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ABSTRACT

For complex data mining queries, query optimization issues arise,
similar to those for the traditional database queries. However, few
works have applied the cost-based query optimization, which is the
key technique in optimizing traditional database queries, on com-
plex mining queries. In this work, we develop a cost-based query
optimization framework to an important collection of data mining
queries, i.e. frequent pattern mining across multiple databases.
Specifically, we make the following contributions: 1) We present
a rich class of queries on mining frequent itemsets across multi-
ple datasets supported by a SQL-based mechanism. 2) We present
an approach to enumerate all possible query plans for the min-
ing queries, and develop a dynamic programming approach and a
branch-and-bound approach based on the enumeration algorithm to
find optimal query plans with the least mining cost. 3) We intro-
duce models to estimate the cost of individual mining operators.
4) We evaluate our query optimization techniques on both real and
synthetic datasets and show significant performance improvements.

1. INTRODUCTION
Over the last several years, data mining algorithms and tools

have become increasingly important for data analysis and deci-
sion making processes. Some of the standard data mining algo-
rithms, including association rule mining and various clustering
and classification tools, have been incorporated into major com-
mercial DBMSs, such as Oracle 10g [21], IBM DB2 [35], and SQL
Server 9.0 [31].

However, data mining is an interactive and iterative process. A
data miner cannot expect to get the desired results or knowledge
by a single execution of the data mining operators. Especially, the
data mining query can become rather complicated as the data miner
has to compare and extract patterns from multiple correlated data
sources and/or put various constraints on the data mining operators.

To evaluate a complex data mining query efficiently, the database
system is very likely to invoke data mining operators several times [18].
The selection of mining operators and the order in which they are
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invoked can significantly affect the mining cost. Therefore, the
query optimization problem, i.e., how to find the query plan with
the optimal cost, is becoming an important issue to speed up the
mining process for complex mining queries.

In the traditional database systems, the cost-based optimization

technique has proven to be one of the keys for handling the query
optimization [5]. A natural question to ask is “will such cost-based

optimization be applicable to complex data mining queries?” How-
ever, there are only a few works which address this very important
question and there are many challenges in answering this question.
For instance, the cost of the mining operators is very hard to esti-
mate as their procedures are not only much more complicated than
standard relational operators, but also their costs are dependent on
the properties of the data being processed. In addition, to formally
define all the valid query plans for a mining query and then effi-
ciently identify the optimal one is not straightforward.

In this paper, we address the cost-based query optimization prob-
lem for data mining queries. We target an important class of fre-
quent pattern mining tasks involving the discovery of interesting
patterns from multiple, distinct datasets (Listed as the Q1-type query
in Section 2). For example, a manager of a nation-wide store would
like to know what itemsets are frequent in stores in New York and
New Jersey, but very infrequent in stores in California. Similarly,
biology researchers are interested in protein primary sequences that
appear frequently in the human genome but infrequently in the
chicken genome, and/or, the sequences that appear frequently in
both species.

Such complex mining queries give rise to the aforementioned
mining query optimization problem as follows. Suppose a user
needs to find itemsets that are frequent with a certain support in
both A and B. While this can be answered by taking the inter-
section of the results from both A and B, this is likely to be very
expensive. Instead, we can compute itemsets frequent in either of
the two datasets, and then simply find which of these are frequent
in the other dataset. However, this leads to two different evalua-
tion plans, corresponding to using either dataset A or dataset B for
the initial evaluation. The two evaluation plans can have different
costs, depending upon the nature of the datasets A and B. Further-
more, as the number of datasets and the complexity of the query
condition increases, the number of possible evaluation plans can
also grow.

In [18], due to the complexity of mining operators and mining
queries, all the query optimization is performed based on greedy
heuristics. In this paper, we present the first cost-based query op-
timization framework for these types of complex mining queries
across multiple databases. We address a list of open problems for
cost-based mining query optimization, including 1) how to system-
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Dataset A1 Dataset A2

TransID Items TransID Items

1 {1, 2, 5} 1 {1, 2, 4, 5}
2 {2, 4} 2 {2, 3, 5}
3 {1, 2, 5} 3 {1, 2, 5 }
4 {1, 3, 4 } 4 {1, 2, 3}
5 {2, 3, 4} 5 {1, 3 }
6 {1, 3,4} 6 {3, 4}
7 {1, 2 }
8 {1, 2, 3, 4, 5 }

Table 1: Datasets A1 and A2

atically enumerate possible query plans, 2) how to estimate the cost
of different mining operators, and finally 3) how to find a query
plan with the least mining cost. Specifically, we make the follow-
ing contributions:

1. We present a richer class of frequent itemset queries across
multiple datasets supported by a SQL-based mechanism, which
is much beyond [18] (Section 2).

2. We present an approach to enumerate all possible query plans
for the mining queries (Section 4).

3. We present a dynamic programming approach and a branch-
and-bound approach to find optimal query plans with the
least mining cost (SubSection 5).

4. We introduce models to estimate the cost of individual min-
ing operators. (SubSection 5.1 and 5.2)

5. We evaluate our query optimization techniques on both real
and synthetic datasets (Section 6) and show significant speedup
compared with the heuristic approaches.

2. SQL EXTENSIONS FOR MINING ACROSS

MULTIPLE DATASETS
In this section, we introduce a rich class of queries based on a

SQL based mechanism for querying frequent itemsets across mul-
tiple datasets. Note such queries mainly serve for exploration pur-
poses of mining task optimization.

Let {A1, A2, · · · , Am} be the set of datasets we are targeting.
Each of these comprises of transactions, which are sets of items.
The datasets are also homogeneous, i.e, an item has an identical
name across different datasets. Let Itemi be the set of items for
the dataset Ai.

For a dataset Ai, we define the following table,
SofAi(I, Supp)

Where the first column stores all possible itemsets in the dataset
Ai, and the second column stores the support of the itemsets in the
dataset. We refer to the table SofAi as a support table. Clearly,
the support table can only be used as a virtual table or a logical
view, as the total number of itemsets is likely to be too large for the
table SofAi to be materialized and stored.

We further define two views based on the individual support ta-
bles to facilitate the mining queries on multiple datasets. The first
view is referred to as F table, and is defined as follows.

CREATE VIEW F(I, SuppA1, ..., SuppAm) AS (

SELECT (CASE WHEN SofA1.I is not null

THEN SofA1.I ...

WHEN SofAm.I is not null

I A1 A2

{1} 6/8 4/6
{2} 6/8 4/6
{3} 4/8 4/6
{4} 6/8 2/6
{5} 3/8 3/6
{1, 2} 4/8 3/6
{1, 3} 3/8 2/6

: : :
{1, 2, 3, 4, 5} 1/8 0

Table 2: F Table for the Datasets A1 and A2

Dbid I Supp

1 {1} 6/8
1 {2} 6/8
1 {3} 4/8
1 {4} 6/8
1 {5} 3/8
1 {1, 2} 4/8
: : :
1 {1, 2, 3, 4, 5} 1/8
2 {1} 4/6
2 {2} 4/6
2 {3} 4/6
: : :
2 {1, 2, 3, 4, 5} 0

Table 3: S Table for the Datasets A1 and A2

THEN SofAm.I) AS I

SofA1.Supp AS SuppA1, ...

SofAm.Supp AS SuppAm

FROM SofA1 FULL OUTER JOIN SofA2

ON SofA1.I=SofA2.I

FULL OUTER JOIN SofA3

ON SofA2.I=SofA3.I

...

FULL OUTER JOIN SofAm

ON SofAm-1.I=SofAm.I )

Note that the first column, F.I , stores all the possible itemsets in
the m datasets. The second view, referred to as the S table is the
dual representation of the F table, which are simply the union of
the individual support tables as follows.

