
Optimizing On-Demand Data Broadcast Scheduling in
Pervasive Environments

Rinku Dewri, Indrakshi Ray, Indrajit Ray and Darrell Whitley
Department of Computer Science

Colorado State University
Fort Collins, CO 80523, USA

{rinku,iray,indrajit,whitley}@cs.colostate.edu

ABSTRACT
Data dissemination in pervasive environments is often ac-
complished by on-demand broadcasting. The time criti-
cal nature of the data requests plays an important role in
scheduling these broadcasts. Most research in on-demand
broadcast scheduling has focused on the timely servicing of
requests so as to minimize the number of missed deadlines.
However, there exists many pervasive environments where
the utility of the data is an equally important criterion as
its timeliness. Missing the deadline reduces the utility of the
data but does not make it zero. In this work, we address the
problem of scheduling on-demand data broadcasts with soft
deadlines. We investigate search based optimization tech-
niques to develop broadcast schedulers that make explicit
attempts to maximize the utility of data requests as well
as service as many requests as possible within the accept-
able time limit. Our analysis shows that heuristic driven
methods for such problems can be improved by hybridizing
them with local search algorithms. We further investigate
the option of employing a dynamic optimization technique
to facilitate utility gain, thereby surpassing the requirement
of a heuristic in the process. An evolution strategy based
stochastic hill climber is investigated in this context.

1. INTRODUCTION
Recent advances in wireless communication technology is

increasingly making the dream of pervasive computing a re-
ality. Pervasive computing involves a network of portable
computing devices so thoroughly embedded in our day-to-
day work and personal life that their existence becomes dif-
ficult to perceive altogether. The devices interact with each
other and with other computing devices by exchanging rapid
and continuous streams of data. To facilitate almost imper-
ceptible human-computer interaction, data access times in
such environments must be maintained within a specified
quality-of-service (QoS) level. Challenges in doing so arise
from the fact that wireless bandwidth is typically a limited
resource, and thus it is not always possible to meet the qual-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT’08, March 25–30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003 ...$5.00.

ity requirements of every device. This constraint not only
makes pervasive data access a challenging problem, but also
identifies “optimal resource allocation” as one of the funda-
mental research problems in this domain.

A pervasive environment encompasses both peer-to-peer
and client-server modes of data dissemination. For example,
a typical pervasive health care system involves multiple sen-
sor nodes disseminating data on the monitored life signs of a
patient to a personal digital assistant carried by the serving
health personnel. Data communication follows a peer-to-
peer architecture in such frameworks. On the other hand,
a pervasive environment designed to serve queries on flight
information in an airport is based on a client-server mode
of communication. Flight information usually reside in a
database server, from where data is disseminated based on
the incoming queries. For an environment like an airport, it
is appropriate to assume that the database will be queried
more frequently for certain types of data. Similar situations
can be imagined in a stock trading center or a pervasive su-
permarket. Such scenarios open up possibilities of adopting
a broadcast based architecture to distribute data in a way
that multiple queries for the same data item get served by a
single broadcast. The focus of this paper is directed towards
data access issues in such pervasive environments.

The quality of service is an important facet in such per-
vasive data access. Consider the following example applica-
tion – a traffic data service monitors the traffic in a large
city and provides various routing services to drivers to avoid
roadblocks, construction delays, congestions, accidents etc.
The server gets real time traffic data via thousands of sensors
spread throughout the city. Drivers request this service with
devices equipped with GPS navigation units. The requests
arrive at the server with various priority levels and soft dead-
lines. Let us assume that at some point there is a major
traffic gridlock within the city and the traffic server gets
thousands of re-routing requests from users. While these re-
quests are queued up at the server, another request comes
from a VIP’s convoy with a high priority and deadline. At
this time, the server needs to determine how to schedule this
request. Pre-empting others may enable the server to meet
the timeliness of this latest request. However, serving some
or all of the earlier requests has the greater utility of clearing
up the gridlock earlier.

In this example, the different data that the server needs
to serve is associated with different utility values. Moreover,
owing to the dynamic nature of the utility of responses to
queries, the time criticality factor cannot be ignored alto-
gether when disseminating data. The server would like to

559

satisfy as many queries in a timely manner as possible. How-
ever, some queries may be delayed beyond their specified
deadlines (for example, the query from the VIP’s convoy).
Although users, who hardly realize the bottlenecks in the
information infrastructure, would like to have their requests
served at the earliest, it is reasonable to assume that data
still carries some utility to it even if received after a speci-
fied deadline. Such an assumption enables data broadcasts
to be tailored in such a way that total utility associated
with a broadcast is maximized, thereby helping maintain a
certain QoS level in the underlying network. In this work,
we propose a dynamic scheduler that tries to maximize the
overall utility of servicing requests and at the same time
tries to serve as many requests in a timely manner as pos-
sible. The setup is a wireless broadcast environment as in
pervasive computing applications.

Wireless broadcast mechanisms have been extensively in-
vestigated earlier. However, very few of these research give
attention to the effective utility involved in the timely servic-
ing of a request. Time criticality has been earlier addressed
in a number of contexts with the assumption of a hard dead-
line [9, 14, 15, 16, 18, 28, 29]. Broadcast scheduling in these
works mostly focus on the timely servicing of a request to
minimize the number of missed deadlines. When the as-
sumption of a soft deadline is appropriate, as in many per-
vasive environments, a broadcast schedule should not only
try to serve as many requests as possible, but also make a
“best effort” in serving them with higher utility values. Of-
ten, heuristics are employed in a dynamic setting to deter-
mine these schedules. However, their designs do not involve
the QoS criteria explicitly. Heuristic based methods make
local decisions w.r.t. a request or a broadcast, and fail to
capture the sought global QoS requirement. Much of this is
due to the fact that real time decision making cannot span
beyond an acceptable time limit, thereby restricting the us-
age of “full length” optimization techniques to the domain.
It does become imperative to design hybrid strategies that
can combine the fast real time performance of heuristics and
the better solution qualities obtained from search based op-
timization.

