
Probabilistic Ranked Queries in Uncertain Databases

Xiang Lian and Lei Chen
Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Clear Water Bay, Kowloon
Hong Kong, China

{xlian, leichen}@cse.ust.hk

ABSTRACT
Recently, many new applications, such as sensor data monitoring
and mobile device tracking, raise up the issue of uncertain data
management. Compared to “certain” data, the data in the uncertain
database are not exact points, which, instead, often locate within
a region. In this paper, we study the ranked queries over uncer-
tain data. In fact, ranked queries have been studied extensively in
traditional database literature due to their popularity in many ap-
plications, such as decision making, recommendation raising, and
data mining tasks. Many proposals have been made in order to
improve the efficiency in answering ranked queries. However, the
existing approaches are all based on the assumption that the under-
lying data are exact (or certain). Due to the intrinsic differences be-
tween uncertain and certain data, these methods are designed only
for ranked queries in certain databases and cannot be applied to un-
certain case directly. Motivated by this, we propose novel solutions
to speed up the probabilistic ranked query (PRank) over the un-
certain database. Specifically, we introduce two effective pruning
methods, spatial and probabilistic, to help reduce the PRank search
space. Then, we seamlessly integrate these pruning heuristics into
the PRank query procedure. Extensive experiments have demon-
strated the efficiency and effectiveness of our proposed approach in
answering PRank queries, in terms of both wall clock time and the
number of candidates to be refined.

1. INTRODUCTION
Recently, query processing over uncertain data has gained much
attention from the database community due to the inherent un-
certainty of data in many real-world applications, such as sensor
network monitoring [15], object identification [4], moving object
search [9, 8, 25], and the like [31, 32]. For example, in an appli-
cation to track and monitor moving objects, the exact positions of
objects may not be available in the database at query time. This
phenomenon may result from low precision of positioning devices
or long transmission delay. Therefore, each moving object has “dy-
namic” coordinates and can locate anywhere with any distribution
in a so-called uncertainty region [9, 33], which is inferred by its
last reported position, maximum speed, moving directions, and so
on. As another example, in sensor networks, sensor data are col-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT’08, March 25-30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003...$5.00.

lected from different sites and transmitted back to the sink. During
the transmission, data might be distorted by environmental factors,
transmission delay, or packet losses. Thus, the collected data are
often imprecise and contain noises deviating from their actual val-
ues. Figure 1 illustrates a 2D example of small uncertain database
D, which contains six uncertain objects A, B, C, D, E, and F .
In particular, each uncertain object is represented by an uncertainty
region, denoted as the shaded area in the figure. Without loss of
generality, we simply model each uncertainty region as of circular
shape [33] (i.e. hypersphere in a multidimensional data space). The
uncertain objects can only appear in their own uncertainty regions
with arbitrary probability distributions, and they cannot locate out-
side the regions.

Figure 1: Illustration of Uncertainty Regions in 2D Space

In this paper, we investigate an important type of query, the ranked
query [34], over uncertain data. Specifically, given a preference
function specified by users, a ranked query retrieves k data ob-
jects in the database such that their scores (calculated by the given
preference function) are the highest. In fact, due to its popular-
ity, the ranked query has been used in many applications, such as
decision making, recommendation raising, and data mining tasks.
Many proposals have been made to improve the efficiency in an-
swering ranked queries. However, these approaches all assume that
the underlying database is exact (or certain). As shown in Figure
1, due to the uncertain property, each data object is now a region
rather than a precise point; moreover, the distance between any two
uncertain objects is a variable instead of a definite value. These
intrinsic differences between certain and uncertain data make pre-
vious approaches (proposed for ranked queries over certain data)
not directly applicable to the uncertain scenario. To the best of our
knowledge, no previous work has considered the ranked query un-
der the settings of the uncertain database, namely the probabilistic
ranked query (PRank). In particular, given a preference function
and an uncertain database, a PRank query retrieves k uncertain ob-

511

jects that are expected to have the highest scores.

Figure 2 presents an example of ranked query in both traditional
(containing “certain” objects) and uncertain databases. The pref-
erence function f(

−→
O) is used to calculate the score of an object−→

O (O1, O2), where O1 and O2 are two coordinates of object
−→
O .

For the sake of simplicity, we use O to denote vector (object)
−→
O

throughout this paper. In the example, we assume the score, f(O),
of object O is given by (O1 + O2), where the same weight (i.e. 1)
is assigned to both dimensions. In a general case, different weights
can be introduced by users to bias the preference of different di-
mensions. The line, f(O) = O1 +O2, in Figure 2 contains a set of
points that have the same score value (i.e. f(O)). In the traditional
database of Figure 2(a), object E has the second largest score (only
smaller than that of object F). In an uncertain database, however,
as illustrated in Figure 2(b), it is not clear any more whether ob-
ject E indeed has the second largest score, since object D is also
a potential candidate to have the second largest score. Therefore,
we have to re-define the probabilistic ranked query in the context
of the uncertain database.

(a) Traditional Database (b) Uncertain Database

Figure 2: A 2D Example of Ranked Query

In this paper, we propose an efficient and effective approach to
answer the PRank query. Specifically, we provide effective prun-
ing heuristics to significantly reduce the PRank search space, and
utilize a multidimensional index to efficiently perform the PRank
query processing.

In particular, we make the following contributions.

1. We formalize a novel query, the probabilistic ranked query
(PRank), in the context of uncertain databases.

2. We illustrate a general framework for answering the PRank
query, and propose effective pruning heuristics to help reduce
the PRank search space.

3. We seamlessly integrate the proposed pruning methods into
the query procedure, which can efficiently retrieve the PRank
query results.

4. Last but not least, we demonstrate through extensive exper-
iments the effectiveness of our pruning methods as well as
the efficiency of PRank query processing.

The rest of the paper is organized as follows. Section 2 briefly
overviews previous methods to answer ranked queries over the tra-
ditional “certain” database, as well as various query processing
over uncertain databases. Section 3 formally defines our problem of
probabilistic ranked query. Section 4 proposes the general frame-
work and pruning heuristics for answering PRank queries. Sec-
tion 5 presents the PRank query procedure to perform the PRank

search. Section 6 demonstrates the query performance of PRank
under different experimental settings. Finally, Section 7 concludes
this paper.

2. RELATED WORK
Section 2.1 briefly reviews the ranked query in traditional databases
that contain “certain” objects. Section 2.2 presents the query pro-
cessing over uncertain databases.

2.1 Ranked Queries in Traditional Databases
Ranked query has many real applications such as decision mak-
ing, recommendation raising, and data mining tasks. Specifically,
given a d-dimensional database D and a linear preference function
f(·), a ranked query retrieves k objects O ∈ D, such that their
corresponding scores, f(O), are the highest in the database, where
f(O) =

∑d
i=1 wi · Oi (note: wi is a weight indicating the user’s

preference and Oi is the i-th coordinate of object O).

Due to the importance of ranked queries, many previous work fo-
cus on efficient methods to retrieve the query answer. Specifically,
Chang et al. [7] first proposed an Onion technique to perform the
ranked search. They consider each data object in the database D as
a multidimensional point in the data space. Let CH1 be the (layer-
1) convex hull of all the points in D, CH2 be the layer-2 convex
hull of those points that are not in CH1 (i.e. D\CH1), and so on.
In the general case, CHi is the layer-i convex hull of those points
in D\(CH1 ∪ CH2 ∪ ... ∪ CHi−1). The basic idea of the Onion
technique is as follows. The top-1 object (i.e. with rank 1) is al-
ways in CH1; the second ranked object is always in CH1 ∪CH2;
the third ranked one is in CH1∪CH2∪CH3; ...; and so on. There-
fore, data objects can be pre-processed by sorting them according
to their layer numbers. Whenever a ranked query that retrieves k
top-ranked objects arrives, the Onion algorithm starts scanning the
data set from the most-exterior (layer-1) convex hull (i.e. CH1) to
layer-k convex hull (i.e. CHk). All the retrieved objects are can-
didate answers to the ranked query. A similar layer-based method,
AppRI, has recently been proposed by Xin et al. [39].

Hristidis et al. [17, 18] provided a view-based approach, PRE-
FER, to answer the ranked query. In particular, Hristidis et al. pre-
defined some preference functions fv(·), and created a material-
ized view for each function by sorting data objects in descending
order of their scores. Given a query preference function f(·), PRE-
FER first selects one of the pre-computed views, with respect to a
preference function fv(·) that is the most similar to f(·), and then
sequentially scans only a portion of this view, stopping at the wa-
termark point. Another view-based technique, LPTA, proposed by
Das et al. [13], also maintains sorted record id lists according to
the view’s preference functions.