CREATE VIEW S(Dbid, I, Supp) AS (

(SELECT 1, I, Supp FROM SofA1)

UNION

(SELECT 2, I, Supp FROM SofA2)

UNION

...

(SELECT m, I, Supp FROM SofAm) )

For example, consider two transaction datasets A1 and A2, as
shown in Table 1. The set of distinct items in the two datasets,
Item, is {1, 2, 3, 4, 5}. Table 2 and 3 contain a portion of the F
table and S table for the datasets A1 and A2, respectively.

In our SQL extensions, a frequent itemset mining task on mul-
tiple datasets is expressed as a SQL query to partially material-
ize the two virtual tables, F table and S table. In the follow-
ing, we describe the different types of mining queries. To facil-
itate our discussion, we consider we have four datasets, A, B,
C, and D. Our F table, and S table are defined according to
our above discussion. For example, the F table is as follows.
F(I, SupA, SuppB, SuppC, SuppD)

381



Query Q1. Simple Comparisons: The following query Q1 is an
example.

Q1: SELECT I, SuppA, SuppB, SuppC, SuppD

FROM F

WHERE (SuppA >= 0.1 AND SuppB >= 0.1

AND SuppD >= 0.05)

OR (SuppC >= 0.1 AND SuppD >= 0.1

AND (SuppA >= 0.05 OR SuppB >= 0.05))

Here, we want to find the itemsets that are either frequent with
support level 0.1 in both A and B, and frequent in D with support
level 0.05, or frequent (with support level 0.1) in both C and D,
and also frequent in either A or B (with support level 0.05). Note
that this is the type of query we mainly focus on in [18]. In the
following, we will illustrate some more complicated queries using
the F and S tables.
Query Q2. Group-by Queries: Group-by queries ask for the item-
sets that are (in)frequent in a certain number of datasets. For exam-
ple, the following query asks to find the itemsets that frequent with
support level 0.1 in at least 3 out 4 datasets.

Q2: SELECT Dbid, I, Supp

FROM S

WHERE Supp >= 0.1

GROUP BY I

HAVING COUNT(*) >= 3

Note that such queries can be expressed on the F table, but in a
more complicated format.

Q2’: SELECT I, SuppA, SuppB, SuppC, SuppD

FROM F

WHERE (SuppA >= 0.1 AND SuppB >= 0.1

AND SuppC >= 0.1) OR ... OR

(SuppB >= 0.1 AND SuppC >= 0.1

AND SuppD >= 0.1)

Q3. Queries on Union of Datasets: In such queries, the queries in-
volve the datasets which are the union of individual existing datasets.
The following query Q3 tries to find the itemsets that are frequent
with support level 0.2 on dataset A union B, and B union C, but
infrequent with support level 0.1 on dataset B.

Q3: SELECT I, ds(SuppA,SuppB),

ds(SuppB,SuppC), SuppB

FROM F

WHERE ds(SuppA,SuppB) >= 0.2 AND

ds(SuppB,SuppC) >= 0.2 AND SuppB<0.1

Where the ds is referred to as the derived support function. It
will find the support for an itemset on the union dataset. For exam-
ple, ds(SuppA, SuppB) derives the support of itemsets on dataset
A union B. The function definition is straighforward. Let NA be
the total number of transactions in dataset A, and NB be the total
number of transactions in dataset B. Then ds(SuppA, SuppB) is
defined as (SuppA×NA + SuppB ×NB)/(NA + NB).
Q4. Trend Queries: Suppose the datasets, A, B, C, and D are
the weekly sale transactions in a month for an online store and
the manager is interested in finding the itemsets that are becom-
ing increasingly frequent in that month. A query he might ask is as
follows.

Q4: SELECT I, SuppA, SuppB, SuppC, SuppD

FROM F

WHERE SuppA >= 0.1 AND

INCREASING(SuppA,SuppB,SuppC,SuppD)

Where, INCREASING(s1, · · · , sn) (or DECREASING) determines
if the support s1, · · · , sn are increasing (or decreasing).

Many other types of queries can be expressed using the above
views. For example, the queries on association rules derived from
different datasets can be expressed based on these views. Further, if
we have tables of attributes for each item, we can ask queries on the
properties of itemsets. In other words, we can perform constraint

itemsets mining across multiple datasets. Due to space limitations,
we do not describe the specifics of these operations in the paper.
Finally, in order to simplify our discussion, we will focus on fre-
quent itemset mining tasks. The key ideas in extending our work to
other frequent patterns or structures, such as sequences, subtrees,
and subgraphs, are presented in [17].

3. ALGEBRA AND QUERY EVALUATION
In this section, we first review the algebra for expressing the in-

formation required to answer such a mining query and briefly dis-
cuss how a mining query in its SQL format can be mapped to an
algebra expression (Subsection 3.1). Then, we introduce basic tools
for reducing the query evaluation cost (Subsection 3.2). Finally, we
describe a general representation, the M -table, for describing the
all possible query plans (Subsection 3.3).

3.1 Basic Algebra for Queries
Our algebra contains only one mining operator SF and two op-

erations, intersection (u) and union (t). Formally, they are as fol-
lows:

The frequent itemset mining operator SF (Aj , α) returns a two-
column table, where the first column contains itemsets in Aj which
have the support level α, and the second column contains their cor-
responding frequency in the dataset dataset Aj .
Intersection (F1 u F2): Let F1 and F2 be two tables whose first
column contains a collection of itemsets, and other columns contain
the corresponding frequency (possibly empty) in different datasets.
The intersection operation (F1 u F2) returns a table whose first
column contains the itemsets appearing in the first columns of both
F1 and F2, and other columns contain frequency information for
these itemsets in the datasets appearing in F1 and F2.
Union (F1 t F2): The union operation (F1 t F2) returns a ta-
ble whose first column contains the itemsets appearing in the first
columns of either F1 or F2, and other columns contain the fre-
quency of these itemsets in the datasets appearing in F1 or F2.

Given this, we can directly model a restricted class of queries
(a subset of Q1-type queries – simple comparison queries in Sec-
tion 2) using the above operator and operations. This class of
queries involves constraint conditions (the WHERE clauses) which
do not contain any negative predicates, i.e., a condition which states
that support in a certain dataset is below a specified threshold. We
call this class of queries positive queries.

Let us consider a positive query Q with the condition C. Clearly,
the condition C can be restated in the DNF form, with conjunctive
clauses C1, . . . , Ck. Formally,

C = C1 ∨ . . . ∨ Ck, Ci = pi1 ∧ . . . ∧ pim, 1 ≤ i ≤ k

where, pij = SuppAij ≥ α is a positive predicate, i.e., a condi-
tion which states that support in a certain dataset (Aij) is greater
than or equal to a specified threshold (α). The corresponding basic
algebra expression is as follows. We replace pij by the operator
SF (Aij , α). We can represent the query by

FQ = FC1
t · · · t FCk

where, in each FCi
, the corresponding SF operator is connected

using intersection operations. Therefore, for query Q1, its corre-
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sponding basic algebra expression FQ1
is as follows.

(SF (A, 0.1) u SF (B, 0.1)) u SF (D, 0.05)⇒ F1

t(SF (A, 0.05) u SF (C, 0.1) u SF (D, 0.1))⇒ F2

t(SF (B, 0.0.5) u SF (C, 0.1) u SF (D, 0.1))⇒ F3

In [18], we have shown how a more general class of mining
queries, which could involve negative conditions, can be expressed
by this algebra as well. Essentially, the positive and negative queries
capture the Q1 type queries, which involve only simple compar-
isons. More complicated queries, such as Q2 (Group-by), Q3 (Union),
and Q4 (Trend) type queries, can be transformed into Q1-type queries
with some additional constraints. The detailed transformation is be-
yond the scope of this paper. Since the optimization techniques for
Q1-type queries can be applied to other queries, we make Q1-type
optimizations the focus of the rest of this paper.

