
Highly Scalable Trip Grouping
for Large–Scale Collective Transportation Systems

Gyozo Gidofalvi
Geomatic ApS

gyg@geomatic.dk

Torben Bach Pedersen
Aalborg University
tbp@cs.aau.dk

Tore Risch
Uppsala University

tore.risch@it.uu.se

Erik Zeitler
Uppsala University

erik.zeitler@it.uu.se

ABSTRACT
Transportation–related problems, like road congestion, park-
ing, and pollution, are increasing in most cities. In order to
reduce traffic, recent work has proposed methods for vehicle
sharing, for example for sharing cabs by grouping “closeby”
cab requests and thus minimizing transportation cost and
utilizing cab space. However, the methods published so far
do not scale to large data volumes, which is necessary to
facilitate large–scale collective transportation systems, e.g.,
ride–sharing systems for large cities.

This paper presents highly scalable trip grouping algorithms,
which generalize previous techniques and support input rates
that can be orders of magnitude larger. The following three
contributions make the grouping algorithms scalable. First,
the basic grouping algorithm is expressed as a continuous
stream query in a data stream management system to al-
low for a very large flow of requests. Second, following the
divide–and–conquer paradigm, four space–partitioning poli-
cies for dividing the input data stream into sub–streams
are developed and implemented using continuous stream
queries. Third, using the partitioning policies, parallel im-
plementations of the grouping algorithm in a parallel com-
puting environment are described. Extensive experimental
results show that the parallel implementation using simple
adaptive partitioning methods can achieve speed–ups of sev-
eral orders of magnitude without significantly degrading the
quality of the grouping.

1. INTRODUCTION
Transportation–related problems, like congestion, parking,
and pollution, are increasing in most cities. Waiting in traf-
fic jams not only degrades the quality of social life, but ac-
cording to estimates, the economic loss caused by traffic
jams in most countries is measured in billions of US dollars
yearly. Parking is also a serious problem. In some large

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT’08, March 25–30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003 ...$5.00

cities, it is estimated that as many as 25% of the drivers on
the road are only looking for empty parking places. This
again causes unnecessary congestion. Finally, the increasing
number of vehicles idling on the roads results in an unprece-
dented carbon emission, which has unquestionably negative
effects on the environment.

By reducing the number of vehicles on the roads, Collec-
tive Transportation (CT) clearly provides a solution to these
problems. Public transportation, the most common form of
CT, tries to meet the general transportation demands of
the population at large. By generalizing the transporta-
tion needs, the individual is often inconvenienced by long
wait times at off–peak hours or between connections, and
a limited number of access points (bus, metro, train stops)
from which the individual is forced to use other methods
of transportation (walking, bicycling, using a private car).
Ride–sharing, or car pooling, which is another form of CT is
becoming widespread in metropolitan areas. Ride-sharing is
often encouraged by local transportation authorities by fa-
cilitating car pool lanes that are only accessible to multiple–
occupancy vehicles and by eliminating tolls on bridges and
highways for these vehicles. Despite all the encouragement,
there is a tremendous amount of unused transportation ca-
pacity in the form of unoccupied seats in private vehicles.
This fact can mainly be attributed to the lack of effective
systems that facilitate large–scale ride–sharing operations.
The systems that do exist [3, 15, 22] are either 1) offered
from a limited number access points due to the system in-
frastructure constraints, 2) have inadequate methods for the
positioning of trip requests and/or vehicles, or 3) have either
inefficient or ineffective methods for matching or grouping
trip requests and trip offers.

Yet another form of CT, namely cab–sharing, was recently
proposed [12]. The key idea of cab–sharing is to use unoc-
cupied cab space to reduce the cost of transportation, ul-
timately resulting in direct savings to the individual. The
described Cab–Sharing System (CSS) overcomes most of the
above limitations of existing ride–sharing systems. In par-
ticular, at the heart of the system is a trip grouping algo-
rithm that is able to find subsets of closeby trip requests,
which can be grouped into collective cab fares to minimize
the transportation cost, or equivalently maximize the sav-
ings to the user. Using a simple implementation in standard
SQL, assuming a reasonable number (high spatio–temporal

678

density) of trip requests, the trip grouping algorithm was
demonstrated to be able to group trip requests effectively.
The trip grouping algorithm can be generalized to facilitate
other CT systems, e.g., a ride–sharing system. However,
as it is demonstrated in the present paper, due to its al-
gorithmic complexity, the grouping algorithm scales poorly
as the volume of trip requests increases. This limits its ap-
plicability to facilitate large–scale CT systems, such as a
metropolitan or nation–wide ride–sharing system.

To make the trip grouping algorithm scale to input rates
several orders of magnitude larger than in a typical cab-
sharing application, this paper makes the following three
contributions. First, using a Data Stream Management Sys-
tem (DSMS), SCSQ [24], the trip grouping algorithm is ex-
pressed as a continuous stream query to allow for continuous
processing of large trip request streams. Second, follow-
ing the divide–and–conquer paradigm, static and adaptive
versions of two space–partitioning policies (point quad and
KD partitioning) for dividing the input data stream into
sub–streams are developed and implemented using continu-
ous stream queries. Finally, using the partitioning policies,
the grouping algorithm is implemented using a data stream
management system in a parallel computing environment.
The parallelization of the implementation is facilitated by
using an extension of the query language, in which processes
are query language objects. Extensive experimental results
show that the parallel implementation using simple parti-
tioning methods can achieve speed–ups of several orders of
magnitude without significantly affecting the quality of the
grouping. In particular, an adaptive partitioning method
called adaptive KD partitioning achieves the best overall
performance and grouping quality.

The remainder of this paper is organized as follows. Section
2 reviews related work. Section 3 defines the vehicle–sharing
problem, reviews the operational aspects of a recently pro-
posed Cab–Sharing System (CSS), describes and analyzes a
trip grouping algorithm that solves the vehicle–sharing prob-
lem and is employed to facilitate the CSS. Furthermore, a
new Ride–Sharing System (RSS) is proposed, and the trip
grouping algorithm is adapted to meet the application re-
quirements of the proposed RSS. Section 4 describes the
main contributions of the paper in making the trip group-
ing algorithm highly scalable, hence applicable in large–scale
CT system, such as an RSS. Section 6 describes and analyzes
the results of the experiments that were conducted to mea-
sure the performance of the proposed highly scalable trip
grouping algorithm. Finally, Section 7 concludes and points
to future research directions.

2. RELATED WORK
The optimization of CT has been studied in the scientific
community for years [5, 20]. However, with the exception
of the work presented in [12], on which the present paper is
based, it is believed that no previous research has considered
the online grouping of trip requests. The problem of group-
ing n objects into a number of groups is in general referred to
as the clustering problem, which is an extensively researched
problem in computer science. However, the unique require-
ments of the problem of vehicle–sharing mean that general
clustering techniques have limited applicability.

Vehicle–sharing as a form of CT has been considered in in-
dustrial and commercial settings. For example, most taxi
companies in larger cities have been offering the possibil-
ity of shared transportation between a limited number of
frequent origins and destinations. Scientifically very little
is known about the computational aspects of these vehicle–
share operations. However, the computer systems support-
ing such operations are likely to be semi–automatic, to per-
form batch–grouping of requests, and to suffer from scal-
ability problems. In comparison, the trip grouping algo-
rithm proposed in this paper is automatic, performs online–
grouping or requests, and is highly scalable.