Our contribution in this paper is the development of a
scheduler that is suitable for on-demand broadcasts of soft
deadline data in pervasive environments. The scheduler re-
organizes the broadcast queue when new requests arrive with
the goal of maximizing the overall utility of all pending re-
quests. We begin with an attempt to understand the na-
ture of the underlying search space, and argue that tradi-
tional heuristics usually generate solutions in a worse part
of this space w.r.t a given global utility measurement. We
explore “local search” as an option to boost the performance
of these solutions and provide arguments as to why the op-
tion is viable in a real time setting. The observations allow
us to propose a light weight stochastic hill climber that sur-
passes the performance of a heuristic, and explicitly searches
the space of schedules to maximize utility. We believe that
the proposed method provides insights into better broadcast
mechanisms which often clear our understanding for better
heuristic design.

The rest of the paper is organized as follows. Section 2
summarizes the related work in this domain. The broadcast
model and the scheduling problem are discussed in Section 3.
The explored solution methods and the experimental setup
are described in Section 4 and Section 5 respectively. Re-

sults and discussions from the experiments are summarized
in Section 6. Finally, Section 7 concludes the paper.

2. RELATED WORK
Data broadcasting has been extensively studied in the

context of wireless communication systems. Su and Tas-
siulas [24] study the problem in the context of access la-
tency and formulate a deterministic dynamic optimization
problem, the solution to which provide a minimum access
latency schedule. Their experimental results show that the
mean response times in push-based and on-demand broad-
casts become similar as the request generation rate increases.
Acharya and Muthukrishnan propose the stretch metric [2]
to account for differences in service times arising in the case
of variable sized data items. Their work identifies that main-
taining a balance between local and global performance is
a key factor in on-demand broadcasting environments. To
this effect, they propose the MAX heuristic to optimize the
worst case stretch of individual requests. Another attempt
to balance individual and overall performance is seen in the
work by Aksoy and Franklin [3]. Their RxW heuristic is
an attempt to combine the benefits of the MRF and FCFS
heuristics, each known to give preference to popular and
long standing data items respectively. Hameed and Vaidya
adapted a packet fair queuing algorithm to the domain [11].
Their approach exploit the similarities in the two problem
classes and give an efficient algorithm to solve the problem.
Lee et al. provide a survey of these techniques [17] and their
applicability in the area of pervasive data access.

The above mentioned algorithms ignore the time critical-
ity factor while serving data requests. Early work on time
constrained data request is presented by Xuan et al. [30].
Earliest deadline based on-demand scheduling is the heuris-
tic of choice in this seminal work. Jiang and Vaidya ad-
dress the issue by considering broadcast environments where
clients do not wait indefinitely to get their request served
[14]. They model the user impatience as an exponential dis-
tribution and propose the SRM algorithm to minimize the
mean waiting time, which in turn maximizes the expected
service ratio. Lam et al. look at the time criticality factor
from the perspective of temporal data validity [16]. Their
approach assigns an absolute validity interval to determine
the refresh frequencies of data items in order to keep the
cache status of the items updated using broadcast strategies.
Fernandez and Ramamritham propose a hybrid broadcast-
ing approach to minimize the overall number of deadlines
missed [9]. Their adaptive model takes into consideration
the data and time-criticality requirements to determine pe-
riodic and on-demand schedules for data items. Kim and
Chwa present theoretical results on the competitive ratios
of scheduling algorithms working with time constrained re-
quests [15]. Temporal constraints on data are revisited by
Wu and Lee with the added complexity of request dead-
lines [28]. Their RDDS algorithm assigns a priority level to
each requested data item based on the number of requests
for it, the effective deadline and the size of the item, and
broadcasts the item with the highest priority. Xu et al. pro-
pose the SIN -α algorithm to minimize the request drop rate
[29]. However, their approach do not take variable data sizes
into consideration. This motivates Lee et al. to propose the
PRDS algorithm that takes into account the urgency, data
size and access frequencies of various data items [18].

Several shortcomings of using a strict deadline based sys-

560

Figure 1: Typical on-demand broadcast architecture in a pervasive environment.

tem are discussed by Ravindran et al. [21] in the context of
real-time scheduling and resource management. A deadline
is usually a linear-valued expression that fails to distinguish
between urgency and importance. Although time/utility
functions in data broadcast scheduling have been ignored for
some time now, the idea has been extensively researched in
other real-time scheduling domains. Jensen et al. point out
that real-time systems are usually associated with a value
based model which can be expressed as a function of time
[13]. They introduce the idea of T ime− Utility Functions
to capture the semantics of soft time constraints which are
particularly useful in specifying utility as a function of com-
pletion time. An attempt to understand the benefit of util-
ity values in hard deadline scheduling algorithms is done by
Buttazzo et al. [7]. Wu et al. study a task scheduling prob-
lem where utility is considered a function of the start time
of the task [27]. Similar studies [8, 19, 25] performed on util-
ity accrual in task scheduling problems show that heuristics
designed to cater to the deadline requirement alone are not
sufficient, and care should be taken to address any non-linear
characteristics of the time-utility dependencies.

Although the different problem classes in scheduling have
similarities in them, the idea of multiple requests getting
served by a single broadcast make the data broadcast schedul-
ing domain somewhat different. We believe time-utility func-
tions are a better alternative to hard deadline specifications
of data requests since they allow better generalization of the
time constraints involved. Thereby, we introduce the no-
tion of utility accrual to a data broadcast environment and
explore the issues generated thereof.

3. BROADCAST SCHEDULING
Wireless data broadcasting is an efficient approach to ad-

dress data requests, particularly when similar requests are
received from a large user community. Broadcasting in such
cases alleviate the requirement for repeated communication
between the server and the multiple clients interested in the
same data item. Push-based architectures broadcast com-
monly accessed data at regular intervals, depending on a
well known access pattern, and in the process removes the
requirement of a client actually sending the request to the
server. Contrary to this, on-demand architectures allow the

clients to send their requests to the server. However, access
to the data item is facilitated through a broadcast which,
for more frequently requested data, serves multiple clients
at a time. Broadcast scheduling in this context is the prob-
lem of determining the order in which data items should be
broadcast so that more clients are served at a time within
an acceptable quality requirement.