3.2 Basic Tools for Query Optimization
Let us consider the naive evaluation of the basic algebra expres-

sion FQ1
for the query Q1 stated in the previous subsection. We

need to invoke the SF operator 7 times, including mining frequent
itemsets on datasets A, B, and D with two different supports 0.1
and 0.05, and on dataset C with support 0.1. To reduce the mining
costs, we introduce the following basic tools.
Frequent itemset mining operator with constraints CF (Aj , α, X)
finds the itemsets that are frequent in the dataset Aj with support
α and also appear in the set X . X is a set of itemsets that satisfies
the down-closure property, i.e., if an itemset is frequent, then all its
subsets are also frequent. This operator also reports the frequency
of these itemsets in Aj . Formally, CF (Aj , α, X) computes the
following view of the F table:

X u SF (Aj , α)

The typical scenario where this operator helps remove unnecessary
computation is as follows. Suppose the frequent itemset operator
intersects with some view of the F table, such that the projection
of this view on the attribute I is X . This operator pushes the set X
into the frequent itemset generation procedure, i.e., X serves as the
search space for the frequent itemset generation.
Containing Relation: The containing relation is as follows: β ≤
α, SF (Aj , β) contains all the frequent itemsets in SF (Aj , α).
Therefore, if the first one is available, invocation of the second can
be avoided. Instead, a relatively inexpensive selection operator, de-
noted as σ, can be applied. Formally, for β ≤ α, we have,

SF (Aj , α) = σAj≥α(SF (Aj , β))

This containing relations can be also extended to the the new CF
mining operator.

We note that another mining operator GF has been introduced in
[18]. Given a number of datasets, it finds the itemsets that are fre-
quent in each individual dataset with user-specified support levels.
Our previous study [18] has shown a systematic way to incorporate
the GF mining operator in the mining process, and is based on the
optimal query plans generated from the SF and CF mining oper-
ators. To simplify our discussion, we will focus on finding optimal
query plans using the SF and CF mining operators in this paper.

In the next subsection, we will introduce an intuitive method
which can help us to describe and generate possible query plans.

3.3 M-table: A Unified Query Evaluation Scheme

DEFINITION 1. Assume the basic algebra expression of a query

Q is

FQ = F1 t · · · t Ft

F1 F2 F3

A 0.1 0.05

B 0.1 0.05

C 0.1 0.1

D 0.05 0.1 0.1

Table 4: M-table for the query Q1

F1 F2 F3 F4 F5

A 0.1 0.1 0.05

B 0.1 0.1 0.05

C 0 0 0.1 0.1 0.1

D 0.05 0.1 0.1 0.1

Table 5: An Uncolored M-Table

where, each Fi involves intersection among one or more SF oper-

ators. Let m be the number of distinct datasets that appear in F .

Then, the M -table for the basic algebra expression of this query is

a table with m rows and t columns, where the row i corresponds to

the dataset Ai, and the column j corresponds to the clause Fj . If

SF (Ai, α) appears in Fj , the cell at the j-th column and i-th row

will have α, i.e., Mi,j = α. Otherwise, the cell Mi,j is empty.

As an example, the M table for the query Q1 in Section 2, has 4
rows and 3 columns and is shown in Table 4.

Now, we focus on query plan generation using the M -table and
the operators we have defined so far. To facilitate our discussion,
we will use the M table in Table 5 as our running example. One
of the most important features of M table is that it can capture the
evaluation process for a query by using a simple coloring scheme.
Initially, all the cells are non-colored (white). The operators, SF
and CF , can color a number of non-empty cells black (shaded).
The query evaluation process is complete when all non-empty cells
are colored black.

As a running example, consider applying SF (A, 0.05), SF (C, 0.1),
CF (B, 0.1,SF I(A, 0.1)), and CF (D, 0.1,SF I(C, 0.1)) consec-
utively on an initially non-colored M -table (Table 5), where SF I is
the projection of SF results on the itemset column. Table 6 shows
the resulting partially colored table. We now define how each op-
erator colors the table.
Frequent itemset mining operator SF (Ai, α): An invocation of
the frequent mining operator on the dataset Ai, with support α, will
turn each non-empty cell at row i which is greater than or equal
to α black. In our example, the first operator, SF (A, 0.05), will
turn the cells M1,1, M1,2, and M1,4 black. The second operator,
SF (C, 0.1), will turn the cells M3,3, M3,4, and M3,5 black.
Frequent itemset mining operator with constraint CF (Ai, α, X):
The coloring impacted by this operator is dependent on the current
coloring of the table M . Let X be the set of frequent itemsets de-
fined by all the black cells, and let S be the set of columns where
these black cells appear. Then, by applying this operator on dataset
Ai with support α, all cells on row i whose column is in the set S,
and whose value is greater than or equal to α, will turn black. In

our running example, the third operator CF (B, 0.1, SF I(A, 0.1))

F1 F2 F3 F4 F5

A 0.1 0.1 0.05

B 0.1 0.1 0.05

C 0 0 0.1 0.1 0.1

D 0.05 0.1 0.1 0.1

Table 6: The Partially Colored M-Table
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picks the black cells M1,1 and M1,2 by the parameter

X = SF I(A, 0.1)

The set S includes the first two columns. Therefore, this operator
turns the cells M2,1 and M2,2 black. Similarly, the fourth operator
turns the cells M4,3, M4,4, and M4,5 black.

By the above formulation, the query evaluation problem has been
converted into the problem of coloring the table M . The possible
query plans can be intuitively captured in this framework. Note that
different operators can be used, and in different order, to color the
entire table black. There are different costs associated with each of
them.

In the rest of the paper, we will develop cost-based query op-
timization approaches to find optimal query plans for our mining
queries. In Section 4, we will describe an approach based on the
M -table to systematically traverse the space of query plans. In
Section 5, we will introduce two cost-based methods to find opti-
mal query plans and discuss the cost estimation for different mining
operators. In Section 6, we will evaluate the efficiency of our query
optimization techniques on both real and synthetic datasets.

4. QUERY PLAN ENUMERATION
In this section, we will first define the search space of all pos-

sible query plans for our mining queries (Subsection 4.1). Then,
we will discuss how to identify equivalent query plans, and how to
avoid generating duplicate query plans (Subsection 4.2). Further,
we introduce several heuristics to reduce the search space of query
plans (Subsection 4.3). Finally, the detailed enumeration algorithm
is described (Subsection 4.4). Note that the query enumeration ap-
proach developed in this section will be the basis of our optimal
query plan generation, which will be discussed in Section 5.

