BeMatch: A Platform for Matchmaking Service Behavior
Models

Juan Carlos Corrales
PRiSM, Universite de
Versailles Saint-Quentin en
Yvelines
45 avenue des Etats-Unis
Versailles Cedex, France
jcc@prism.uvsq.fr

Daniela Grigori
PRiSM, Universite de
Versailles Saint-Quentin en
Yvelines
45 avenue des Etats-Unis
Versailles Cedex, France

grig@prism.uvsq.fr

Mokrane Bouzeghoub
PRiSM, Universite de
Versailles Saint-Quentin en
Yvelines
45 avenue des Etats-Unis
Versailles Cedex, France
mok@prism.uvsq.fr

Javier Ernesto Burbano
GIT, University of Cauca
Calle 5 No 4-70
Popayan, Colombia
jaburbano@unicauca.edu.co

ABSTRACT

The capability to easily find useful services (software appli-
cations, software components, scientific computations) be-
comes increasingly critical in several fields. Current ap-
proaches for services retrieval are mostly limited to the match-
ing of their inputs/outputs possibly enhanced with some on-
tological knowledge. Recent works have demonstrated that
this approach is not sufficient to discover relevant compo-
nents. Motivated by these concerns, we have developed Be-
Match platform for ranking web services based on behav-
ior matchmaking. We developed matching techniques that
operate on behavior models and allow delivery of partial
matches and evaluation of semantic distance between these
matches and user requirements. Consequently, even if a ser-
vice satisfying exactly the user requirements does not exist,
the most similar ones will be retrieved and proposed for
reuse by extension or modification. We exemplify our ap-
proach for behavioral services matchmaking by describing
two demonstration scenarios for matchmaking BPEL and
WSCL protocols, respectively. A demo scenario is also de-
scribed concerning the tool for evaluating the effectiveness
of the behavioral matchmaking method.

1. INTRODUCTION

The capability to easily find useful services becomes in-
creasingly critical in several fields. Examples of such services
are numerous:

e Software applications as web services which can be in-
voked remotely by users or programs. One of the main
problems arising from the current framework of web

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

EDBT 08, March 25-30, 2008, Nantes, France.

Copyright 2008 ACM 978-1-59593-926-5/08/0003 ...$5.00.

695

services is the need to dynamically put in correspon-
dence service requesters with service suppliers, hence
allowing the formers to benefit from the more recent
offers or updates of the latter.

Programs and scientific computations (scientific work-
flows) which are important resources in the context of
Grid systems, sometimes even more important than
data. The scientists need to retrieve these programs
to determine whether it is worth to reutilize them or
rewrite them again with respect to desired character-
istics.

In all these cases, users are interested in finding suitable
components in a library or a collection of programs described
by appropriate models. The user formulates a requirement
as a process model; his goal is to use this model as a query
to retrieve all components whose respective process models
match with a whole or part of this query. If models that
match exactly do not exist, those which are most similar
must be retrieved. For a given goal, the models that re-
quire minimal modifications may be the most suitable ones
as component reuse aims generally to reduce development
costs. If the retrieved models have to be tailored to the
specific needs, the adaptation effort should be minimal.

Recently there has been a proliferation of web service
search engines on the Internet (see [1]). These can be classi-
fied into two types. The first type accepts as input keywords,
which they use to search within WSDL descriptions of ser-
vices. The second type goes beyond naive keyword match-
ing of WSDL contents by performing a similarity search on
WSDL operation names and input/output parameters (see
[2, 3]). These approaches can only match simple services,
thus do not handle the execution aspects of services.

By describing service capabilities using ontologies, the ser-
vice discovery can be improved by doing a semantic match-
ing between the required service and the publisehd services.
Several web service matchmaking prototypes have been im-
plemented using this approach (see [4, 5, 6]).

The need to take into account the service behavior in the
retrieval process was underlined by several authors and some
recent proposals exist ([7, 8, 9]). The few approaches that

exist give a negative answer to the user if a model satisfying
exactly his requirements does not exist in the registries, even
if a model that requires a small modification exists. More-
over, they assume that services have a common semantics
on message names.

In the database community, different approaches for au-
tomatic matching schemas have proposed. In general, these
methods try to capture clues about the semantics of the
schemas, and suggest matches based on them (see [10]).
These matching techniques can not be directly applied to
web service description matching because the granularity of
the search is different: services matching can be compared
to finding a similar schema, while schema matching looks
for similar components in two given schemas that are as-
sumed to be related (see [11]). Moreover, each web service
in isolation has much less information than a schema.

