
Finding Time-Dependent Shortest Paths over Large
Graphs

Bolin Ding
The Chinese University of

Hong Kong
blding@se.cuhk.edu.hk

Jeffrey Xu Yu
The Chinese University of

Hong Kong
yu@se.cuhk.edu.hk

Lu Qin
The Chinese University of

Hong Kong
lqin@se.cuhk.edu.hk

ABSTRACT
The spatial and temporal databases have been studied widely and
intensively over years. In this paper, we study how to answer
queries of finding the best departure time that minimizes the to-
tal travel time from a place to another, over a road network, where
the traffic conditions dynamically change from time to time. We
study a generalized form of this problem, called the time-dependent
shortest-path problem. A time-dependent graphGT is a graph that
has an edge-delay function,wi,j(t), associated with each edge(vi,
vj), to be stored in a database. The edge-delay functionwi,j(t)
specifies how much time it takes to travel from nodevi to node
vj , if it departs fromvi at timet. A user-specified query is to ask
the minimum-travel-time path, from a source node,vs, to a desti-
nation node,ve, over the time-dependent graph,GT , with the best
departure time to be selected from a time intervalT . We denote
this user query asLTT(vs, ve, T) overGT . The challenge of this
problem is the added complexity due to the time dependency in the
time-dependent graph. That is, edge delays are not constants, and
can vary from time to time. In this paper, we propose a novel algo-
rithm to find the minimum-travel-time path with the best departure
time for aLTT(vs, ve, T) query over a large graphGT . Our ap-
proach outperforms existing algorithms in terms of both time com-
plexity in theory and efficiency in practice. We will discuss the
design of our algorithm, together with its correctness and complex-
ity. We conducted extensive experimental studies over large graphs
and will report our findings.

1. INTRODUCTION
Due to the increasing interest in the dynamic management of

transportation systems, there are needs to find shortest paths over
a large graph (e.g., a road network), where the weights (or de-
lays) associated with edges dynamically change over time (time-
dependency). Transportation systems, which can provide real-time
traffic information (used to calculate edge delays) to users, include
the Vehicle Information and Communication System1 (VICS) and

1http://www.vics.or.jp/english/index.html/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT’08,March 25–30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003 ...$5.00.

the European Traffic Message Channel2 (TMC). The former oper-
ates in Japan and the latter operates in most European countries,
North America, and Australia. Together with road networks avail-
able as large graphs3, when such traffic information is available and
the (periodical) traffic patterns are known over a long time period,
it becomes possible to provide users with services, such as “how to
travel from a place in a city to another place in another city as fast
as possible”, by taking “rush hour” into consideration.

Consider tourism as an application. Suppose a group of people
wants to visit several places in several cities. When such road traffic
information is available, the group wants to know whether they can
travel to the next placefaster(spending less travel time on the way),
if they depart from a place later to avoid rush hour. In a similar
fashion, consider a logistic company that delivers products for their
customers using trucks. A truck may travel to a place with less
travel time, if it stays somewhere for some time, say 3 hours. In
this case, the company can utilize the 3 hours to deliver products to
nearby customers where possible with this truck.

Assume a road network is stored as a large graph with the traffic
information in a database. Such a query can be specified as follows.
Given a sourcevs and a destinationve, over the graph, and a time
windowT for consideration of departure fromvs, find the best time
within T to depart fromvs, and identify the path along which one
can arrive atve with the minimum travel time.

In this paper, we study the generalized form of this query, called
time-dependent shortest-path (TDSP) problem: to find the optimal
path (with the minimum travel time) from a source to a destination,
over a time-dependent graph, when the starting time (departure
time from the source) is selected from a user-given starting-time in-
terval. The time-dependent graph is a graph that has an edge-delay
(travel time fromvi to vj) functionwi,j(t), w.r.t. departure timet
from vi, for each edge(vi, vj). TDSP problem was studied to ei-
ther find approximate answers with discrete-time approaches [1, 2]
or find optimal answers with continuous-time approaches [20, 15].

We focus on finding optimal answers for the TDSP problem us-
ing a continuous-time approach with less time/space complexity.
We consider a specific class of graphs, calledFIFO time-dependent
graphs (refer to Section 5.1), as well as general time-dependent
graphs. Our approach can handle arbitrary edge-delay functions,
and allows waiting on nodes in order to minimize the travel time.

Contributions of this paper: (1) We propose a novel algorithm
to find optimal answers for the TDSP problem. Our algorithm can
handle both undirected and directed time-dependent graphs, and
bothFIFOand non-FIFO time-dependent graphs. (2) We show that
the time complexity of our algorithm isO((n log n+m)α(T)) and

2http://www.tmcforum.com/
3http://maps.google.com/

205

the space complexity isO((n + m)α(T)), wheren is the number
of nodes,m is the number of edges, andα(T) is the cost required
for each function (defined in intervalT) operation. Our algorithm
can be used to handle large time-dependent graphs. (3) We discuss
storage model and implementation, and show that our approach can
be easily implemented in a database system. (4) We conducted ex-
tensive performance studies, and we show that our algorithm out-
performs existing solutions in terms of efficiency and effectiveness.

Organization: Section 2 gives the problem statement. Section 3
introduces existing solutions to the time-dependent shortest-path
problem. We give an overview of our algorithm in Section 4, and
give the details in Section 5, including a running example, discus-
sions on the correctness and time/space complexity of our algo-
rithm, implementation details, and how to handle non-FIFOgraphs.
We give the experimental results in Section 6. Section 7 discusses
the related work. Finally, we conclude our paper in Section 8.

2. PROBLEM DEFINITION
Definition 2.1: (Time-Dependent Graph) A time-dependent graph
is defined asGT (V, E, W) (or GT for short): V = {vi} is a set
of nodes;E ⊆ V × V is a set of edges;W is a set of positive-
valued functions. For every edge(vi, vj) ∈ E, there is a function
wi,j(t) ∈ W , wheret is a time variable in a time domainT . An
edge-delay functionwi,j(t) specifies how much time it takes to
travel fromvi to vj , if departingvi at timet. 2

In this paper, we concentrate on finding theleast total travel time
(LTT) from source nodevs to destination nodeve when thestarting
time t (departure time from the source), can be selected in a user-
given starting-time intervalT = [ts, te] ⊆ T . Such a query is
called anLTTquery, denoted asLTT(vs, ve, T).

Note thetravel timeis thearrival time minus thestarting time.
In order to findLTT, we allowwaiting time, denoted as$(vi), at
each nodevi. That is, when arriving at nodevi, we can wait for a
time period$(vi) if LTT can be minimized. Below, letarrive(vi)
anddepart(vi) denote thearrival timeat nodevi and thedeparture
time from nodevi, respectively. For each nodevi, we have

depart(vi) = arrive(vi) + $(vi). (1)

Letp = (v1, v2)(v2, v3) · · · (vk−1, vk) be a fixed path with waiting
time$(vi) at nodevi. For a fixed starting timet,

arrive(v1) = t (2)

arrive(v2) = depart(v1) + w1,2(depart(v1))

· · ·
arrive(vk) = depart(vk−1) + wk−1,k(depart(vk−1)) (3)

gp(t) = arrive(vk). (4)

gp(t) above is thearrival-time function, representing the arrival
time from v1 to vk along pathp, possibly waiting at some nodes
on this path, if departing fromv1 at starting timet. Thetravel-time
function along pathp is thusgp(t) − t. We formally define the
time-dependent shortest-path (TDSP) problem as follows.

Definition 2.2: (TDSP Problem) Given a time-dependent graph
GT (V, E, W) and anLTT QueryLTT(vs, ve, T), wherevs, ve ∈
V , andT ⊆ T is a starting-time interval, theTime-Dependent
Shortest-Path (TDSP) problemis to minimizeLTT:

gp∗(t
∗)− t∗ = min

p,$(·),t
{gp(t)− t} (5)

finding avs-ve pathp∗ with waiting time$∗(vi) atvi, along which
the best starting timet∗ results in the minimum travel timegp(t)−t
among all starting timest ∈ T and over allvs-ve pathsp’s. 2

2v

v4

v1

v3

source

destination

(a) (V, E)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 10 20 30 40 50 60

Ed
ge

 D
el

ay

Time

(b) w1,2(t)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 10 20 30 40 50 60

Ed
ge

 D
el

ay

Time

(c) w1,3(t)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 10 20 30 40 50 60

Ed
ge

 D
el

ay

Time

(d) w2,3(t)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 10 20 30 40 50 60

Ed
ge

 D
el

ay

Time

(e) w2,4(t)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 10 20 30 40 50 60

Ed
ge

 D
el

ay

Time

(f) w3,4(t)

Figure 1: A Time-Dependent GraphGT (V, E, W)

Example 2.1:A road network can be modelled as a time-dependent
graphGT (V, E, W) in Fig. 1. Fig. 1 (a) shows its graph structure
(V, E), with four nodes and five edges. The edge-delay functions
for the edges,(v1, v2), (v1, v3), (v2, v3), (v2, v4), and(v3, v4), are
shown in Fig. 1 (b), (c), (d), (e), and (f), respectively.

For queryLTT(v1, v4, [0, 60]), p∗ = (v1, v2)(v2, v3)(v3, v4) is
the optimalv1-v4 path. Alongp∗ with no waiting time required at
any node, the best starting timet∗ = 20 results in the minimum
travel timegp∗(t

∗) − t∗ = 30 (which will be further explained in
Section 5.3 as a running example of our solution). 2

In the following part, we focus on the TDSP problem, i.e., for
queryLTT(vs, ve, T) over a time-dependent graphGT (V, E, W),
finding the optimalvs-ve pathp∗, waiting times$∗(·), and starting
time t∗, to minimizeLTT. NoteT is a continuous time interval,
andt∗ can be any time point within this interval.

3. EXISTING SOLUTIONS
In this section, we discuss three types of algorithms for the TDSP

problem, to answer queryLTT(vs, ve, T) over a time-dependent
graphGT (V, E, W). They are discrete-time algorithms [17, 2,
1], BELLMAN -FORD based algorithm [20], and extendedA∗ algo-
rithm [15]. The discrete-time algorithms find an approximateLTT
solution, and bothBELLMAN -FORD and A∗ algorithms find the
optimal (minimized)LTT. The main challenge to find the optimal
LTT overGT (V, E, W) is, because edge delays are different func-
tions of departure times, thevs-ve path with the least total travel
time changes in a complicated manner as the starting time changes.