4.1 Query Plan Space
As discussed in the last section, each mining operator will color

a group of cells in the same row of the M -table, MQ, and a query
plan will color all the nonempty cells in MQ. Therefore, query
plan enumeration can be transformed to list all possible ways to
color the M -table. To facilitate our discussion, we denote a group
of cells in the same row of the M -table as a cell-set. Formally, a
sequence of cell-sets, i.e. < s1, s2, · · · , sm >, where si is a cell-
set and the union of all cell-sets covers all the nonempty cells in
the M -table, can be used to represent query plans. Next, we will
apply the following two steps to uniquely map a sequence of cell-

sets which colors all the nonempty cells in the M -table to a single

query plan.
Step 1: In the first step, we will split a sequence of cell-sets into two
phases. The first phase (Phase 1) contains only the SF operators,
and the second phase (Phase 2) contains the CF mining operators.
This is equivalent to dividing a query plan into two phases. Note
that such a two-phase query plan schema can help us uniquely map
a cell-set in the first phase to a single SF mining operator. Finally,
we point out that the reason we can schedule SF mining operators
before CF mining operators is because the invocation of SF op-
erators is always independent of the mining results generated from
any other mining operators in a query plan.
Step 2: In order to map a cell-set in the second phase to a CF
mining operator, i.e. CF (Aj , α, X), we need to provide the set X
which constrains the search space of itemsets. The fewer itemsets
CF will have to traverse, the less CF will cost. Thus, we will
always choose the CF operator with the maximal constraints X ,
which corresponds to the smallest search space needed to color a
cell-set in a query plan. For example, considering in Table 6, we

need to map the cell-set containing the first two cells in the third
column, M3,1 and M3,2, to a CF mining operator. We assume
SF (A, 0.1) and SF (B, 0.1) are used to color the cells in the first
row and second row respectively. In this case, we will choose X
to be SF I(A, 01) ∩ SF I(B, 01), instead of only SF I(A, 0.1) or
SF I(B, 0.1) for the corresponding CF mining operator. This is
because our choice X uses all the available constraints, defined in
terms of the first two cells in both the first and second rows.

Given this, we can see that a sequence of cell-sets can uniquely
determine a single query plan. However, we note that different
sequences of cell-sets may correspond to essentially the same query
plan. This problem is critical to query plan enumeration because
we need to avoid generating duplicate query plans. We are going
to address this issue in the next subsection.

4.2 Partial Orders and Equivalent Query Plans
The reason that two query plans, described as two sequences

of mining operators, or correspondingly, cell-sets, are equivalent
is because the invocation orders of some mining operators can be
changed. For example, consider the following query plan QP0 to
color the M table in Table 5.

Phase1 : SF (A, 0.1), SF (C, 0.1);

Phase2 : CF (B, 0.1, SF I(A, 0.1));

CF (D, 0.1, SF I(C, 0.1));

CF (A, 0.05, SF I(C, 0.1) ∩ SF I(D, 0.1));

CF (B, 0.05, SF I(C, 0.1) ∩ SF I(D, 0.1));

CF (D, 0.05, SF I(A, 0.1) ∩ SF I(B, 0.1));

CF (C, 0, SF I(A, 0.1) ∩ SF I(B, 0.1));

In this example, we can clearly switch the invocation order of the
first two mining operators in phase 2 with the same mining cost.
However, the second and the third CF mining operators can not
be exchanged since the later one relies on the first one’s mining
results.

To recognize the equivalent query plans systematically, we intro-
duce the following formal definitions for query equivalence. Two
query plans are equivalent if their phase 1 and phase 2 are both
equivalent. The phase-1 equivalence is fairly straightforward since
the SF mining operators can be invoked in any order.

DEFINITION 2. Two query plans are phase-1 equivalent if they

share the same set of SF mining operators.

The phase-2 equivalence will be defined in terms of a partial

order defined on CF mining operators. We will begin with the
following simple relationship (<) on the CF mining operators in a
query plan.

DEFINITION 3. In a query plan, if a mining operator CF1 is

scheduled before the mining operator CF2, and the constraint set

X of CF2 contains the cells being colored by CF1, then we define

CF1 < CF2.

For instance, in query plan
QP0, CF (B, 0.1, SF I(A, 0.1)) < CF (D, 0.05, SF I(A, 0.1) ∩
SF I(B, 0.1)). Further, the transitive closure of the above rela-
tionships (<) in a query plan define a partial order, denoted as ≺.
In addition, we define the immediate before relationship (≺I ): For
two mining operators CF1 and CF2, CF1 ≺I CF2 if and only if
CF1 ≺ CF2 and no other mining operator, such as CFi, satisfies
CF1 ≺ CFi ≺ CF2. Figure 1 is a representation of the partial
order for the second phase of the query plan QP0, where we only
draw the immediate relationships (≺I ). Given this, we have the
following definition.
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Figure 1: The Partial Order for QP0

DEFINITION 4. Two query plans are phase-2 equivalent if and

only if they have the same set of CF mining operators and the same

partial orders (≺) among the mining operators.

In order to avoid generating more than one query plan from each
equivalent query plan class, we will further divide the CF mining
operators in Phase 2 into different levels. To facilitate our discus-
sion, the CF mining operators in the query plan which do not have
any other CF mining operators before (≺) them are referred to
as starting operators. In Figure 1, CF (B, 0.1, SF I(A, 0.1)) and
CF (D, 0.1, SF I(C, 0.1)) are the starting operators. Note that we
can model the partial order (≺) as a directed graph, more specif-
ically a DAG (directed acyclic graph), where the vertices are CF
mining operators. In particular, at least one path can reach each
mining operator from the starting operators. Given this, we can
assign the CF mining operators’ levels as follows.

DEFINITION 5. The level of a CF mining operator in a query

plan is defined to be the length of the longest path which can reach

it from any starting operator.

For example, Figure 1 illustrates the query plan with three different
levels as well as the CF mining operator at each level.

Our enumeration algorithm is sketched in Figure 2. It performs
the enumeration in a depth-first fashion. It first generates SF min-
ing operators for the first phase (Phase1-Enumeration, then it gen-
erates CF mining operators for the second phase level by level
(RecursiveEnumeration). In particular, we note that phase 1 has the
following property given that the original M -table is non-colored.

LEMMA 1. For a query plan which colors all the nonempty

cells in the M -table, all SF mining operators in phase 1 will cause

each column to have at least one colored cell.

This is because in order to apply a CF mining operator to color a
cell in one column, another cell in the same column (corresponding
to the constraint X) has to be colored earlier.

The main problem of the above enumeration is that the search
space may be too large to traverse at a reasonable cost. This is
because in the foreach loop, the number of possible sets of mining
operators are often too large. To deal with this issue, in the next
subsection, we will explore several heuristics.

4.3 Reducing The Search Space
In the following, we introduce three heuristics used in our enu-

meration process to reduce the search space. The first heuristic at-
tempts to reduce the possible set of SF mining operators for phase

Phase1-Enumeration(M-Table M)
/* M is completely uncolored */

foreach (set X of mining operators for phase 1)
/* X colors M such that each column

has at least one cell colored */

M ′ ← coloring M with X ;
RecursiveEnumeration(M ′, 0);

/* Phase2-Enumeration: */

RecursiveEnumeration(M-Table M, Level k)
if (M is completely colored)

Extract a query plan;
return ;

foreach (set Y of mining operators with level k)
M ′ ← Coloring M with Y ;
RecursiveEnumeration(M ′, k + 1);

Figure 2: Sketch of Enumerating Query Plans

1. The other two heuristics will attempts to reduce the search space
for phase 2.
Heuristic 1: Since to color a cell-set, a CF mining operator usu-
ally takes less cost than its corresponding SF mining operator, we
will prefer to minimize the invocation of SF mining operators in
phase 1. Specifically, if removing any SF mining operator in phase
1 will fail the requirement that each column has at least one cell
being colored (Lemma 1), such a set of SF mining operators is de-
fined to be a minimal set. Therefore, the first heuristic requires that
the foreach loop in the procedure Phase1-Enumeration enumerates
only the minimal set of SF mining operators.
Heuristic 2: To derive this heuristic, we begin with a new nota-
tion, basic units, which are the smallest cell-sets a CF operator
can color, and in particular, a CF operator must color the basic
units as a whole. In other words, different basic units can be col-
ored by a single CF operator. The operator granularity is referred
to as the way to define the basic units. For instance, in the most
simple case, we assume each single cell can be colored by a single
CF mining operator. Such configuration is referred to as granu-

larity one. Granularity one can easily lead to combinational explo-
sion. For example, considering in a single row, we have a total of
k nonempty cells all at a given level. Such k cells can generate
a total of 2k different mining operators, without considering their
combinations. To deal with this problem, we consider to increase
the smallest number of cells that a single mining operator can color.
Specifically, we introduce the following two granularities.