Fagin et al. [14] proposed the threshold algorithm (TA) to answer
the top-k query, which is based on the ranked lists. Specifically,
along each dimension i, they sort the data objects in descending
order of the i-th coordinate. Thus, in a d-dimensional database,
d sorted lists can be obtained, which are accessed sequentially in a
round-robin fashion. Whenever an object is obtained from a ranked
list, TA immediately computes its score. Let T be a score thresh-
old defined as the maximum possible score for those objects that
have not been seen so far. If there exist k objects (that we have
seen so far) that have scores higher than T , then TA terminates and
reports these k objects as the query result. In the context of rela-
tional databases, many previous work also studied top-k queries,
including [5, 6, 27, 37, 20, 23, 26].

512

Tao et al. [34] aimed to improve the retrieval efficiency of ranked
queries with the help of the R-tree index [16]. In particular, they
proposed a branch-and-bound ranked search (BRS) algorithm. BRS
maintains a maximum heap to help traverse the R-tree in a best-first
manner, where the key of heap entry is defined as the maximum
possible score of data points in this entry. The query performance
of BRS is proved to be I/O optimal. Yiu et al. [42] defined top-
k spatial preference queries, which also utilize the R-tree index to
retrieve objects with high scores. Recently, there are some other
work on the top-k query or its variants, to list a few of them, [40,
24, 43, 1, 19, 3]. However, these work only handle certain data,
and cannot be directly applied to uncertain databases, which mo-
tivates us to propose a new method to answer ranked queries over
uncertain data.

2.2 Query Processing in Uncertain Databases
Query processing over uncertain data has gained much attention
due to its importance in many applications [15, 4, 9, 8, 25, 31, 32],
where real-world data inherently contain uncertainty. For example,
the Orion system [11] is a system for managing uncertain data in
applications such as sensor data monitoring. Previous studies have
considered many query types, such as range query [10, 12, 33],
nearest neighbor query [9, 10, 22], skyline query [28], and sim-
ilarity join [21], with which specific techniques are designed for
searching over uncertain databases. To the best of our knowledge,
so far no existing work has studied the ranked query in the con-
text of the uncertain database, which assumes that data objects can
have “dynamic” attributes in the data space (i.e. locating anywhere
within the uncertainty regions). Note that, although previous works
[29, 32, 41] studied top-k queries in the probabilistic database, they
consider the possible world semantics in relational databases [30,
2], whereas our work focuses on the uncertain query processing in
the spatial database.

Due to the inherent uncertainty in many real-world data from vari-
ous applications, previous methods to handle “certain” data cannot
be directly used and we have to find a solution which can efficiently
answer the PRank query in uncertain databases, which is the focus
of this paper.

3. PROBLEM DEFINITION
In this section, we formally define the problem of the probabilistic
ranked query (PRank). In particular, assume we have a static uncer-
tain database D in a d-dimensional space, in which each uncertain
object O(O1, O2, ..., Od) can locate anywhere within an (hyper-
spherical) uncertainty region UR(O) [9, 33] centered at point CO

with radius rO . Let pdf(O) be the probability density function
(pdf) with respect to the location that object O appears. We have
pdf(O) ∈ [0, 1], if O ∈ UR(O); pdf(O) = 0, otherwise. Follow-
ing the convention [10, 9, 28], we assume that all the data objects
are independent of each other in the database D. The problem of
retrieving the PRank query results is defined as follows.

DEFINITION 3.1. (Probabilistic k-Ranked Query, k-PRank) As-
sume we have an uncertain databaseD, a user-specified preference
function f and an integer k. For 1 ≤ m ≤ k, we define the m-
ranking probability Prm(O) of object O ∈ D as:

Prm(O) =

∫ s2

s1

Pr{f(O) = s} ·

∑

∀{P1,P2,...,Pm−1}∈D\{O}
(1)

m−1∏

i=1

Pr{f(Pi) ≥ s} ·
∏

∀Pj∈D\{O,P1,...,Pm−1}
Pr{f(Pj) ≤ s}

 ds.

Symbol Description
D the data set with data size |D|
d the dimensionality of the data set
UR(O) the uncertainty region of object O
k the number of uncertain objects to retrieve in the PRank query
f(O) the preference function with respect to object O
fv(O) the pre-defined preference functions to compute the lower/upper

bound probability
l the weight resolution
n the number of pre-computed probabilistic bounds with respect to a

preference function fv(·) for each uncertain object

Table 1: Meanings of Symbols Used

where s1 and s2 are the lower and upper bounds of score f(O)
for object O, respectively. A k-PRank query retrieves k uncertain
objects OR1, OR2, ..., ORm, ..., ORk (∈ D) such that object
ORm has the highest m-ranking probability Prm(ORm) among
all data objects in D.

Intuitively, Eq. (1) defines the expected probability Prm(O) (i.e.
m-ranking probability) that object O has the m-th largest score
in the database D. In particular, when the score f(O) of object
O is s ∈ [s1, s2], we consider all possible cases where there are
exactly (m − 1) objects P1, P2, ..., and Pm−1 in D\{O} having
higher scores than s (i.e. higher ranks than O), while the other
objects Pj ∈ D\{O, P1, ..., Pm−1} have lower scores than object
O. Thus, as shown in Eq. (1), for each possible combination of P1,
P2, ..., and Pm−1, we calculate the probability that O has the m-th
highest score by multiplying probabilities that objects have either
higher or lower scores than s (due to the object independence [10,
9, 28]). Finally, we integrate the probability summation for all these
combinations on s, and obtain the expected probability that O has
the m-th rank. Note that, in a special case where k = 1, Eq. (1)
can be rewritten as a much simpler form:

Prm(O) =

∫ s2

s1

Pr{f(O) = s} ·

∏

∀Pj∈D\{O}
Pr{f(Pj) ≤ s}

 ds. (2)

After defining the m-ranking probability, the problem of the PRank
query is to retrieve object OR1 that has the highest score with the
highest probability Pr1(OR1) among all the objects in D; object
OR2 that has the second highest score with the highest proba-
bility Pr2(OR2); ...; and object ORk that has the k-th highest
score with the largest probability Prk(ORk). In this paper, we
consider linear preference function f(·) and leave other interest-
ing preference functions as our future work. Specifically, we let
f(O) =

∑d
i=1 wi · Oi, where wi are weights specified by the

PRank query.

Since previous approaches are designed only for the ranked query
processing over precise objects, they are not suitable for handling
uncertain data. Thus, the only straightforward method to answer
PRank queries is probably the linear scan. That is, we sequentially
scan all the uncertain objects on disk one by one and calculate their
expected probabilities in Eq. (1) with which the PRank results are
determined. However, since the probability integration in Eq. (1) is
quite complex, this method incurs high cost in terms of both com-
putations and page accesses (i.e. I/O cost). Motivated by this, in
the sequel, we aim to find pruning heuristics in order to effectively
reduce the PRank search space and efficiently answer the query.
Table 1 summarizes the commonly-used symbols in this paper.

513

4. PROBABILISTIC RANKED QUERIES
As mentioned earlier, the linear scan of the database incurs high
computation and I/O costs. Thus, in order to speed up the proce-
dure of answering probabilistic ranked queries (PRank), we index
the uncertainty regions of data objects with a multidimensional in-
dex. Note that, since our proposed methodology is independent
of the underlying index, throughout this paper, we simply use one
of the popular indexes, R-tree [16]. In particular, R-tree recur-
sively bounds the uncertainty regions of data objects with minimum
bounding rectangles (MBRs), until one final node (i.e. the root) is
obtained.

In the sequel, Section 4.1 presents a general framework for answer-
ing the PRank query. Section 4.2 illustrates the heuristics of the
spatial pruning method, where the location distributions of uncer-
tain objects can be either known or unknown. With the knowledge
of the object distributions in their uncertainty region, Section 4.3
further presents the idea of probabilistic pruning method. Section
4.4 discusses the refinement of the PRank candidate set.

4.1 The General Framework
Figure 3 illustrates a general framework for answering the PRank
query. In particular, the framework consists of four phases, in-
dexing, pruning, bounding, and evaluation. In the first indexing
phase, given an uncertain databaseD, we construct an R-tree index
I over D to facilitate the PRank query (line 1). As a second step,
the pruning phase eliminates those uncertain objects that cannot be
the PRank result, using novel spatial and/or probabilistic pruning
method(s) that we propose (line 2), in the case where the location
distribution of each object is either known or unknown within its
uncertainty region. Next, in the retrieved candidate set, we con-
ceptually bound those objects that are involved in the probability
calculation in Eq. (1) (called bounding phase) and finally refine the
candidates by computing the actual probability (in Eq. (1)) and re-
turning answers in the evaluation phase (line 3). Below, we mainly
focus on illustrating the pruning and bounding phases.