Discrete-Time Algorithms: The discrete-time approaches have
been well-studied. To the best of our knowledge, the most efficient
one, denoted asDOT, was presented in [2]. They find approx-
imateLTT by globally discretizing time interval into time points.
In brief, given a graphGT (V, E, W), a discrete-time approach dis-
cretizes the starting-time intervalT = [ts, te] into k time points
evenly, and constructs a static graphG′T (V ′, E′, W ′) by making
k copies of each node and each edge, respectively. Thus,|V ′| =

206

k|V |, |E′| = k|E|, and edge delayW ′ is static. For each edge
(v′i, v

′
j) ∈ E′, edge delayw′i,j is equal to the value ofwi,j(t) on

a time point. The TDSP problem onGT (V, E, W) can be solved
as a static single-source shortest path problem onG′T (V ′, E′, W ′),
whose size is enlargedk times. Its solution can be used to approx-
imateLTT overGT (V, E, W).

There are two fundamental drawbacks inherent in discrete-time
approaches. First, the difference between theLTT obtained using
a discrete-time approach and the optimalLTT, calledLTT error,
is very sensitive to parameterk, and is unbounded. This is because
the optimal starting timet∗ for LTT(vs, ve, T) can be always be-
tween any two of thek time points, and theLTT error is generated
in an accumulative way alongvs-ve paths. Second, increasingk
deteriorates the efficiency of discrete-time approaches, sinceG′T is
k times larger thanGT .

Bellman-Ford Based Algorithm: Orda and Rom [20] proposed
a continuous-time algorithm to solve the TDSP problem. We call
it OR algorithm by taking the initials of Orda and Rom. Algo-
rithm OR takes time-dependent graphGT (V, E, W) and query
LTT(vs, ve, T) as the input. It is outlined below.

1: for all vl ∈ V do gl(t) ←∞ for t ∈ T ;
2: for all (vk, vl) ∈ E do hk,l(t) ←∞ for t ∈ T ;
3: gs(t) ← t for t ∈ T ;
4: repeat
5: for all (vk, vl) ∈ E do hk,l(t) ← gk(t) + wk,l(gk(t));
6: for all vl ∈ V do gl(t) ← minvk∈N(vl){hk,l(t)};
7: until all functionsgl(t) are unchanged
8: return (t∗ ← argmint∈T {ge(t)− t}, p∗);

OR generalizes theBELLMAN -FORD shortest-path algorithm. Let
functiongl(t) be theearliest arrival timeat nodevl, from source
vs, for starting timet, and let functionhk,l(t) be theearliest arrival
timeat vl, from sourcevs via edge(vk, vl), for starting timet. It
first initializesgl(t) andhk,l(t) functions (line 1-3), and then re-
peatedly updatesgl(t) andhk,l(t) until they converge to the correct
values (line 4-7). Finally (line 8), it returns the best starting timet∗,
and the optimalvs-ve pathp∗, as the answer toLTT(vs, ve, T). p∗

is constructed based ongl(t) andhk,l(t) functions (refer to [20]).
The time complexity of AlgorithmOR is O(nmα(T)), where

α(T) is the time required in a function operation in intervalT ,
n = |V |, andm = |E|. The high time complexity makes it infea-
sible forOR to work on large or dense time-dependent graphs. We
outline the reasons for its high time complexity below.

OR takes a strategy of determining paths toward destinationve

while refining the arrival-time functions,gi(t), in the whole in-
terval T . We call such an algorithm apath-selection and time-
refinementapproach. Thepath-selectionis accomplished implic-
itly in line 5, attempting to arrive atvl earlier via edge(vk, vl).
The time-refinementis done in line 6, updating arrival-time func-
tion gl(t) usinghk,l(t). The interweavement of path-selection and
time-refinementin the whole intervalT makes functions,gl(t) and
hk,l(t), converge slowly, possibly inn iterations of line 4-7. Actu-
ally, after some iterations,gl(t) might have converged in a subinter-
val of T , but AlgorithmOR cannot recognize this, and still needs
to recalculategl(t) andhk,l(t) in the whole intervalT .

A* Algorithm : Kanoulas et al. in [15] gave an extension toA∗

algorithm for the TDSP problem. We denote it asKDXZ by taking
the initials from the authors in [15]. The main idea is to maintain
a priority queueQ of all paths to be expanded. Letpk be a path
from sourcevs to a nodevk. Note: there are possibly multiple
paths fromvs to vk in GT , and all of them may be maintained in
Q at the same time. Each distinctvs-vk pathpk is associated with

a function,fpk (t) = gpk (t) + dk,e − t. Here,gpk (t) is the arrival
time from sourcevs to vk along pathpk for starting timet; dk,e is a
lower bound estimation of the travel time fromvk to destinationve;
fpk (t) is the estimated travel time from sourcevs to destinationve

along pathpk for starting timet. In each iteration, it picks the path
pi from the priority queueQ to expand, such thatmint{fpi(t)} is
the minimum among all pathspk ’s in Q. Each pathpj , extended
from pi with one more edge(vi, vj), will be added into the priority
queueQ for further expansion, and pathpi will be deleted fromQ.
This process will terminate when the firstvs-ve pathpe is picked
fromQ. NoteKDXZ assumes no waiting is allowed.

KDXZ is also apath-selection and time-refinementapproach.
Thepath-selectionis done explicitly in the path extension frompk

to pl, followed by thetime-refinementdone in the computation of
gpl(t) andfpl(t). Thepath-selectionand thetime-refinementhere
are coupled even more closely than those inOR. Resultingly, in
the worst case, allvs-ve paths are enumerated, and the time/space
complexity ofKDXZ is exponential w.r.t. the size ofGT .

Algorithm KDXZ is efficient only when estimation can assist
pruning the search space effectively, andvs andve are closed to
each other in graphGT . It is difficult to find such estimationdk,e

in general graphs, and it is infeasible to useKDXZ to handle large
time-dependent graphs, whereve may be far away fromvs.

Remark 3.1: (About Functions) While discrete-time algorithms
avoid the representation and operations of functions,BELLMAN -
FORD based algorithm [20],A∗ algorithm [15], and ours find the
optimalLTT based on four basic function operations:FUNCTION

INVERSE, f−1(a) , max{t|f(t) = a}, L INEAR COMBINATION ,
a · f(t) + b · g(t), FUNCTION COMPOUND, f(g(t)), and M INI -
MUM of two functions,min{f(t), g(t)}. [20] considers a general
class of functions from a theoretical view, whereas [15] focuses on
piecewise linear functions with the consideration of the cost to ma-
nipulate such functions. In this paper, we will show our approach
can also handle a general class of functions as AlgorithmOR in
[20] does. Sharing the same concerns with [15], we will focus on
piecewise-linear functions regarding implementations and perfor-
mance studies in this paper. 2

4. NEW DIJKSTRA BASED ALGORITHM
In the following part, we first focus on answeringLTT(vs, ve, T)

queries in anFIFO (First-In and First-Out, Definition 5.1) time-
dependent graphGT , where no waiting time is needed in optimal
solutions (Theorem 5.1). We will discuss how to deal with general
graphs in Section 5.7. We assumeGT is adirected graph. With mi-
nor changes, our algorithm can handleundirected graphsas well.

We propose a new algorithm by decouplingpath-selectionand
time-refinementin the starting-time intervalT . We show that an-
swering a queryLTT(vs, ve, T) over a graphGT can be done in
two steps. In the first step, we focus on time-refinement, i.e., for ev-
ery nodevi ∈ V , to compute theearliest arrival time, gi(t), depart-
ing fromvs at any starting timet ∈ T . We callgi(t) thevs-vi earli-
est arrival-time functionin the following part. Based on the earliest
arrival-time functions computed, the best starting timet∗ with the
minimumvs-ve travel time,ge(t

∗) − t∗ = mint{ge(t) − t}, can
be identified. In the second step, we select one of the paths fromvs

to ve, which matches the optimal travel timege(t
∗)− t∗.

As an example to illustrate the main ideas, consider the query
LTT(v1, v4, T) over GT (Fig. 1) in Example 2.1, whereT =
[0, 60]. In the first step, we compute the earliest arrival-time func-
tions, g1(t), g2(t), g3(t), andg4(t), for the four nodes,v1, v2,
v3, andv4. The earliest arrival-time function,g4(t), and its corre-
sponding travel time function,g4(t)− t, from sourcev1 to destina-

207

Notation Meaning
GT (V, E, W) time-dependent graph (orGT for short)
n, m number of nodes|V |, number of edges|E|
wi,j(t) edge-delay function for(vi, vj) ∈ E
vs, ve, T source, destination, starting-time interval
p∗ optimal path fromvs to ve

t∗ optimal starting time
$∗(vi) optimal waiting time at nodevi

gi(t) vs-vi earliest arrival-time function
gp(t) arrival-time function (along pathp)
α(T) or α(|T |) time/space required to maintain a function

or to manipulate a function operation over
time intervalT

Table 1: Important Notations

tion v4, are shown in Fig. 2 (a) and (b), respectively. As shown in
Fig. 2 (b), the least total travel time is 30, and the best starting time
is t∗ = 20, which is a starting time to arrive atv4 within the min-
imum travel time 30. In the second step, we identify the optimal
path asp∗ = (v1, v2)(v2, v3)(v3, v4). Note in Fig. 2,g4(t) and
g4(t)− t are given in a subinterval[0, 30] of T = [0, 60], because
if starting fromv1 later than30, it will arrive at v4 later than 60,
and thus some edge-delay functions are undefined.

The first step is the dominating factor in terms of computational
cost. It needs to compute the earliest arrival-time functiongi(t) for
every nodevi ∈ V , as given in Equation (6).

gi(t) = min
vj∈N(vi),$(vj)

{(gj(t) + $(vj)) + wi,j(gj(t) + $(vj))}
(6)

Here,N(vi) is a set of neighbors ofvi that can reachvi in graph
GT , i.e.,N(vi) = {vj |(vj , vi) ∈ E}.

The challenge of computing Equation (6) is due to the edge-
delay functions. The edge delays are not constants, and can vary
for different starting times. Therefore, the optimalvs-ve path may
be different for different starting time. In a continuous starting-
time interval, there are infinite different starting-time values. It is
challenging to select the best starting timet∗ and the optimalvs-
ve path from an infinite number of possible starting times and an
exponential number ofvs-ve paths, respectively.