Granularity Two: At this granularity, all the cells with the same
support level in a row will be colored using one CF operator, and
therefore, will correspond to a basic unit.
Granularity Three: At this granularity, all the uncolored cells in

a row will be colored using a single CF operator.
For example, let us consider the basic units for the second row in

the M -table (Table 5) at different granularities, where three cells
are not colored by phase 1. For granularity one, the second row
has three basic operation units, i.e. X2,1 = {1}, X2,2 = {2}, and
X2,3 = {5}, where Xi,j denotes the j-th basic unit for the i-th
row. Note that for simplicity, we only record the columns for each
basic unit. For granularity two, the same second row will have two
basic operation units, i.e. X ′

2,1 = {1, 2} and X ′
2,2 = {5}. Finally,

for granularity three, this row will have only one basic operation
unit for, i.e. X ′′

2,1 = {1, 2, 5}.
Clearly, the higher granularities (two and three) will effectively

reduce the possible sets of CF mining operators at each level (illus-
trated in the foreach loop in the procedure RecursiveEnumeration).
Later, our experimental study will compare the query plans gen-
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RecursiveEnumeration(M-Table M, Level k)
Add all uncolored basic units with level k to set R;
Add the rest of uncolored basic units to set P ;
/*R and P have the following format:

R = R1 ∪R2 ∪ · · · ∪Ri ∪ · · · ;
P = P1 ∪ P2 ∪ · · · ∪ Pi ∪ · · · ;
Ri is the set of all uncolored basic

units with level k at row i;

Pi contains all uncolored basic

units at row i except those in Ri */

LevelEnumeration(T, k, R, P );/* Enumerating

mining operators for level k */

LevelEnumeration(M-Table M, Level k, Set R,P)
if (M is completely colored)

Extract a query plan;
return ;

Dropping basic units with level
more than k from R and P ;

for i← 1 to t /*t: the number of rows in M*/

foreach (Subsets Y ⊆ Ri, Z ⊆ Pi : Y 6= ∅)
/* Y ∪ Z corresponds to

a CF mining operator */

M ′ ← Coloring M with Y ∪ Z;
/* Keep coloring at level k */

LevelEnumeration(M ′, k, R−Ri, P );
/* Coloring at level k+1 */

RecursiveEnumeration(M ′, k + 1);
R← R − Ri;

Figure 3: Enumerating Query Plans for Phase 2

erated at different granularities. It will show that such heuristics
can significantly reduce the search space without sacrificing much
optimality of the query plans being generated.
Heuristic 3: This heuristic allows at most one CF mining opera-
tor to be used to color cells at a single row for each level in phase
2. This is because multiple CF mining operators coloring a single
row at the same level can usually be merged into one CF mining
operator with less cost. For example, consider phase 1 of query
plan QP0 used to color the M -table in Table 5. Then, at the begin-
ning of phase 2, we will first invoke CF (B, 0.1, SF I(A, 0.1)) to
color the first two cells in the second row, then we invoke
CF (B, 0.05, SF I(C, 0.1)) to color the last cell in the same row. A
single mining operator, CF (B, 0.05, SF I(A, 0.1)∪SF I(C, 0.1)),
can be less costly to color all three cells. This is because first the
total itemset-search space X is likely smaller due to the set-union
(∪) operation, and secondly, the number of passes to scan the corre-
sponding dataset is reduced since only one mining operator is used.

4.4 Enumeration Algorithm
In the following, we provide the detailed enumeration algorithm

of phase 2 (Figure 3) , which incorporates the heuristic 2 and 3.
Phase 1 is omitted for simplicity. The enumeration proceeds in a
depth-first fashion. Specifically, we will generate the CF mining
operators level by level starting from level 0. The procedure Recur-

siveEnumeration indicates a new level being added to the generated
query plans. Each invocation of the procedure LevelEnumeration

will generate a new CF mining operator for a given level (The fore-

ach loop). These CF mining operators in the same level are gen-
erated in the order from row 1 to row t, where t is the total number
of rows in the M table (The for loop in LevelEnumeration).

In order to generate CF mining operators systematically at each
level k, we will maintain two sets of basic units, R and P , which
will maintain the following properties. The set R will only con-
tain the basic units with level k, and set P will contain the basic
units with level less than k. At the beginning at level k, the Recur-

siveEnumeration procedure is used to find all basic units at level k
and store them in set R. The rest of the uncolored basic units will
be stored in set P , and it is not very hard to prove that all basic

units in P will have levels less than k. The basic units at the same
row from Ri and Pi will be combined to generate a CF mining op-
erator (the foreach loop in the procedure LevelEnumeration). The
condition Y 6= ∅ is to guarantee that the generated CF mining op-
erator is at level k by coloring at least one basic unit in Ri. Note
that after a CF mining operator is generated at row i for level k, to
find other CF mining operators at the same level (another invoca-
tion of LevelEnumeration), the sets R and P will only include the
basic units from rows more than i. In this way, at most one CF
mining operator is used to color cells for each row at a single level
(heuristic 3). Finally, a query plan will be generated if the M -table
is completely colored.

5. OPTIMIZING QUERY PLANS WITH COST

ESTIMATION
Assuming each mining operator is associated with a cost, our

goal is to find a query plan with the least total mining cost. How-
ever, this problem is a generalized set-covering problem and is
NP-hard [8, 18]. In this section, we will introduce two meth-
ods to find optimal query plans, the dynamic programming ap-
proach(Subsection 5.1) and the branch-and-bound approach (Sub-
section 5.2). In Subsection 5.3, we will discuss how cost is esti-
mated for different mining operators.

5.1 Dynamic Programming for Optimized Query
Plan Generation

Dynamic programming is one of the most common methods to
identify optimal query plans [6]. It saves the intermediate computa-
tional results and use such results for the same subproblems in the
search space. However, applying the dynamic programming to our
optimal query plan generation problem is not very straightforward.
The main difficulty is how to define subproblems.

A simple alternative is to define a subproblem as a task to color a
portion of the M table. For instance, we can split the entire M table
into two parts and then try to find the best query plans for each part.
However, one problem of this approach is that the two parts is not
completely independent. A SF mining operator used in one part of
the table may also color the cells in the other part. Further, query
plans can be repeatedly generated from different decompositions of
M table.

In our dynamic programming, we will express a subproblem in
terms of the partial query plans, which partially color the M -table.
For simplicity, we consider a partial query plan always includes
phase 1. Further, we introduce the definition of the complimentary

query plan of a partial query plan QP as follows.

DEFINITION 6. A complementary query plan of the partial query

plan QP , denoted as QP , completes the coloring of the M -table

and uses the CF mining operators with levels more than j, or use

the CF mining operators to color the cells at row more than i for

the level j.