Motivated by these concerns, we have developed BeMatch
platform for ranking web services based on behavior match-
making. We developed matching techniques that operate on
behavior models and allow delivery of partial matches and
evaluation of semantic distance between these matches and
the user requirements. Consequently, even if a service satis-
fying exactly the user requirements does not exist, the most
similar ones will be retrieved and proposed for reuse by ex-
tension or modification. To do so, we reduce the problem
of service behavioral matching to a graph matching problem
and we adapt existing algorithms for this purpose.

The innovative feature of BeMatch, compared with exist-
ing approaches for services matchmaking, is that it allows
an approximate match. That is, even if companies do not
use a common vocabulary for operation names and model
differently the sequencing and the granularity of operations
of a service, the platform allows to retrieve among a list of
services offering the same functionality as the requested one,
the service having the most similar behavior model.

2. BEMATCH: DESIGN AND IMPLEMEN-
TATION

Given an extensive repository of published services, the
goal of BeMatch platform is to rank services with respect
to their suitability in fitting user requirements. We suppose
that user expresses his needs as a service behavior model and
the platform will help him identifying the services having the
most similar behavior model.

The first step for selecting possible candidates is based
on non-operational information. For example, a service re-
quester is looking for a partner that runs his business in a
certain domain, that is located in a certain area or that has
a certain amount of expertise (references) in providing the
required functionality. This discovery step is implemented
by means of a hierarchically structured catalogue. After the
first discovery step, a list of candidate services are found.
Then, the query service is compared with each candidate
service and the ranked list of candidates is presented to
the requestor. In our platform the service ranking is based
on service behavioral matching which is reduced to a graph
matching problem (see [12, 13]). More precisely, we use the
error correcting subgraph isomorphism (ecsi) algorithm in
order to allow an approximate matching. This method is
based on the idea of graph edit operations that are used for
calculating a distance measure for graphs.

The services ranking is constructed taking into account

696

different similarity measures. The first measure is based
on the graph distance calculated by the ecsi algorithm. The
second measure takes into account the number of the mapped
nodes. If two target graphs have the same subgraph distance
to the query graph but are matched to subgraphs with dif-
ferent number of nodes, the one that matches a subgraph
with more nodes will be preferred. The third measure is
based on the number of sequences of mapped nodes.

The system is presented in Figure 1 and is composed of
the following modules:

e Services repository: This repository stores services de-
scriptions and associated metadata. The data in the
repository is organized in a hierarchical manner; this
allows to query the repository and implement the first
step in the discovery process. We filter the services
in order to reduce the number of candidates for the
second step of the discovery process, the behavioral
matchmaking.

e Services to graphs parser: This module transforms a
service behavior description (BPEL and WSCL in the
current implementation) to a graph.

e Graph matchmaking: This module takes as inputs the
query graph and a single target graph (from the candi-
dates list) produced by the parser presented above and
computes the semantic distance between them by ap-
plying the algorithm for optimal error correcting sub-
graph isomorphism detection.

e Cost functions: This module groups the cost functions
for the graph edit operations that allow to calculate
the distance between graphs. The costs assigned to
different graph edit operations reflect the relative im-
portance of dissimilarities between different graph at-
tributes. Thus they depend of service behavior meta-
model and on the application domain. For example,
for WSCL descriptions, the substitution cost of two in-
teractions is calculated based on the similarity of their
names and on their messages names.

e Linguistic analyzer: This component calculates the lin-
guistic similarity between two strings using the follow-
ing algorithms: NGram, Check synonym, Check ab-
breviation and tokenization.

e Granularity level analyzer: It checks whether decom-
position/ composition operations are necessary and add
their cost to the graph edit distance. These graph edit
operations are necessary when the same functionality
is modeled at different granularity levels in the two
graphs (for example, using two nodes in a graph and
only one node in the other graph).

e Similarity functions: This module defines the similar-
ity functions that allows to construct the service rank-
ing.

e Tool for evaluating the effectiveness of the behavioral
matchmaking method. This tool allows to create a ser-
vice ranking based on manual comparisons between a
query service and a list of target services in the reposi-
tory. The tool permits to compare the ranking defined
by the user with the results of our matchmaking tool.
The cost functions for graph edit operations use some

user defined parameters (weights reflecting the impor-
tance of different service attributes in evaluating the
similarity). Given the fact that the parameterization of
the cost function is domain dependent and very impor-
tant for the effectiveness of the matchmaking method,
this tool helps the user determine the optimal parame-
ters to apply for a given domain and similarity criteria.