Below, we show our solutionTWO-STEP-LTT decouples the
two things, namely,path-selectionandtime-refinement. We design
a DIJKSTRA-based algorithm for the first step (time-refinement),
and a linear-time algorithm for the second step (path-selection).

Outline of Two-Step-LTT (Algorithm 1): The main part of our
two-step algorithm is given in Algorithm 1. We call itTWO-STEP-
LTT. As shown in Algorithm 1, it takes four input parameters:
time-dependent graphGT , sourcevs, destinationve, and starting-
time intervalT (a queryLTT(vs, ve, T) overGT). The first step,
timeRefinement(Algorithm 3), computes the earliest arrival-time
functionsgi(t), for nodesvi in GT , in line 1. The condition in
line 2 checks whether there is a path fromvs to ve. The optimal
starting timet∗ is identified in line 3. For the second step, it calls
pathSelection(Algorithm 2) to find a pathp∗ which matches the
arrival timege(t

∗) for the best starting timet∗ in line 4. Finally, it
returns pathp∗ together with the best starting timet∗. We outline
the main ideas behind the two steps below.

Dijkstra-Based Time-Refinement (Algorithm 3): In the first step,
we compute the earliest arrival-time functiongi(t), for every node
vi in V . Like the DIJKSTRA algorithm (for the static shortest-
path problem) which expands a set of nodes, we refine arrival-time
functions,gi(t), incrementally in the given starting-time interval

Algorithm 1 TWO-STEP-LTT (GT (V, E, W), vs, ve, T)

Input: a time-dependent graphGT , a queryLTT(vs, ve, T) -
sourcevs, destinationve, and starting-time intervalT = [ts, te];
Output: optimalvs-ve pathp∗, and optimal starting timet∗.

1: {gi(t)} ← timeRefinement(GT , vs, ve, T);
2: if ¬(ge(t) = ∞ for the entire[ts, te]) then
3: t∗ ← argmint∈T {ge(t)− t};
4: p∗ ← pathSelection(GT , {gi(t)}, vs, ve, t∗);
5: return (t∗, p∗);
6: else return∅;

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

A
rr

iv
al

 T
im

e

Starting Time

(a) g4(t)

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

Tr
av

el
 T

im
e

Starting Time

(b) g4(t)− t

Figure 2: An earliest arrival-time function and its correspond-
ing travel-time function

T = [ts, te]. For every nodevi ∈ V , let Ii = [ts, τi] ⊆ T be
a starting-time subinterval, where time pointτi ∈ T = [ts, te].
By "incrementally", we mean: we refine the earliest arrival-time
functiongi(t) by extendingIi to a larger starting-time subinterval
I ′i = [ts, τ

′
i] ⊆ T , for τ ′i > τi, and computinggi(t) in [τi, τ

′
i]. We

say functiongi(t) is well-refinedin a starting-time subintervalIi,
if it specifies the earliest arrival time atvi from vs for any starting
time t ∈ Ii. It is possible thatIi 6= Ij for vi 6= vj .

In our algorithm, we promise functiongi(t) is well-refined inIi

for eachvi ∈ V . In every iteration, we select a nodevi, and expand
its starting-time subinterval fromIi to I ′i, in which functiongi(t)
is well-refined. We update the arrival-time functiongj(t) for every
neighbor,vj , of nodevi in the starting-time subintervalI ′i − Ii =
[τi, τ

′
i]. Then we letIi = I ′i, and repeat this time-refinement pro-

cess, namelyDIJKSTRA-based time-refinement, till functionge(t)
is well-refined, for destinationve, in the entire starting-time interval
T . The best starting time,t∗ ∈ T , is identified asargmint∈T {ge(t)−
t}, which minimizesge(t)− t.

Fast Path-Selection (Algorithm 2):The optimalvs-ve pathp∗ is
computed using thepathSelectionalgorithm (Algorithm 2), which
takes five inputs: graphGT , all the earliest arrival-time functions
{gi(t)}, the optimal starting timet∗ ∈ T , sourcevs, and desti-
nationve. To select the pathp∗ from vs to ve, we determine the
predecessor of every node onp∗ backward fromve to vs based
on {gi(t)} and t∗. The predecessor ofvj is determined asvi, if
gj(t

∗) = gi(t
∗)+wi,j(gi(t

∗)), for (vi, vj) ∈ E. It means that the
arrival time atvj , gj(t

∗), is the arrival time atvi, gi(t
∗), plus the

edge delay fromvi to vj (we assume there is no waiting time here).
In pathSelection(Algorithm 2), initially, we setvj as destination

ve, and the optimal pathp∗ empty (line 1-2). In the while loop, we
iteratively find a predecessorvi of vj and add(vi, vj) into p∗ till
p∗ reaches the sourcevs (line 3-7). The correctness ofpathSelec-
tion is straightforward. Its time complexity isO(mα(T)), where
m = |E| andα(T) is the time required for each function operation,
because each edge can be examined in line 5 at most once.

In the following, we will focus on the first step ofTWO-STEP-
LTT, namely, time-refinement.

Remark 4.1: Comparing AlgorithmTWO-STEP-LTT with Algo-

208

Algorithm 2 pathSelection(GT (V, E, W), {gi(t)}, vs, ve, t∗)

Input: a time-dependent graphGT , the set of earliest arrival-time
functionsgi(t) for all nodesvi ∈ V , source nodevs, destination
nodeve, and the optimal starting timet∗;
Output: an optimalvs-ve pathp∗ for starting timet∗.

1: vj ← ve;
2: p∗ ← ∅;
3: while vj 6= vs do
4: for each (vi, vj) ∈ E do
5: if gi(t

∗) + wi,j(gi(t
∗)) = gj(t

∗) then
6: vj ← vi; break;
7: p∗ ← (vi, vj) · p∗;
8: return p∗;

rithm OR, hk,l(t) functions are absent in ourTWO-STEP-LTT,
andgi(t) functions share the same meanings in both. The absence
of hk,l(t) functions inTWO-STEP-LTT does not add more com-
plexity to the construction ofp∗ (Algorithm 2). As shown in Section
5 (Algorithm 3), we can usegi(t) functions solely to answer query
LTT(vs, ve, T) with lower time/space complexity. 2

5. TIME-REFINEMENT
In this section, givenGT (V, E, W) and queryLTT(vs, ve, T),

we focus on the first step ofTWO-STEP-LTT, i.e., time-refinement.
By time-refinement, we mean to compute and refine the earliest
arrival-time functiongi(t) for every nodevi in V .

First, we introduce a special class of time-dependent graphs,
calledFIFO (First In, First Out) graphs [20]. Second, we discuss
our DIJKSTRA-based algorithmtimeRefinement(Algorithm 3) to
compute the earliest arrival-time functiongi(t) for every nodevi,
for answering a queryLTT(vs, ve, T), in aFIFO graphGT (V, E,
W). It is based on the incremental time-refinement of functions
gi(t) for nodesvi in starting-time intervalT . Third, we explain our
algorithm using an example. Fourth, we prove the correctness of
our algorithm, and give its time/space complexity. Finally, we dis-
cuss some implementation details, and show how ourDIJKSTRA-
based algorithm can also work on general non-FIFO graphs.

5.1 FIFO Graphs
FIFOproperty of an edge(vi, vj), in GT , suggests that if depart-

ing earlier fromvi, one arrives earlier atvj .

Definition 5.1: (FIFO) Time-dependent graphGT (V, E, W) is a
FIFO graph, iff every edge(vi, vj) hasFIFO property. An edge
(vi, vj) hasFIFO property, iffwi,j(t0) ≤ t∆ + wi,j(t0 + t∆) for
t∆ ≥ 0, or t1 + wi,j(t1) ≤ t2 + wi,j(t2) for t1 ≤ t2. 2

Theorem 5.1: (No Waiting in FIFO Graphs) For a given query
LTT(vs, ve, T) on aFIFO time-dependent graphGT , there exists
an optimalvs-ve path p∗ along which the optimal waiting time
$∗(vi) = 0 for everyvi onp∗. 2

Proof Sketch: Let vi be a node on optimal pathp∗, s.t.$∗(vi) >
0, andvj be vi’s successor onp∗. Let ti = arrive(vi) andtj =
arrive(vj) be the arrival time atvi andvj , respectively, alongp∗

for starting timet∗. FromFIFO property, we haveti + wi,j(ti) ≤
(ti + $∗(vi)) + wi,j(ti + $∗(vi)) = tj . That is, the arrival time
at vj without waiting onvi (i.e., ti + wi,j(ti)) is no later than the
arrival time atvj with waiting time $∗(vi) on vi (i.e., tj). By
induction, we can prove if$∗(vi) = 0 for each nodevi, the travel
time atve alongp∗ do not increase. Details are omitted. 2

Algorithm 3 timeRefinement(GT (V, E, W), vs, ve, T)

Input: a time-dependent graphGT , a queryLTT(vs, ve, T) -
sourcevs, destinationve, and starting-time intervalT = [ts, te];
Output: {gi(t)|vi ∈ V } - all earliest arrival-time functions.

1: gs(t) ← t for t ∈ T ; τs ← ts;
2: for eachvi 6= vs do
3: gi(t) ←∞ for t ∈ T ; τi ← ts;
4: Let Q be a priority queue initially containing pairs,(τi, gi(t)),

for all nodesvi ∈ V , ordered bygi(τi) in ascending order;
5: while |Q| ≥ 2 do
6: (τi, gi(t)) ← dequeue(Q);
7: (τk, gk(t)) ← head(Q);
8: ∆ ← min{wf,i(gk(τk)) | (vf , vi) ∈ E};
9: τ ′i ← max{t | gi(t) ≤ gk(τk) + ∆};

10: for each (vi, vj) ∈ E do
11: g′j(t) ← gi(t) + wi,j(gi(t)) for t ∈ [τi, τ

′
i];

12: gj(t) ← min{gj(t), g
′
j(t)} for t ∈ [τi, τ

′
i];

13: update(Q, (τj , gj(t)));
14: τi ← τ ′i ;
15: if τi ≥ te then
16: if vi = ve then
17: return {gi(t)|vi ∈ V };
18: else
19: enqueue(Q, (τi, gi(t)));
20: return {gi(t)|vi ∈ V }.