Therefore, the subproblem is to find the best complementary query
plan of QP to complete coloring all the non-colored cells in the
M -table. Given this, the problem to find the query plan with the
least mining cost can be formulated as follows.

min{C(QP ) + min{C(QP ), ∀QP}, ∀QP}

Where C(QP ) and C(QP ) are the mining costs of the partial
query plan QP and its complementary query plan QP , respec-
tively.
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The main objective of dynamic programming is to be able to
share the solutions among the same (similar) subproblems. In the
following, we describe the conditions for different partial query
plans sharing the same subproblem. To compare two different sub-
problems, we will use three different colors, c1, c2 and c3, to color
the M table by the partial query plans. The rule of coloring is as
follows. Assuming the maximal level of the CF mining operator
in a partial query plan QP is j, we will assign all the SF mining
operators and CF mining operator at levels less than j − 1 with
color c1 to color the cells in the M -table. Then, we will assign all
the CF mining operators at level j−1 and j with the colors c2 and
c3, respectively. Finally, we look at each column, if a column has
cells colored by both c2 and c3, then we will recolor all the cells
having color c2 in that column to color c1. We denote such colored
M -table of the partial query plan QP as [M ]QP .

We have the following the following lemma.

LEMMA 2. If two partial query plans QP1 and QP2 have the

same partially recolored M -table, [M ]QP1
and [M ]QP2

, then they

have the same sets of complimentary query plans.

Proof:Omitted for simplicity. 2

We also note that the partial query plans can be enumerated if
we simply output the sequences of mining operators at the begin-
ning of the LevelEnumeration procedure in the query enumeration
process (Figure 3). Therefore, the dynamic programming using the
above subproblem definition and their equivalent relationships can
be implemented based on our enumeration algorithm introduced in
Section 4. We refer to this algorithm to find the optimal query plans
as EnumerationDP. Figure 4 shows the sketch of the algorithm for
finding optimized query plans with dynamic programming, which
includes both phase 1 and phase 2. Most of the code is similar
to the enumeration algorithms in Figure 2 and Figure 3. Essen-
tially, the dynamic programming records the best query plan which
achieve the minimal mining cost to complete each partially colored
M -table with respect to a level parameter k.

5.2 Using Branch-and-Bound to Generate Op-
timal Query Plans

Dynamic programming can still be very expensive if the number
of subproblems is very large. In the following, we describe another
method to generate optimal query plans. We note that the naive
method to find an optimal query plan will be to enumerate all the
query plans, estimate the cost for each of them, and then pickup the
one with minimal cost. Due to the large number of possible query
plans, this can be very expensive. This approach tries to identify
those query plans which can not become optimal query plans in the
enumeration process as early as possible, and then drop such query
plans.

The condition we initially will use is the cost of a suboptimal
query plan. Note that in our previous work [18], we have identi-
fied one greedy algorithm to find query plans shown to be efficient
experimentally. This algorithm (illustrated in Figure 5) first finds
query plans which minimizes the cost of phase 1, and then uses
a heuristic based on support level to color the rest of the cells in
phase 2. Further, the computational cost of the greedy algorithm is
very low. Therefore, we use the cost of the query plan generated by
Algorithm-CF as an initial bound in the searching process.

We compare the cost of each partial query plan with the initial
bound. If the cost of the partial query plan is higher, then we will
prune it directly and trace back to other alternative plans. Thus, we
will not expand any query plan which contains such a partial query
plan. Once we have found a new query plan (coloring the entire
M table) with lower cost, we will use this cost as our new bound

Phase1-EnumerationDP(M-Table M)
/* M is completely uncolored */

MinCost←∞;
foreach (set X of mining operators for stage 1)

/* X colors M such that each column

has at least one cell colored */

M ′ ← coloring M with X ;
cost← RecursiveEnumDP (M ′, 0);
if (cost(X ) + cost < MinCost)

MinCost← cost(X ) + cost;
Extract the query plan with MinCost;

RecursiveEnumDP(M-Table M,depth k)
if (M is completely colored)

return 0;
Add all uncolored basic units with level k to set R;
Add the rest of uncolored basic units to set P ;
/*[M] is the partially colored M table */

if ( not find [M ])/* first-time visit */

if (R = ∅)/* dead end */

[M ].cost←∞;
else [M ].cost← LevelEnumDP (M, k, R, P );

return [M ].cost;

LevelEnumDP(M-Table M, Depth k, Set R,P )
if (M is completely colored)

return 0;
Dropping basic units with level

more than k from R and P ;
if ([M ].cost ≥ 0)/* visited before */

return [M ].cost;
if (R = ∅)/* dead end */

[M ].cost←∞;
return ∞;

[M ].cost←∞; foreach (Row Ri ⊆ R : Ri 6= ∅)
foreach (Subsets Y ⊆ Ri, Z ⊆ Pi : Y 6= ∅)

/* Y ∪ Z corresponds to

a CF mining operator */

M ′ ← Coloring M with Y ∪ Z;
/* Keep coloring at level k */

cost← min(LevelEnumDP (M ′, k, R−Ri),
RecursiveEnumDP (M ′, k + 1));

/* Coloring at level k+1 */

if ([M ].cost > cost(Y ∪ Z) + cost)
[M ].cost← cost(Y ∪ Z) + cost;

R← R − Ri;
return [M ].cost;

Figure 4: EnumerationDP: Dynamic Programming for Finding

Optimized Query Plans
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for the rest of searching space. We refer to the above algorithm as
EnumerationBB.

Input: table M without coloring
Phase 1

Enumeration of possible SF operators to find the least cost
to cover at least one cell red for each column

Phase 2

Find datasets whose corresponding rows have black cells;
For each row, find the lowest support level among the black cells;
On each row, invoke the CF operator with
the lowest support level:

Across the rows, invoke the operator in the decreasing order
of support level used for the CF operator.

Figure 5: Algorithm-CF for Query Plan Generation

5.3 Cost Estimation
In the following, we will first discuss the cost estimation for the

SF mining operator, and then discuss the CF mining operator.
Cost Estimation for SF : The cost of the mining operators is very
dependent on their implementations. Many efficient algorithms
have been developed to find frequent itemsets [1, 36, 13] and can
serve as the SF mining operator. For our current experimental
purpose, Borgelt’s implementation of the well-known Apriori al-
gorithm [3] is used as the SF mining operator.

To the best of our knowledge, no reasonable model is currently
available to predict the running time for a specific mining algorithm
on a given dataset. In [14, 9, 16], similar models are developed to
capture the cost of Apriori-like algorithms. These models usually
decompose the cost into small parts, including the I/O cost and
computational cost. They try to estimate the computational cost
by considering various factors, such as the number of scans of the
dataset and the counting cost for the candidate frequent itemsets.
However, these factors can be very hard to estimate.

In this paper, we try to derive a practical formula to serve as the
cost of the SF mining operator. Note that it has been observed that
the cost of the mining algorithm varies depending on many fac-
tors, for example, the characteristics of the datasets and the support
level. In our model, the following factors are considered.

1. n, the number of transactions

2. |I|, the average length of the transactions

3. d, the density of the datasets

4. s, the support level

We will derive our density d from the notation 1 proposed in [26]
to model the datasets:

d = H2(s) = −

(N
2
)

X

i=1

[fi > s]pilogpi

where N is the total number of distinct items in the dataset, fi is
frequency of itemsets, pi is the probability of observing 2-itemset
i in the dataset, and s is the support level. If the 2-itemset i is fre-
quent, i.e. fi > s, the truth function [fi > s] returns 1, otherwise,
it returns 0.

All of the four factors can be calculated or maintained for each
dataset. In order to provide a reasonable estimate of SF mining

1This is slightly different from the original paper, where the truth
function is [pi > s]. After communicating with the authors, the
above formula is confirmed to be correct one.

operator cost, we first collected the running time C of SF min-
ing operations on a collection of real and synthetic datasets with
different support levels.