Query service

Filtering criteria

Services
Repository

Services to graphs
parser

Target services
list

Query and target

Tool for evaluating araph

the effectiveness of the
behavioral matchmaking
method

Graph E

distance | Similarity ||

functions | !

: ‘ i i

v v .
Granularity Linguistic || Cost functions|
level analyzer builder

analyzer

Graph matchmaking

User Services ranking
services ranking I~ 1- Service D
; _ Ze"’f“ g Verification 2. Service B
- dervice

_— =

3- Service A

3- Service D

Figure 1: Architecture

The platform was built using the Java programming lan-
guage (JDK 1.6.0) and the Netbeans 5.0 Integrated Develop-
ment Environment (IDE). The desktop implementation uses
the Xerces Application Program Interface (API) for pro-
cessing the BPEL and WSCL documents within the Parser
Module. The JGraph and JGraphLayout APIs were used for
the visual representation of service models. The Linguistic
analyzer accesses the Wordnet Dictionary trough the Java
Word Net Library (JWNL) API for verifying the semantic
relationship between two words.

We use the service repository presented in [14] that sup-
ports storing and finding BPEL business processes (and other
types of XML documents). In the repository, data is repre-
sented as EMF objects (Objects of Eclipse Modeling Frame-
work) that are Java objects. Data can be queried as Java
objects using an object-oriented query language, namely the
Object Constraint Language (or other query engine based
on other query language). This repository together with its
querying capabilities (and its possible extensions) allow us
to support the first phase of the discovery process, while the
main focus of our work is the matchmaking phase based on
behavioral models.

The services matchmaker (dotted square in figure 1) is also
available as a web service that takes as input two WSCL files
and calculates the similarity between them. It returns also
the script of edit operations required in order to transform
the first conversation protocol to conform with the second

one (http://ariadna.unicauca.edu.co/matching/).

3. DEMO SCENARIOS

We choose to exemplify our approach for behavioral ser-
vices matchmaking (dotted square in figure 1) by using the
BPEL and WSCL protocols (see [13] for WSCL matchmak-
ing and [12] for BPEL processes matchmaking). BPEL has
emerged as a standard for specifying and executing web
services-based processes. It supports the modeling of two
types of processes: executable and abstract processes. An
abstract process is a business protocol, specifying the mes-
sage exchanges between different parties from the perspec-
tive of a single organization (or composite service), with-
out revealing the internal behavior. An executable process,
in contrast, specifies the actual behavior of a participant.
The BPEL demo scenario will compare two BPEL abstract
processes (chosen from the repository) and will find out
automatically the similarity between them. On the other
side, WSCL is a simple conversation definition language,
which offers the basic constructs to model the sequencing
of the interactions or operations of one interface. It thus
complements the interface definition by specifying the in-
vocations order of the operations. The demo scenario for
WSCL will show the similarities between two WSCL proto-
cols identifying also the differences in the granularity level
descriptions. Finally, a demo scenario is presented concern-
ing the tool for evaluating the effectiveness of the behav-
ioral matchmaking method. This tool is available on the
web (http://ariadna.unicauca.edu.co/pertinence) and
allows to evaluate the usefulness of behavioral based simi-
larity measures. The scenario will show the process followed
by user for manually comparing two services.

3.1 BPEL matchmaking scenario

We will compare two BPEL processes for hotel reserva-
tion. Suppose that the first service has the following ac-
tivities: first, the customer should place his hotel selection
Reservation Request (Activity type: Receive). Then, either
ShowCatalog or ShowAvailability message are expected via
Hotels information (Activity type: Pick). Next, the (Re-
questCatalog, Activity type: Invoke) or ShowAvailability in-
formation (RequestAvailability, Activity type: Invoke) activ-
ities are executed respectively. Afterwards, a confirmation
(UserConfirmation Type: Reply) with the reserve informa-
tion is sent to the user. Finally, the hotel reservation service
expects the credit card payment PaymentCC (Type: Re-
ceive). The second service model has the following activi-
ties sequence: first, the customer should place his Reserva-
tion (Activity type: Receive) preferences. Then the hotel
reservation service receives the customer reservation dates
(Show Awailability Type: Receive) and verifies the hotels
availability (CheckAvailability Type: Invoke); if there are
no rooms available for the proposed dates, the last two op-
erations are repeated until finding available rooms. Next,
a confirmation (Confirmation Type: Reply) is sent to the
user. Finally, the hotel reservation service requires the cus-
tomer to pay (Payment Type: Switch), either with credit
card (are PaymentCC Type: Receive) or out of his checking
account (PaymentCA Type: Receive).