Data access in pervasive environments can be modeled
with an on-demand broadcast architecture where particular
emphasis has to be paid to the time criticality and utility of
a served request. The time criticality factor stresses on the
fact that the requested data is expected within a specified
time window; failure to do so would result in an utility loss.
Given the immense number of requests that may arrive at
such a data broadcast server, it is often not possible to serve
all requests in a timely manner. A broadcast schedule in
such environments has to cater to the added requirement
of maintaining a high utility value for a majority of the re-
quests.

3.1 Broadcast model
Fig. 1 shows a typical on-demand data broadcast archi-

tecture in a pervasive environment. Various client devices
use an uplink channel to a data provider to request vari-
ous data items served by the provider. The data items are
assumed to reside locally with the data provider. Each re-
quest Qj takes the form of a tuple 〈Dj , Rj , Pj〉, where Rj
is the response time within which the requesting client ex-
pects the data item Dj and asserts a priority level Pj on the
request. Note that a single request involves only one data
item. A client requiring multiple data items sends multiple
requests for each data item separately. Requests from the
same client can be served in any order. The data provider
reads the requests from a queue and invokes a scheduler to
determine the order in which the requests are to be served.
It is important to note that new requests arrive frequently
into the queue which makes the task of the scheduler rather
dynamic in nature. The scheduler needs to re-examine the
previously generated schedule to accommodate the time crit-
ical requirements of any new request. Data dissemination
is carried out through a single channel data access point.
Clients listen to this channel and consider a request to be
served as soon as the broadcast for the corresponding item

561

begins. The single channel assumption is not critical to our
work, and changes in approach will be mentioned wherever
appropriate.

The underlying scheduler is invoked every time a new re-
quest is received. At each invocation, the scheduler first
determines the requests that are being currently served and
removes them from the request queue. The data items re-
quired to serve the remaining requests are then determined
and a schedule is generated to serve them. The scheduler
tries to make a “best effort” at generating a schedule that
respects the response time requirements of the requesting
devices.

3.2 Utility metric
The utility of a data item broadcast is measured from the

response time and priority level of the requests served by it.
The response time rj of a request Qj arriving at time tj,arr
and served at time tj,ser is given by (tj,ser − tj,arr). We
assume that the utility of a data item received by a client
decreases exponentially if not received within the expected
response time (Fig. 2) [13]. For a given request Qj , the
utility generated by serving it within a response time rj is
given as,

uj =

(
Pj , rj ≤ Rj
Pje
−αj(rj−Rj) , rj > Rj

(1)

The utility of broadcasting a data item d is then given as,

Ud =
X

j|d serves Qj

uj (2)

For a given schedule S that broadcasts the data items
D1, D2, . . . , Dk in order, the utility of the schedule is given
as,

US =

DkX
d=D1

Ud (3)

In this work, we assume that the utility of a data item for
a client decays by half for every factor of increase in response
time, i.e.

αj =
ln 0.5

Rj
(4)

Figure 2: Utility of serving a request.

3.3 Problem statement
A data sourceD is a set ofN data items, {D1, D2, . . . , DN},

with respective sizes d1, d2, . . . , dN . A request queue at any

instance is a dynamic queue Q with entries Qj of the form
〈Dj , Rj , Pj〉, where Dj ∈ D, and Rj , Pj ≥ 0. At an instance
tcurr, let Q1, Q2, . . . , QM be the entries in Q. A schedule S
at the instance is a total ordering of the elements of the setS
j=1,...,M

Dj .

In the context of the broadcast scheduling problem, the
request queue Q corresponds to the queue left after all re-
quests currently being served are removed. Note that two
different entries Qj and Qk in Q can have the same first
component, i.e. Dj = Dk, for j 6= k; this implies that
two different requests are interested in the same data item.
However, it is important to realize that the current instance
of the scheduler only needs to schedule a single broadcast
for the data item. The arrival time of all requests in Q is
at most equal to the current time, tcurr, and the scheduled
broadcast time t for the data item in Q will be tcurr at the
earliest. A schedule is thus a total ordering of the unique
elements in all data items requested.

The time instance at which a particular data item from
the schedule starts to be broadcasted is dependent on the
bandwidth of the broadcast channel. A broadcast channel
of bandwidth b can transmit b data units per time unit. If
tready is the ready time of the channel (maximum of tcurr
and the end time of current broadcast), then for the sched-
ule D1 < D2 < . . . < Dk, the data item Di starts to be
broadcasted at time instance tDi = tready +

Pi−1
j=1(dj/b).

All requests in Q for the data item Di is then assumed to be
served, i.e. tj,ser for such requests is set to tDi . We explic-
itly mention this computation to point out that the utility
metric involves the access time, and not the tuning time, of
a request. The access time is the time elapsed from the mo-
ment a client issues a request to the moment when it starts
to receive the requested data item. The tuning time is the
time the client has to actively scan the broadcast channel to
receive the data item.

While Eq. (3) can be used to measure the instantaneous
utility of a schedule, it is not suitable in determining the per-
formance level of a solution method in a dynamic setting.
We thus use the utility generated from the queries already
served as the yardstick to compare performance. In other
words, the performance of a solution methodology at an in-
stance where queries Q1, . . . , QK are already served is mea-
sured by

PK
j=1 uj . In effect, we are interested in the global

utility generated by the method. The aforementioned QoS
criteria could be a specification in terms of this global utility.
The objective behind the design of a solution methodology
is to then maximize this global utility measured at any in-
stance.

4. SOLUTION METHODOLOGY
In the previous section, we identified that a solution method-

ology which can maximize the global utility is desired for the
broadcast problem under study. However, it is often difficult
to anticipate the incoming data access requests in a dynamic
environment. Besides, an ongoing broadcast cannot be in-
terrupted to accommodate higher utility from new requests.
This restricts a solution methodology to focus on the cur-
rent request queue only and make scheduling decisions that
yield higher utility from the generated schedule. It can only
be expected that a higher global utility measure would be
obtained in the process.

Another constraint is the time factor involved in making a

562

scheduling decision. Data requests usually arrive more fre-
quently than they can be served, which in turn lead to the
generation of a long request queue. Any scheduling method
must be fast enough to generate a good schedule without
adding much to the access time of requests. Latencies in-
duced between broadcasts because of the scheduling time is
also a detrimental factor to resource utilization. Heuristics
are often used as fast decision makers, but may result in de-
graded solution quality. Hybrid approaches in this context
can provide a suitable trade-off between solution quality and
decision time.