Then, utilizing linear regression analysis, we found that for a
given dataset, a good linear regression model for the running time
of SF operator is given by

log C = β0 + β1s + β2d

This basically suggests that the mining cost (specifically, running
time C) is exponentially correlated with support s and density d.
However, though this type of linear model provides good estima-
tion results, it requires parameter fitting for each individual dataset,
i.e. the β parameters vary from dataset to dataset. This can be too
computationally expensive to use in a database-like mining system.

Given this, we then try to establish a more generalized linear pre-
diction model using the characteristics of each individual dataset,
including number of transactions n and the average of length of
transactions |I| for a dataset. Choosing from a list of probable
models and using linear regression analysis, we found the follow-
ing model

log C = β0 + β1s + β2d + β3 log n + β4 log |I|

provides the best prediction accuracy for the mining cost of SF .
Therefore, we apply this model with the parameters computed from
the regression analysis to predict the SF mining cost. In addition,
we note that density d is query dependent, i.e., its value depends on
support s. To compute d online for a given query can be too costly.
Instead, we pre-compute d for a given dataset by an average of d
over a sample of supports s.
Cost Estimation for CF : Similar to SF , the CF mining operator
can be realized in different ways. Our current implementation is
based on the implementation of the SF mining operator. Specifi-
cally, for CF (Aj , α, X), the set of itemsets X is initially put into
a hash table. Then the processing of CF is similar to the frequent
itemset mining operator, with one exception in the candidate gener-
ation stage. While placing an itemset in the candidate set, not only
do all its subsets need to be frequent, but the itemset needs to be in
the hash table as well.

Considering the cost of CF mining operator to be very depen-
dent on the size of the search space provided in the input parameter
X , we will estimate the cost of CF (A, α, X) as follows.

C(CF (A, α, X)) = C(SF (A, α))×
|SF I(A, α) ∩X|

|SF I(A, α)|
(1)

where C(CF) and C(SF) represent the cost of the CF and SF
mining operators, respectively.

A possible way to estimate
|SF I (A,α)∩X|

|SF I (A,α)|
without actually in-

voking the SF and CF mining operators is to utilize the 1-itemsets
or 2-itemsets to represent all the frequent itemsets in dataset A and
X . This requires us to either pre-compute all the 1-itemsets and/or
2 itemsets, or online compute the frequent ones for all the supports
in a given query for each dataset. However, the set intersection
operation (∩) can still be rather costly.

Considering this, we apply the following rules to estimate |SF (A, α)I∩
X|/|SF I(A, α)| recursively.

1. If X = SF I(A′, α′),

|SF I(A, α) ∩X|

|SF I(A, α)|
=
|SF I(A, α) ∩ SF I(A′, α′)|

|SF I(A, α)|

2. If X = X1 ∩X2,

|SF I(A, α) ∩X|

|SF I(A, α)|
=
|SF I(A, α) ∩X1|

|SF I(A, α)|
×
|SF I(A, α) ∩X2|

|SF I(A, α)|
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3. If X = X1 ∪X2,

|SF I(A, α) ∩X|

|SF I(A, α)|
= min(1,

|SF I(A, α) ∩X1|

|SF I(A, α)|

+
|SF I(A, α) ∩X2|

|SF I(A, α)|
−
|SF I(A, α) ∩ (X1 ∩X2)|

|SF I(A, α)|
)

Since we cannot compute δ = |SF I (A,α)∩SF I (A′,α′)|

|SF I (A,α)|
directly,

and even applying 1-itemsets or 2-itemsets can still be rather costly,
we simply apply a constant, such as 1/2 or 1/3 to estimate δ.

We note that the different sets X1 and X2 may refer to the same
dataset, and therefore, are not independent. To deal with this prob-
lem, we apply the following procedure. First, we transform X into
DNF format, i.e. X = X1 ∪X2 ∪ · · · ∪Xk, where Xi = SF1 ∩
SF2 ∩ · · · ∩ SFm. Later, for any Xi1 ∩ · · · ∩Xij , if one dataset,
such as A, appears more than once, for example, SF I(A, α1) in
Xi1 and SF I(A, α2) in Xi2, we will only choose the SF mining
operator with the lowest support on one dataset and drop the rest of
the SF mining operators.

6. EXPERIMENTAL EVALUATION
This section reports a series of experiments we conducted to

demonstrate the efficiency of the cost-based optimization techniques
we have developed. Particularly, we were interested in the follow-
ing questions:

1. What are the performance gains from the cost-based opti-
mization techniques compared with the greedy algorithms?

2. What are the additional costs of different cost-based opti-
mization techniques?

6.1 Datasets
Our experiments were conducted using two groups of data. The

first group has four different datasets, and the second one has nine
datasets.
DARPA’s Intrusion Detection: The first group of datasets is de-
rived from the first three weeks of tcpdump data from the DARPA
data sets [25]. Three of them include the data for three most fre-
quently occurring intrusions, Neptune, Smurf, and Satan, and the
other one records the data of the the normal situation (i.e., without
intrusion). Each transaction in the datasets has 40 attributes, corre-
sponding to the fields in the TCP packets. The neptune, smurf, sa-
tan, and normal datasets contain 107201, 280790, 1589, and 97277
records, respectively.
IBM’s QUEST: The second group of datasets represents the mar-
ket basket scenario, and is derived from IBM Quest’s synthetic
datasets [1]. The first two datasets, dataset-1,dataset-2, and dataset-
3, are generated from the T20.I12.N2000 dataset by some per-
turbation. Here, the number of items per transactions is 20, the
average size of large itemsets is 12, and the number of distinct
items is 2000. For perturbation, we randomly change a group of
items to other items with some probability. Dataset-4, dataset-5
and dataset-6, are similarly generated from the T15.I10.N2000
dataset. Dataset-7, dataset-8, and dataset-9, are similarly generated
from the T10.I8.N2000 dataset. The number of transactions con-
tained in these nine datasets vary from 2,000,000 to 500,000.

6.2 Experimental Settings
For DARPA datasets, we generated a collection of 60 testing

queries over different thresholds using the query templates defined
in [19]. For the QUEST datasets, we generated three groups of

Datasets Naive Greedy-S Greedy-N BB/DP

DARPA 564 253 242 220

QUEST-3 1268 134 124 119

QUEST-4 1104 131 109 108

QUEST-6 2485 153 130 119

Table 7: Average Running Time (in seconds) Per Query

queries each with 60 testing queries. Specifically, the three groups
of test queries, denoted as QUEST-3, QUEST-4, and QUEST-6,
randomly involve 3, 4, and 6 different datasets out of the QUEST
datasets, respectively.

In our experiments, we apply the following methods to generate
query plans for each query.

1. Naive: using only the SF operator to color the M -table.

2. Greedy: applying the greedy algorithm Algorithm-CF to
generate query plans. Note that the phase 1 in this greedy
algorithm requires the cost estimation of SF mining opera-
tor. In our experiments, we will consider two methods. The
first one, denoted as Greedy-S, adopts only a simple cost
function (1/α), which is based on the only the support level
and used in [18]. The second one, denoted as Greedy-N,
adopts the new cost function introduced in Subsection 5.3.

3. BB: applying the branch-and-bound algorithm, EnumerationBB,
to find optimal query plans. Specifically, we denote BB-G1,
BB-G2, and BB-G3 to be running the branch-and-bound at
granularity one, granularity two, granularity three, respec-
tively.

4. DP: applying the dynamic programming approach, Enumer-

ationDP, to find optimal query plans. Similar to BB, we have
DP-G1, DP-G2, and DP-G3 to the dynamic programming
approach with different granularities.