Theorem 5.1 implies that, to find an optimal solution to query
LTT(vs, ve, T) over aFIFOgraphGT , we can safely assume wait-
ing time $(vi) = 0 for each nodevi ∈ V , although waiting at
nodes is allowed. Theroad network modelstudied in [15] is a FIFO
graph (we will explain this in details in the appendix). Thus, wait-
ing is not needed in road networks.

5.2 Time-Refinement for FIFO Graphs
In this subsection, we discuss how to processDIJKSTRA-based

time-refinement forFIFO graphs, i.e., how to refine the earliest
arrival-time functiongi(t) in the starting-time intervalT for every
nodevi in GT . ThetimeRefinementalgorithm is outlined in Algo-
rithm 3. It takes four parameters as the input: time-dependent graph
GT (V, E, W), source nodevs, destination nodeve, and starting-
time intervalT = [ts, te]. Here, by time-refinement we mean two
things: arrival-time function refinementof gi(t) andstarting-time
interval refinementof the starting-time subintervalIi = [ts, τi],
for every nodevi in GT . RecallIi = [ts, τi] denotes the starting-
time subinterval, on which functiongi(t) is well-refined (orgi(t)
specifies the earliestvs-vi arrival time for any starting timet ∈ Ii).

Initially, for sourcevs, gs(t) andτs are initialized:gs(t) ← t
andτs ← ts (line 1). It means a trivial case: if it departs from
sourcevs at any timet0, it will arrive at the same nodevs at the
same timet0, and its travel time isgs(t0) − t0 = 0. For all other
nodes,vi 6= vs, the earliest arrival-time functions,gi(t), are ini-
tialized asgi(t) ← ∞, which means that they are undetermined
yet, and allτi are initialized asτi ← ts (line 2-3). For each node
vi ∈ V , gi(t) is ensured to be the earliest arrival time (well-refined)
in Ii = [ts, τi], which is aloop invariantin timeRefinementalgo-
rithm. Note: initiallyIi is an empty subinterval.

Our algorithm uses a priority queue,Q, which initially contains
pairs (τi, gi(t))’s for all nodesvi ∈ GT in the ascending order
of gi(τi). The top pair inQ is (τs, gs(t)) initially. The while
statement (line 5-19) conducts time-refinement for every nodevi

209

’g ()i

τk kg ()

τg ()i i

g (t)k

i

starting time

i

iki
’ττ

g (t)

τ

arrival time

∆

∆+τ τk kg ()

Figure 3: Starting-Time Interval Refinement

in GT . It is ensured that the earliest arrival-time functiongi(t) is
well-refined in the starting-time subintervalIi = [ts, τi] for node
vi. The algorithm will terminate ifge(t), for destinationve, is well-
refined in the entire intervalT (line 17), orQ contains no more than
one pair (line 5). In every iteration in the while loop, the starting-
time interval refinement is conducted in line 6-9 and line 14, and
the arrival-time function refinement is conducted in line 10-13.

Next, we discuss starting-time interval refinement and arrival-
time function refinement in details.

Starting-Time Interval Refinement: In every iteration, it first de-
queues the top pair fromQ, denoted as(τi, gi(t)) (line 6). After de-
queuing, it will use the current top pair inQ, denoted as(τk, gk(t)),
as the basis for starting-time interval refinement (line 7 - The oper-
ationhead(Q) retrieves the top pair but does not dequeue it from
Q). Therefore,gi(τi) is the earliest arrival time from source node
vs, followed bygk(τk), among all pairs(τl, gl(t))’s in Q.

It is important to note that for any nodevf (exceptvi), if the
starting time is taken in[τf , te], it is impossible to arrive atvf

before the arrival timegk(τk), from source node. The two reasons
are given below. Let(τf , gf (t)) be inQ for nodevf ∈ V , and it
arrives at nodevf at the arrival timegf (τf) for starting timeτf .
First, gl(τf) ≥ gk(τk), because the sorting order inQ. Second,
graphGT is FIFO, and thus it arrives atvf no earlier than time
gk(τk), if the starting time is taken in[τf , te]. It can be formally
proved based on the choices of(τi, gi(t)) and(τk, gk(t)) in Q, and
theFIFO property ofGT (refer to Section 5.4).

Fix nodevi, and consider an edge(vf , vi) ∈ E at timegk(τk).
If starting timet is taken in[τf , te], from the above discussion, it
arrives atvf no earlier than timegk(τk). Suppose that it arrives
at vf at timegk(τk). The minimum travel time fromvf to vi can
be computed as∆ ← min{wf,i(gk(τk))|(vf , vi) ∈ E} (line 8).
Therefore, due to theFIFO property ofGT , next earliest possible
arrival time fromvs to vi via any edge(vf , vi) is gk(τk) + ∆, if
starting timet ≥ τf . We attempt to find the latest starting timet
that satisfiesgi(t) ≤ gk(τk) + ∆, and set it asτ ′i (line 9). With the
choice ofτ ′i , we can prove that (refer to Section 5.4) functiongi(t)
is well-refined in[ts, τ

′
i], i.e.,gi(t) is the earliest arrival time from

vs tovi for starting timet ∈ [ts, τ
′
i], because (the intuition)gi(t) ≤

gk(τk) + ∆ for t ∈ [τi, τ
′
i]. We emphasize that in the previous

iteration,gi(t) is ensured to be well-refined inIi = [ts, τi], and it is
now ensured inI ′i = [ts, τ

′
i], whereIi ⊂ I ′i. Let τi ← τ ′i andIi ←

I ′i (line 14). It is what we call starting-time interval refinement.
Fig. 3 illustrates the relationships between starting times and arrival
times in the starting-time interval refinement.

As discussed above, the starting-time subintervalIi for the de-
queued nodevi is enlarged, while its earliest arrival-time function,
gi(t), remains unchanged. Next, we discuss how to update the
arrival-time functiongj(t) for a nodevj , when its incoming neigh-
borvi’s starting-time interval is refined ((vi, vj) ∈ E).

Arrival-Time Function Refinement: As shown above, the arrival-

time functiongi(t), for nodevi, is well-refined as the earliestvs-vi

arrival-time function in both the original starting-time subinterval,
Ii = [ts, τi], and the enlarged one,I ′i = [ts, τ

′
i], in the previous

and the current iterations, respectively. It can then be used to refine
arrival-time functions,gj(t), in starting-time subinterval[τi, τ

′
i] for

all of vi’s outgoing neighborsvj ((vi, vj) ∈ E). It is done in
line 10-13. First, it computes the arrival timeg′j(t) at vj via edge
(vi, vj) for starting timet ∈ [τi, τ

′
i] (line 11). Thengj(t) is refined

asmin{gj(t), g
′
j(t)} on interval[τi, τ

′
i] (line 12). We only refine

gj(t) on [τi, τ
′
i], because we have refined it withgi(t) on [ts, τi]

already in previous iterations.Q is updated for nodevj with its
newly refined arrival-time functiongj(t) (line 13).

Terminating Condition: After arrival-time function refinement,
τi is set asτ ′i (line 14). If in the entire intervalT = [ts, te], for
nodevi, gi(t) has been well-refined, as specified in the condition
“τi ≥ te” (line 15), the algorithm further checks whethervi is the
destination. If true, it terminates in line 17. Ifgi(t) has not been
well-refined in the entire starting-time interval, pair(τi, gi(t)) is
enqueued back intoQ (line 19) for further time refinement.

Note: the while loop terminates when there is only one pair left
in the priority queue (line 5). Let the last pair be(τi, gi(t)) for
nodevi. There is no need to further refine it for the following
reason. The starting-time subintervalsIj and earliest arrival-time
functionsgj(t) of all other nodesvj have already been well re-
fined. Sogi(t) has been refined by every well-refinedgj(t), if
(vj , vi) ∈ E. Therefore,gi(t) in the starting-time interval[τi, te]
also specifies the earliest arrival time, ifgi(t) 6= ∞ for t ∈ [τi, te].

In summary, for sourcevs, thetimeRefinementalgorithm initial-
izesgs(t) ← t, which becomes the starting point to refine its own
starting-time interval, and to refine the earliest arrival-time func-
tions for other nodes. The starting-time interval refinement and the
arrival-time function refinement repeat in every iteration.

5.3 A Running Example
Reconsider Example 2.1 to compute the queryLTT(v1, v4, T =

[0, 60]), overGT (Fig. 1). Algorithm 3 takesGT , vs = v1, ve =
v4, andT = [0, 60] as the input. Initially,g1(t) = t (Fig. 4 (a)).
It states that if it departs fromv1 at timet0, then it arrives atv1 at
the same timet0, and the travel time isg1(t0) − t0 = 0 for any
t0 ∈ T . At the initial stage, the starting-time subintervalI1 for v1

is [0, τ1], whereτ1 = 0. The black box indicatesτ1 (x-value) and
g1(τ1) (y-value), which states thatg1(t) is ensured to specify the
earliest arrival time forv1 in I1 = [0, τ1] = [0, 0]. For other nodes,
vi (i = 2, 3, 4), gi(t) = ∞ andIi = [0, τi] whereτi = 0. It
implies thatgi(t) has not been refined yet.

In the first iteration, the top pair dequeued from the priority
queueQ is (τ1, g1(t)) whereτ1 = 0 andgt(τ1) = 0 (line 6). In
other words,g1(t) specifies the earliest arrival time in the starting-
time subintervalI1 = [0, τ1] = [0, 0]. It picks (τ3, g3(t)) as
(τk, gk(t)), whereτ3 = 0 and g(τ3) = ∞ (line 7). Then, the
newly enlarged starting-time subinterval,I ′1, for v1, becomesI ′1 =
[0, τ ′1] = [0, 60] (line 9), becauseτ ′1 is the latest starting timet sat-
isfying g1(t) ≤ g3(τ3) + ∆ = ∞ +∞, where∆ = ∞ as there
are no coming edges to source nodev1 (line 8-9). The resulting
g1(t) is shown in Fig. 4 (b). Becausev1’s starting-time subinterval
I1 = [0, 60], v1 can be removed from the queueQ. In this itera-
tion, it will update the arrival-time functions for nodesv2 andv3

based onv1. The resulting arrival-time functions,g2(t) andg3(t),
for v2 andv3, are shown in Fig. 4 (c) and (d), respectively.