More automatic systems that perform online optimization of
vehicle–sharing also exist [3, 15, 22]. These systems however
perform a computationally easier task. They either match
pairs of trip requests only [15] or are offered from/between
a limited set of locations [3, 15, 22]. Additionally, the high
volume scalability of these systems has not been demon-
strated. Nonetheless, the analysis in [21] and the existence
of these systems are evidence that the problem considered
by the paper is real and has industrial applications.

Parallel processing of high–volume data streams has been
considered by several papers [4, 7, 17, 18, 23, 24, 25]. Some
of these study the parallelization of continuous stream queries
[7, 23, 24]. GSDM [7] decomposes the computation of a sin-
gle continuous stream query into a partition, a compute,
and a combine phase. In GSDM, the distributed execution
strategies are expressed as data flow distribution templates,
and queries implementing the three phases are specified in
separate scripts. In contrast, SCSQ [24] exposes the paral-
lelization phases to the query language so that the distribu-
tion patterns becomes part of a single parallel, continuous
stream query. This paper utilizes the stream processing en-
gine and query language in SCSQ to express and evaluate
different (parallel) stream processing strategies for an RSS.

In GSDM, two different stream partitioning strategies are
considered: window distribute (WD) and window split (WS).
In WD, entire logical windows are distributed among com-
pute nodes. In WS, an operator dependent stream split
function splits logical windows into smaller ones and assigns
them to particular compute nodes for processing. WS has
several advantages over WD. First, in applications where
the execution time of the stream query scales superlinearly
with the size of the logical window, WS provides superior
parallel execution performance over WD. Second, in real-
time response systems, where the query scales superlinearly,
WD is not applicable as it can introduce severe delays in the
result stream. Third, in systems where the quality of the re-
sults that are computed in parallel are highly dependent on
the tuples inside the logical windows of the compute nodes,
WD provides inferior results in quality over WS, because in-
dividual tuples are not considered in the partition phase. As
all of the above three conditions hold in the case of vehicle–
sharing, WD is clearly not of interest. WS is similar to the
spatial stream partitioning methods presented in this paper
in the sense that both presented partitioning methods con-
sider individual tuples in the partitioning process. However,
in the static cases no windows are formed over the stream,
but rather tuples are assigned to compute nodes based on a
general partitioning table. In contrast, in the adaptive cases

679

windows are formed over the stream, the partitioning table
is periodically updated based on the tuples in a window, and
then tuples are assigned to compute nodes the same way as
in the static case.

Database indices support the efficient management and re-
trieval of data in large databases. In particular, spatial in-
dices support efficient retrieval of spatial objects, i.e., ob-
jects that have physical properties such as location and ex-
tent. Spatial indices can be divided into two types: data
partitioning and space partitioning spatial indices [19]. The
partitioning mechanisms used in spatial indices have a close
relation to the partitioning performed in the present paper.

Data partitioning indices usually decompose the space based
on Minimum Bounding Rectangles (MBRs). A primary ex-
ample is the R–tree that splits space with hierarchically
nested, and possibly overlapping Minimum Bounding Rect-
angles (MBRs) [13]. However, for the application at hand,
data partitioning schemes are not well suited for several rea-
sons. They often use a non-disjoint decomposition of space.
Consequently, a näıve partitioning based on MBRs could ei-
ther assign requests to several partitions, and hence later to
several shares, or could assign requests from a region where
several MBRs overlap to several partitions, thereby poten-
tially eliminating the chance for good matches. While a
disjoint partitioning of space could be derived based on the
MBRs, computation to derive such a partitioning would be
complex and potentially expensive, and the derived parti-
tions will most likely not be balanced.

On the other hand, space partitioning indices decompose
the entire space into disjoint cells. These disjoint cells can
be based on a regular grid, or on an adaptive grid. Regular
grids can result in empty partitions because of skewed data
distributions. Hence, a regular grid is not well–suited for the
application at hand as it does not support load–balancing.

Quad–trees partition the space into four quadrants in a re-
cursive fashion [6]. Quad–trees divide each region into four
equally sized regions, while point quad trees [19] allow the
size of the regions to be dynamic. Quad–trees have been
extended to higher dimensions also. One of the space parti-
tioning methods used in this paper is quite similar to a 1–
level deep, four dimensional point quad tree with the excep-
tion that in the herein considered space partitioning method
a split point is not necessarily a data point. The k–d–tree is
a space partitioning spatial index that hierarchically divides
each dimension into two along each of the k dimensions [1,
2]. The other partitioning method used in this paper corre-
sponds to a 1–level deep, four dimensional k–d–tree.

3. VEHICLE–SHARING
Large–scale, personalized, on–demand CT systems need ef-
ficient and effective computer support. Systems providing
this support have two aspects. The first aspect is operational
aspect as to how information is communicated between the
user and the service provided by the system, and how trip re-
quests are processed. There second aspect is computational
or algorithmic and deals with how the optimization of CT
is performed. The following subsections study an existing
CT system and propose a new one. Section 3.1 formalizes
the vehicle–sharing problem, adopted from [12]. Section 3.2

describes the operational aspects of a Cab–Sharing System
(CSS)–an instance of a CT system in which the shared ve-
hicles are cabs. Section 3.3 describes the computational or
algorithmic aspects of the trip grouping algorithm employed
in the CSS. Section 3.4 describes the problems that arise
when the trip grouping algorithm is applied in larger scale
CT systems. Section 3.5 proposes a Ride–Sharing Service
(RSS) and describes its operational requirements. Finally,
Section 3.6 describes how the trip grouping algorithm in
Section 3.3 can be modified to meet these requirements.

3.1 The Vehicle–Sharing Problem
Let R

2 denote the 2-dimensional Euclidean space, and let
T ≡ N

+ denote the totally ordered time domain. Let R =
{r1, . . . , rn} be a set of trip requests ri = 〈tr, lo, ld, te〉, where
tr ∈ T is the request time, lo ∈ R

2 and ld ∈ R
2 are the

origin and destination locations, and te ≥ tr ∈ T is the
expiration time, i.e., the latest time by which the trip request
must be accommodated. A trip request ri =< tr, lo, ld, te >
is valid at time t if tr ≤ t ≤ te. ∆t = te − tr is called
the wait time of the trip request. A vehicle–share s ⊆ R
is a subset of the trip requests. A vehicle–share is valid
at time t if all trip requests in s are valid at time t. Let
|s| denote the number of trip requests in the vehicle–share.
Let d(l1, l2) be a distance measure between two locations
l1 and l2. Let m(s, d(., .)) be a method that constructs a
valid and optimal pick-up and drop-off sequence of requests
for a vehicle–share s and assigns a unique distance to this
sequence based on d(., .). Let the savings p for a trip request

ri ∈ s be p(ri, s) = 1 − m(s,d(.,.))/|s|
m({ri},d(.,.))

. Then, the vehicle–

sharing problem is defined as follows.

Definition 1. For a given maximum vehicle–share

size K, and minimum savings min savings ∈ [0, 1], the
vehicle–sharing problem is to find a disjoint partitioning S =
{s1⊎s2⊎ . . .} of R, such that ∀sj ∈ S, sj is valid, |sj | ≤ K,
and the expression

∑

sj∈S

∑

ri∈sj
p(ri, sj) is maximized un-

der the condition that ∀ri ∈ sj p(ri, sj) ≥ min savings or
{ri} = sj.