Procedure PRank_Framework {
Input: a d-dimensional uncertain databaseD, a preference function f(·),

and an integer k
Output: k objects in the PRank query result
(1) construct a multidimensional index structure I overD // indexing phase
(2) perform spatial and/or probabilistic pruning over I // pruning phase
(3) refine candidates and return the answer set

// bounding and evaluation phases
}

Figure 3: The General Framework for PRank Queries

4.2 Spatial Pruning
In this subsection, we first propose a novel spatial pruning method
to reduce the search space for k-PRank queries (k ∈ [1, +∞)).
Specifically, our spatial pruning method aims at eliminating those
data objects that are definitely not in the k-PRank result. In fact,
the rationale behind spatial pruning is that if we can clearly know
that there are more than k data objects whose scores are higher than
that of an object O, then we can safely prune object O.

Figure 4(a) illustrates the previous example of small uncertain database
D. In fact, since each uncertain object O can only locate within its
uncertainty region UR(O), the score f(O) of O can be bounded
by an interval, say [LB_f(O), UB_f(O)]. For instance, object F
(or D) has its score within [LB_f(F), UB_f(F)] (or [LB_f(D),

(a) Lower and Upper Bounds of Scores (b) 2D Score-Object Space

Figure 4: Heuristics of Spatial Pruning Method

UB_f(D)]). Now we convert the score interval of each object into
a 2D score-object space, as shown in Figure 4(b), where the hor-
izontal axis represents objects and the vertical one corresponds to
scores. Assume we issue a 2-PRank query. From the figure, we
find that object D has the second largest lower bound LB_f(D)
of score f(D). Moreover, objects A has its upper bound score
UB_f(A) smaller than LB_f(D). In other words, there must ex-
ist at least two data objects (e.g. D and F) which have their scores
greater than A. Thus, object A can be safely pruned. Similarly,
the other two objects B and C can also be discarded. On the other
hand, for the last object E, however, since its upper bound score is
greater than LB_f(D), object E still has chance to be the query
result, and thus it cannot be pruned.

We summarize our spatial pruning method as follows.

LEMMA 4.1. (Spatial Pruning) Given an uncertain database
D, a user-specified preference function f(·) and an integer k, let
P1, P2, ..., and Pk be the k uncertain objects that we have obtained
so far. Assume LB_f(Pk) is the smallest (i.e. k-th largest) lower
bound of score among these k objects. The spatial pruning method
can safely filter object O (with score interval [LB_f(O), UB_f(O)])
out, if UB_f(O) ≤ LB_f(Pk) holds.

Proof. According to the assumption of the lemma, there exist
at least k uncertain objects such that their scores are higher than
that of object O. Thus, in Eq. (1), the probability integration (i.e.
Prm(O)) of object O is always equal to zero. Hence, object O is
guaranteed not to be in the k-PRank result, and thus can be safely
pruned. 2

Computation of Lower and Upper Score Bounds. For spatial
pruning, we need to get lower and upper score bounds for each un-
certain object. We assume that the uncertainty region UR(O) of an
uncertain object O is centered at point CO with radius rO . More-
over, a query preference function is defined as f(O) =

∑d
i=1(wi ·

Oi) (wi > 0). Our goal is to find a data point X in UR(O), such
that its score is either minimized or maximized. Formally, we want
to minimize/maximize f(X) =

∑d
i=1 wi ·Xi, under the constraint∑d

i=1(Xi−COi)
2 ≤ r2

O . We solve this optimization problem and
obtain the lower and upper bounds of score f(O), respectively.

LB_f(O) =

d∑

i=1

min

wi ·

COi ±

wi√∑d
j=1 w2

j

· rO

, (3)

514

UB_f(O) =

d∑

i=1

max

wi ·

COi ±

wi√∑d
j=1 w2

j

· rO

. (4)

4.3 Probabilistic Pruning
Up to now, we have discussed the spatial pruning method, where
the location distributions of data objects can be either known or un-
known in their uncertainty region. However, if we have such a dis-
tribution knowledge (i.e. the location distributions of data objects),
then we can further prune more uncertain objects by utilizing this
information. In this subsection, we propose a novel probabilistic
pruning method to help answer the k-PRank query.

As indicated by Definition 3.1, any object O is in the answer set
of a k-PRank query, if there exists an integer m ∈ [1, k] such that
object O has the m-th largest score in the database with the high-
est probability Prm(O) (defined in Eq. (1)). However, due to the
complex probability integration in Eq. (1), it is quite inefficient to
calculate the actual probability Prm(O) directly. Thus, instead,
the goal of our probabilistic pruning method is to find a probabil-
ity interval [LB_Prm(O), UB_Prm(O)] that tightly bounds the
complex Prm(O), and use this interval to efficiently prune data
objects. The probabilistic pruning method can be summarized as
follows.

LEMMA 4.2. (Probabilistic Pruning) Given an uncertain data-
base D, a user-specified preference function f(·) and an integer k,
let P1, P2, ..., and Pk be the k uncertain objects that we have
obtained so far. Assume LB_Pr1, LB_Pr2, ..., and LB_Prk

are the lower bound probabilities of Pr1(P1), Pr2(P2), ..., and
Prk(Pk), respectively, where Prm(Pm) is the maximum prob-
ability in the database that an object Pm has the m-th largest
score. The probabilistic pruning method can safely prune those ob-
jects O (with probability interval [LB_Prm(O), UB_Prm(O)]),
if UB_Prm(O) ≤ LB_Prm(Pm) holds, for all m ∈ [1, k].

Proof. By contradiction. Assume object O should be included in
the PRank query result. Thus, based on Definition 3.1, O must have
the m-th largest score with the highest probability in the database,
for some m ∈ [1, k]. However, according to the lemma assumption
that UB_Prm(O) ≤ LB_Prm(Pm) for all m ∈ [1, k], object O
always has the probability smaller than Pm for any m value, which
is contrary. Hence, our initial assumption is incorrect, and O can
be safely pruned. 2

Lemma 4.2 indicates that we can safely prune those objects that
have the m-th largest score in the database with low probability,
for all m ∈ [1, k] among the data sets.

Next, we address the remaining issue, that is, how to obtain lower
and upper bound probabilities, LB_Prm(O) and UB_Prm(O),
respectively, for probability Prm(O) calculated in Eq. (1). In par-
ticular, within the integration of Eq. (1), we have to enumerate all
possible combinations of {P1, P2, ..., Pm−1}, which is very com-
plex and costly. For simplicity, we denote S(N, m) as:

S(N, m) =
∑

∀{P1,P2,...,Pm−1}∈D\{O}

(
m−1∏

i=1

Pr{f(Pi) ≥ s}

·
∏

∀Pj∈D\{O,P1,...,Pm−1}
Pr{f(Pj) ≤ s}

 (5)

where N is the data size of D\{O}.

Therefore, by substitute Eq. (5) into Eq. (1), now we can rewrite
Eq. (1) as:

Prm(O) =

∫ s2

s1

Pr{f(O) = s} · S(N, m)ds. (6)

Based on Eq. (6), in order to derive lower and upper bounds for
Prm(O), it is sufficient to obtain lower and upper bounds of S(N,
m), denoted as LB_S(N, m) and UB_S(N, m), respectively. The
reason is that:

Prm(O) ≥ LB_S(N, m) ·
∫ s2

s1

Pr{f(O) = s}ds = LB_S(N, m), (7)

Prm(O) ≤ UB_S(N, m) ·
∫ s2

s1

Pr{f(O) = s}ds = UB_S(N, m), (8)

which implies that LB_S(N, m) and UB_S(N, m) can be exactly
considered as lower and upper bounds of Prm(O), respectively.

Thus, below, we only need to calculate LB_S(N, m) and UB_S(N,
m) for S(N, m), and simply let LB_Prm(O) = LB_S(N, m)
and UB_Prm(O) = UB_S(N, m).

Note that, from Eq. (5), we can convert S(N, m) into its recursive
form. Specifically, we let G(Pi) = Pr{f(Pi) ≥ s}, and assume
the data set D\{O, P1, ..., Pm−1} contain objects Pm+1, Pm+2,
..., and PN . We have the recursive function of S(N, m) as follows:

S(N, m) = S(N − 1, m) · (1−G(PN)) + S(N − 1, m− 1) ·G(PN),
S(N, 1) = (1−G(P1)) · (1−G(P2)) · ... · (1−G(PN)),
S(m− 1, m) = G(P1) ·G(P2) · ... ·G(Pm−1).

(9)

Obviously, in Eq. (9), if we can find the lower and upper bounds of
G(Pi), denoted as LB_G(Pi) and UB_G(Pi), respectively, then
LB_S(N, m) and UB_S(N, m) can be easily computed. So, in
the sequel, we focus on the problem of bounding G(Pi), utilizing
some pre-computed probabilistic information.