In the second iteration, the top pair dequeued from queueQ is
(τ3, g3(t)), whereτ3 = 0 andg3(τ3) = 5 (line 6). It will then pick
(τ2, g2(t)) as(τk, gk(t)), whereτ2 = 0 andg2(τ2) = 10 (line 7).
The newly enlarged starting-time subinterval,I ′3, for v3, becomes

210

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

A
rr

iv
al

 T
im

e

Starting Time

(a) g1(t)

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

A
rr

iv
al

 T
im

e

Starting Time

(b) g1(t)

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

A
rr

iv
al

 T
im

e

Starting Time

(c) g2(t)

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

A
rr

iv
al

 T
im

e

Starting Time

(d) g3(t)

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

A
rr

iv
al

 T
im

e

Starting Time

(e) g3(t)

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

A
rr

iv
al

 T
im

e

Starting Time

(f) g4(t)

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

A
rr

iv
al

 T
im

e

Starting Time

(g) g2(t)

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

A
rr

iv
al

 T
im

e

Starting Time

(h) g3(t)

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

A
rr

iv
al

 T
im

e

Starting Time

(i) g4(t)

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

A
rr

iv
al

 T
im

e

Starting Time

(j) g2(t)

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

A
rr

iv
al

 T
im

e

Starting Time

(k) g3(t)

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

A
rr

iv
al

 T
im

e

Starting Time

(l) g4(t)

Figure 4: Arrival-Time Functions

I ′3 = [0, τ ′3] = [0, 7] (line 9), becauseτ ′3 = max{t|g3(t) ≤
g2(τ2) + ∆} = max{t|g3(t) ≤ 20} = 7 (line 9), where∆ =
min{w1,3(g2(τ2)), w2,3(g2(τ2))}= min{w1,3(10), w2,3(10)}=
10 (line 8). The resultingg3(t) in the new starting-time subinterval
I3 ← I ′3 = [0, 7] (starting-time interval refinement) is shown in
Fig. 4 (e). It will also updateg4(t) on [0, 7] (arrival-time function
refinement), which is shown in Fig. 4 (f).

In the third iteration, the top pair dequeued from the priority
queueQ is (τ2, g2(t)) whereτ2 = 0 andg2(τ2) = 10. The re-
sultingg2(t) for v2 is shown in Fig. 4 (g). The updatedg3(t) and
g4(t) are shown in Fig. 4 (h) and (i).

The iteration repeats 11 times. Functionsg1(t), g2(t), g3(t), and
g4(t) are well-refined, as in Fig. 4 (b), (j), (k), and (l), respectively.
The optimal starting time from sourcev1 is 20, and the minimized
LTT is g4(20) − 20 = 30. Based on functionsg1(t) · · · g4(t),
the optimal pathp∗ can be constructed usingpathSelection(Algo-
rithm 2). Lett∗ = 20. First, inpathSelection, it finds thatg3(t

∗)+
w3,4(g3(t

∗)) = g4(t
∗), so the predecessor to the destination node

is v3. Second, it finds thatg2(t
∗) + w2,3(g2(t

∗)) = g3(t
∗), so the

predecessor tov3 is v2. Finally, in a similar fashion, it reaches the
sourcev1, and pathp∗ is identified as(v1, v2)(v2, v3)(v3, v4).

5.4 Correctness
Theorem 5.2:Given aFIFO time-dependent graphGT (V, E, W)
and a queryLTT(vs, ve, T), whereT = [ts, te]. TWO-STEP-LTT
(Algorithm 1) finds the optimal answer toLTT(vs, ve, T). 2

Proof Sketch: As given in Theorem 5.1, there is no need to con-
sider waiting time at nodes.TWO-STEP-LTT is a two-step algo-
rithm, namely,timeRefinementalgorithm andpathSelectionalgo-
rithm. In the first step,timeRefinementrefines the earliest arrival-
time functions,gi(t), for all needed nodesvi, to reachve from vs.
The optimal starting time ist∗ ∈ T which minimizes travel time

vs vx vy

vp vq

t0

g ()p t0*
g ()q t0*

τkg ()
k

τkg ()
k

+ w ()p,q

p

p

s,q

s,q*

Figure 5: Intuition of the Proof

ge(t)− t from vs to ve. In the second step, based ont∗ and arrival-
time functions,gi(t), pathSelectionrecovers the optimal pathp∗.
The proof for the correctness of the second step is straightforward
as discussed in Section 4. In Theorem 5.3, we will prove the first
step is correct, to complete the proof of Theorem 5.2. 2

Lemma 5.1: For everyvi ∈ V , gi(t1) ≤ gi(t2), if t1 ≤ t2, is
always true intimeRefinement(Algorithm 3). 2

This lemma shows the monotonicity ofgi(t). It can be proved
directly by the definition ofFIFO property and the way howgi(t)
is initialized and updated. It will be used to prove Theorem 5.3.

Theorem 5.3:Given aFIFO time-dependent graphGT (V, E, W)
and a queryLTT(vs, ve, T), whereT = [ts, te], timeRefinement
(Algorithm 3) well refines the earliest arrival-time functionge(t),
which specifies the earliest arrival time at destination nodeve for
starting timet ∈ T . 2

Proof: Let g∗i (t) denote the arrival-time function that specifies the
earliest arrival time fromvs to vi for starting timet. We need prove
that AlgorithmtimeRefinementterminates withge(t) = g∗e (t) for
t ∈ T (well-refined). We prove this by proving a loop invariant:at
the beginning of every iteration of the while loop (line 6), forvi ∈
V andt ∈ [ts, τi], g∗i (t) = gi(t) is true.Or equivalently,after line
9 of every iteration, forvi ∈ V and t ∈ [τi, τ

′
i], g∗i (t) = gi(t) is

true. The proof of this loop invariant completes the proof, because
initially τi = ts (line 3), and finallyτi is greater than or equal tote

(line 15). Therefore, with this loop invariant, whentimeRefinement
terminates, we must havege(t) = g∗e (t) for t ∈ T = [ts, te].

In the following, we prove the loop invariant. Based on the way
how arrival time functions,gi(t), are initialized and updated, we
havegi(t) ≥ g∗i (t) for everyvi ∈ V and anyt ∈ T . It suffices to
showgi(t) ≤ g∗i (t) in the loop invariant, to provege(t) = g∗e (t).

For the purpose of contradiction, supposevq is dequeued in line
6, andgq(t0) > g∗q (t0), for certain starting timet0 ∈ [τq, τ

′
q],

where the loop invariant isviolatedfor the first time. As shown in
Fig. 5, let thevs-vq path with arrival timegq(t0) for starting time
t0 be ps,q, and let the optimalvs-vq path for starting timet0 be
p∗s,q = (vs, vt) · · · (vx, vy) · · · (vp, vq). We prove thatp∗s,q is no
better thanps,q for starting timet0 by showinggq(t0) ≤ g∗q (t0).

Consider the nodevy on pathp∗s,q such that (i)t0 > τy and (ii)
t0 ≤ τl for all nodes,vl, on the path fromvs to vx. By (i) it means
thatgy(t0) may be notwell-refined becauset0 6∈ [ts, τy]. We can
prove actually,gy(t0) = g∗y(t0) as follows: Sincet0 ≤ τx, we
havegx(t0) = g∗x(t0). Thus,gy(t0) is well-refined (line 11) with
gx(t0) asg∗y(t0) = gx(t0) + wx,y(gx(t0)) in previous iterations.

If vy = vq, the proof ofgq(t0) ≤ g∗q (t0) is already completed.
We will focus on the case wherevy 6= vq in the following part.

First, sincevy appears beforevp onp∗s,q and all edge delays are
nonnegative, we have

gy(t0) = g∗y(t0) ≤ g∗p(t0). (7)

Second, based on the choice ofτ ′q and∆, and the monotonicity of

211

gq(t) (Lemma 5.1), we have

gq(t0) ≤ gq(τ
′
q) (for t0 < τ ′q andgq(t) is monotone)

≤ gk(τk) + ∆ (for the choice ofτ ′q in line 9)

≤ gk(τk) + wp,q(gk(τk)) (8)

(for the choice of∆ in line 8, note(vp, vq) ∈ E)

Third, because of the choice of(τk, gk(t)) in line 7, gk(τk) is the
second earliest arrival time inQ following gq(τq). We have

gk(τk) ≤ gy(τy). (9)

Fourth, because of the choice ofvy (t0 > τy) and the monotonicity
of gy(t) (Lemma 5.1), we have

gy(τy) ≤ gy(t0). (10)

Then, based on Equation (9), Equation (10), and Equation (7), we
have

gk(τk) ≤ gy(τy) ≤ gy(t0) ≤ g∗p(t0). (11)

RecallGT is aFIFO graph. Based on Equation (11) and theFIFO
property of edge(vp, vq), we have

gk(τk) + wp,q(gk(τk)) ≤ g∗p(t0) + wp,q(g
∗
p(t0)). (12)

Note: p∗s,q is the optimal path for the starting timet0. We have
g∗q (t0) = g∗p(t0)+wp,q(g

∗
p(t0)). Based on Equation (8) and Equa-

tion (12), we can conclude thatgq(t0) ≤ g∗p(t0)+ wp,q(g
∗
p(t0)) =

g∗q (t0), which completes the proof. 2

5.5 Time/Space Complexity
In this subsection, we give time complexity for manipulating

piecewise-linear functions followed by the time/space complexity
of our algorithms.

Representing Functions: Let f(t) and g(t) be piecewise-linear
functions, defined on a time intervalT = [ts, te], and suppose
that f(t) and g(t) can be represented asp and q pieces of lin-
ear functions on subintervals ofT , respectively, such thatf(t) =

〈(f1, t
f
1), (f2, t

f
2), · · · , (fp, tf

p)〉 and g(t) = 〈(g1, t
g
1), (g2, t

g
2),

· · · , (gq, t
g
q)〉. Each pair(fi, t

f
i) represents a linear functionfi(t)

on the subinterval[tf
i , tf

i+1), and each pair(gi, t
g
i) represents a

linear functiongi(t) on the subinterval[tg
i , tg

i+1). Note: we let

tf
1 = tg

1 = ts andtf
p+1 = tg

q+1 = te, wherets andte are the two
ends ofT . General functions can be represented in a similar way.