3.2 Overview of the Cab–Sharing System
The Cab–Sharing System (CSS) proposed in [12] is a Loca-
tion–Based Service (LBS) in the transportation domain. In
its most simple form, it is accessible to the user via a mo-
bile phone through an SMS interface. The components and
operation of the CSS is depicted in Figure 1 and can be de-
scribed as follows. The user inputs two addresses with an
optional maximum time that s/he is willing to wait. The
service in turn then:

1. geocodes the addresses,

2. calculates an upper bound on the cost of the fare,

3. validates the user’s account for sufficient funds,

4. submits the geocoded request to a pool of pending re-
quests,

5. within the maximum wait time period finds a nearly
optimal set of “closeby” requests using a number of
heuristics (described in Section 3.3),

6. delivers the information about the set (request end
points, and suggested pickup order) to the back–end
cab dispatch system,

680

Premium SMS
Cab-Sharing

Service

Geocoding
Service

Cab-Sharing
Engine

User Accounts DB

Cab-Scheduling /
Cab-Routing

Engine

Text Msg:
To: 1234
From Addr.
To Addr.

[From/To addr.]

[From/To coord.]

SMS: cab request

SMS: fare info
[cost, schedule]

C
h
e
c
k
 fu

n
d
s

[u
id

, c
o
s
t]F

u
n
d
s
 O

K

[From/To coord., uid]

Cab-share info
[uids, cost, shares]

C
a
b
-s

h
a
re

 in
fo

C
a
b
-f

a
re

 i
n
fo

 [
c
a
b
id

,
s
c
h
e
d
u
le

]

Figure 1: Cab–sharing service components and pro-
cess.

7. delivers information about the fare (estimated time or
arrival, cost, savings, etc...) to the involved users.

3.3 A Trip Grouping Algorithm
Finding the optimal solution to the vehicle–sharing problem
is computationally difficult. Given n requests, the number of
possible disjoint partitionings, where the size of the vehicle–
shares is exactly K is:
(

n

K

)

×

(

n − K

K

)

× · · · ×

(

2K

k

)

×

(

k

k

)

=
n!

⌈n/K⌉ × K!
.

In the case of n = 100 and K = 4, this expression evaluates
to a number that has 155 digits. The number of possible
disjoint partitions, where the size of the vehicle–shares is at
most K = 4 is even larger. Clearly, evaluating all possible
options and selecting the most optimal one is not a feasible
approach. Instead, the Trip Grouping (TG) algorithm at the
heart of the CSS tries to derive a nearly optimal solution by
employing a number of heuristics and approximations. The
steps of the TG algorithm along with the applied heuristics
and approximations are described next.

1. Distinguish between the set of expiring trip requests
(Rx) and all valid requests (Rq). Wait with manda-
tory grouping of trip requests until expiration time. A
request can also be grouped into a vehicle–share be-
fore its expiration time with another expiring request.
This lazy heuristic does not make the algorithm miss
out on an early cost–effective grouping for the request,
but rather gives the requests more opportunities to be
part of a grouping.

2. Based on the distance measure d(., .), define a pair–
wise fractional extra cost (FEC) between two requests
and calculate it for every pair of expiring and valid
requests. In the TG algorithm the fractional extra
cost between two requests ri and rj (w.r.t. ri) is de-

fined as FEC (ri, rj) =
d(ri.lo,rj .lo)+d(ri.ld,rj .ld)

d(ri.lo,ri.ld)
. In the

case when the distance measure d(., .) is the Euclidean
distance, the calculations of fractional extra costs be-
tween three requests r1, r2, and r3 (w.r.t. r1) are
shown in Figure 2. Note that the defined fractional

FEC(r1,r2) = (d2’ + d2’’) / d1

FEC(r1,r3) = (d3’ + d3’’) / d1

AC({r1,r2,r3})=

(1 + FEC(r1,r2) + FEC(r1,r3)) / 3
r1_orig

r2_orig

r1_dest

r2_dest

d1

d2’’

d2’

r3_dest

d3’

d3’’

r3_orig

Figure 2: Illustration of fractional extra cost (FEC)
and amortized cost (AC) calculations w.r.t. request
r1.

extra cost is an upper bound on the true fractional ex-
tra cost, as there may be a shorter route than to serve
the requests in the order assumed by the fractional ex-
tra cost calculation, i.e., rj .lo → ri.lo → ri.ld → rj .ld.

3. Consider the best, i.e., lowest cost / highest savings,
K–sized vehicle–share for an expiring request ri ∈ Rx

to be composed of the first K requests with lowest FEC
for ri. This heuristic assumes that pair–wise fractional
extra costs are additive.

4. Estimate the Amortized Cost (AC) of a vehicle–share s
(w.r.t. ri) as the normalized cumulative sum of FECs

as: AC (ri, s) =
1+

∑

rj∈s FEC(ri,rj)

|s|
. This heuristic as-

sumes that there exists an optimal pick–up and drop–
off sequence for requests in s, such that the cost of this
sequence m(s, d(., .)) ≤ AC (ri, s) ∗ d(ri.lo, ri.ld).

5. Greedily group the best maximum K-sized vehicle–
share that has the minimum amortized cost over all
expiring trip requests. This heuristic is greedy because
it possibly assigns a not–yet–expiring request rj to a
vehicle share of an expiring request, without consider-
ing what the current or even future best vehicle–share
would be for rj .

6. Remove requests that are part of the best vehicle–share
from further consideration.

7. Repeat steps 2 through 7 as long as the best vehicle–
share meets the minimum savings requirement.

8. Assign remaining trip requests to their own (single per-
son) “vehicle–shares”.

Even though the TG algorithm is based on heuristics, esti-
mations and assumptions, in [12], it has been found to effec-
tively optimize the vehicle–sharing problem. Furthermore,
while some assumptions about extra costs for vehicle–shares
do not hold in all cases, the combination of the approxima-
tions and assumptions result in an estimated cost for the
vehicle–shares that is higher than the true minimum cost if
the optimal pick–up and drop–off sequence is considered.

3.4 Problems with Large–Scale CT Systems
Unfortunately, the TG algorithm cannot be näıvely applied
to facilitate a large–scale CT system, such as a ride–sharing
system. The TG algorithm needs to calculate the pairwise
fractional extra costs between expiring requests and all re-
quests in the queue, entailing on the order of O(n2) cost
calculations. In [12] a simple but effective implementation
of the TG algorithm was able to handle loads of up to 50,000
requests per day, during which at peak traffic hours the num-

681

0 5000 10000 15000
0

500

1000

1500

number of pending requests in the queue

ex
ec

ut
io

n
tim

e
(s

ec
)

y = 7.4E−10x3 − 4.8E−6x2 + 1.4E−2x − 7.4

real time execution limit (60 sec)

Figure 3: Scalability problems of the general trip
grouping algorithm.

ber of requests within 10 minutes was at most 2,500. How-
ever, as input sizes increase, the execution times of any serial
implementation of the TG algorithm will reach a point where
continuous grouping is not possible. Then, the algorithm is
not able to find nearly optimal groups for all the expiring
request before they actually expire. This is demonstrated
in Figure 3, where a load of 250,000 requests with common
wait times of 10 minutes are grouped minute–by–minute us-
ing a highly efficient implementation of the TG algorithm.
This implementation of the TG algorithm is able to keep up
with the request flow most of the time, but when the num-
ber of pending requests exceeds about 5,200 (during rush
hour), it is not able to find groups for the expiring requests
within the allowed execution time of 60 seconds. In the ex-
ample the grouping cycle time of the TG algorithm is 60
seconds, i.e. the algorithm is responsible for grouping the
request that will expire within the next 60 seconds. Alter-
ing this grouping cycle time does not eliminate the problems
of the algorithm in the case of large input sizes. Figure 3
also reveals that the computational complexity of the im-
plementation of the TG algorithm is O(n3). This is due to
the fact that, as described by the third heuristic in Section
3.3, the best K–sized vehicle–share is composed of the first
K requests with lowest FEC for an expiring request. This
necessitates a linear–time top–K selection for each expiring
request, making the algorithmic complexity of the TG algo-
rithm O(n3). Consequently, the above described scalability
problems severely limit the applicability of the TG algorithm
in a large–scale CT system.