6.3 Experimental Results
This subsection reports the results we obtained. All experiments

are performed on a 2GHZ AMD Athlon machine with 1GB main
memory.
Evaluating Single Query Plans:

Table 7 presents the average running time for the testing queries
for DARPA, QUEST-3, QUEST-4, and QUEST-6, respectively. We
compare a total of five methods, Naive, Greedy-S, Greedy-N,

BB, and DP. Since the two cost-based approaches, BB and DP, gen-
erate the same query plans, we combine their results in the last
column. Further, we found BB and DP at different granularities in
most of the cases also generate the same query plans. For simplic-
ity, we only listed the performance results from BB-3 and DP-3 in
the last column here.

The results in Table 7 show both the greedy approach and the
cost-based approaches significantly reduce the evaluation costs. They
gain an average around 10 times speedup on all testing queries and
up to 20 times speedup on the QUEST-6. Especially, the new cost
function (Greedy-N) helps the the greedy algorithm further re-
duce cost by an average of 10% per query. This shows that our new
cost model helps to generate better query plans. The cost-based
approaches, BB and DP, reduce the mining cost of query plans gen-
erated Greedy-S by an average of 20% per query.

Table 8(a) provides a more detailed comparison between the cost-
based approaches and Greedy-S. Each row records the number of
queries out of the total 60 with different speedup between the two
approaches. Specifically, we let tq and t′q be the running time of
the query plans for the query q which are generated by Greedy-S

389



Datasets s1=Greedy-S/BB(DP) Greedy-S ≈ BB(DP) s2=BB(DP)/Greedy-S
s1 ≥ 4 4 > s1 ≥ 2 s1 < 2 < 2 4 > s2 ≥ 2 s2 ≥ 4

DARPA 7 10 14 15 13 1

QUEST-3 2 8 47 3

QUEST-4 3 26 30 1

QUEST-6 6 30 21 3

(a) Comparison between Greedy-S and the Cost-Based Approaches (BB/DP)

Datasets Greedy-S Greedy-N BB-G1 DP-G1 BB-G2 DP-G2 BB-G3 DP-G3

DARPA 0.01 0.02 2.63 13.68 0.12 0.10 0.03 0.04

QUEST-3 0.01 0.01 0.12 0.06 0.02 0.01 0.01 0.01

QUEST-4 0.01 0.02 5.89 13.75 0.12 0.05 0.1 0.04

QUEST-6 0.09 0.07 97.37 71.61 2.85 0.52 2.87 0.77

(b) Average Cost (in seconds) to Generate a Query Plan

Table 8: Experimental Results

and the cost-based approaches (BB or DP), respectively. If the
running time of these two query plans are very close to each, i.e.
|t−q t′q|/max(tq, t

′
q) < 5%, then we count them to be approximate.

The middle column (Greedy-S ≈ BB(DP)) records the number
of queries which have approximate query plans from Greedy-S

and BB/DP. Further, we denote s1 to be the speedup of the cost-
based approach compared with the Greedy-S, and similarly for
s2. For example, in DARPA datasets, for 7 queries the cost-based
approach generates query plans at least 4 times faster then the
Greedy-S approach. In the table, we can see almost half of the
queries will have similar query plans from these two approaches.
More importantly, for more than 80% of the rest of the queries
(40% of the total queries), the cost-based approaches achieve much
better performance. We note that there are cases where the query
plans generated by the greedy approach (Greedy-S) actually per-
form better than those generated by the cost-based approach
(BB(DP)). We found this is mainly caused by the inaccurate cost
estimation.
Measuring the Cost of Query Plan Generation Algorithms: Ta-
ble 8(b) reports the the average cost of generating a query plan by
different algorithms. Note that the naive algorithm can be treated
as zero cost since there is no enumeration procedure. The enumer-
ation cost for the greedy algorithm Greedy-S and Greedy-N is
also very small. In most cases, a query plan can be generated in
less than 0.1 second. The performance of the dynamic program-
ming and branch-and-bound approaches depends on the granular-
ities. For granularity three, a query plan can usually be generated
less 1 second. For granularity one, as the M -table becomes larger,
both BB-G1 and DP-G1 scale very poorly. Both approaches per-
form reasonably well at granularity two.

To summarize, the cost-based approaches, BB and DP, generate
more efficient query plans than the greedy approach. For almost
40% of the queries, the query evaluation cost is significantly re-
duced. The cost from the query plan generation is very low as
granularity two and three are applied.

7. RELATED WORK
Much research has been conducted to provide database support

for mining operations. This includes extending the database query
languages to support mining tasks [14, 15, 22], implementing data
mining algorithms on a relational database system [27, 7], and ap-
plying user-defined functions (UDFs) to express data mining tasks [34].

However, all of these efforts focus on mining a single dataset with
relatively simple conditions.

An interesting work by Jensen and Soparkar studied the problem
of finding frequent itemsets across multiple tables in data ware-
houses [16]. Similar to this paper, they formulated the mining prob-
lem as a database optimization problem. They utilized a simple
algebra to express the possible approaches to complete the mining
tasks and developed several strategies to find efficient query plans.
In comparison, our work is on mining multiple databases. The SQL
queries and algebra are not studied and can not be handled in [16].
Moreover, the query enumeration approaches and cost models in
this paper are also unique.

In [30], Tuzhilin and Liu have proposed and studied a list of
SQL queries on querying association rules from multiple datasets.
However, they assume that the association rules are already gener-
ated from different datasets. Our work focus on querying frequent
itemsets across the datasets. In addition, our approaches can actu-
ally help efficiently query and compare association rules assuming
they need to be extracted from the original datasets.

Our work is also related with constraint frequent itemset mining,
which can guide users to discover useful information and speedup
mining process on a single dataset [4, 20, 23, 24, 28]. The queries
across multiple datasets is complementary to such constraint min-
ing, since they can also help users to discover and focus the poten-
tially useful patterns.

We also note that a number of researchers have developed tech-
niques for mining the difference or contrast sets between the datasets [2,
10, 32]. Their goal is to develop efficient algorithms for finding
such a difference, and they have primarily focused on analyzing
two datasets at a time. In comparison, we have provided a general
framework for allowing the users to compare and analyze the pat-
terns in multiple datasets. Moreover, because our techniques can be
a part of a query optimization scheme, the users need not be aware
of the new algorithms or techniques which can speedup their tasks.

Finally, our research is also different from the work on Query

flocks [29]. While they target complex query conditions, they allow
only a single predicate involving frequency, and on a single dataset.
The work on multi-relational data mining [11, 33] has focused on
designing efficient algorithms to mine a single dataset materialized
as a multi-relation in a database system.

8. CONCLUSIONS
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Although many efficient mining algorithms have been developed
to discover frequent patterns from a single dataset, the problem of
querying and analyzing frequent patterns across multiple datasets
has not been explored fully despite its importance. Especially, it is
desirable to provide support for such tasks as part of a database or a
data warehouse, without requiring the users to be aware of specific
algorithms that could optimize their queries.

This paper investigates several key issues in our efforts to sys-
tematically express and optimize frequent pattern queries that in-
volve complex conditions across multiple datasets. Specifically, we
present a rich class of queries on mining frequent itemsets across
multiple datasets supported by a SQL-based mechanism. We de-
velop an approach to enumerate all possible query plans for the
mining queries, and derive the dynamic programming approach
and the branch-and-bound approach based on the enumeration al-
gorithm to find optimal query plans with the least mining cost.
We also introduce models to estimate the cost of individual min-
ing operators. Our experiments have demonstrated significant per-
formance gains on both real and synthetic datasets. Thus, we be-
lieve that our work has provided an important step towards building
an integrated, powerful, and efficient Knowledge and Data Mining
Management System (KDDMS).
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