record only the attributes that were changed.
The reason is that this reduces the amount of data that is
transferred during writeset propagation. It also has been of
advantage for us when logging the writesets in the system
catalog since it keeps the record sizes at reasonable levels.
However, this made it very hard to determine the complete
latest version of a given record. Furthermore, in our imple-
mentation, the joining site Sj simply reuses the functionality
of applying writesets as provided by Postgres-R.

5. EVALUATION
Our evaluation analyzes the cost of the two recovery strate-

gies, and shows how to determine the threshold value to
choose between PCS and TCS. Our experiments use the
Open Source Development Lab’s Database Test 1 (OSDL-
DBT-1) kit [19], which is similar to the TPC-W benchmark
[27] and simulates an online bookstore. There are 12 tables
that record customer information, book information and or-
der information. The size of the database can be varied by
choosing different numbers of customers and items. The
workload can be determined by choosing a different mix
of browsing (read-only) and ordering (update) transactions.
The system throughput is determined by the number of users
simulated by the driver and the thinktime used by each user.

We ran our experiments in a local area network using
two PCs running 2.6.12.2-smp Linux Kernel. Each PC has

128

0
20
40
60
80

100
120
140
160
180
200

100 150 200 250 300 350 400

T
im

e
in

se
co

n
d
s

Size of Database (MBytes)

pgrestore
pgdump Online
pgdump Offline

100

200

300

400

500

600

700

100 150 200 250 300 350 400

R
es

p
o
n
se

T
im

e
in

m
s

Size of Database (MBytes)

during recovery
without recovery

(a) Recovery Time Response Time of other transactions

Figure 7: Total Copy Strategy

512MB RAM and two Pentium III CPUs at 733.86 MHz.
One machine runs the peer replica, the other the joining
replica. We did not use more replicas since they would not
be involved in the recovery process. The database is built
according to the requirements of the benchmark. We chose
the browsing profile where about 80% of the transactions are
browsing transactions and the rest are ordering transactions.
We chose thinktime to be 3.0 seconds. The benchmark
driver simulates 100 clients and maintains 20 connections
with the peer replica for the clients. The chosen workload
kept the replica relatively busy but did not overload it.

5.1 TCS Recovery
The major factor affecting the recovery time of TCS is the

size of the database. We tested the overhead for TCS both
for offline and for online recovery.

The setup of the experiments is quite straight forward.
First, we started a server Sp and generated a database of
the desired size. Then we started a server Sj with a config-
uration file indicating Sp as potential peer site to perform
recovery. For online recovery, before Sj was joining the sys-
tem, we started the clients at Sp. No clients were running
on Sp for offline recovery. Since Sj initially had an empty
WSL, the TCS strategy was automatically chosen.

Figure 7(a) shows the time needed for executing the snap-
shot transaction (pgdump) at the peer site Sp and applying
the snapshot at Sj (pgrestore) with increasing database size.
For Sp times are given both online (with concurrent clients)
and offline (without concurrent clients). Note that at the
joining site, no clients should be started until recovery has
completed, hence, there is no differentiation between online
and offline. The total recovery time is the sum of pgdump
and pgrestore plus the time it takes the administrator to
copy the recovery file from Sp to Sj . In this context, the
time for the execution of the Unix function scp was nearly
negligible. The time for pgdump at the peer site increases
linearly with the database size and is considerably smaller
than the time for pgrestore at the joining site. Still, one can
see that running transactions on the peer node concurrently
to creating the snapshot slows execution down since all com-
pete for CPU and I/O. The time for pgrestore at the joining
site increases faster with increasing database size than the
time for pgdump at the peer site. This is likely to be true
because pgdump is a read-only transaction, while pgrestore
creates update transactions with many inserts.

In order to verify that both pgdump and pgrestore behave
linearly with even larger databases, we conducted similar ex-
periments with a simpler database which was faster to cre-
ate and where the database size was easier to control. We
were able to confirm linear behavior for both pgdump and
pgrestore for databases up to 1 Gigabyte. In fact, the ab-
solute numbers were very similar to the numbers shown for
the OSDL-DBT-1 benchmark in Figure 7 and thus, omitted
here.