3.5 Ride–Sharing Application Requirements
Ride–sharing is a type of vehicle–sharing where private ve-
hicles are used as transportation. This fact represents addi-
tional requirements on solution to the general trip–sharing
problem. In the context of ride–sharing there are ride–
requests and ride–offers. Ride–requests are synonymous to
trip requests both in form and semantics, with the excep-
tion that ride–requests do not necessarily have to be served.
Ride–offers have at least three important attributes in ad-
dition to the attributes of a trip request. The first at-
tribute specifies whether the offering person is willing to

leave his/her vehicle behind. A person offering a ride with
willingness of leaving his/her vehicle behind is either willing
to take alternate modes of transportation or relies on the ef-
ficient operation of the ride–sharing system for future trips
until he/she returns to his/her vehicle. A person not willing
to leave his her vehicle behind values or needs his/her inde-
pendence throughout the day. The second attribute specifies
a maximum relative extra cost the offering person is prepared
to incur. Finally, the third attribute specifies the maximum
number of additional passengers the offering person’s vehicle
can accommodate.

3.6 Application of the TG Algorithm in a RSS
It is clear that the TG algorithm cannot be applied in its
current form for a ride–sharing application. However, a
few simple modifications can make it applicable. First, in
the context of ride–sharing, the ride offering person would
like to leave as soon as the best vehicle–share that can be
constructed meets the maximum relative extra cost require-
ments of the ride–offer. Hence, it makes sense to prioritize
the order of greedy grouping based on the time the ride–
offers have been present in the system. Second, because
maximum relative extra cost requirements are defined by
ride–offers individually, in every grouping cycle (execution
of the TG algorithm) the best vehicle–share for all ride–
offers needs to be considered. Third, every vehicle–share
needs to fulfill the following two conditions: 1) it can contain
only one ride–offer where the offering person is not willing
to leave his/her vehicle behind, and 2) it has to contain at
least one ride–offer of any type. To fulfill the above condi-
tions it is enough to distinguish between two different sets:
1) the set of ride–offers of either type {Rō

o ∪Ro
o}, and 2) the

joint set of ride–request and ride–offers where the offering
person is willing to leave his / her vehicle behind {Rr ∪Ro

o}.
Associating these sets to sets used by the TG algorithm as
Rx = {Rō

o ∪ Ro
o} and Rq = {Rr ∪ Ro

o}, the vehicle shares
constructed by the TG algorithm fulfill the above two con-
ditions.

Obviously, the modifications to the TG algorithm that are
necessary to facilitate the proposed RSS are straight–forward.
However, to preserve clarity in representation, the remainder
of the paper considers only the implementation of a highly
scalable TG algorithm.

4. HIGHLY SCALABLE TRIP GROUPING
Although the TG algorithm can be modified to meet the
unique requirements of the proposed RSS, as it was demon-
strated in Section 3.4, the algorithm in its present form does
not scale with the input size and hence cannot be applied
in large scale CT systems, such as the proposed RSS. This
section describes a parallel implementation of the TG algo-
rithm in the SCSQ Data Stream Management System.

Queries and procedures in SCSQ [23] (pronounced sis–queue)
are specified in the query language SCSQL [24] (pronounced
sis-kel). SCSQL is similar to SQL, but is extended with
streams as first-class objects. SCSQ also features a main
memory database. This database is used to keep the trip
requests that are waiting, along with statistics about the
data distributions. The waiting requests are processed by
the TG algorithm and the statistics are used by the parti-
tioners.

682

Details of the implementations are organized as follows. Sec-
tion 4.1 describes how the trip grouping algorithm is imple-
mented as a stored procedure in SCSQL. Section 4.2 outlines
how SCSQ allows parallelization of the continuous stream
query implementation of the TG algorithm. Section 4.3 de-
scribes four spatial partitioning methods that are used to
partition the stream of trip requests into sub-streams for
parallelization purposes.

4.1 Processing of a Request Stream
The TG algorithm is expressed as a procedure in SCSQL,
which is listed below.

(1) create function tg(vector input_window,

(2) integer K, real min_savings,

(3) integer wait_time)->vector

(4) as begin

(5) declare vector ex, vector bcss, timeval ct;

(6) insert_q(in(input_window));

(7) set ct = get_end(input_window);

(8) set ex = select_ex_q(curr_time, wait_time);

(9) set bcss = {};

(10) for each vector r where r = in(ex)

(11) begin

(12) remove_q(r);

(13) set s = select subvector(ac,0,i)

(14) from vector fec, vector ac,

(15) integer i, integer k

(16) where fec = topk(calc_FEC(r),2,K)

(17) and ac = calc_AC(fec,2)

(18) and i = min(ac,2);

(19) if savings(s) >= min_savings

(20) begin

(21) set bcss = concat(bcss,members(s));

(22) remove_q(members(s));

(23) end;

(24) else

(25) set bcss = concat(bcss,r);

(26) end;

(27) result bcss;

(28)end;

The tg procedure takes an input window of the most re-
cently arrived trip requests, and the three algorithm param-
eters K, min savings, and wait time The output of tg is a
vector of best vehicle–shares, bcss. tg executes as follows.
First, on line 6, all requests in input window are added to
the main memory table of waiting requests q. Then, on
line 7, based on the wait time parameter and the current
time ct (indicated by the end of the input window), expir-
ing requests, ex, are selected from q. The for each loop on
line 10 iterates over each request r in ex as follows. On
line 12, the request r is removed from the q. Then, in
a compound query on lines 13–18, the best, maximum K–
sized vehicle–share for r is found. The first part of the com-
pound query, on line 16, calculates the fractional extra costs
calc FEC(r)=<r,ri,fec> between r and all other requests
in q, and selects the tuples for the K requests with the low-
est fractional extra costs. The remaining parts of the com-
pound query, on lines 17–18, calculates the amortized costs
calc AC(fec)=<r,ri,ac> based on the top–K fractional ex-
tra costs, and selects the lowest of these costs. The best
vehicle–share that corresponds to this lowest amortized cost

S2
Combine

S1
Partition Compute

Compute

Compute

Figure 4: Communication pattern of TGs working
in parallel.

is assigned to s on line 13. Finally, if the savings of s is
greater than equal to min savings, then the members of s

are added to the the best vehicle–shares, bcss (line 21), and
are removed from q (line 22). Otherwise, r could not share
its trip, and will be the only one in its vehicle–share (line
25). The implementations of the derived functions insert q,
get end, select ex q, remove q, subvector, calc FEC,
savings, and members are omitted to preserve brevity. For
efficiency reasons, core functions that need to iterate over a
set, such as topk and calc AC are implemented as foreign
functions in Lisp. Foreign functions allow subroutines de-
fined in C/C++, Lisp, or Java to be called from SCSQL
queries. The implementation of these functions is also omit-
ted.

4.2 Parallel Stream Processing in SCSQ
Apart from streams, SCSQL includes Stream Processes (SPs)
as first–class objects in queries. SPs allows dynamic paral-
lelization of continuous queries, which is used in this paper
to divide the incoming trip requests. The user associates
subqueries with SPs. Massively parallel computations are
defined in terms of sets of parallel subqueries, executing on
sets of SPs.