Moreover, the assumption that a heuristic driven method
is most appropriate in real time decision making can be
flawed. This is specially true when the search space involved
is well understood and specialized optimization methods can
be devised to exploit the dynamics of the search space. In
such situations, even a suboptimal solution generated by
a carefully crafted optimization technique could be better
than a heuristic based solution. In the following few sub-
sections, we present the two heuristic driven methods and a
evolution strategy based optimization technique chosen for
our experiments.

4.1 Heuristics
For the purpose of this study, we use two heuristics – Ear-

liest Deadline First (EDF) and Highest Utility First (HUF)
– which takes into account the time critical nature of a data
request.

EDF starts off by first scheduling the data item which cor-
responds to a request with the minimum tcurr− (tarr +Rj).
All requests in Q that get served by this broadcast are re-
moved (all requests for the scheduled data item) and the
process is repeated on the remaining requests. For multi-
ple channels, the heuristic can be combined with best local
earliness to map the data item to a channel that becomes
ready at the earliest. EDF gives preference to data items
that have long been awaited by some request, thereby hav-
ing some level of impact on the utility that can be generated
by the requests. However, it does not take into account the
actual utility generated.

HUF alleviates this problem by first considering the data
item that can generate the highest amount of utility. The
strategy adopted by HUF may seem like a good approach
particularly when the overall utility is the performance met-
ric. However, HUF generated schedules may not be flexible
enough in a dynamic environment. For example, if the most
requested data item in the current request queue generates
the highest utility, HUF would schedule the item as the next
broadcast. If this data item requires a high broadcast time,
not only will the subsequent broadcasts in the schedule suf-
fer in utility, but new requests will also have to wait for a
long time before getting served.

4.2 Heuristics with local search
As mentioned earlier, the emphasis in this paper is under-

standing the performance of heuristics when coupled with lo-
cal search techniques. We therefore introduce some amount
of local search to improve the schedules generated by the
heuristics. The notion of local search in this context involves
changing the generated schedules by a small amount and ac-
cept it as the new schedule if an improvement in the utility
of the schedule is obtained. The process is repeated for a
pre-specified number of iterations. Such a“hill climbing”ap-

proach is expected to improve the utility of the schedule gen-
erated by a heuristic. We employ the 2-exchange operator to
search a neighborhood of the current schedule. The operator
randomly selects two data items and swaps their positions in
the schedule (Fig. 3). The notations EDF/LS and HUF/LS
denote EDF and HUF coupled with local search respectively.
Intuitively, these hybrid approaches should provide sufficient
improvements over the heuristic schedules, w.r.t. the perfor-
mance metric, as the local search would enable the evalua-
tion of the overall schedule utility, often ignored when using
the heuristics alone.

Old Schedule : a b c d e f g h i j

Swap Pts : * *

New Schedule : a e c d b f g h i j

Figure 3: 2-exchange operator example.

4.3 (2 + 1)-ES
Evolution Strategies (ES) [5, 22] are a class of stochastic

search methods based on computational models of adapta-
tion and evolution. They were first suggested by Rechenberg
during the late sixties. Most of the earlier work in ES did not
present them as function optimizers, but rather as rules for
automatic design and analysis of consecutive experiments to
suitably drive a flexible system to its optimal setting.

Evolution strategies are typically expressed by the µ and
λ parameters signifying the parent and the child popula-
tion respectively. Whereas the algorithmic formulation of
evolution strategies remains the same as that of a genetic
algorithm [10], two basic forms have been defined for them.
In the (µ + λ)-ES, µ best of the combined parent and off-
spring generations are retained using truncation selection.
In the (µ, λ)-ES variant, the µ best of the λ offspring re-
place the parents. These definitions are analogous to that
of the steady-state and generational nature of genetic al-
gorithms. The steady-state variant of genetic algorithms
explicitly maintains the best solution found so far, while the
generational variant blindly replaces the current population
with the offspring population generated.

For our experimentation, we employ the (µ+λ)-ES variant
with µ = 2 and λ = 1. This simple form of the ES is chosen
to keep the dynamic scheduling time within an acceptable
limit without sacrificing on the solution quality. Also, a (2+
1)-ES can be seen as a type of greedy stochastic local search.
It is stochastic because there is no fixed neighborhood and
therefore the neighborhood does not define a fixed set of
local optima. Otherwise, the method is very much a local
search technique – sample the neighborhood and move to
the best point. The pseudo code for the algorithm is given
below.

Step 1: Generate two initial solutions x and y and eval-
uate them.

Step 2: Recombine x and y to generate an offspring.

Step 3: Mutate the offspring with probability p.

Step 4: Evaluate the offspring.

Step 5: Replace x and y by the two best solutions from
x, y and the offspring.

Step 6: Goto Step 2 until termination criteria is met.

563

4.3.1 Solution encoding and evaluation
For the data broadcasting problem mentioned in the pre-

vious section, a typical schedule can be represented by a
permutation of the unique data item numbers in Q. Thus,
for n unique data items, the search spans over a space of
n! points. In the presence of multiple channels (T say), a
similar encoding can be obtained by using −1 as a delim-
iter between the schedules in different channels (Fig. 4) [20].
The evaluation of a solution involves finding the utility of
the represented schedule as given by Eq. (3). The higher the
utility, the better is the solution.

Channel: |--1--| |-2-| |--T--|

Encoding: 3 1 4 -1 2 6 -1 -1 8 5 9

Figure 4: Solution encoding for multiple channels.

4.3.2 Syswerda recombination
Recombination operators for permutation problems differ

from usual crossover operators in their ability to maintain
the uniqueness of entries in the offspring produced. For a
schedule encoded as a permutation, it is desired that re-
combination of two schedules does not result in an invalid
schedule. A number of permutation based operators have
been proposed in this context [23]. We employ the Syswerda
recombination operator in this study. The operator is par-
ticularly useful in contexts where maintaining the relative
ordering between entries is more critical than their adja-
cency. For a broadcast schedule, the relative ordering of
data items in the schedule affect the time instance when a
particular request gets served and hence influence the overall
utility of the schedule.

x : a b c d e f g h i j

y : c f a j h d i g b e

Key Pos. : * * * *

Offspring: a j c d e f g h i b

Figure 5: Syswerda recombination.