Figure 7(b) shows the response time clients experience
when submitting a Home transaction (a transaction type
of the benchmark) to the peer site, with and without re-
covery running in the backgroud. Without recovery, the
response time first increases with increasing database size
up to around 200 MByte and remains relatively stable after
that. The response time increases as the hit ratio decreases
until the hit ratio stabilizes at around 200 MByte. The sta-
bilization is probably due to the fact that each transaction
accesses a certain amount of ”hot spot” data that always fits
in main memory, while the rest of the accesses is unlikely
to be in main memory if the database is larger than 200
MByte. Response times when the peer executes a snapshot
transaction concurrently, are considerably higher than when
no recovery takes place and the gap increases with increasing
database size. With a small database of 100 Mbyte response
times without and with recovery are nearly the same, while
with a 350 Mbyte database response times during recovery
are nearly double as high as when no recovery process is
running. This is due to the fact that pgdump and client
transactions compete for resources and resource contention
occurs.

5.2 PCS Recovery
The major factor that affects the recovery time using the

PCS approach is the total number of writesets (WS) to be
transferred and applied. To run an experiment, we first
started site Sp and Sj indicating no recovery is needed. Sp

and Sj had identical data. Due to the setup of the bench-
mark, we only connected clients to Sp. The replica control
mechanism guaranteed that all changes were propagated to
Sj . After a while, we manually crashed Sj while Sp contin-
ued executing client transactions. When the desired number
of transactions had been submitted to Sp, we specified Sp

as the potential peer in the configuration file and started
Sj up again in replication mode. For offline recovery, we

129

0

0.5

1

1.5

2

2.5

3

3.5

5000 10000 15000 20000 25000 30000 35000

T
im

e
in

se
co

n
d
s

Number of Writesets

Retrieval Online
Retrieval Offline

20

40

60

80

100

120

140

160

5000 10000 15000 20000 25000 30000 35000

T
im

e
in

se
co

n
d
s

Number of Writesets

Total Recovery
Apply Writeset

Retrieving writesets at the peer Applying writesets at the joining site and total recovery time

Figure 8: Partial Copy Strategy

stopped the clients at Sp before Sj ’s startup. For online re-
covery, they continued submitting transactions to Sp. Since
the WSL of Sj was not empty at startup, the Nthreshold

determined which recovery strategy to be used. We set
Nthreshold to infinity to force a PCS recovery.

Figure 8 (a) presents the time needed to retrieve all write-
sets at peer site Sp from WSL that Sj missed. The time is
recorded for both online and offline recovery. Retrieval time
increases linearly with the number of writesets and is con-
siderably higher for online recovery. This is true, because if
no concurrent transactions are running, the snapshot trans-
action reads from each data item the latest version (which
is indexed). In contrast, if concurrent transactions are run-
ning, the snapshot transaction has to retrieve older data
versions which can take much more time. However, the ab-
solute numbers are only a few seconds, hence, the peer site
is very little affected by this form of recovery. In fact, we
measured the response time for transactions running on Sp

during online recovery, and we could not determine any sig-
nificant increase compared to the response time when no
recovery takes place. Figure 8 (b) presents the time needed
to apply the missed writesets at the joining site Sj and the
total recovery time for online recovery (the time for offline
recovery was only slightly lower). Both times increase lin-
early with the number of writesets. As the figure indicates,
applying the writesets contributes to more than 90% of the
total recovery time. The remainder of the time indicates the
time needed to retrieve the writesets at the peer, the time
for the GID synchronization, the time it takes to transfer
WSs over the network, and the time it takes to process the
buffered WSs.

An interesting question is whether online recovery is pos-
sible from a performance point of view. If during online
recovery the remaining system commits more transactions
per second than can be transferred with PCS to the joining
site, the joining site will never catch up. That is, recovery
must be faster than the system commits new transactions.
Recovery time per writeset to transmit is around 5 ms in our
results for this particular benchmark. That is, 200 writesets
can be transferred and applied per second. This means that
in our configuration, if the system throughput is more than
200 update transactions per second, recovery is not pos-
sible. Note that the throughput of read-only transactions
is not relevant and can be arbitrarily high since read-only
transactions do not trigger data transfer.

5.3 Determining the Threshold
In order to determine the value of Nthreshold for a spe-

cific application the system needs to run example configura-
tions in order to derive the TCS recovery time (dependent on
the database size), and the PCS recovery time (dependent
on the number of missing transactions) to derive Figures
similar to Figures 7 and 8. Only a few test configurations
need to be run since the behavior is linear. Then Nthreshold

can be calculated dynamically. At the time of recovery, the
system determines the database size and the estimated TCS
recovery time t1 for this database size. Then, Nthreshold is
set to the number of writesets that can be transferred using
the PCS strategy in this given time t1. At the same time, the
peer site determines the number of writesets that the joining
site has missed so far. If it is larger than Nthreshold, TCS
is faster, otherwise PCS. Note that the calculation does not
need to consider the transactions that will be executed after
the start of the recovery. Independently of whether TCS or
PCS is chosen, they will have to be transferred via PCS.