The output of an SP is sent to one or more other SPs, which
are called subscribers of that SP. The user can control which
tuples are sent to which subscriber using a postfilter. The
postfilter is expressed in SCSQL, and can be any function
that operates on the output stream of its SP. For each output
tuple from the SP, the postfilter is called once per subscriber.
Hence, the postfilter can transform and filter the output of
an SP to determine whether a tuple should be sent to a sub-
scriber. Postfilters are used in the experiments to partition
the input stream between the SPs that are carrying out TG.

The divide–and–conquer experiments are expressed as queries
in SCSQL. All these queries have the same communication
pattern between SPs, as shown in Figure 4. A Partition
SP reads a stream of incoming trip requests (S1). That
stream is partitioned into partial streams, which are sent to
the Compute SPs. Each Compute SP executes the tg proce-
dure on its partial stream. Also, each Compute SP evaluates
the savings achieved, by comparing the total cost of all trips
with the total cost of the shared trips. The results of all
Compute SPs are merged together by a Combine SP. The
resulting stream of cab requests (S2) is sent to the user.

4.3 Spatial Partitioning Methods
Section 3.4 showed that the TG algorithm does not scale well
enough for large-scale CT systems. The key idea to over-
come the scaling issue is a divide–and–conquer approach.
Each request ri = 〈tr, lo, ld, te〉 are characterized by its ori-
gin and destination locations, lo ∈ R

2 and ld ∈ R
2. Hence,

683

a request can be geographically characterized by a point in
lo × ld. In other words, a request is characterized by a point
in R

4. The divide–and–conquer approach is to partition this
space and assign each partition to one TG. Intuitively, this
approach will gain in execution time since each TG algo-
rithm has less workload, but will lose some of the vehicle–
sharing opportunities since none of the partitions are able
to probe all combinations that a serial implementation can
do. The goal is to find a partitioner that executes efficiently
and achieves maximum savings. The following partitioning
strategies are implemented in SCSQL and investigated ex-
perimentally.

4.3.1 Baseline Queries
Two baseline queries are executed; the unpartitioned query
and the round–robin query. These queries form a perfor-
mance baseline of the best and worst possible savings and
execution speeds. All other methods should be compared to
the measurements of these two queries.

The unpartitioned query applies a single TG algorithm on
the entire request stream without any partitioning. Since
all requests are going to a single TG, all possible sharing
opportunities will be investigated. The unpartitioned query
will give the best savings, but it will also take the longest
time to execute because all burden will be placed on a single
node. The unpartitioned query is expressed in SCSQL as
follows:

select tg(v, 4, 0.8, 600, 60)

from vector v, charstring file

where v = twinagg(streamfile(file), 60.0, 60.0)

and file in

{"L16.dat","L8.dat","L4.dat","L2.dat","L1.dat"};

The streamfile(file) function reads tuples that are stored
in file, and streams them out. The twinagg(inputstream,
size, stride) function is taking a stream as the first argu-
ment and emits a time window over the last size seconds,
every stride seconds. Hence, if size=stride, twinagg

emits tumbling (consecutive and non–overlapping) windows
of the input stream. This twinagg() makes sure that tg()

always will get one minute worth of requests each time.
Hence, tg() will get called once per minute. If no requests
have arrived during a certain minute, twinagg() will emit
an empty window for that minute. tg(input window, K,

min savings, wait time) performs the trip grouping algo-
rithm. The query is executing once per file in the collection
of filenames given on the last line of the query.

The round–robin partitioner will send the first request to
one working SP. The next request will be sent to another
working SP, and so on. This way, each SP will be given
exactly 1/n of the total load, so the load balance is perfect.
Since the round–robin partitioning scheme is perfectly load
balanced, it will achieve the maximum possible execution
speed. On the other hand, a TG algorithm executing in an
SP that is operating on a round–robin data partition can
be expected to give inferior savings since nearby requests
not necessarily go to the same TG. Thus, the round–robin
partitioner is expected to achieve the least savings. It is
expressed in SCSQL as:

select merge(b)

from bag of sp b, sp c, integer n, charstring file

where b = spv(select streamof(tg(twinagg(stract(c),

60.0, 60.0), 4, 0.8, 600)))

from integer i where i=iota(1,n))

and c = sp(winagg(streamfile(file),n,n),n,’rr’)

and n in {16,8,4,2}

and file in

{"L16.dat","L8.dat","L4.dat","L2.dat","L1.dat"};

In this query, the output of streamfile is passed into
winagg(input stream, size, stride), which is forming
tumbling windows of size n, n being the number of sub-
scribers to the Partition SP c. Each window is an ordered set
of tuples, so it is represented as a vector. The round–robin
function rr, is applied once per subscriber. For subscriber
i, rr picks up the i-th element in the vector emitted from
winagg. The SP(stream, nsubscribers, postfilter) is
assigning stream and postfilter to a new SP, which should
expect n subscribers. Thus, a combination of a winagg on
a stream and a vector dereference in the postfilter function
results in a round–robin partitioner.

iota(m,n) generates all integers from m to n. Hence, the
query in the call to spv(bag of stream) creates n dupli-
cates of the query streamof(tg(twinagg(stract(c),60.0,

60.0), 4, 0.8, 600)), where stract(c) is extracting the
stream from stream process c. Each one of these queries will
be assigned to a stream process. Finally, the output of all
the stream processes in b will be merged. Refer to Figure 4
for a graphical representation of the communication pattern:
The partition is done at SP c, compute is performed by the
SPs in b, and the combination is done in the merge at top
level.

4.3.2 Static Point Quad Partitioning
Static point quad partitioning (SPQ) calculates from histor-
ical data the medians of each dimension of the trip requests.
Each dimension of the four–dimensional trip request data
space split once along the median of each dimension. Fig-
ure 5(a) shows the SPQ partitions for some data points in
two dimensions. By splitting each dimension once, SPQ par-
titions the four–dimensional trip request data space into 16
regions. One or more regions can be assigned to one SP, ex-
ecuting a TG algorithm for that region. This SCSQL query
executes SPQ:

select merge(b)

from bag of sp b, sp c, integer n, charstring file

where b = spv(select streamof(tg(twinagg(stract(c),

60.0, 60.0), 4, 0.8, 600)))

from integer i where i=iota(1,n))

and c = sp(streamfile(file),n,’pq’)

and n in {16,8,4,2}

and file in

{"L16.dat","L8.dat","L4.dat","L2.dat","L1.dat"};

The difference between this query and the round–robin query
above is only in the call to the partitioning SP c. Instead
of applying postfilter function rr on a window, SP c is ap-
plying the pq postfilter on the tuples from streamfile. For
each tuple, pq decides which subscriber it should go to.

684

1 2

3 4

(a) SPQ

1 2

3

4

(b) SKD

Figure 5: Illustrations of the static partitioning
methods.

4.3.3 Static KD Partitioning
Static KD partitioning (SKD) splits trip request data in a
hierarchical fashion by processing dimensions one after the
other as follows. For a given dimension, SKD first calculates
the local median for that dimension, and then splits the lo-
cal trip request data for the dimension based on the median
into approximately equal sized subsets. Figure 5(b) shows
the SKD partitions for some data points in two dimensions.
The data is first split around the median of the horizontal di-
mension, then the data in each of the so obtained partitions
is further split around the local (horizontal) median of each
of the partitions. By splitting once per dimension, the KD
also partitions the four–dimensional trip request data space
into 16 regions. The SCSQL query that executes SKD dif-
fers from that of SPQ in that it applies another postfilter
function at the partitioning SP, namely kd instead of pq.
Since the difference is so small, the SCSQL query is not
shown here.