We illustrate our intuition of finding LB_G(Pi) and UB_G(Pi)
in an example of Figure 5. Assume we have an object Pi with
its uncertainty region UR(Pi) as shown in the figure. Given a
query preference function f(Pi) =

∑d
j=1 wj · Pij with G(Pi) =

Pr{f(Pi) ≥ s}, our problem is to compute lower and upper bounds,
LB_G(Pi) and UB_G(Pi), of G(Pi), where s ∈ [s1, s2].

The intuition of our proposed method is somewhat similar to that
of PREFER [17]. However, compared to PREFER, which is de-
signed for certain data, our proposal is more complex due to the
uncertainty. In particular, we maintain a number of pre-defined
preference functions (e.g., fv(Pi) =

∑d
j=1 vj · Pij in the exam-

ple). Similar to [17], preference functions, fv(O) =
∑d

j=1 vj ·Oj ,
are selected with a discretization of the weight domain (e.g. (0, 1])
into l parts of equal size, where l is the weight resolution. For ex-
ample, when l = 10, we have the pre-defined preference functions
fv(·), whose vj values come from 0.1, 0.2, ..., and 1.

For each fv(·), we further pre-compute n probabilistic bounds with

515

score thresholds tβ1 , tβ2 , ..., and tβn , with respect to every uncer-
tain object Pi, such that object Pi has score greater than tβi with
probability equal to βi (i ∈ [1, n]), that is, Pr{fv(Pi) ≥ tβi} =
βi ∈ [0, 1]. As illustrated in Figure 5, we have 5 bounds (i.e.
n = 5) with tβ1 = t0.1, tβ2 = t0.3, tβ3 = t0.5, tβ4 = t0.7, and
tβ5 = t0.9 (corresponding to 5 lines, respectively). For instance,
the top line represents the function fv(Pi) = t0.1 (i.e. the score of
Pi with fv(·) is equal to t0.1), where t0.1 is a score threshold such
that Pr{fv(Pi) ≥ t0.1} = 0.1. The meanings of other bounds are
similar.

Given a query preference function f(O) =
∑d

j=1 wj · Oj , we
would choose one pre-computed preference function fv(·) which
is the most similar to f(·) [17]. Specifically, we pick up the pre-
defined fv(·) with vj closest to wj in f(·) (e.g. if w1 = 0.23 and
l = 10, then we select the one with v1 = 0.2).

By utilizing the pre-computed probabilistic bounds with respect to
fv(·), we can obtain the upper bound UB_G(Pi) of G(Pi) as fol-
lows. Since s ≥ s1, it holds that G(Pi) ≤ Pr{f(Pi) ≥ s1}.
Moreover, as illustrated in Figure 5, since the line f(Pi) = s1 is
above line fv(Pi) = t0.7 within the uncertainty region UR(Pi),
we have G(Pi) ≤ Pr{f(Pi) ≥ s1} ≤ Pr{fv(Pi) ≥ t0.7} =
0.7. That is, we can set UB_G(Pi) to 0.7.

Similarly, for the lower bound LB_G(Pi) of G(Pi), due to s ≤ s2,
it holds that G(Pi) ≤ Pr{f(Pi) ≥ s1}. Furthermore, Figure 5
indicates that the line f(Pi) = s2 is below line fv(Pi) = t0.3

in UR(Pi). Therefore, we have G(Pi) ≥ Pr{f(Pi) ≥ s2} ≥
Pr{fv(Pi) ≥ t0.3} = 0.3, resulting in LB_G(Pi) = 0.3.

Figure 5: Lower and Upper Bounds of G(Pi) for Object Pi

After introducing our intuition, now we formally give the bounds
for G(Pi). Specifically, given two preference functions fv(O) =∑d

j=1 vj · Oj and f(O) =
∑d

j=1 wj · Oj , if f(Pi) = s, our goal
is to find two tight (pre-computed) probabilistic bounds, fv(P−i)
and fv(P+

i), for fv(Pi), satisfying fv(P−i) ≤ fv(Pi) ≤ fv(P+
i).

Note that, the two probabilities associated with these two bounds
exactly correspond to the lower or upper bound of G(Pi). As in the
previous example of Figure 5, the bound with score threshold t0.7

is associated with the upper bound probability 0.7.

We have:

fv(Pi) = f(Pi)−
d∑

j=1

(wj − vj) · Pij (10)

where Pi ∈ UR(Pi).

Without loss of generality, assume each coordinate Pij of Pi is
within an interval [Lj , Hj] inferred by the uncertainty region UR(Pi).
Furthermore, we can obtain a even tighter bounding interval [L′j , H

′
j]

for Pij . In particular, since it holds that f(Pi) =
∑d

j=1 wj ·Pij =
s, we consider three cases for different values of wj as follows.

• Case 1 (wj = 0). L′j = Lj and H ′
j = Hj .

•Case 2 (wj > 0). Since it holds that Pij =
f(Pi)−

∑d
l=1∧l 6=j wl·Pil

wj
,

we have
f(Pi)−

∑d
l=1∧l6=j wl·Hl

wj
≤ Pij ≤ f(Pi)−

∑d
l=1∧l6=j wl·Ll

wj
.

Thus, we have L′j = max{Lj ,
f(Pi)−

∑d
l=1∧l 6=j wl·Hl

wj
} and H ′

j =

min{Hj ,
f(Pi)−

∑d
l=1∧l6=j wl·Ll

wj
}.

• Case 3 (wj < 0). Similarly, we have
f(Pi)−

∑d
l=1∧l 6=j wl·Ll

wj
≤

Pij ≤ f(Pi)−
∑d

l=1∧l6=j wl·Hl

wj
. Thus, we obtain L′j = max{Lj ,

f(Pi)−
∑d

l=1∧l6=j wl·Ll

wj
} and H ′

j = min{Hj ,
f(Pi)−

∑d
l=1∧l6=j wl·Hl

wj
}.

By substituting either L′j or H ′
j into Eq. (10), we can obtain the

lower and upper bounds (i.e. fv(P−i) and fv(P+
i), respectively)

for fv(Pi). In particular, when wj ≥ vj , we let Pij = L′j in order
to obtain fv(P+

i) and let Pij = H ′
j to get fv(P−i). In contrast,

when wj < vj , we set Pij = H ′
j to obtain fv(P+

i) and Pij = L′j
to get fv(P−i).

Therefore, after obtaining fv(P−i) and fv(P+
i), we can find two

pre-computed probabilistic bounds, and in turn obtain the associ-
ated probabilities (i.e. either LB_G(Pi) or UB_G(Pi)). With
LB_G(Pi) and UB_G(Pi), we can compute the bound of S(N, m)
by recursive function in Eq. (9), which is exactly the bound for
Prm(O). Note that, if we initially set m to k in Eq. (9), during the
calculation of lower/upper bound for S(N, k), we can obtain some
side products from the intermediate results, that is, the lower/upper
bound of S(N, m) for any m ∈ [1, k]. Therefore, some redundant
calculations with the same values of N and m can be significantly
saved.

Finally, we present an optimization method for computing the lower
/ upper bound for S(N, m) (i.e. that for Prm(O)). Recall in
Eq. (9), that the recursion depth, N , is large, where N is the size of
D\{O}. However, one interesting observation is that, as long as it
holds that UB_f(PN) ≤ s1 = LB_f(O), we have G(PN) = 0,
and thus Eq. (9) can be simplified as S(N, m) = S(N − 1, m). In
other words, object PN would not affect the calculation of proba-
bility S(N, m) if its score interval is entirely below that of object
O. In this way, we can efficiently calculate S(N, m) with only a
small subset of objects in the database.

In summary, in order to calculate the lower/upper bound of proba-
bility Prm(O) in Eq. (1), we can offline select some preference
function fv(·), with each of which n probabilistic bounds with
score thresholds tβ1 , tβ2 , ..., and tβn are pre-computed for each
uncertain object O (like the one in Figure 5), where Pr{fv(O) ≥
tβi} = βi. Then, upon the query’s arrival, we compute LB_G(Pi)
and UB_G(Pi) using these bounds as discussed above, and even-
tually obtain LB_S(N, m) and UB_S(N, m) (i.e. LB_Prm(O)
and UB_Prm(O), respectively), which can be used in the proba-
bilistic pruning method in Lemma 4.2.

516

4.4 Final Refinement
In previous subsections, we illustrate details of our pruning meth-
ods, including both spatial and probabilistic pruning. After the
pruning process, the remaining data objects that cannot be pruned
are called the candidates of the k-PRank query. Since our pruning
methods can guarantee that all the discarded objects are not query
results, the candidate set after pruning would contain all the query
answers. However, false positives still exist in the candidate set (i.e.
those objects that should not be query answers but are in the candi-
date set). Therefore, we have to refine the candidate set in order to
obtain the actual query results. In particular, we need to compute
the actual probability (in Eq. (1) or equivalently Eq. (6)) that each
candidate is in the PRank result and remove those false positives.