In our experiment, for a database of 200 MByte TCS re-
covery time is around 120 seconds. Thus, Nthreshold will
be around 25,000 writesets. Given that the total through-
put is around 33 transactions per second and the update
throughput is around 7 transactions per second in our ex-
periments, if a node is down for more than an hour, TCS
will be used, otherwise PCS.

5.4 Other Experiments
We conducted similar experiments with a simpler bench-

mark. The database contains 20 tables, each having five
attributes (two integers, one 40-character, one float and one
date). The workload consisted of only update transactions
with one to three update operations (each updating one tu-
ple). Throughput was much higher and reached 280 transac-
tions per second. Relative behavior for all experiments was
very similar to the OSDL-DBT-1 benchmark. In absolute
numbers, the recovery time for TCS was very similar to the
recovery time for the OSDL-DBT-1 benchmark, PCS was
able to transfer much more writesets per second (550) than
in the OSDL-DBT-1 benchmark due to the simpler structure
of the transactions.

6. RELATED WORK
Most of the work in cluster replication does not discuss

130

recovery of failed sites or how new sites can be added to the
system. In our previous work on Postgres-R [28], we mention
how recovery can be done in principle, but do not present
a formal algorithm or a performance evaluation. In [16] we
present a series of recovery algorithms, however, no imple-
mentation or evaluation is provided. The algorithms pre-
sented here differ from [16] due to the fact that PostgreSQL
is based on snapshot isolation and not 2-phase-locking. [15]
present recovery for middleware-based replication, hence,
the solution looks quite different. They also do not pro-
vide an evaluation of their approach. [11] presents a middle-
ware based recovery approach that is also based on snapshot
isolation. The paper does not explain how the system de-
termines which transactions the recovering site missed, and
how recovery is coordinated with transaction processing.

Amza et al.[8, 12] present provisioning mechanisms for
replicated databases. The authors assume an infrastructure
that hosts several database applications. They then analyze
dynamically the incoming load for each of the applications
and decide on how many replicas each of the applications
will be run. However, all databases are replicated on all
machines. The system only decides to which replicas the
read-only transactions are redirected.

Quorum replication [26] provides incremental implicit re-
covery. When a site restarts it receives the latest version
of an data item whenever it participates in a write quorum
for this data item. Commercial systems (such as Oracle or
DB2) mainly implement lazy replication schemes, in which
writesets are only propagated some time after transaction
commit. These schemes often provide implicit recovery. In
here, writeset propagation is often implemented in form of
persistent transactional queues. If a site is down the pro-
ducer of a writeset stores it locally until the receiver restarts
upon which propagation is resumed.

Recovery has also been addressed in the context of process
replication, such as FT-CORBA [18]. Due to the differences
in the system model, state transfer and synchronization are
quite different. In the context of reliable multicast, recent
approaches have analyzed how to guarantee message deliv-
ery in a crash-recovery model [5]. In here, message logging
is used to guarantee that a recovering node receives all mes-
sages it missed during its downtime.

7. CONCLUSION
This paper presents the design and implementation of a

hybrid recovery algorithm for a replicated database cluster.
It allows both previously crashed and completely new sites
to join a running replicated system without stopping trans-
action execution in the rest of the system. The algorithm
can transfer either the whole database from a running site
of the system to the joining site (i.e., the TCS strategy),
or only the update information of transactions missed by
the joining site during its downtime (i.e., the PCS strat-
egy). The algorithm dynamically chooses the best transfer
strategy based on the feasibility and the estimation of the
recovery cost.

8. REFERENCES
[1] C. Amza, A. L. Cox, and W. Zwaenepoel. A

comparative evaluation of transparent scaling
techniques for dynamic content servers. In Int. Conf.
on Data Engineering (ICDE), 2005.

[2] T. Anderson, Y. Breitbart, H. F. Korth, and A. Wool.
Replication, consistency, and practicality: Are these
mutually exclusive? In ACM SIGMOD Conf., 1998.