4.3.4 Adaptive Point Quad Partitioning
The trip request data distribution changes over time. Dur-
ing the morning rush hours people want to move from their
homes (residential district) to their work (business and in-
dustrial districts). During the evening rush hours the oppo-
site is true. The trip requests that correspond to the morn-
ing rush hour movements are likely to fall in different parti-
tions than the trip requests that correspond to the evening
rush hour movements. Consequently, the “morning rush
hour” partitions will be densely populated in the morning
hours, and the “evening rush hour” partitions will be densely
populated in the evening hours. Clearly, a static partition-
ing method does not consider these temporal changes in data
distribution and is therefore likely to result in temporarily
unbalanced partitions.

The adaptive point quad partitioning (APQ) adjusts the
boundaries of the partitions periodically, based on statis-
tics obtained from a recent history buffer of the trip re-
quest stream, and distributes the newly arriving trip re-
quests according the newly adjusted partitions. Figure 6(a)
shows two consecutive partitionings that are constructed by
the APQ partitioning for some data points in two dimen-
sions. Hollow dots represent data points that were present
when the previous partitioning was constructed, but are not
present or are not relevant for the construction of the current
partitioning. In contrast, solid rectangular markers repre-
sent data points that were not present when the previous

1 2

3 4

(a) APQ

1 2

3

4

(b) AKD

Figure 6: Illustrations of the dynamic partitioning
methods.

partitioning was constructed, but are relevant for the con-
struction of the current partitioning. Solid and dashed lines
represent current and previous partition boundaries. The
following SCSQL query executes TG algorithm with APQ:

select merge(b)

from bag of sp b, sp c, integer n, charstring file

where b = spv(select streamof(tg(twinagg(stract(c),

60.0, 60.0), 4, 0.8, 600)))

from integer i where i=iota(1,n))

and c = sp(pqstat(streamfile(file),

600.0, 60.0, 10),n,’pq’)

and n in {16,8,4,2}

and file in

{"L16.dat","L8.dat","L4.dat","L2.dat","L1.dat"};

This query differs from the SPQ query in the call to the
partitioning SP c. The streamfile function is wrapped by
pqstat(inputstream, size, stride, samplefreq). This
function emits the same stream as its input stream, and
maintains statistics in a main memory table of SCSQ. Every
stride×samplefreq seconds, pqstat computes medians in
each dimension of lo × ld across the tuples seen in the last
size seconds. These median values are then used in the pq

postfilter. This way, the partitioning decisions are always
done on recent data.

4.3.5 Adaptive KD Partitioning
The adaptive KD partitioning (AKD) adjusts the bound-
aries of the partitions periodically, based on statistics ob-
tained from a recent history buffer of the trip request stream.
and distributes the newly arriving trip requests according
the newly adjusted partitions. Figure 6(b) shows two con-
secutive partitionings that are constructed by the AKD par-
titioning for some data points in two dimensions. The se-
mantics of the symbols used in the figure are the same as
in the case of the APQ partitioning. However, Figure 6(b)
depicts a situation that can happen in either one of the adap-
tive spatial partitioning methods. Consider the data point
inside the triangle. Since it was present when the previous
partition was constructed it has been assigned to compute
node 2 for processing. According to the newly constructed
partitions however, it should be assigned to compute node
4. To avoid communication between compute nodes, the fol-
lowing design choice is made: once a data point is assigned

685

to a partition (compute node), it is never reassigned to an-
other partition, even if the newly adjusted partitions would
suggest this.

The SCSQL query that executes SKD differs from SPQ
in that it applies another statistics wrapper function and
another postfilter function at the partitioning SP, namely
kdstat instead of pqstat and kd instead of pq. kdstat

works analogously to pqstat with the difference that it main-
tains dynamical versions of local dimension splits of the kind
that SKD has. Since the difference between this query and
the APQ query is so small, the SCSQL AKD query is not
shown here.

5. DENSITY–BASED SPATIAL STREAM
PARTITIONING

In all spatial partitioning methods proposed in this paper,
the space of requests is split by planes. The locations of
the splitting planes is determined by the medians of request
data. These splitting planes potentially eliminate the dis-
covery of good shares, when members of the good shares are
on different sides of a splitting plane. This naturally leads to
some degradation in the overall grouping. The degradation
is larger when the planes are cutting through denser regions
of the request space with many sharing opportunities, than
when the planes are cutting through sparser regions of the
request space. Since neither of the proposed partitioning
methods consider the distribution density of the requests,
the degradation of grouping quality due to boundary effects
can be expected to be approximately the same for all four
partitioning methods. However, as Section 6 demonstrates,
this degradation is rather small.

No matter how small the degradation is, simple spatial par-
titioning methods that take into account the density of the
data could reduce the degradation. The objective of such a
density–based partitioning is to determine the positions of
the splitting planes so that they pass through regions where
data is sparse. To achieve this, a simple but effective clus-
tering method [9] can be used to find local minima in the
multimodal data distributions along each dimension, and
place splitting planes at those locations. Figure 7 shows the
distributions for each dimension of the request data during
morning peak hours and off–peak hours. During the morn-
ing peak hours, there does not seem to be any regions where
the request data is very sparse. However, during off–peak
hours, when people who are not working are most likely to
be in one of the larger shopping malls, the distributions of
the destination dimensions (tx, ty) are clearly multimodal.
In this later situation, ensuring that splitting planes are cho-
sen correctly at local minima would minimize the boundary
effects. However, since most of the requests are during peak
hours, the overall average grouping achieved by the parallel
TG algorithm would not be substantially improved.

Since the local minima are likely not to be at the median
values of the dimensions, there exists a trade–off between
equal–sized partitions and partitions with minimal bound-
ary effects. A dual–objective partitioning that takes this
trade–off into consideration could weigh the expected degra-
dation against the imbalance between the created parti-
tions. Although the implementation of the density–based
and the dual–objective spatial stream partitioning methods

7.18 7.2 7.22 7.24 7.26 7.28

x 10
5

0

0.5

1

1.5

2
x 10

4

fx
6.17 6.175 6.18

x 10
6

0

0.5

1

1.5

2
x 10

4

fy
7.2 7.25 7.3

x 10
5

0

1

2

3

4

5

x 10
4

tx
6.17 6.175 6.18 6.185

x 10
6

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
4

ty

(a) Morning peak hours.

7.18 7.2 7.22 7.24 7.26 7.28

x 10
5

0

2000

4000

6000

8000

10000

12000

fx
6.17 6.175 6.18

x 10
6

0

2000

4000

6000

8000

10000

fy
7.2 7.22 7.24 7.26

x 10
5

0

5000

10000

15000

20000

tx
6.17 6.172 6.174 6.176 6.178

x 10
6

0

5000

10000

15000

ty

(b) Off–peak hours.

Figure 7: Request data distributions along each di-
mension. “f” and “t” stand for “from” and “to”,
respectively. Hence, fx and fy are request origin di-
mensions, while tx and ty are request destination
dimensions.

is straight–forward, it is left for future research.

The proposed spatial stream partitioning methods are de-
vised to scale the TG algorithm to very large flows of re-
quests. However, they can be considered as a general ap-
proach to make computationally intensive spatial analysis
tasks scalable through parallelization. For example, the den-
sity–based and the dual–objective spatial stream partition-
ing methods can be applied to speed up spatial clustering of
streams, spatio–temporal rule mining [10], or the processing
of high–resolution image streams.