Similar to the optimization method (mentioned in the last paragraph
of Section 4.3), from Eq. (9), for any s ∈ [s1, s2], as long as object
PN has its upper bound of score, UB_f(PN), never greater than
s1, object PN would not affect the calculation of S(N, m) at all
(since S(N, m) = S(N − 1, m)). Thus, we only need to calculate
S(N, m) (or Prm(O)) involving those objects that have their score
upper bounds greater than s1 (which are the same objects as those
during probabilistic pruning to compute bounds).

Therefore, for the candidate set obtained after the spatial pruning,
we can calculate the smallest score lower bound (e.g. s1) among all
candidates. Then, we further retrieve those objects that have their
score upper bounds greater than s1, which are used first for prob-
abilistic pruning and then the calculation of the actual probability
(in Eq. (1) or Eq. (6)). This conceptual association of objects with
each candidate to compute the probability (or bounds) is called the
bounding phase, as mentioned earlier in our PRank framework (in
Section 4.1).

For those remaining candidates that cannot be pruned, our final
evaluation phase would calculate the actual probability in Eq. (1)
(or Eq. (6)), applying the numerical method, similar to that used in
[10, 9]. Since objects that are involved in the probability calcula-
tion are bounded by our optimization method, the resulting compu-
tation cost is expected to be much smaller, compared to the cost in
the entire database using the original definition.

5. QUERY PROCESSING
In this section, we seamlessly integrate the pruning heuristics (i.e.
spatial and probabilistic pruning) into our PRank query procedure.
As mentioned earlier, since the only feasible method so far for an-
swering PRank queries is the linear scan, which however incurs
high cost, we use an R-tree [16] to index all the uncertain ob-
jects in the database and enhance the query efficiency. In partic-
ular, for each uncertain object O, we insert its uncertainty region
UR(O) into the R-tree I, on which the PRank query is processed.
Note that, in order to apply the probabilistic pruning method, we
need to choose a number of preference functions that cover the
whole space of possible queries, which has been addressed in PRE-
FER [17]. Moreover, in the case of space limitations, the selec-
tion of several best preference functions under the constraint can
also refer to [17], which is however not the focus of this paper.
With every pre-defined preference function fv(·), we pre-compute
n probabilistic bounds for each uncertain object O, which can help
obtain the bounds LB_G(Pi) and UB_G(Pi), and thus in turn
LB_S(N, m) and UB_S(N, m).

In the sequel, Section 5.1 first illustrates how to prune intermediate
entries in the R-tree index with the spatial pruning. Then, Section

5.2 presents the details of our PRank query procedure over the R-
tree.

5.1 Pruning Intermediate Entries
In this subsection, we discuss the heuristics of pruning intermediate
entries in the R-tree. Obviously, an intermediate entry of R-tree can
be safely pruned if and only if all the uncertain objects under this
entry can be discarded. In the context of our k-PRank query, we
can safely prune an intermediate entry if the maximum score in
this entry is still smaller than that of at least k uncertain objects.
In particular, we summarize the rationale of pruning intermediate
entries in the following lemma.

LEMMA 5.1. (Spatial Pruning of Intermediate Entries) Assume
we have an R-tree index I constructed over uncertain database D,
a user-specified preference function f(·) and an integer k. Let P1,
P2, ..., and Pk be any k uncertain objects that we have obtained so
far, and e be an intermediate entry in I with the maximum possible
score UB_f(e) (i.e. max{f(x)|∀x ∈ e}). Without loss of gen-
erality, assume LB_f(Pk) is the smallest (i.e. k-th largest) lower
bound of score among these k objects. Thus, entry e can be safely
pruned if it holds that UB_f(e) ≤ LB_f(Pk).

Proof. Similar to Lemma 4.1, since the largest possible score,
UB_f(e), for any point in intermediate entry e is never greater
than LB_f(Pk), it indicates that at least k objects P1, P2, ..., and
Pk have scores higher than any object in e. Thus, it is guaranteed
that entry e can be safely pruned. 2

According to Lemma 5.1, given an intermediate entry e, we only
need to calculate the maximum possible scores UB_f(e) in this
entry with respect to the preference function f(·), and compare
it with LB_f(Pk). Note that, in the lemma, P1, P2, ..., and Pk

can be arbitrary k uncertain objects that we have accessed so far.
Obviously, from the pruning condition UB_f(e) ≤ LB_f(Pk),
the larger LB_f(Pk) is, the higher the pruning ability is. Thus, we
can set LB_f(Pk) to the k-th largest lower bound of scores, for all
the uncertain objects that we have obtained so far.

Furthermore, in order to compute the maximum score of an entry e,
with respect to preference function f(·), we can use a hypersphere
to bound the MBR of e, and then calculate the maximum possible
score within the hypersphere. Specifically, let Ce be the center
point of e, and re be the radius of the hypersphere. Similar to the
computation of the score upper bound for an uncertainty region
UR(O), it is sufficient to replace COi and rO in Eq. (4) with Ce

and re, respectively, in order to obtain UB_f(e).

5.2 Query Procedure
After discussing the heuristics of pruning intermediate entries (spa-
tial pruning) in the R-tree, in this subsection, we continue to illus-
trate the PRank query processing over the R-tree index in details.

In particular, Figure 6 presents the detailed query procedure, namely
PRank_Processing, for PRank. Procedure PRank_Processing
takes three parameters as input (i.e. an R-tree index I over uncer-
tain database D, a query preference function f(·), and an integer
k), and outputs k uncertain objects that are in the k-PRank query
result.

In order to facilitate the PRank query processing, we maintain a
maximum heap H accepting entries in the form (e, key), where e

517

Procedure PRank_Processing {
Input: R-tree I constructed overD, preference function f(·), integer k
Output: k objects in the PRank query result
(1) initialize a max-heapH accepting entries in the form (e, key)
(2) Scand = Φ, Srfn = Φ, kLB_score = −∞;
(3) insert (root(I), 0) into heapH
(4) whileH is not empty
(5) (e, key) = de-heapH
(6) if key ≤ kLB_score, then break; // Lemma 5.1
(7) if e is a leaf node
(8) for each uncertain object O in e (sorted in descending order of LB_f(O))
(9) if |Scand| < k
(10) Scand = Scand ∪ {O}
(11) if LB_f(O) > kLB_score
(12) kLB_score = LB_f(O)
(13) else // |Scand| ≥ k
(14) if UB_f(O) ≥ kLB_score // spatial pruning, Lemma 4.1
(15) if LB_f(O) > kLB_score
(16) kLB_score = LB_f(O) // update kLB_score
(17) let O′ be uncertain object(s) in Scand

satisfying UB_f(O′) < kLB_score
(18) move object(s) O′ from Scand to Srfn

(19) Scand = Scand ∪ {O}
(20) else // intermediate node
(21) for each entry ei in e
(22) if UB_f(ei) > kLB_score // Lemma 5.1
(23) insert (ei, UB_f(ei)) into heapH
(24) else
(25) Srfn = Srfn ∪ {ei}
(26) rlt = Probabilistic_Pruning (Scand, Srfn, f(·), k);
(27) rlt = Evaluation (rlt, Scand, Srfn, f(·), k);
(28) return rlt

}

Figure 6: PRank Query Processing

is either a data object or an MBR node, and key is defined as the
maximum score UB_f(e) of any point in e, with respect to pref-
erence function f(·) (line 1). Moreover, we also keep a candidate
set Scand containing candidates of the k-PRank query, and a re-
finement set, Srfn, of objects/MBRs that are involved in the prob-
abilistic pruning and/or the final evaluation phase. Furthermore, a
parameter kLB_score is initialized by negative infinity, represent-
ing the k-th largest score lower bound, for all the objects that have
been seen so far (line 2).

Our query procedure PRank_Processing traverses the R-tree in-
dex by accessing heap entries in descending order of their keys.
Specifically, we first insert the root root(I) of R-tree I into heap
H (line 3). Every time we pop out an entry (e, key) from heap H
with the largest key (lines 4-5). Recall that, the key, key, is de-
fined as the maximum possible score of an object or any point in
an MBR node. Thus, if it holds that largest key, key, in heap H
is never greater than kLB_score (i.e. the k-th largest score lower
bound that we have seen so far), then all the remaining entries in
heap H can be safely pruned and the traversal of R-tree can be ter-
minated (line 6); otherwise, we need to check entry e as shown
below.