[3] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J.
O’Neil, and P. E. O’Neil. A critique of ANSI SQL
isolation levels. In ACM SIGMOD Conf., 1995.

[4] K. Böhm, T. Grabs, U. Röhm, and H.-J. Schek.
Evaluating the coordination overhead of synchronous
replica maintenance in a cluster of databases. In
Euro-Par Conf., 2000.

[5] R. Boichat and R. Guerraoui. Reliable and total order
broadcast in the crash-recovery model. J. Parallel
Distrib. Comput., 65(4), 2005.

[6] Y. Breitbart, R. Komondoor, R. Rastogi, S. Seshadri,
and A. Silberschatz. Update propagation protocols for
replicated databases. In ACM SIGMOD Conf., 1999.

[7] E. Cecchet, J. Marguerite, and W. Zwaenepoel.
C-JDBC: Flexible database clustering middleware. In
USENIX Conference, 2004.

[8] J. Chen, G. Soundararajan, and C. Amza. Autonomic
provisioning of backend databases in dynamic content
web servers. In Int. Conf,. on Autonomic Computing
(ICAC), 2006.

[9] G. V. Chockler, I. Keidar, and R. Vitenberg. Group
communication specifications: A comprehensive study.
ACM Computer Surveys, 33(4), 2001.

[10] K. Daudjee and K. Salem. Lazy database replication
with ordering guarantees. In Int. Conf. on Data
Engineering (ICDE), 2004.

[11] S. Elnikety, S. Dropsho, and F. Pedone. Tashkent:
Uniting durability with transaction ordering for
high-performance scalable database replication. In
EuroSys, 2006.

[12] S. Ghanbari, G. Soundararajan, J. Chen,
M. Mihailescu, and C. Amza. Adaptive learning of
metric correlations for temperature-aware database
provisioning. In Int. Conf,. on Autonomic Computing
(ICAC), 2007.

[13] J. Gray and A. Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann
Publishers, 1993.

[14] J. Holliday, D. Agrawal, and A. E. Abbadi. The
performance of database replication with group
communication. In Int. Symp. on Fault-tolerant
Computing, 1999.

[15] R. Jiménez-Peris, M. Patiño-Mart́ınez, and G. Alonso.
Non-intrusive, parallel recovery of replicated data. In
Int. Symp. on Reliable Distributed Systems (SRDS),
2002.

[16] B. Kemme, A. Bartoli, and O. Babaoglu. Online
reconfiguration in replicated databases based on group
communication. In Int. Conf. on Dependable Systems
and Networks (DSN), 2001.

[17] Y. Lin, B. Kemme, M. Patiño-Mart́ınez, and
R. Jiménez-Peris. Middleware based data replication
providing snapshot isolation. In ACM SIGMOD Conf.,
2005.

[18] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith.
State synchronization and recovery for strongly
consistent replicated CORBA objects. In Int. Conf. on
Dependable Systems and Networks (DSN), 2001.

131

[19] Open Source Development Lab. Descriptions and
Documentation of OSDL-DBT-1, 2002.
http://sourceforge.net/projects/osdldbt.

[20] E. Pacitti, P. Minet, and E. Simon. Replica
consistency in lazy master replicated databases.
Distributed and Parallel Databases, 9(3), 2001.

[21] E. Pacitti and E. Simon. Update propagation
strategies to improve freshness in lazy master
replicated databases. VLDB Journal, 8(3), 2000.

[22] F. Pedone, R. Guerraoui, and A. Schiper. Exploiting
atomic broadcast in replicated databases. In Euro-Par
Conf., 1998.

[23] C. Plattner and G. Alonso. Ganymed: Scalable
replication for transactional web applications. In
Middleware, 2004.

[24] U. Röhm, K. Böhm, H.-J. Schek, and H. Schuldt. FAS
- a freshness-sensitive coordination middleware for a
cluster of olap components. In Int. Conf. of Very
Large Databases (VLDB), 2002.

[25] Spread. homepage: http://www.spread.org/.

[26] R. H. Thomas. A majority consensus approach to
concurrency control for multiple copy databases. ACM
Transactions on Database Systems, 4(9), 1979.

[27] Transaction Processing Performance Council. TPC
Benchmark W, 2000. http://www.tpc.org.

[28] S. Wu and B. Kemme. Postgres-R(SI): Combining
replica control with concurrency control based on
snapshot isolation. In Int. Conf. on Data Engineering
(ICDE), 2005.

132