6. EXPERIMENTS
The parallel implementations of the TG algorithm were
tested on a cluster of Intel r© Pentium r© 4 CPU 2.80GHz
PCs. Each SP in the query language started a running pro-
cess (RP) on a separate node in the cluster. TCP/IP over
Fast Ethernet was used to carry streams between the nodes.

Trip request data was simulated using ST-ACTS, a spatio–
temporal activity simulator [11]. Based on a number of real
world data sources, ST–ACTS simulates realistic trips of ap-
proximately 600,000 individuals in the city of Copenhagen,
Denmark. For the course of a workday, out of the approxi-
mately 1.55 million generated trips, approximately 251,000
trips of at least 3–kilometer length were selected and con-
sidered as trip requests. To test the scalability of each of the
parallel implementations using the four spatial stream par-
titioning methods, decreasing sized subsets of the total load
of 251,000 trip requests were constructed by only consider-
ing every second, fourth, eighth and sixteenth trip request
in the input stream. These subsets are referred to as 1/2,
1/4, 1/8, 1/16 load, respectively.

To evaluate the effectiveness of the four spatial stream par-
titioning methods, for the purposes of parallelization of the
TG algorithm, two measures were used: (overall) execution
time and average savings achieved by the grouping (also re-
ferred to as the quality of the grouping or quality for short).

686

load execution time (sec) savings

0.06125 28.8 0.325
0.125 120.1 0.388
0.25 702.9 0.445
0.5 16343.5 0.491

1 69771.6 0.530

Table 1: Performance of the serial TG algorithm.

The reported savings for each vehicle–share are based on
amortized costs, which has been shown to overestimate the
true cost of a vehicle–share that considers the optimal pick–
up and drop–off sequence of requests. Hence, the reported
savings underestimate the true savings. Nonetheless, the re-
ported savings can be used as an unbiased measure for the
quality of the grouping.

For each of the partitioning methods an extensive set of ex-
periments were performed for fixed algorithm parameters
(K = 4, min saving = 0.2, and ∆t = 10 minutes) under
varying loads using degrees of parallelization. The adaptive
partitioning methods updated the partitions every 10 min-
utes based on the trip request that arrived in the last 10
minutes.

6.1 Baseline Performance
To establish a point of reference for the performance mea-
sures the baseline queries specified in Section 4.3.1 were exe-
cuted. Table 1 shows the results for the unpartitioned query.
Savings obtained by the unpartitioned query (serial execu-
tion) are considered to be optimal, while running times are
considered to be worst case performance. Note that these
measures are “optimal” and “worst case” with respect to
the TG algorithm. Moreover, as it is demonstrated in Sec-
tion 3.3, due to the computational complexity of the vehicle–
sharing problem, the calculation of a truly optimal grouping,
even in the case of a few requests, is infeasible. Due to the
large difference in scale between serial and parallel execu-
tion times, serial execution times are not shown in subse-
quent figures. Savings achieved by the unpartitioned query
(serial execution) are also not shown in subsequent figures,
but are used to report relative performance of the parallel
executions in terms of savings and quality.

In comparison, the round–robin query was executed to ob-
tain optimal execution times due to perfect load balancing
and worst case savings due to the distribution independent
partitioning of requests between SPs. The results of these
experiments are shown in Figures 8 and 9 as RR, however
it is emphasized that RR is not one of the proposed spatial
stream partitioning methods, but is only used as a reference.

6.2 Absolute Performance of the Parallel TG
Algorithms

Figures 8 and 9 show the absolute performance of the par-
allel TG algorithm for varying load and degrees of paral-
lelization using different spatial stream partitioning meth-
ods. From Figure 8(a) it can be seen that the execution
times of all of the methods decrease as the parallelism is in-
creased. Figure 8(a) also reveals that the adaptive versions
of the spatial partitioning methods adjust well to the chang-
ing spatial distribution of the requests, resulting in more

2 4 8 16
0

5000

10000

15000

20000

25000

30000

of processors

ex
ec

ut
io

n
tim

e
(s

ec
)

Execution time full load

RR
SPQ
SKD
APQ
AKD

(a) Performance for full load.

0.0625 0.125 0.25 0.5 1
0

500

1000

1500

2000

load

ex
ec

ut
io

n
tim

e
(s

ec
)

Execution time 16 processors

RR
SPQ
SKD
APQ
AKD

(b) Performance for 16 processors.

Figure 8: Execution times for the parallel TG algo-
rithm for different partitioning methods for varying
parallelization and load.

balanced partitions and ultimately faster execution times
when compared to their static version. The improvement
in execution time due to adaptive partitioning is most evi-
dent for the SPQ partitioning. Figure 8(b) shows that while
the execution time of the TG algorithms can be scaled, the
underlying algorithmic complexity of the TG algorithm ex-
ecuted on the compute nodes does not change. The effect
of the underlying algorithmic complexity is more observable
for spatial partitioning methods that construct less balanced
partitionings, in particular SPQ.

Figure 9(a) shows that in general the quality of the group-
ing decreases as the degree of parallelization is increased.
However in the case of non–spatial partitioning (RR) this
degradation is significant, while in the case of either one of
the four spatial partitioning methods it is negligible. Fig-
ure 9(b) shows that the grouping quality increases as the
load is increased. This is due to the simple fact that the
spatio–temporal density of the trip requests increases. As
a consequence, the likelihood that a request becomes part
of a “good” vehicle share increases. The almost negligible
differences between the qualities achieved by the four parti-

687

2 4 8 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

of processors

sa
vi

ng
s

Savings full load

RR
SPQ
SKD
APQ
AKD

(a) Quality for full load.

0.0625 0.125 0.25 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

load

sa
vi

ng
s

Savings 16 processors

RR
SPQ
SKD
APQ
AKD

(b) Quality for 16 processors.

Figure 9: Savings for the parallel TG algorithm
for different partitioning methods for varying par-
allelization and load.

tioning methods, as explained in Section 5, is due to the fact
that since neither of the partitioning methods consider the
data densities, but only the medians of the dimensions, the
total degradation due to boundary effects is approximately
the same for the four partitioning methods.

6.3 Relative Performance of the Parallel TG
Algorithms

Figure 10 shows relative execution times of the parallel TG
algorithms when compared to the optimal execution time
that is achieved by RR partitioning due to perfect load bal-
ancing. With the exception of the SPQ partitioning, all
other partitioning methods result in parallel execution times
that are within the same order of magnitude as the optimal.
There are potentially two sources for this slowdown: the cost
of partitioning and the extended execution times due to im-
proper load balancing. Since adaptive partitioning methods
have to maintain a limited history of the stream and period-
ically recompute partition boundaries based on this history,
they do additional work compared to their static counter-
parts. Figure 10 shows that execution times resulting from
adaptive partitioning are significantly shorter than the ex-

2 4 8 16
0

10

20

30

40

50

of processors

ex
ec

 ti
m

e
/ o

pt
im

al
 p

ar
al

le
l

ex
ec

 ti
m

e

Relative execution time full load

SPQ
SKD
APQ
AKD

Figure 10: Relative performance for the parallel TG
algorithm (compared to RR partitioning) for differ-
ent partitioning methods for varying parallelization.

ecution times achieved by static partitioning. Hence, it is
clear that the additional time needed to perform the spa-
tially partitioned parallel queries can mainly be attributed
to unbalanced partitions.