Implementing Function Operations: Given two such functions
f(t) andg(t), let a andb be two constants. Four operations are
defined and used in our algorithms, namely,FUNCTION INVERSE,
f−1(a) , max{t|f(t) = a}, L INEAR COMBINATION , a · f(t) +
b · g(t), FUNCTION COMPOUND, f(g(t)), andM INIMUM of two
functions,min{f(t), g(t)}. Each operation outputs a piecewise-
linear function. The time complexity for the function inverse is
O(p) by swappingp pairs of(fi, t

f
i). The time complexity for the

other three operations isO(p + q) by sweeping each of the two
sequences of pairs only once. In addition, the function valuef(t0)
for a given time instancet0 (ts ≤ t0 ≤ te) can be computed in
O(log p) time using binary search. Details are omitted here.

In the following analysis of algorithmTWO-STEP-LTT, we take
the cost of function operations into consideration, and use the sim-
ilar notations for functional complexity used in [20]. We useα(T)
or α(|T |) to denote the time/space complexity of maintaining a
piecewise-linear function, or manipulating a function operation, de-
fined in time intervalT (|T | is the length ofT). Based on the repre-
sentation and implementation of functions as introduced above, the

time/space required for a function operation is linearly proportional
to the number of pieces needed to represent the function inT . So
if assuming the number of pieces needed is linearly proportional to
|T |, we haveO(α(|T1 ∪ T2|)) = O(α(|T1|)) + O(α(|T2|)) for
T1 ∩ T2 = ∅. This assumption is used in our following analysis of
complexity. Note algorithms,BELLMAN -FORD, KDXZ , and our
TWO-STEP-LTT, manipulate functions in the same manner.

Complexity of Two-Step-LTT: Given a graphGT with n nodes
andm edges in total, consider queryLTT(vs, ve, T).

Lemma 5.2: The time complexity oftimeRefinement(Algorithm 3)
is O((n log n + m)α(T)). 2

Proof Sketch: In each iteration of the while loop, the priority
queueQ of length at mostn is accessed in line 6, 7, 13, and 19.
Using Fibonacci Heap [4], bothdequeue(Q) andhead(Q) require
O(log n) amortized time, and bothupdate(Q, (τj , gj(t))) (when
gj(t) is updated) andenqueue(Q, (τi, gi(t))) (when the new pair
(τi, gi(t)) is inserted) requireO(1) amortized time. Moreover, line
8 requiresO(di) time to find∆, wheredi is the in-degree of node
vi, and line 9 requiresO(α(τ ′i − τi)) time to findτ ′i . In line 11-12,
the arrival-time functions,gj(t), are refined within the starting-time
subinterval[τi, τ

′
i] in O(α(τ ′i − τi)) time. Therefore, for each iter-

ation of the while loop, it needsO(log n + di + diα(τ ′i − τi)) ≤
O((log n + di)α(τ ′i − τi)) time.

Let τ
(k)
i denote the value ofτi when vi is dequeued fromQ

for the kth time, and letli denote the number of times thatvi is
dequeued fromQ in total (k ≤ li). Then the total time complexity
is O(

P
vi∈V

Pli
k=1((log n + di)α(τ

(k)
i − τ

(k−1)
i))). Because

liX

k=1

((log n + di)α(τ
(k)
i − τ

(k−1)
i))

= (log n + di)α(

liX

k=1

(τ
(k)
i − τ

(k−1)
i))

= (log n + di)α(|te − ts|) = (log n + di)α(T),

the total time complexity is:

O(
X

vi∈V

(log n+di)α(T)) = O((n log n+m)α(T)). 2

Lemma 5.3: The time complexity ofpathSelection(Algorithm 2) is
O(mα(T)). 2

Proof Sketch: Because the value ofgj(t
∗) is strictly decreas-

ing in every iteration, every nodevj ∈ V will be examined at
most once inpathSelection(line 5). Let dj denote the in-degree
of nodevj . The while loop requiresO(djα(T)) time for each
vj . The time complexity ofpathSelectioncan be computed as
O(
P

vj∈V djα(T)) = O(mα(T)). 2

From the above two lemmas (Lemma 5.2 and 5.3), we can prove
the time complexity ofTWO-STEP-LTT.

Theorem 5.4:The time complexity ofTWO-STEP-LTT (Algorithm
1) isO((n log n + m)α(T)). 2

In both timeRefinementand pathSelection, we need maintain
graphG(V, E, W) with m edges andm functions,wi,j(t), for
(vi, vj) ∈ E. During the execution of algorithms, we need main-
tain a priority queueQ with at mostn elements, andn arrival-time
functions,gi(t), for vi ∈ V . Therefore, the total space complexity
is O((n + m)α(T)).

Theorem 5.5: The space complexity ofTWO-STEP-LTT (Algo-
rithm 1) isO((n + m)α(T)). 2

212

v2

v1

Prioriy Queue Q

v1

v2

τ1

τ2g ()
2

τ1g ()
1

τ2g (t)
2

g (t)
1

A −TableT N−Index I−Table

Figure 6: Runtime Data Structures

5.6 Storage Model and Implementation
In this subsection, we give some implementation details of our

solution. A time-dependent graphGT (V, E, W) is maintained us-
ing an edge representation, where an edge is stored as a triple
(vi, vj , wi,j(t)). The edges can be stored in a table. The first col-
umn (vi) and the second column (vj) are fixed-size whereas the
third column (edge-delay function) is variable-size. Two B+-trees
are built on the top of the table. One is built on the first column
(vi), and the other is built on the second column (vj). They can
efficiently support all the necessary operations w.r.t.GT .

For a givenLTT(vs, ve, T) whereT = [ts, te], as shown in
Fig. 6,TWO-STEP-LTT needs to maintain four runtime data struc-
tures, namely,N -Index(a list of node identifiers),AT -Table(a list
of arrival-time functionsgi(t)’s, for all vi ∈ V), I-Table(a list of
pairs(τi, gi(τi))’s, for all vi ∈ V), and the priority queryQ.

The N -Index is a list of two pointers, which is sorted by node
identifiers in order to be accessed efficiently. Given a nodevi, one
of the two pointers inN -Index points to its arrival-time function,
gi(t), which is separately maintained inAT -Table. The arrival-
time functions are maintained separately fromN -Index, because
they are variable-size. The separation also allowsN -Index to re-
main unchanged, when arrival-time functions need to be updated.
The other pointer inN -Indexpoints toI-Tablewhere(τi, gi(τi))’s
are maintained. Givenvi, it allows us to quickly find the corre-
sponding pair(τi, gi(τi)), when it needs to be updated.

The priority queueQ sorts(τi, gi(t)) in the ascending order of
gi(τi). Every element ofQ in our storage model is a pointer point-
ing to the corresponding pair(τi, gi(τi)) which is maintained inI-
Table. From each element inI-Table, there is also a pointer point-
ing back to the position of the pair inQ. Such implementation is
designed to reduce the size ofQ in the running-time storage.

SinceN -Index and priority queueQ are not large, they can be
maintained in memory. WhenGT is too large to be stored in the
main memory, we maintainAT -Table, I-Table, andGT on disk.

5.7 Solution for Non-FIFO Graphs
In this subsection, we discuss how to find the optimalLTT over

a (general) non-FIFO time-dependent graph. We show that we can
transform such a non-FIFOgraphG′T (V, E, W ′) into aFIFOgraph
GT (V, E, W) where bothV andE remain unchanged. Then we
can processLTT(vs, ve, T) on theFIFO graphGT using our pro-
posedTWO-STEP-LTT algorithm. The optimal pathp∗ found in
GT can be converted into an optimal pathp′∗ in the original non-
FIFO graphG′T , by inserting some waiting time on each node in
pathp∗. The similar idea was also used in [20].

For each edge-delay functionw′i,j(t) in the non-FIFOgraphG′T ,
we definewi,j(t) to construct aFIFO graphGT .

wi,j(t) = ∆i,j(t) + w′i,j(t + ∆i,j(t))

= min
0≤t∆≤te−t

{t∆ + w′i,j(t + t∆)} (13)

Since the starting-time intervalT = [ts, te] is a closed interval,
wi,j(t) and∆i,j(t) in Equation (13) are well-defined. Intuitively,

∆i,j(t) is the optimal waiting time to traverse edge(vi, vj), if ar-
riving at vi at timet. If there are multiple possible values oft∆ to
minimizew′i,j(t + t∆) + t∆, we select any of them as∆i,j(t). It
is easy to verify that edge(vi, vj) with edge delay functionwi,j(t)
has theFIFO property. LetW be the set of newly defined edge
delayswi,j(t)’s, and thenGT (V, E, W) is aFIFO graph.

Suppose usingTWO-STEP-LTT algorithm, we find the optimal
pathp∗ = (v1, v2) · · · (vk−1, vk), wherev1 = vs andvk = ve,
together with the best starting timet∗ ∈ T , for LTT(vs, ve, T) on
the convertedFIFO graphGT (V, E, W). We construct the opti-
mal pathp′∗ for LTT(vs, ve, T) on the original non-FIFO graph
G′T (V, E, W ′) by inserting waiting time$∗(vi) = ∆i,i+1(t) at
nodevi for 1 ≤ i ≤ k − 1, wheret is the arrival time at nodevi

along pathp∗ in GT for starting timet∗.

6. PERFORMANCE STUDIES
In this section, we conducted extensive experimental studies to

compare our solution,TWO-STEP-LTT, with other three algorithms
for the TDSP problem, namely, the most efficient discrete-time al-
gorithmDOT [2], BELLMAN -FORD based algorithmOR[20], and
A∗ algorithmKDXZ [15]. We implemented all algorithms using
C++. Note we denote ourTWO-STEP-LTT as ”2S” in figures be-
low for conciseness. ForDOT, let δ be the length of the interval
between two adjacent time points, and we usedδ = 0.1 (unit).

Experiment Setup: We use a real dataset with 16,326 nodes and
26,528 edges, representing the road-map in the Maryland State in
US. The dataset is extracted from the US Census Bureau 2005
TIGER/Line4. The nodes represent the starts, ends, and intersec-
tions of roads, while the edges represent road segments. Note the
four algorithms can handle both undirected and directed graphs.
In experiments, we represent the real database as a directed time-
dependent graphGT . We further generate 10 subgraphsG1, · · · ,
G10 from GT with the number of nodes varying from 40 to 10K.
Each subgraph corresponds to a subarea ofGT . The numbers of
nodes and edges ofG1 · · ·G10 are listed in Table 2.