The operator randomly selects several key positions and
the order of appearance of the elements in these positions are
imposed from one solution to the other. In Fig. 5, the entries
at the four key positions from y, {a, j, i, b}, are rearranged
in x to match the order of occurrence in y. The offspring is
x with the rearranged entries.

4.3.3 Mutation using insertion
The elementary mutation operators define a certain neigh-

borhood around a solution which in turn dictates the number
of states which can be reached from the parent state in one
step [5]. Insertion based mutation selects two random posi-
tions in a sequence and the element at the first chosen posi-
tion is migrated to appear after the second chosen position
(Fig. 6).

4.3.4 Initialization and termination
The initial solutions determine the starting points in the

permutation space where the search begins. Thus, a good
solution produced by EDF or HUF could be a choice for the
purpose. However, we did not want to add the complexity

Parent : a b c d e f g h i j

Mutate Pts: * *

Offspring : a c d e b f g h i j

Figure 6: Mutation using the insertion operator.

of determining an EDF or HUF schedule to the search pro-
cess, and hence generated the initial solutions x and y ran-
domly. The ES algorithm is terminated after a fixed number
of iterations. If schedules generated by other heuristics are
taken as initial solutions, the termination criteria could as
well be specified as the point where a particular level of im-
provement has been obtained over the starting schedules.
It is important that an alternative is also suggested since
improvement based termination may never get realized.

5. EXPERIMENTAL SETUP
The data set used in our experiments is generated using

various well known distributions that are known to capture
the dynamics of a public data access system quite well. The
various parameters of the experiment are tabulated in Table
1 and discussed below.

The data set contains 10, 000 requests generated using a
Poisson distribution with an arrival rate of r requests per
second. Each request consists of an arrival time, data item
number, an expected response time, and a priority level.

The data items requested are assumed to follow the com-
monly used Zipf -like distribution [6] with the characteriz-
ing exponent of 0.8. Under this assumption, the first data
item becomes the most requested item, while the last one
is the least requested. Broadcast schedules can be heavily
affected by the size of the most requested data item. Hence,
we consider two different assignments of sizes to the data
items from existing literature [11, 18]. The INC distribu-
tion makes the most requested data item the smallest in size,
while the DEC distribution makes it the largest in size.

INC : di = dmin +
(i− 1)(dmax − dmin + 1)

N
, i = 1, . . . , N

DEC : di = dmax −
(i− 1)(dmax − dmin + 1)

N
, i = 1, . . . , N

Expected response times are assigned from a normal dis-
tribution with mean m and standard deviation σ. The par-
ticular settings of these parameters in our experiment results
in expected response times to be generated in the range of
[0, 120]s with a probability of 0.997. A zero value generated
using this distribution implies that the request is expected
to be served immediately. Of course, because of the nor-
mal distribution, such requests are very rare to occur. Any
negative value generated by the distribution is changed to
zero.

We use three different priority levels for the requests –
low, medium, and high. Numeric values are assigned to these
levels such that the significance of a level is twice that of the
previous one. Since the total utility is related to the priority
of the requests, we make assignments from these levels in
such a way that the maximum utility obtainable by serving
requests from each priority level is probabilistically equal.
To do so, we use a roulette-wheel selection [10] mechanism
which effectively sets the probability of selecting a priority
level as: P (Low) = 4

7
, P (Medium) = 2

7
, and P (High) = 1

7
.

564

Parameter Value Comment

N 300 Number of data items
dmin 5KB Minimum data item size
dmax 1000KB Maximum data item size
b 120 KB/s Broadcast channel bandwidth
m 60s Request response time mean
σ 20s Request response time standard deviation
r 5 Request arrival rate
s 0.8 Zipf’s law characterizing exponent
P Low(1), Medium(2), High(4) Priority levels
p 0.5 Mutation probability

Gen 1000 Number of iterations for local search and ES

Table 1: Experiment parameters.

Workloads on the scheduler can be varied by either chang-
ing the request arrival rate, or the channel bandwidth. We
use the later approach and specify the bandwidth used wher-
ever different from the default.

The local search for EDF/LS and HUF/LS are run for
Gen number of iterations. For (2 + 1)-ES, the same num-
ber of iterations is chosen as the termination criteria. The
number of iterations has been fixed such that the scheduling
time is not more than 0.01s (on a 2.4 GHz Pentium 4 with
512 MB memory) when the request queue contains requests
for around 150 unique data items on the average. The per-
formance of each method is measured at the time instance
when all the requests get served. In other words, the per-
formance of each method is given by the sum of the utilities
generated by serving each of the requests in the data set.

6. RESULTS AND DISCUSSION
We first present the overall performance results obtained

for the five different solution methodologies. Fig. 7 shows the
performance in terms of the percentage of maximum total
utility returned by using each of the methods. The maxi-
mum total utility is obtained when every request is served
within its expected response time, in which case it attains
an utility equal to its priority level. Thus, summing up the
the priorities of all requests gives the maximum total utility
that can be obtained.

For the INC data size distribution, HUF, HUF/LS and
ES have similar performance. Although, EDF and EDF/LS
have a slightly lower performance, both the methods do rea-
sonably well. A major difference is observed in the amount of
improvement gained by EDF by using local search, as com-
pared to that of HUF. This is because EDF does not take
into consideration the utility factor of requests and hence
performing a local search based on utility results in a sub-
stantial level of improvement. HUF does reasonably well in
creating the initial schedules; hence local search does not
provide significant additional improvement. Further expla-
nation on this issue is presented later.

6.1 EDF vs. HUF
Differences arising in the performance of EDF and HUF

can be explained using Fig. 8. The top row in the figure
shows the utility obtained by serving a request. Clearly, the
accumulation of points is mostly concentrated in the [0, 0.5]
range for EDF (left). For HUF (right), three distinct bands
show up near the points 4, 2, and 1 on the y-axis. A high

Figure 7: Percentage of maximum total utility ob-
tained by the solution methods. The utility obtain-
able suffers when the most requested data item is
the largest in size.

concentration of points in these regions indicate that a good
fraction of the requests are served within their response time
requirements. Moreover, even if the response time require-
ment could not be met, HUF manages to serve them with
a good utility value. The figure confirms this point as the
band near 0 utility in HUF is not as dense as in EDF.