Finally, comparing the savings in Figure 9(b) to the savings
in Table 1 reveals that the grouping quality achieved by ei-
ther one of the partitioning methods is within the 95% of
the optimal quality for the full load. Even if the load is de-
creased to 1/16 of the total load, all the spatial partitioning
methods still achieve approximately 90% of the maximum
possible savings.

The experiments can be summarized as follows. First, RR
partitioning has perfect load balance and is a very sim-
ple partitioning method, hence it has the fastest execution
time. However, RR partitions the space badly and achieves
a bad grouping quality. Second, using a spatial partitioning
method improves grouping quality. All spatial partition-
ing methods achieve at least 95% of the maximum possi-
ble savings in the case of the full load. Third, the adap-
tive partitioning methods always execute faster than their
static equivalents. That is because the adaptive methods
constantly adapt the partitioning according to the last tu-
ples observed, which will lead to better load balance. At the
same time, the savings are approximately the same for both
the static and adaptive partitionings. Adaptive partitioning
is also preferred from an operational point of view, since it
does not need any prior knowledge about the data distri-
bution. Finally, since all partitioning methods (except RR)
achieve about the same savings, the preferred method is the
one with the fastest execution time of SPQ, SKD, APQ, and
AKD. Thus, AKD is the best partitioning method.

688

7. CONCLUSIONS AND FUTURE WORK
This paper proposed highly scalable algorithms for trip
grouping to facilitate large–scale collective transportation
systems. The algorithms are implemented using a paral-
lel data stream management system, SCSQ. First, the ba-
sic trip grouping algorithm is expressed as a continuous
stream query to allow for a very large flow of requests. Sec-
ond, following the divide–and–conquer paradigm, four spa-
tial stream partitioning methods are developed and imple-
mented to divide the input request stream into sub–streams.
Third, using the infrastructure of SCSQ and the partition-
ing methods, parallel implementations of the grouping al-
gorithm are executed in a parallel computing environment.
Extensive experimental results show that the parallel imple-
mentation using simple adaptive partitioning methods can
achieve substantial speed–ups, without significantly affect-
ing the quality of the grouping. As discussed in Section 5,
spatial partitioning is not only appropriate for the given ap-
plication, but it is applicable to parallelize computationally
expensive spatial analysis tasks. As it was demonstrated,
SCSQ can easily accommodate the parallel implementation
of such tasks.

Future work will be along four paths. First, for the adaptive
partitioning methods, the effects of keeping a longer history
versus sampling more frequently will be investigated. Sec-
ond, the density–based and dual–objective spatial stream
partitioning methods will be implemented and their effec-
tiveness evaluated. Third, the proposed partitioning meth-
ods, independent of the rate of flow, always construct a
fixed number of partitions. While not substantially, but as
the number of partitions increases the grouping quality de-
creases. Hence, an adaptive partitioning approach in which
the number of partitions is increased / decreased depending
on the rate of flow will be devised and tested. Finally, to
preserve clarity the paper presented the generic TG algo-
rithm in its simplest form. In particular, in the presented
version all vehicles are assumed to have the same passenger
capacity and all requests have a common minimum savings
parameter. Furthermore, in–route grouping, i.e., assigning
requests to already active but not fully–occupied vehicle–
shares, is not handled by the simple version of the TG al-
gorithm. Future work will consider the implementation of
a more complex version of the TG algorithm that addresses
the above issues.

Acknowledgements
This work was supported in part by ASTRON and the Dan-
ish Ministry of Science, Technology, and Innovation under
grant number 61480.

8. REFERENCES
[1] J. L. Bentley. Multidimensional Binary Search Trees

Used for Associative Searching. Communications of the
ACM, (18)9:509–517, 1975.

[2] J. L. Bentley and M. I. Shamos. Divide–and–Conquer
in Multidimensional Space. In Proc. of ACM–STOC, pp.
220–230, 1976.

[3] CARLOS Ride–Sharing System. http://www.carlos.ch/

[4] M. Cherniack, H. Balakrishnan, M. Balazinska, D.
Carney, et al. Scalable Distributed Stream Processing. In
Proc. of CIDR, 2003.

[5] T. G. Crainic, F. Malucelli, and M. Nonato. Flexible
many–to–few + few–to–many = an almost personalized
transit system. In Proc. of TRISTAN, pp. 435–440, 2001.

[6] R. Finkel and J.L. Bentley. Quad Trees: A Data
Structure for Retrieval on Composite Keys. In Acta
Informatica 4 (1), pp. 1–9, 1974.

[7] M. Ivanove and T. Risch. Customizable Parallel
Execution of Scientific Stream Queries. In Proc. of
VLDB, pp. 157–168, 2005.

[8] G. A. Frank and D. F. Stanat. Parallel Architecture for
k–d Trees. Technical report, North Carolina University
at Chapel Hill Dept. of Computer Science, May 1988.

[9] M. Gebski and R. K. Wong. A New Approach for
Cluster Detection for Large Datasets with High
Dimensionality. In Proc. of DaWaK, pp. 498–508, 2005.

[10] G. Gidófalvi and T. B. Pedersen. Spatio–Temporal
Rule Mining: Issues and Techniques. In Proc. of
DaWaK, pp. 275–284, 2005.

[11] G. Gidófalvi and T. B. Pedersen. ST–ACTS: A
Spatio–Temporal Activity Simulator. In Proc. of
ACM–GIS, pp. 155–162, 2006.

[12] G. Gidófalvi and T. B. Pedersen. Cab–Sharing: An
Effective, Door–to–Door, On–Demand Transportation
Service. In Proc. of ITS, 2007.

[13] A. Guttman. R–trees: a dynamic index structure for
spatial searching. In Proc. of SIGMOD, pp. 47–57, 1984.

[14] T. Hägerstrand. Space, time and human conditions. In
Dynamic allocation of urban space, ed. A. Karlqvist et.
al. Lexington: Saxon House Lexington Book, 1975.

[15] Hitchstrers. http://www.hitchsters.com

[16] C. S. Jensen, D. Pfoser, and Y. Theodoridis. Novel
Approaches to the Indexing of Moving Object
Trajectories. In Proc. of VLDB, pp. 395–406, 2000.

[17] R. Kuntschke, B. Stegmaier, A. Kemper, and A.
Reiser. StreamGlobe: Processing and Sharing Data
Streams in Grid–based P2P Infrastructures. In Proc. of
VLDB, pp. 1259–1262, 2005.

[18] B. Liu, Y. Zhu, M. Jbantova, B. Momberger, and E.
A. Rundensteiner. A Dynamically Adaptive Distributed
System for Processing Complex Continuous Queries. In
Proc. of VLDB, pp. 1338–1341, 2005.

[19] H. Samet. Foundations of Multidimensional and
Metric Data Structures. Morgan Kaufmann, 2006.

[20] Transportation Problems.
http://www.di.unipi.it/optimize/transpo.html

[21] Taxibus – Intelligent Group Transportation.
http://www.taxibus.org.uk/index.html

[22] texxi – Transit Exchange XXIst Century.
http://www.texxi.com

[23] E. Zeitler and T. Risch. Processing high–volume
stream queries on a supercomputer. In Proc. of ICDEW,
pp. 144, 2006.

[24] E. Zeitler and T. Risch. Using stream queries to
measure communication performance of a parallel
computing environment. In Proc. of ICDCSW, pp.
65–74, 2007.

[25] Y. Xing, S. B. Zdonik, and J.-H. Hwang. Dynamic
Load Distribution in the Borealis Stream Processor. In
Proc. of ICDE, pp. 791–802, 2005.

689