We test the class of continuous piecewise-linear edge-delay func-
tions W = {wi,j(t)}, whose operations are implemented as de-
scribed in Section 5.5. Eachwi,j(t) is generated randomly with
four parameters,average-delaȳw, range-delayw∆, length-domain
LT , andnumber-segmentNT , in domainT = [0, LT] indepen-
dently as follows:T is randomly divided intoNT subintervals;
within each one,wi,j(t) is a linear function; the value ofwi,j(t) at
the start/end of each subinterval is randomly generated as a number
in [w̄ − w∆, w̄ + w∆] uniformly. Note: thewi,j(t)’s generated as
described above are general edge-delay functions (some may have
FIFO properties while the others may be non-FIFO).

In Experiment-1 and Experiment-2,̄w = 11, w∆ = 9, LT =
2, 000, andNT is randomly picked from4 to 8. In Experiment-3,
we will vary some of the four parameters to test the scalability of
algorithms w.r.t. different types of edge-delay functions.

The set of queries,{LTT(vs, ve, T)}, used in each test is con-
structed by fixing sourcevs as the center of graph, and varying
destinationve over all the other nodes in graph.

We conducted all tests on a 2.8GHz CPU/1G memory PC run-
ning XP. We report the processing time (second), and the memory
consumed (byte).

Experiment-1 (Graph-Scalability): For queryLTT(vs, ve, T),
we fix starting-time intervalT = [0, 500], and vary (i) the number
of nodes, and (ii) the number of edges, in the time-dependent graph.

4Topologically Integrated Geographic Encoding and Referencing system:
http://www.census.gov/geo/www/tiger/

213

100000
10000
1000
100
10
1

0.1
0.01

0.001

10K8K6K4K2K1K4002008040

Ti
m

e
(s

ec
)

Number of Nodes

KDXZ
DOT

OR
2S

(a) Vary|V | (Time)

8G
1G

128M
16M
2M

256K
32K
4K

512
64

10K8K6K4K2K1K4002008040

M
em

or
y

(b
yt

e)

Number of Nodes

KDXZ
DOT

OR
2S

(b) Vary |V | (Memory)

 0

 1

 2

 3

 4

 5

10K8K6K4K2K1K4002008040

LT
T

Er
ro

r (
tim

e
un

it)

Number of Nodes

Average
Maxinum

(c) Vary |V | (DOT Error)

100000

10000

1000

100

10

1

0.1

0.01
32K16K8K4K2K

Ti
m

e
(s

ec
)

Number of Edges

KDXZ
DOT

OR
2S

(d) Vary |E| (Time)

8G

1G

128M

16M

2M

256K
32K16K8K4K2K

M
em

or
y

(b
yt

e)
Number of Edges

KDXZ
DOT

OR
2S

(e) Vary|E| (Memory)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

32K16K8K4K2K

LT
T

Er
ro

r (
tim

e
un

it)

Number of Edges

Average
Maxinum

(f) Vary |E| (DOT Error)

100000

1000

10

0.1

0.001

2018161412108642

Ti
m

e
(s

ec
)

Distance

KDXZ
DOT

OR
2S

(g) Varyvs-ve Distance (Time)

8G
1G

128M
16M
2M

256K
32K
4K

512
2018161412108642

M
em

or
y

(b
yt

e)

Distance

KDXZ
DOT

OR
2S

(h) Varyvs-ve Distance (Memory)

 0

 0.5

 1

 1.5

 2

2018161412108642

LT
T

Er
ro

r (
tim

e
un

it)

Distance

Average
Maximum

(i) Vary vs-ve Distance (DOT Error))

1000

100

10

1

0.1
100080060040020050

Ti
m

e
(s

ec
)

Interval Length (time unit)

KDXZ
DOT

OR
2S

(j) Vary |T | (Time)

8G

1G

128M

16M

2M

256K

32K
100080060040020050

M
em

or
y

(b
yt

e)

Interval Length (time unit)

KDXZ
DOT

OR
2S

(k) Vary |T | (Memory)

1000

100

10

1
18141062

Ti
m

e
(s

ec
)

Number of Segments

OR
2S

(l) Vary Function (Time)

Figure 7: Testing Algorithms for TDSP Problem

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

|V | 40 80 200 400 1K 2K 4K 6K 8K 10K
|E| 52 107 262 548 1.5K 3K 6.4K 9.7K 13K 16K

Table 2: Datasets

First, with the number of nodes increasing from 40 to 10K in
G1, · · · , G10, the average processing time and memory consumed
are shown in Fig. 7(a) and Fig. 7(b). The average processing time
of DOT is about 10 times larger than ourTWO-STEP-LTT con-
sistently. TWO-STEP-LTT outperformsOR when the number of
nodes is> 80. KDXZ algorithm is the fastest when there are
less than 1K nodes, but it becomes slower thanTWO-STEP-LTT
when there are more than 1K nodes. The average processing time
of KDXZ increases exponentially, and it cannot finish for most
queries in this experiment when the number of nodes is> 4K,
because its search space is exponentially w.r.t. the size of graph.
TWO-STEP-LTT outperformsOR significantly when the graph is
large in size. The average memory consumed byOR is 5 times
larger thanTWO-STEP-LTT, becauseOR maintains two sets of
functions, {gi(t)|vi ∈ V } and {hj,k(t)|(vj , vk) ∈ E}, while
TWO-STEP-LTT only maintains{gi(t)|vi ∈ V }. The memory
consumed byDOT is 50 times larger thanTWO-STEP-LTT con-

sistently.KDXZ consumes much more thanTWO-STEP-LTT does
when the number of nodes is> 1K. Note:KDXZ , OR, andTWO-
STEP-LTT find the optimalLTT. Fig. 7(c) shows the average and
maximumLTT error of DOT. By LTT error, we mean the dif-
ference between theLTT obtained byDOT and the optimalLTT.
When the number of nodes increases,LTT error becomes larger,
because the average distance between two nodes becomes larger.

Second, we vary the density ofG6 by fixing the number of nodes
as 2K while changing the number of edges. 5 graphs are gener-
ated with 2K, 4K, 8K, 16K and 32K edges. We report average
processing time and memory consumed in Fig. 7(d) and 7(e) re-
spectively. The average processing time increases when the num-
ber of edges increases.TWO-STEP-LTT significantly outperforms
DOT andKDXZ in all the cases, and outperformsKDXZ when
the number of edges is> 2K. KDXZ cannot findLTT in reason-
able time for most queries tested when the number of edges is>
4K. In terms of memory consumption,TWO-STEP-LTT performs
the best followed byOR and thenDOT. The amount of memory
KDXZ consumes is exponentially proportional to the number of
edges. Fig. 7(f) shows the average/maximumLTT error of the
DOT. The error becomes smaller when the number of edges in-
creases, because with more edges, the average distance between

214

two nodes becomes smaller, which decreases theLTT error.

Experiment-2 (Query-Scalability): We useG6 (with 2K nodes
and 3K edges). For queryLTT(vs, ve, T), (i) we vary the num-
ber of nodes on the shortestvs-ve path (i.e.,vs-ve distance, x-axis
“Distance” in Fig. 7(g)-7(i)); (ii) we change the length of starting-
time intervalT (i.e., x-axis “Interval Length” in Fig. 7(j)-7(k)).

First, the starting-time intervalT is fixed to be[0, 500] for all
queries. With the number of nodes on the shortestvs-ve path in-
creasing from 2 to 20, we report the average processing time and
memory consumed in Fig. 7(g) and 7(h) respectively. Note the
time/memory consumed byDOT and OR are nearly unchanged,
because they cannot terminate until theLTT from vs to every other
node is determined.KDXZ performs well if thevs-ve distance
is < 15, but quickly deteriorates otherwise.TWO-STEP-LTT con-
stantly outperformsKDXZ after thevs-ve distance is> 16 on both
time and memory consumed, because the size of the search space
in KDXZ increases exponentially w.r.t.vs-ve distance. Fig. 7(i)
shows the average/maxLTT error of DOT which becomes larger,
while the number of nodes on thevs-ve shortest path increases.

Second, we vary the length of starting-time intervalT from 50
to 1,000, and report the average of processing time and memory
consumed in Fig. 7(j) and 7(k) respectively. It is shown that all al-
gorithms need additional time/memory with the length of interval
T increases, because the increment of|T | incurs both additional
function-operation time and search space.TWO-STEP-LTT out-
performs the others consistently.

Experiment-3 (Edge-Delay Function): We test the effect of edge-
delay functions on the processing time ofTWO-STEP-LTT and
OR, since both request larger numbers of function operations than
the other two. We useG6, and fixT = [0, 500].

First, for every edge, we fix̄w = 11, w∆ = 9, LT = 2000, and
varyNT from 2 to 18. WhenNT increases, the edge delay function
fluctuates more frequently. We report the average processing time
consumed byTWO-STEP-LTT andOR in Fig. 7(l). TWO-STEP-
LTT outperformsOR.

Second, we fixw̄ = 11, LT = 2000, NT = 8, and vary
w∆ from 2 to 10. Whenw∆ increases, bothTWO-STEP-LTT and
OR consume more time, because resulting functionsgi(t)’s can be
more complicated, and hence require more function-operation time
in both. TWO-STEP-LTT again outperformsOR in this test. Due
to the limit of space, we do not report the detailed result of this test.

7. RELATED WORK
As shown in [26], answeringLTT(vs, ve, t) for a given starting

time t (not a starting-time interval) in a time-dependent graphGT

can be solved similarly as a single-source shortest-path problem
in a static graph with constant edge delays [26]. Chon et al. in
[3] proposed a system architecture to answerLTT(vs, ve, t) for a
given starting timet in a distributed environment. The variations
of single-source shortest-path problem and related issues have been
intensively studied in the areas of transportation [15, 12, 13, 17, 2,
29, 21], navigation systems [24, 14, 3, 9], and networks [18, 19].