The bottom row in Fig. 8 plots the utility of the requests
served during a particular broadcast. We notice the presence
of vertical bands in EDF (left) which shows that a good num-
ber of requests get served by a single broadcast. This is also
validated by the fact that EDF does almost half the number
of broadcasts as done by HUF (right). For an intuitive un-
derstanding of this observation, consider the instance when
a broadcast is ongoing. Multiple new requests come in and
accumulate in the queue until the current broadcast ends.
Most of these requests would be for data items that are more
frequently requested. When EDF generates a schedule for
the outstanding requests, it gives preference to the request
which is closest to the deadline, or has crossed the deadline
by the largest amount. Since the queue will mostly be pop-
ulated with requests for frequently requested items, chances
are high that EDF selects one of such requests. Thus, when
a broadcast for such an item occurs, it serves all of the cor-

565

Figure 8: Utility derived by using EDF and HUF with INC data size distribution. Top: Utility obtained from
each of the request for EDF (left) and HUF (right). Bottom: Utility of requests served during a broadcast
for EDF (left) and HUF (right).

responding requests. This explanation is invalid for HUF
since preference is first given to a data item that can gener-
ate the most utility. Since the data item with highest utility
may not be the most requested one, more broadcasts may
be needed for HUF.

Further, when the request queue gets long, EDF’s prefer-
ence to requests waiting for a long time to be served essen-
tially results in almost no utility from serving that request.
If we extend this observation into the scheduling decisions
taken over a long time, EDF will repeatedly schedule older
and older requests. If the queue size continues to grow, this
essentially results in EDF failing to generate any substantial
utility after a certain point of time. This is clearly visible
in Fig. 8 (bottom) as the early drop in the utility level of
broadcasts to zero. The vertical bands in EDF suggest that
the request queue size did grow to a size where a single
broadcast took care of multiple requests.

6.2 Impact of local search
The impact of performing the local search improves the

EDF and HUF results for the DEC distribution – up to
almost 75% to 100%. Recall that the DEC distribution as-
signs the maximum size to the most requested data item. If
a schedule is not carefully built in this situation, there could
be heavy losses in utility because other requests are wait-
ing while the most requested data item is being broadcast.
It is important that the scheduler does not incorporate the
broadcast of heavy data items too frequently into its sched-
ule and instead find a suitable trade-off with the induced
utility loss. Unfortunately EDF and HUF generated sched-
ules fail to maintain this sought balance. To illustrate what
happens when local search is added, we refer to Fig. 9.

To generate Fig. 9, we enabled the local search mechanism
when the 3000th scheduling instance with EDF is reached.
At this point, the request queue contained requests for 127
unique data items. The local search mechanism use the 2-
exchange operator to generate a new schedule. To start with,
the 2-exchange operator is applied to the EDF schedule to

Figure 9: Improvements obtained by doing 50000
iterations of the 2-exchange operator for the EDF
schedule generated during the 3000th scheduling in-
stance. The DEC data size distribution is used here.
A newly obtained solution is considered better only
if it exceeds the utility of the current solution by at
least 20.

generate a new one. If the utility improves by more than 20,
the new schedule is considered for any further 2-exchange
operation. The process is repeated for 50000 iterations. The
plot shows the factor of improvement obtained from the EDF
schedule at each iteration of the local search. The factor
of improvement is computed as utility of solution/utility of
EDF solution. A gray point (x, y) in the plot illustrate that
the factor of improvement for the solution obtained in the
xth iteration of the search is y. The solid line joins the points
where a generated schedule had an utility improvement of
20, or more, over the current one.

566

The horizontal bands in the figure illustrate the fact that
the schedule space is mostly flat in structure. For a given
schedule, most of its neighboring schedules (obtained by the
2-exchange operator) have, more or less, equal amounts of
utility associated with them. Hence the improvement factor
values accumulate around a region to generate the bands. A
more interesting observation is the amount of improvement
obtained across the different iterations. We see that the
schedule utility improves to a factor of 2.5 within the first
1000 iterations of the local search (inset Fig. 9), after which
the progress slows down. This implies that as the schedules
become better and better, the local search mechanism finds
it difficult to generate a much better schedule (observe the
long horizontal band stretching from around the 15000 to the
50000 iteration). Hence, local search mechanisms are only
useful when the initial schedules generated by the heuristics
are not “good” ones.

Figure 10: Empirical cumulative density function
of the % success rates of performing 100 inde-
pendent iterations of the 2-exchange operation in
each scheduling instance with EDF (left) and HUF
(right). A success means the operation resulted in
a better schedule.

Since the results indicate that EDF and HUF both gain
substantial improvement with local search, it can be inferred
that their schedules have much room for improvement when
the utility measurement is the metric of choice. This is evi-
denced in Fig. 10. To generate the plots, the space near an
EDF (HUF) generated schedule is sampled 100 times. Each
sample is obtained by applying the 2-exchange operator to
the heuristic generated schedule. A success is noted if there
is an increase in utility of the schedule. With the success
rate (number of success/number of samples) obtained in all
the scheduling instances for the 10000 requests, an empirical
cumulative density function is constructed. A point (x, y) in
the plot evaluates to saying that in y fraction of the schedul-
ing instances, a better schedule is obtained 0 to x times out
of the 100 independent samples taken. For EDF, about 84%
(97%− 13%) of the schedules have been improved 40 to 60
times. This high success rate for a majority of the sched-
ules generated indicate that EDF is not a good heuristic to
consider in the context of utility. HUF displays a similar
increase in utility, but with a relatively lower success rate.
HUF schedules generate higher utilities than EDF schedules
and hence the success rate is low.

The observations till this point leaves us with the following
conclusions. The nature of the search space tells us that sig-
nificant improvements can be obtained by using local search
on heuristic schedules, specially when the schedule utilities
are substantially lower than what can be achieved. We ob-
serve that EDF and HUF in fact generate schedules that
are not difficult to improve with a single swap of the data
item positions. Thereby, combining local search to both the
heuristics enable us to at least “climb up” the easily reach-
able points in the search space.