When the entry e we obtain from heap H is a leaf node, we ver-
ify uncertain objects O in e in the descending order of f(O) (for
the sake of achieving higher pruning power, lines 7-8). In the
case where the number of candidates in Scand is less than k, we
simply add object O to Scand and moreover update the variable
kLB_score (lines 9-12). Furthermore, if the size of candidate set
is greater than or equal to k, then we perform the spatial prun-
ing as given in Lemma 4.1 (line 14). That is, if the upper bound
of score for object O is smaller than kLB_score, then there ex-
ist at least k objects in Scand such that their scores are higher
than f(O), and object O can thus be safely pruned; otherwise
(i.e. UB_f(O) ≥ kLB_score), we have to update the variable

kLB_score (lines 14-18) as well as the candidate set Scand (line
19). In particular, if it holds that LB_f(O) > kLB_score, then
we can obtain an even higher kLB_score, and meanwhile remove
those object(s) O′ ∈ Scand such that UB_f(O′) is smaller than
the newly updated kLB_score (lines 15-18). Note that, although
O′ is guaranteed not to be the PRank result by our pruning method,
it may still be needed for calculating the probability in Eq. (1) dur-
ing the probabilistic pruning or evaluation phase. Therefore, we do
not discard object(s) O′, but insert it (them) into the refinement set
Srfn (line 18).

When the entry e is an intermediate node in the R-tree, we check
the pruning condition for each entry ei in e, applying Lemma 5.1
(lines 20-22). Specifically, for each entry ei in e, in case the max-
imum possible score UB_f(ei) in ei is greater than kLB_score,
we have to insert ei into heap H, in the form (ei, UB_f(ei)), for
later access (since there may exist PRank answers in ei, lines 22-
23); otherwise, we can safely prune entry ei. However, similar to
the case of data object O′ (line 17), we add ei to the refinement
set Srfn (lines 24-25), since objects in ei may affect the calcula-
tion of probability for candidates during the probabilistic pruning
or evaluation phase.

Next, we discuss the procedure Probabilistic_Pruning invoked by
line 26 in procedure PRank_Processing. After the spatial prun-
ing, we obtain a set, Scand, of PRank candidates. Moreover, the re-
finement set Srfn contains objects/MBRs that may help prune/refine
these candidates (note that Srfn does not contain any PRank candi-
dates). Since the probability integration in Eq. (1) is very complex
and costly, we perform the probabilistic pruning to further reduce
the candidate size.

The basic rationale of procedure Probabilistic_Pruning is as fol-
lows. First, we retrieve those data objects in Srfn that may affect
the calculation of the lower/upper bound probability for PRank can-
didates in Scand (according to the optimization method mentioned
in Section 4.3). As a second step, we compute the lower/upper
bound of probability for each candidate and apply the probabilistic
pruning in Lemma 4.2.

In particular, Figure 7 shows the details of our pruning procedure
over the candidate set Scand. The procedure Probabilistic_Pruning
first finds the smallest score lower bound, min_score, within the
candidate set Scand (line 1). Then, we search over the two sets
Scand and Srfn, and retrieve all the data objects O′ such that
UR_f(O′) ≥ min_score (for any intermediate node e in Srfn,
its subtrees are traversed in a best-first manner), which are inserted
into an initially empty set R (lines 3-7). As mentioned in the
last paragraph of Section 4.3 (i.e. the optimization method), only
those objects in R are necessary to be checked for the probabil-
ity calculation of each candidate. After that, for each candidate
O ∈ Scand, we compute the lower and upper bounds of Prm(O)
(for all m ∈ [1, k]) only involving objects in R (lines 8-9). Fi-
nally, we apply the probabilistic pruning method in Lemma 4.2
to prune candidates in Scand, utilizing the computed lower/upper
bound (line 10). The remaining candidates that cannot be pruned
are returned as output (line 11).

In line 27 of procedure PRank_Processing, after the probabilistic
pruning, we further refine the returned candidates (in the set rlt)
in procedure Evaluation. Specifically, for each m ∈ [1, k], we
compute the actual probability of each candidate that has the m-
th largest score (Eq. (1) or equivalently Eq. (6)), and select the one

518

Procedure Probabilistic_Pruning {
Input: candidate set Scand, refinement set Srfn, preference function f(·),

integer k
Output: candidate set rlt for the PRank query
(1) let min_score be the minimum score lower bound LB_f(O) for all the

candidates O in Scand

(2) R = Φ;
(3) for each object/entry e in Scand ∪ Srfn

(4) if e is object and UB_f(e) ≥ min_score
(5) R = R ∪ {e}
(6) else // e is a node
(7) add all the objects O′ under e to R satisfying UB_f(O′) ≥ min_score
(8) for each candidate O ∈ Scand

(9) calculate the upper and lower bounds of Prm(O) over R
// Section 4.3

(10) use the lower/upper bound of Prm(O) to prune candidates in Scand

// Lemma 4.2
(11) return the remaining candidates

}

Figure 7: Procedure for Probabilistic Pruning

with the highest probability as the final result (i.e. PRankm). Note
that, similar to the probabilistic pruning, the calculation of Eq. (1)
or Eq. (6) only needs to involve those objects in R, as computed in
procedure Probabilistic_Pruning, compared to that over the entire
database in the original definition.

In summary, since our query procedure PRank_Processing tra-
verses the R-tree index in a best-first manner, in which each in-
termediate node is accessed at most once, our query processing is
efficient. Moreover, since we apply both spatial and probabilis-
tic pruning methods, the resulting number of candidates should be
small, which will be confirmed later in our experiments.

6. EXPERIMENTAL EVALUATION
In this section, we empirically evaluate the query performance of
our proposed approach to answer the probabilistic ranked query
(PRank). In particular, since there are no real data sets available,
we synthetically generate uncertain objects in a d-dimensional data
space U = [0, 1]d, like the ones in [9, 12, 33]. Specifically, for
each uncertain object O, we first decide the center location CO

of its uncertainty region UR(O), and then randomly produce the
radius rO of UR(O) within [rmin, rmax]. In order to simulate
the distribution of object position, for each uncertain object O, we
generate 100 samples contained in its uncertainty region UR(O),
following either Uniform or Gaussian distribution (with mean COi

and variance 2rO/5 along the i-th dimension). For brevity, we de-
note lU (lS) as the data set with center locations CO of Uniform
(Skew with skewness 0.8) distribution, rU (rG) as that with radius
rO ∈ [rmin, rmax] of Uniform (Gaussian, with mean (rmin +
rmax)/2 and variance (rmax−rmin)/5) distribution, and pU (pG)
as that with object position (in the uncertainty region) of Uniform
(Gaussian) distribution. Thus, with different combinations, we
can obtain eight types of synthetic data sets, lUrUpU , lUrUpG,
lUrGpU , lUrGpG; lSrUpU , lSrUpG, lSrGpU , and lSrGpG.
Note that, for data sets with other distribution parameters (e.g. mean
and variance for Gaussian, or skewness for Skew), the experimental
results are similar, and we would not present all of them here. Af-
ter generating data sets, we index them with R-tree [16], on which
PRank queries can be processed, where the page size is set to 1KB.

In order to evaluate the PRank query, we randomly generate 100
query preference functions, f(O) =

∑d
i=1 wi ·Oi, as follows. For

each weight wi (1 ≤ i ≤ d), we randomly pick up a value within
domain (0, 1], following specific (Uniform, Gaussian, or Skew) dis-
tribution (note that the results with negative weights are similar
and thus omitted due to space limit). To enable the probabilis-

Parameter Values
[rmin, rmax] [0, 0.01], [0, 0.02], [0, 0.03], [0, 0.04], [0, 0.05]
k 2, 4, 6, 8, 10, 20
d 2, 3, 4, 5
N 10K, 20K, 30K, 40K, 50K, 100K
l 5, 8, 10, 20, 40
n 5, 8, 10, 15, 20
weight distribution Uniform, Gaussian, Skew

Table 2: The Parameter Settings

tic pruning method, we pre-select preference functions, fv(O) =∑d
i=1 vi · Oi (w ∈ (0, 1]), with the weight resolution l [17]. Fur-

thermore, with respect to any pre-defined preference function fv(·),
for each uncertain object O, we pre-compute n probabilistic bounds
as discussed in Section 4.3. That is, we obtain n score thresholds
tβ1 , tβ2 , ..., tβn , such that Pr{fv(O) ≥ tβi} = βi, for 1 ≤ i ≤ n.
For the sake of simplicity, here we let βi = i/n.

Throughout our experiments, we measure the wall clock time and
the number of PRank candidates to be refined (in the evaluation
phase), in order to study the efficiency and effectiveness of our
PRank query procedure as well as the pruning methods. In partic-
ular, the wall clock time is the time cost of retrieving PRank can-
didates before the final evaluation phase, where we incorporate the
cost of each page access (i.e. one I/O) by penalizing 10ms [35, 36].
Thus, the wall clock time includes both the CPU time and I/O cost.
Moreover, the number of PRank candidates to be refined is calcu-
lated by summing up the number of candidates with rank m, for all
m ∈ [1, k] (i.e., each object might be counted multiple times).