Dynamic Shortest-Path (DSP): TheDSPproblem is to recompute
shortest-paths repeatedly, while the underneath graph with constant
edge delays is allowed to be updated from time to time. The updates
include insertion/deletion of edges and edge-weight updates. Fri-
gioni et al. in [8] proposed fully dynamic algorithms with optimal
space requirements and query time for single-sourceDSPproblem,
and King in [16] presented the first fully dynamic algorithm for
all-pair DSPproblem. Demetrescu and Italiano in [6] presented an
improved all-pairDSPalgorithm, which can find the shortest paths

in optimal worst-case time. Experimental evaluations forDSPal-
gorithms can be found in [7, 5]. Roditty discussed the hardness of
theDSPproblems in [22]. The TDSP problem studied in this pa-
per deals with edge-delay functions over a fixed time-dependent
graph, whereasDSP deals with unpredictable updates against a
static graph. They are two different problems and the techniques
used in one cannot be directly applied to the other.

Hierarchy-Based Method: In order to deal with a large graph,
hierarchy-based methods partition the graph into small fragments
and materialize the shortest-paths between border nodes in differ-
ent fragments. The shortest-path between two nodes in the graph is
obtained by combining the shortest-paths from different fragments
[12, 13, 14]. Different graph partitioning methods for the shortest-
path problem were studied, such as disjoint edge-set partition [12,
13] and disjoint node-set partition [14]. Shekhar et al. in [23] stud-
ied the materialization trade-offs. [27] proposed a linear-time algo-
rithm for the static single-source shortest-path problem using graph
partitioning idea. Graph-partition techniques can be also embedded
into our algorithm to findLTT over time-dependent graphs.

Storage of Graph and I/O Efficiency: Shekhar et al in [25] pro-
posedCCAM (Connectivity-Clustered Access Method), and studied
how to store large graphs on disk using connectivity clustering and
to support basic operations, such as insert, delete, create, find, and
get-successor, which are necessary for most graph algorithms (in-
cluding our algorithm presented in this paper). Graph update is
also discussed in [25]. Huang et al. in [10] studied spatial parti-
tion clustering which creates balanced partitions of links based on
the spatial proximity of nodes. Woo et al. in [28] studied network
traversal clustering for the storage of graphs based on graph parti-
tioning. For the shortest-path problem, Jiang in [11] analyzed the
I/O-efficiency of several representative algorithms, and their prop-
erties regarding database applications. Experimental results regard-
ing I/O-efficiency of shortest-path algorithms can be found in [24].

8. CONCLUSIONS
In this paper, we studied the time-dependent shortest-path prob-

lem, that is, answering queryLTT(vs, ve, T) in a time-dependent
graphGT (V, E, W). We proposed a newDIJKSTRA-based al-
gorithm to find the optimalLTT(vs, ve, T) with time complexity
O((n log n + m)α(T)) and space complexityO((n + m)α(T)),
wheren is the number of nodes,m is the number of edges, and
α(T) is the cost required for each function operation. We con-
ducted extensive studies over large time-dependent graphs, and con-
firmed that our algorithm can obtain the optimalLTT(vs, ve, T)
efficiently for handling large time-dependent graphs.

Acknowledgment: The authors thank Donghui Zhang and
Yang Du for the helpful discussions and the code provided. This
work was supported by a grant of RGC, Hong Kong SAR, China
(No. 418206).

9. REFERENCES
[1] X. Cai, T. Kloks, and C. K. Wong. Time-varying shortest

path problems with constraints.Networks, 29(3):141–150,
1997.

[2] I. Chabini. Discrete dynamic shortest path problems in
transportation applications: Complexity and algorithms with
optimal run time.Transportation Research Record,
1645:170–175, 1998.

[3] H. D. Chon, D. Agrawal, and A. E. Abbadi. Fates: Finding a
time dependent shortest path. InMobile Data Management,

215

pages 165–180, 2003.
[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.

Introduction to Algorithms, Second Edition. The MIT Press.
[5] C. Demetrescu, S. Emiliozzi, and G. F. Italiano.

Experimental analysis of dynamic all pairs shortest path
algorithms. InSODA, pages 369–378, 2004.

[6] C. Demetrescu and G. F. Italiano. A new approach to
dynamic all pairs shortest paths.J. ACM, 51(6):968–992,
2004.

[7] D. Frigioni, M. Ioffreda, U. Nanni, and G. Pasquale.
Experimental analysis of dynamic algorithms for the
single-source shortest-path problem.ACM Journal of
Experimental Algorithms, 3:5, 1998.

[8] D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. Fully
dynamic output bounded single source shortest path problem
(extended abstract). InSODA, pages 212–221, 1996.

[9] S. Handley, P. Langley, and F. A. Rauscher. Learning to
predict the duration of an automobile trip. InKDD, pages
219–223, 1998.

[10] Y.-W. Huang, N. Jing, and E. A. Rundensteiner. Effective
graph clustering for path queries in digital map databases. In
CIKM, pages 215–222, 1996.

[11] B. Jiang. I/O-efficiency of shortest path algorithms: An
analysis. InICDE, pages 12–19, 1992.

[12] N. Jing, Y.-W. Huang, and E. A. Rundensteiner. Hierarchical
optimization of optimal path finding for transportation
applications. InCIKM, pages 261–268, 1996.

[13] N. Jing, Y.-W. Huang, and E. A. Rundensteiner. Hierarchical
encoded path views for path query processing: An optimal
model and its performance evaluation.IEEE Trans. Knowl.
Data Eng., 10(3):409–432, 1998.

[14] S. Jung and S. Pramanik. Hiti graph model of topographical
roadmaps in navigation systems. InICDE, pages 76–84,
1996.

[15] E. Kanoulas, Y. Du, T. Xia, and D. Zhang. Finding fastest
paths on a road network with speed patterns. InICDE, pages
10–19, 2006.

[16] V. King. Fully dynamic algorithms for maintaining all-pairs
shortest paths and transitive closure in digraphs. InFOCS,
pages 81–91, 1999.

[17] K. Nachtigall. Time depending shortest-path problems with
applications to railway networks.European Journal of
Operational Research, 83:154–166, 1995.

[18] P. Narváez, K.-Y. Siu, and H.-Y. Tzeng. New dynamic
algorithms for shortest path tree computation.IEEE/ACM
Trans. Netw., 8(6):734–746, 2000.

[19] P. Narváez, K.-Y. Siu, and H.-Y. Tzeng. New dynamic SPT
algorithm based on a ball-and-string model.IEEE/ACM
Trans. Netw., 9(6):706–718, 2001.

[20] A. Orda and R. Rom. Shortest-path and minimum-delay
algorithms in networks with time-dependent edge-length.J.
ACM, 37(3):607–625, 1990.

[21] S. Pallottino and M. G. Scutellà. Shortest path algorithms in
transportation models: classical and innovative aspects. In
Equilibrium and Advanced Transportation Modelling, pages
245–281, 1998.

[22] L. Roditty and U. Zwick. On dynamic shortest paths
problems. InESA, pages 580–591, 2004.

[23] S. Shekhar, A. Fetterer, and B. Goyal. Materialization
trade-offs in hierarchical shortest path algorithms. InSSD,
pages 94–111, 1997.

[24] S. Shekhar, A. Kohli, and M. Coyle. Path computation
algorithms for advanced traveller information system (ATIS).
In ICDE, pages 31–39, 1993.

[25] S. Shekhar and D.-R. Liu. CCAM: A connectivity-clustered
access method for networks and network computations.
IEEE Trans. Knowl. Data Eng., 9(1):102–119, 1997.

[26] K. Sung, M. G. Bell, M. Seong, and S. Park. Shortest paths
in a network with time-dependent flow speeds.European
Journal of Operational Research, 121(12):32–39, 2000.

[27] M. Thorup. Undirected single-source shortest paths with
positive integer weights in linear time.J. ACM,
46(3):362–394, 1999.

[28] S.-H. Woo and S.-B. Yang. An improved network clustering
method for I/O-efficient query processing. InACM-GIS,
pages 62–68, 2000.

[29] J. L. Zhao and A. Zaki. Spatial data traversal in road map
databases: A graph indexing approach. InCIKM, pages
355–362, 1994.

APPENDIX

A. ABOUT ROAD NETWORK
Kanoulas et al. in [15] studied finding the optimalLTT over

a road network with speed-patterns, which is defined as a graph
GS(V, E, L, S): V = {vi} is a set of nodes;E ⊆ V × V is a set
of edges;L is a set of edge lengths;S is a set of speed-pattern func-
tions. Each edge (road)(vi, vj) ∈ E is associated with a length
li,j ∈ L, and a speed-pattern functionsi,j(t) ∈ S. The speed of all
vehicles on edge(vi, vj) is at mostsi,j(t) at timet in domainT .

For findingLTT over a road network, Kanoulas et al. construct
an equivalent time-dependent graphGT (V, E, W) from the road
networkGS(V, E, L, S), where the node/edge set (V andE) of
GS is the same as the node/edge set ofGT . The relationship be-
tweenwi,j(t) and(li,j , si,j(t)) is given below, wheret is the de-
parture time fromvi.

wi,j(t) = min{w|
Z t+w

t
si,j(z)dz = li,j} (14)

To show time-dependent graphGT constructed from road net-
work GS is anFIFO graph, we only need to show, forwi,j(t) de-
fined in Equation (14),wi,j(t0) ≤ t∆ + wi,j(t0 + t∆) for t0 ∈ T
andt∆ ≥ 0 (Definition 5.1). For the purpose of contradiction, we
supposewi,j(t0) = t∆ + wi,j(t0 + t∆) + ε for ε > 0. Based on
Equation (14), for departure timet = t0 andt = t0 + t∆, we have

li,j =

Z t0+wi,j(t0)=t0+(t∆+wi,j(t0+t∆)+ε)

t0

si,j(z)dz (15)

and

li,j =

Z (t0+t∆)+wi,j(t0+t∆)

(t0+t∆)
si,j(z)dz, (16)

respectively. From Equation (15)-(16) andsi,j(z) ≥ 0, we must
havesi,j(z) = 0 for z ∈ [t0 + t∆ + wi,j(t0 + t∆), t0 + t∆ +
wi,j(t0 + t∆) + ε], and thus from Equation (15), we have

li,j =

Z t0+(t∆+wi,j(t0+t∆))

t0

si,j(z)dz. (17)

From the definition ofwi,j(·) in Equation (14), the above equation
contradicts withwi,j(t0) = t∆ + wi,j(t0 + t∆) + ε. Therefore,
wi,j(t0) ≤ t∆ + wi,j(t0 + t∆), and time-dependent graphGT

constructed from road networkGS is anFIFO graph.

216