6.3 HUF/LS vs. (2 + 1)-ES
Our justification as to why local search with an opera-

tor like 2-exchange fails after a certain extent is based on
the fact that these operators are limited by the number
of points they can sample – the neighborhood. This can
also be verified from Fig. 9, where the appearance of thin
bands are indicative of the low sampling of the area. As
schedules become better, much variation in them is required
to obtain further improvement. Mutation based operators
are designed to limit this variation while recombination can
sample the search space more diversely [4, 12]. This is the
primary motivation behind using a recombinative ES to get
improved schedules.

Figure 11: Top: Broadcast frequency of the N data
items for ES (left) and HUF/LS (right). Bottom:
Fraction of maximum utility obtained from the dif-
ferent broadcasts for ES (left) and HUF/LS (right).
The DEC distribution is used with a 80 KB/s band-
width.

To analyze the performance differences in HUF/LS and
ES, we make the problem difficult by reducing the band-
width to 80 KB/s. The DEC data size distribution is used
and the broadcast frequencies for the 300 data items are
noted. Fig. 11 (top) shows the frequency distribution. A
clear distinction is observed in the frequencies for average
sized data items. Recall that HUF first schedules the data

567

item with the highest utility. However, it fails to take into
account the impact of broadcasting that item on the utility
that can be generated from the remaining requests. Since a
majority of the requests are for the larger data items, it is
highly likely that such items get scheduled more frequently.
As a result most of the bandwidth is used up transmitting
heavy data items. The impact of this is not felt on small
data items as they are not requested often. However, for
average data items which do have a substantial presence in
the requests, utility can suffer. The difference between the
HUF/LS schedule and ES schedule appears at this point.

HUF schedules broadcast average sized items too infre-
quently, which implies that most requests for them wait for
a long time before getting served. ES schedules have a com-
paratively higher frequency of broadcast for such data items,
thereby maintaining a trade-off between the utility loss from
not servicing frequently requested items faster and the util-
ity gain from servicing average data items in an uniform
manner. As can be seen from Fig. 11 (bottom), the pitfalls
of the absence of this balance in HUF/LS is observed after a
majority of the broadcasts have been done. HUF/LS sched-
ules do perform better in maintaining a good fraction of the
maximum utility during the initial broadcasts (notice that
majority of the points are above the 0.2 limit on the y-axis
prior to the 600th broadcast). Much of the difference in per-
formance arises because of the utility losses resulting after
that. In contrast to that, ES schedules consistently balance
losses and gains to perform well almost till the end of the
last broadcast.

This insight suggest that heuristics that can take into con-
sideration the expected broadcast frequency of data items
and their relative sizes should do well in the context of data
utility. Probabilistic [26] and disk-based [1] broadcasts em-
ploy these notion for push based architectures. It is thus
worth investigating how they can be tailored for on-demand
architectures. Further, balancing the utility losses and gains
is a crucial aspect that any well performing heuristic needs
to take into consideration.

6.4 Scheduling time
The number of generations allowed to local search, or ES,

can affect the quality of solutions obtained and the time re-
quired to make a scheduling decision. In our experiments,
this value is set so that an average request queue can be
handled in a small amount of time. However, the average
queue size will greatly vary from problem to problem, of-
ten depending on the total number of data items served by
the data source. In such situations, it may seem difficult to
determine what a good value for the number of iterations
should be. Further, in a dynamic environment, the average
queue length itself may be a varying quantity. Nonethe-
less, one should keep in mind that scheduling decisions need
not always be made instantaneously. The broadcast time
of data items vary considerably from one to the other. The
broadcast scheduled immediately next cannot start until the
current one finishes. This latency can be used by a sched-
uler to continue its search for better solutions, specially with
iterative methods like a local search or an ES.

7. CONCLUSIONS
In this paper, we address the problem of time critical data

access in pervasive environments where the time criticality
can be associated with a QoS requirement. To this end,

we formulate an utility metric to evaluate the performance
of different scheduling methods. The earliest deadline first
(EDF) and highest utility first (HUF) heuristics are used
in the experiments. Our initial observation on their perfor-
mance conform to the speculation that HUF performs bet-
ter since it takes into consideration the utility of requests
while making scheduling decisions. Further analysis of the
nature of the scheduling problem show that EDF and HUF
generated schedules can be greatly improved by introduc-
ing a minor amount of local search to them. The impact of
the local search is found to be a direct consequence of the
schedules generated by these heuristics, which are found to
belong to a region of the search space from where obtaining
improvements is not difficult.

The observations drawn from this understanding of the be-
havior of local search aided heuristics enable us to propose
an evolution strategy based search technique that provides
more variance to a simple local search. The utility induced
by such a technique surpasses that of both EDF and HUF,
and their local search variants. This result also shows that
search based optimization techniques are a viable option in
real time broadcast scheduling problems, and often subop-
timal solutions generated by such a technique can be better
than one obtained from a heuristic.

Future work in this context is inspired from the insights
obtained from the analysis conducted on the (2 + 1)-ES.
From an utility standpoint, we intend to explore the op-
tion of designing heuristics that pay special attention to fac-
tors like broadcast frequency and loss-gain trade-off during
scheduling decisions. Also, the current analysis can be ex-
tended to include other heuristics, and the case when broad-
casts involve serving requests for ordered data items. When
requests involve multiple data items which may undergo reg-
ular updates, the validity of a broadcast is to be taken into
account. Timeliness delivery of a data item then has to con-
sider a validity deadline as well.

8. ACKNOWLEDGMENTS
This work was partially supported by the U.S. Air Force

Office of Scientific Research under contract FA9550-07-1-
0042. The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing official policies, either expressed or implied, of
the U.S. Air Force or other federal government agencies.

9. REFERENCES
[1] Acharya, S., Alonso, R., Franklin, M., and

Zdonik, S. Broadcast Disks: Data Management for
Asymmetric Communication Environments. In
Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data (San Jose, CA,
USA, 1995), pp. 199–210.

[2] Acharya, S., and Muthukrishnan, S. Scheduling
On-Demand Broadcasts: New Metrics and Algorithms.
In Proceedings of the Fourth Annual ACM/IEEE
International Conference on Mobile Computing and
Networking (Dallas, TX, USA, 1998), pp. 43–54.