To the best of our knowledge, no previous work on PRank problem
has been studied in the context of uncertain databases. Therefore,
the most naïve method is the linear scan, which sequentially scans
the entire uncertain database object by object on disk and finds out
the answer to the PRank query. To give an example, assume an
uncertain database contains 30K 3D data objects. If the page size
is 1KB and a floating number takes up 4 bytes, the I/O cost of
even one linear scan requires about 3.6 (= 10ms

1000ms/s
× 30K×3×4

1K
)

seconds which is much greater than that of our method as shown
below. In the sequel, we also illustrate the speed-up ratio of our
approach compared with the linear scan, which is defined as the
required wall clock time of the linear scan (underestimated by only
considering the I/O cost) divided by that of our method. As we will
see, our method can outperform the linear scan in terms of the wall
clock time by orders of magnitude.

In each of the subsequent experiments, we vary the value of one pa-
rameter while fixing others to their default values. Table 2 summa-
rizes the parameter settings, where the default values of parameters
are in bold font. All our experiments are conducted on a Pentium
IV 3.2GHz PC with 1G memory, and the reported results are the
average of 100 queries.

6.1 Performance vs. Radius Range [rmin, rmax]
In the first set of experiments, we evaluate the efficiency and effec-
tiveness of our proposed PRank query procedure using data sets
that have different radius ranges [rmin, rmax] for uncertain ob-
jects. In particular, we test the wall clock time and the number of
PRank candidates to be refined over eight types of data sets, with
ranges [rmin, rmax] set to [0, 0.01], [0, 0.02], [0, 0.03], [0, 0.04],
and [0, 0.05], where other parameters are set to their default values
in Table 2 (i.e. the data size N is 30K, the dimensionality d is 3, the
number, k, of query results (for k-PRank queries) is 6, the weight

519

(a) lU (b) lS

Figure 8: Performance vs. Radius Range [rmin, rmax]

resolution, l, is 10 and the number of probabilistic bounds, n, is set
to 10). Furthermore, the query preference function is generated by
selecting a random value wi ∈ (0, 1] as weight following Uniform
distribution. We will show later the effect of parameters l and n on
the query performance, as well as other weight distributions (e.g.
Gaussian and Skew).

Figure 8 illustrates the experimental results by varying the radius
range of 8 data sets. Figure 8(a) shows the results of 4 lU data sets
and Figure 8(b) presents that of the remaining 4 lS ones. Note that,
in all figures of experimental results, the numbers without brackets
over columns indicate the numbers of PRank candidates to be re-
fined (i.e. calculating the actual probability integration in Eq. (1))
in the evaluation phase, whereas those in brackets over columns are
the speed-up ratio of our methods, compared with the linear scan
(i.e. underestimated by only considering the I/O cost).

From figures, we find that, when the radius range [rmin, rmax]
varies from [0, 0.01] to [0, 0.05], the wall clock time of retrieving
the PRank candidates increases. This is reasonable, since larger
uncertainty regions of data objects would make the ranks of un-
certain objects much more indistinguishable. Thus, more PRank
candidates will be included in the candidate set, as confirmed by
numbers in figures, which makes the pruning process more costly.
In general, however, the wall clock time of our PRank procedure
is very efficient (less than 0.44 second for lU data sets and 0.12
second for lS data sets). Observe that, lS data sets require much
less processing time than lU . This is because most data in lS data
sets tend to have small values along each dimension (i.e. locating
towards the origin), and only a few (sparse) data locate in spaces
with high scores, which thus has much less PRank candidates to
check the pruning conditions, compared with lU data sets. It is
interesting to see the same phenomena in all the subsequent exper-
iments. Furthermore, for all the data sets, the number of PRank
candidates to be refined remains small, compared with the total
data size 30K; moreover, the speed-up ratio is significant, indi-
cating that our method can outperform the linear scan by orders of
magnitude.

6.2 Performance vs. k
As a second step, we evaluate the query performance of our pro-
posed approach, with respect to different k values specified by
PRank queries. In particular, Figure 9 illustrates the wall clock time
of PRank query procedure, over eight types of data sets, by vary-
ing k from 2 to 20, where other parameters are set to their default
values.

From the experimental results, the pruning efficiency of our pro-
posed method is not very sensitive to the k value, in terms of the
wall clock time. As we can see, the required wall clock time is

(a) lU (b) lS

Figure 9: Performance vs. k

(a) lU (b) lS

Figure 10: Performance vs. Dimensionality d

merely less than 0.18 (0.11) second for lU (lS) data sets in Figure
9(a) (Figure 9(b)). When k grows larger, the number of resulting
PRank candidates to be refined increases (since we maintain can-
didates with rank m for each m from 1 to k). Moreover, from the
speed-up ratio in figures, we find that our approach can perform
orders of magnitude better than the linear scan.

6.3 Performance vs. Dimensionality d
Next, we study the effect of dimensionality d for data sets on the
PRank query performance. Specifically, we present the experimen-
tal results over eight data sets in Figure 10, where other parameters
are set to their default values.

Note that, since the data size N in our experiments is fixed to 30K,
data in 2D space will be much more dense than that in higher di-
mensional (e.g. 5D) space. Thus, the number of resulting PRank
candidates would decrease with the increasing dimensionality, as
confirmed by the results in figures. Moreover, when d = 2, data set
lUrGpG (in Figure 10(a)) incurs higher wall clock time than that
of 3D case, due to the high cost of retrieving more candidates in the
2D space.

For the reason of the dimensionality problem with multidimen-
sional index (e.g. the query efficiency of R-tree [16] degrades with
the increasing dimensionality [38]), the wall clock time over eight
data sets basically increases when the dimensionality varies from 2
to 5. However, the required time is still very low, that is, at most 0.7
and 0.3 seconds for lU and lS data sets, respectively. Compared
with the linear scan, the speed-up ratio is by order(s) of magnitude.

6.4 Performance vs. Data Size N
In this subsection, we test the scalability of our proposed PRank
query procedure, as a function of the data size, N . Specifically,
we vary the data size N from 10K to 100K, and test the query
performance over eight data sets, where other parameters are set
to their default values. From figures, we find that the wall clock
time increases when the data size N becomes large. The reason

520

(a) lU (b) lS

Figure 11: Performance vs. Data Size N

(a) lU (b) lS

Figure 12: Performance vs. Weight Resolution l

is that, large data size results in high density of data objects in the
space, which incurs high cost to filter out unqualified objects. The
total required wall clock time, however, is less than 0.3 and 0.15
for lU and lS data sets, as illustrated in Figures 11(a) and 11(b),
respectively.

In general, the number of PRank candidates increases smoothly
with respect to the increasing data size; moreover, the speed-up
ratio of our method compared with the linear scan also increases
when N grows. These facts indicate the good scalability of our
proposed method in answering PRank queries, with respect to the
data size N .

6.5 Performance vs. Weight Resolution l
In this subsection, we study the effect of weight resolution l on the
PRank query performance. Recall that, we divide the weight do-
main (0, 1] into l intervals of equal size, and preference functions
fv(·) are pre-selected accordingly [17]. Then, given a query prefer-
ence function f(·), we always choose one pre-computed preference
function fv(·) with weights the most similar to that of f(·). Intu-
itively, the larger l is, the more similar the chosen fv(·) is to f(·).

Figure 12 illustrates the experimental results by varying the weight
resolution l from 5 to 40 over 8 data sets, where other parameters
are set to their default values. As expected, for some data sets, the
number of PRank candidates to be refined decreases when l grows.
However, the increasing trend is not very fast with respect to l,
which indicates that our query procedure is not sensitive to l very
much.

With the increasing l values, the wall clock time of all the 8 data
sets remains approximately the same, which is only less than 0.18
(0.11) second for lU (lS) data sets in Figure 12(a) (Figure 12(b)).
Similarly, the speed-up ratio is nearly constant with respect to l,
which shows the good performance of our method compared with
the linear scan.

(a) lU (b) lS

Figure 13: Performance vs. The Number of Probabilistic Bounds n

(a) lU (b) lS

Figure 14: Performance vs. Weight Distribution

6.6 Performance vs. Number of Probabilistic
Bounds n

In this set of experiments, we test the PRank query performance of
our approach over 8 data sets in Figure 13, by varying the number
of probabilistic bounds, n, from 5 to 20, where other parameters
are set to their default values.

Recall that, in order to perform the probabilistic pruning method,
we need to pre-compute n probabilistic bounds so that the lower /up-
per bounds of probabilities can be calculated. Intuitively, a larger
number of pre-computed bounds would give tighter bounds and
higher pruning ability. From figures, we can see that, when n in-
creases, some data sets indeed show slightly fewer PRank candi-
dates, which result in lower refinement cost (for other data sets,
the decrease is not that significant). Moreover, the wall clock time
and speed-up ratio are not very sensitive to the n values. Note that,
since a large n would also lead to large space to store pre-computed
information, the experimental results shown in Figure 13 indicate
that we can choose a small n value (e.g. 10) to make a trade-off
between space and query efficiency.