[3] Aksoy, D., and Franklin, M. RxW: A Scheduling
Approach for Large-Scale On-Demand Data
Broadcast. IEEE/ACM Transactions on Networking
7, 6 (1999), 846–860.

568

[4] Beyer, H. An Alternative Explanation for the
Manner in which Genetic Algorithms Opearate.
BioSystems 41 (1997), 1–15.

[5] Beyer, H., and Schwefel, H. Evolution Strategies:
A Comprehensive Introduction. Natural Computing 1
(2002), 3–52.

[6] Breslau, L., Cao, P., Fan, L., Phillips, G., and
Shenker, S. Web Caching and Zipf-Like
Distributions: Evidence and Implications. In
Proceedings of the IEEE INFOCOM ’99 (New York,
NY, USA, 1999), pp. 126–134.

[7] Buttazzo, G., Spuri, M., and Sensini, F. Value vs.
Deadline Scheduling in Overload Conditions. In
Proceedings of the 16th IEEE Real-Time Systems
Symposium (Pisa, Italy, 1995), pp. 90–99.

[8] Cho, H., Wu, H., Ravindran, B., and Jensen,
E. D. On Multiprocessor Utility Accrual Real-Time
Scheduling With Statistical Timing Assurances. In
Proceedings of the IFIP International Conference on
Embedded and Real-Time Ubiquitous Computing
(Seoul, Korea, 2006), pp. 274–286.

[9] Fernandez, J., and Ramamritham, K. Adaptive
Dissemination of Data in Time-Critical Asymmetric
Communication Environments. Mobile Networks and
Applications 9, 5 (2004), 491–505.

[10] Goldberg, D. E. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-Wesley.

[11] Hameed, S., and Vaidya, N. Efficient Algorithms for
Scheduling Data Broadcast. Wireless Networks 5, 3
(1999), 183–193.

[12] Holland, J. Hidden Order: How Adaptation Build
Complexity. Basic Books.

[13] Jensen, E., Locke, C., and Tokuda, H. A Time
Driven Scheduling Model for Real-Time Operating
Systems. In Proceedings of the Sixth IEEE Real-Time
Systems Symposium (San Diego, CA, USA, 1985),
pp. 112–122.

[14] Jiang, S., and Vaidya, N. H. Scheduling Data
Broadcasts to “Impatient” Users. In Proceedings of the
First ACM International Workshop on Data
Engineering for Wireless and Mobile Access (Seattle,
WA, USA, 1999), pp. 52–59.

[15] Kim, J.-H., and Chwa, K.-Y. Scheduling Broadcasts
with Deadlines. Theoretical Computer Science 325, 3
(2004), 479–488.

[16] Lam, K.-Y., Chan, E., and Yuen, J. C.-H.
Approaches for Broadcasting Temporal Data in
Mobile Computing Systems. Journal of Systems and
Software 51, 3 (2000), 175–189.

[17] Lee, K. C. K., Lee, W.-C., and Madria, S.
Pervasive Data Access in Wireless and Mobile
Computing Environments. Wireless Communications
and Mobile Computing (in press).

[18] Lee, V. C., Wu, X., and Ng, J. K.-Y. Scheduling
Real-Time Requests in On-Demand Data Broadcast
Environments. Real-Time Systems 34, 2 (2006), 83–99.

[19] Li, P. A Utility Accrual Scheduling Algorithm for
Real-Time Activities with Mutual Exclusion Resource
Constraints. IEEE Transactions on Computers 55, 4
(2006), 454–469.

[20] Page, A. J., and Naughton, T. J. Framework for
Task Scheduling in Heterogeneous Distributed
Computing Using Genetic Algorithms. Artificial
Intelligence Review 24, 3-4 (2005), 415–429.

[21] Ravindran, B., Jensen, E. D., and Li, P. On
Recent Advances in Time/Utility Function Real-Time
Scheduling and Resource Management. In Proceedings
of the Eight IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing
(Seattle, WA, USA, 2005), pp. 55–60.

[22] Rechenberg, I. Evolutionsstrategie: Optimierung
technischer Systemenach Prinzipien der biologischen
Evolution. PhD thesis, Technical University of Berlin,
1970.

[23] Starkweather, T., McDaniel, S., Whitley, C.,
Mathias, K., and Whitley, D. A Comparison of
Genetic Sequencing Operators. In Proceedings of the
Fourth International Conference on Genetic
Algorithms (San Diego, CA, USA, 1991), pp. 69–76.

[24] Su, C.-J., and Tassiulas, L. Broadcast Scheduling
for Information Distribution. In Proceedings of the
INFOCOM ’97 (Kobe, Japan, 1997), pp. 109–117.

[25] Vengerov, D., Mastroleon, L., Murphy, D., and
Bambos, N. Adaptive Data-Aware Utility-Based
Scheduling in Resource-Constrained Systems. Tech.
Rep. TR-2007-164, Sun Labs, 2007.

[26] Wong, J. W. Broadcast Delivery. Proceedings of the
IEEE 76, 12 (1988), 1566–1577.

[27] Wu, H., Balli, U., Ravindran, B., and Jensen,
E. D. Utility Accrual Real-Time Scheduling Under
Variable Cost Functions. In Proceedings of the 11th
IEEE Conference on Embedded and Real-Time
Computing Systems and Applications (Hong Kong,
2005), pp. 213–219.

[28] Wu, X., and Lee, V. C. Wireless Real-Time
On-Demand Data Broadcast Scheduling with Dual
Deadlines. Journal of Parallel and Distributed
Computing 65, 6 (2005), 714–728.

[29] Xu, J., Tang, X., and Lee, W.-C. Time-Critical
On-Demand Data Broadcast: Algorithms, Analysis
and Performance Evaluation. IEEE Transactions on
Parallel and Distributed Systems 17, 1 (2006), 3–14.

[30] Xuan, P., Sen, S., Gonzalez, O., Fernandez, J.,
and Ramamritham, K. Broadcast on Demand:
Efficient and Timely Dissemination of Data in Mobile
Environments. In Proceedings of the Third IEEE
Real-Time Technology and Applications Symposium
(Montreal, Canada, 1997), pp. 38–48.

569