6.7 Performance vs. Weight Distribution
Finally, we present the query performance of our proposed ap-
proach with different weight distributions. Apart from the Uniform
weight distribution that we used in previous experiments, we also
compare it with Gaussian and Skew weight distributions. In par-
ticular, Figure 14 illustrates the wall clock time of PRank query
processing over 8 types of data sets, using Uniform, Gaussian, and
Skew weight distributions, where other parameters are set to their
default values.

From figures, we can see that our method is efficient with different
weight distributions, that is, less than 0.5 and 0.2 seconds are re-
quired for lU and lS data sets, as shown in Figures 14(a) and 14(b),
respectively. The results with Skew distribution require more wall
clock time (thus lower speed-up ratio), since more PRank candi-
dates are retrieved from the index.

521

7. CONCLUSIONS
Due to the inherent uncertainty of data in many real-world applica-
tions, query processing over these uncertain data becomes more and
more important. In the traditional “certain” database, the ranked
query has many applications like decision making, recommenda-
tion raising, and data mining tasks. Previous query processing
methods, however, are inapplicable to the handle uncertain data.
Motivated by this, in this paper, we propose a formal definition of
the ranked query over uncertain databases, namely the probabilistic
ranked query (PRank), and design two effective pruning methods,
spatial and probabilistic, to facilitate reducing the PRank search
space. Moreover, we seamlessly integrate these two pruning heuris-
tics into our PRank query procedure. Extensive experiments have
verified the efficiency and effectiveness of our proposed approach,
in terms of the wall clock time and the number of PRank candidates
to be refined. Since our work assumes linear preference functions,
in future, it would be interesting to consider arbitrary monotonic
functions. Furthermore, another interesting direction is to study
discrete PRank queries with uncertain categorical data.

8. ACKNOWLEDGMENT
Funding for this work was provided by Hong Kong RGC Grant No.
611907, National Grand Fundamental Research 973 Program of
China under Grant No. 2006CB303000, and the NSFC Key Project
Grant No. 60533110.

9. REFERENCES
[1] R. Akbarinia, E. Pacitti, and P. Valduriez. Best position algorithms

for top-k queries. In VLDB, pages 495–506, 2007.
[2] L. Antova, C. Koch, and D. Olteanu. Query language support for

incomplete information in the MayBMS system. In VLDB, pages
1422–1425, 2007.

[3] B. Arai, G. Das, D. Gunopulos, and N. Koudas. Anytime measures
for top-k algorithms. In VLDB, pages 914–925, 2007.

[4] C. Böhm, A. Pryakhin, and M. Schubert. The Gauss-tree: efficient
object identification in databases of probabilistic feature vectors. In
ICDE, page 9, 2006.

[5] N. Bruno, S. Chaudhuri, and L. Gravano. Top-k selection queries
over relational databases: Mapping strategies and performance
evaluation. TODS, 2002.

[6] K. C.-C. Chang and S.-W. Hwang. Minimal probing: supporting
expensive predicates for top-k queries. In SIGMOD, pages 346–357,
2002.

[7] Y.-C. Chang, L. D. Bergman, V. Castelli, C.-S. Li, M.-L. Lo, and
J. R. Smith. The Onion technique: indexing for linear optimization
queries. In SIGMOD, pages 391–402, 2000.

[8] L. Chen, M. T. Özsu, and V. Oria. Robust and fast similarity search
for moving object trajectories. In SIGMOD, pages 491–502, 2005.

[9] R. Cheng, D. Kalashnikov, and S. Prabhakar. Querying imprecise
data in moving object environments. In TKDE, volume 16, pages
1112–1127, 2004.

[10] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluating
probabilistic queries over imprecise data. In SIGMOD, pages
551–562, 2003.

[11] R. Cheng, S. Singh, and S. Prabhakar. U-DBMS: A database system
for managing constantly-evolving data. In VLDB, pages 1271–1274,
2005.

[12] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. Vitter. Efficient
indexing methods for probabilistic threshold queries over uncertain
data. In VLDB, pages 876–887, 2004.

[13] G. Das, D. Gunopulos, N. Koudas, and D. Tsirogiannis. Answering
top-k queries using views. In VLDB, 2006.

[14] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms
for middleware. In PODS, pages 102–113, 2001.

[15] A. Faradjian, J. Gehrke, and P. Bonnet. Gadt: A probability space

ADT for representing and querying the physical world. In ICDE,
pages 201–211, 2002.

[16] A. Guttman. R-trees: a dynamic index structure for spatial searching.
In SIGMOD, pages 47–57, 1984.

[17] V. Hristidis, N. Koudas, and Y. Papakonstantinou. PREFER: A
system for the efficient execution of multi-parametric ranked queries.
In SIGMOD, 2001.

[18] V. Hristidis and Y. Papakonstantinou. Algorithms and applications
for answering ranked queries using ranked views. VLDBJ,
13(1):49–70, 2004.

[19] M. Hua, J. Pei, A. W.-C. Fu, X. Lin, and H.-F. Leung. Efficiently
answering top-k typicality queries on large databases. In VLDB,
pages 890–901, 2007.

[20] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting top-k join
queries in relational databases. VLDBJ, 13(3):207–221, 2004.

[21] H.-P. Kriegel, P. Kunath, M. Pfeifle, and M. Renz. Probabilistic
similarity join on uncertain data. In DASFAA, 2006.

[22] H.-P. Kriegel, P. Kunath, and M. Renz. Probabilistic nearest-neighbor
query on uncertain objects. In DASFAA, 2007.

[23] C. Li, K. C.-C. Chang, I. F. Ilyas, and S. Song. RankSQL: Query
algebra and optimization for relational top-k queries. In SIGMOD,
pages 131–142, 2005.

[24] C. Li, M. Wang, L. Lim, H. Wang, and K. C.-C. Chang. Supporting
ranking and clustering as generalized order-by and group-by. In
SIGMOD, pages 127–138, 2007.

[25] V. Ljosa and A. K. Singh. APLA: indexing arbitrary probability
distributions. In ICDE, pages 247–258, 2007.

[26] Y. Luo, X. Lin, W. Wang, and X. Zhou. Spark: Top-k keyword query
in relational databases. In SIGMOD, pages 115–126, 2007.

[27] A. Marian, N. Bruno, and L. Gravano. Evaluating top-k queries over
web-accessible databases. TODS, 29(2):319–362, 2004.

[28] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic skylines on
uncertain data. In VLDB, 2007.

[29] C. Re, N. Dalvi, and D. Suciu. Efficient top-k query evaluation on
probabilistic data. In ICDE, 2007.

[30] R. Ross, V. S. Subrahmanian, and J. Grant. Aggregate operators in
probabilistic databases. J. ACM, 52(1):54–101, 2005.

[31] A. D. Sarma, O. B., A. Y. Halevy, and J. Widom. Working models for
uncertain data. In ICDE, page 7, 2006.

[32] M. A. Soliman, I. F. Ilyas, and K. C. Chang. Top-k query processing
in uncertain databases. In ICDE, 2007.

[33] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. K., and S. Prabhakar.
Indexing multi-dimensional uncertain data with arbitrary probability
density functions. In VLDB, pages 922–933, 2005.

[34] Y. Tao, V. Hristidis, D. Papadias, and Y. Papakonstantinou.
Branch-and-bound processing of ranked queries. Inf. Syst.,
32(3):424–445, 2007.

[35] Y. Tao, D. Papadias, and X. Lian. Reverse kNN search in arbitrary
dimensionality. In VLDB, pages 744–755, 2004.

[36] Y. Tao, D. Papadias, X. Lian, and X. Xiao. Multidimensional reverse
kNN search. In VLDBJ, 2005.

[37] M. Theobald, G. Weikum, and R. Schenkel. Top-k query evaluation
with probabilistic guarantees. In VLDB, pages 648–659, 2004.

[38] Y. Theodoridis and T. Sellis. A model for the prediction of R-tree
performance. In PODS, pages 161–171, 1996.

[39] D. Xin, C. Chen, and J. Han. Towards robust indexing for ranked
queries. In VLDB, 2006.

[40] D. Xin, J. Han, and K. C.-C. Chang. Progressive and selective merge:
computing top-k with ad-hoc ranking functions. In SIGMOD, pages
103–114, 2007.

[41] K. Yi, F. Li, D. Srivastava, and G. Kollios. Efficient processing of
top-k queries in uncertain databases. In ICDE, pages 385–394, 2000.

[42] M. L. Yiu, X. Dai, N. Mamoulis, and M. Vaitis. Top-k spatial
preference queries. In ICDE, pages 1076–1085, 2007.

[43] M. L. Yiu and N. Mamoulis. Efficient processing of top-k dominating
queries on multi-dimensional data. In VLDB, pages 483–494, 2007.

522