Our system converts the BPEL documents into graphs
(query graph and target graph in Figure 2). Next, the
graphs are compared by the graph matchmaking module
taking into account the matching parameters defined by user

BPEL query document

BPEL target document Second Hotel Resevation Service
First Hotel Resevation Service ;
Reservation
ReservationRequest '

While
‘ AvailabilityVerification!

HotelsInformation

ShowAvailability

[
OnMsg:

‘ OnMsg:
ShowCatalog

) ShowAvailability

CheckAvailability

RequestCatalog RequestAvailability Conﬂ.rmanon

I ‘
€} Payment
UserConfirmation

o Case: PaymentCC Case: PaymentCA
PaymentCC =

% %
PaymentCC PaymentCA

T
Target Graph Query Graph
Start Start
ReservatignRequest
Reservation

XOR-Split_Pick XOR-Split| While

CheckAvailability

ShowCatalog howA vailability -

ShowAvailability
RequestCatalo

Confirmation

XOR-Split_Switch
PaymentCA

XOR-Join_Switch

End

Figure 2: BPEL Example

(see Figure 3). The dotted lines in Figure 2 represent the
mappings found by the platform between the two graphs.
The edit script will show that the two graphs have some com-
mon activities, but the activities ShowAwailability, Check-
Awvailability and PaymentCC of the query graph belong to
different structured activities in the target graph. However,
the matchmaking algorithm will find similar activities for the
right-hand branch of the target graph (Start, Reservation-
Request, ShowAvailability, RequestAvailability, UserConfir-
mation, Payment and End). Finally, the similarity between
the query and the target service is calculated taking into
account the graph total distance and the user similarity cri-
teria.

3.2 WSCL matchmaking scenario

Suppose that we would like to find the similarity between
two purchase services whose conversations have been de-
scribed using WSCL language.

The first conversation (target service) of the figure 4 ex-
pects a conversation to begin with the receipt of a LoginR(Q
message (Login interaction). The service sends as a response
a ValidLoginRS or InvalidLoginRS document depending on
the type and content of the message received. In case of
a valid login, the service will expect a PurchaseR({) mes-
sage (Purchase interaction). Depending on the content of
the received document, the Purchase interaction can reply
with PurchaseAcceptedRS, InvalidPaymentRS or OutOfS-
tockRS. If the response is a PurchaseAcceptedRS, the ser-

698

£ BPEL Matchmaking System

Documents | Options | Results

(=1

Remove an edge | 0.4 | Join cost | 0.0 | PortType weight (0.0 | Addconnectar [0.4 | Compesition threshald |23 |
Add anedge | 0.4 | 5pltcost [0.0 | Operstion weight | 1.0 | Remove connectr [0.4 |
Tnvert an edga‘tﬁj Partnerlink weight | 0.0

Remove node [2.0 |

Acceptable value | 10 |

Perform matching

Graphs

Switch_2_start Switch_2_start

Switch_2_end Switch_2_end

Figure 3: Services matchmaking interface

vice will send the shipping information (ShippingInforma-
tion, type Send) to the user (Shipping interaction), other-
wise the conversation will end. Similarly, the second conver-
sation (query service) of the figure 4 expects a LgnR(@ mes-
sage and can send as a reply a ValidLgnRS or InvalidLgnRS
document (Lgn interaction). In case of a valid login, client
can send shipping preferences and the service will return a
ShipmentAcceptedRS or QutsideZone document according
to the content of document received (Shipment interaction,
type SendReceive). In the first case, the conversation con-
tinues with a Buy interaction, otherwise it ends.

Our system converts each WCSL document into a graph
(target graph and query graph, Figure 4). Next, the graphs
are decomposed (Decomposed target graph and query graph,
Figure 4) using the granularity analyzer. The decomposition
step allows to flatten the graphs to the same granularity
level, given the fact that an interaction could be modeled in
WSCL as a SendReceive interaction or as a Send interaction
followed by a Receive interaction.

Then, the graphs are compared by the graph matchmak-
ing module. Finally, the cost of granularity differences is
added to the total graph distance. In conclusion, the edit
script will show that the two graphs are similar, but have
the following structural differences : for the mapping (Ship-
ment,Shipping) (see figure 4), the Shipment is a Send non
atomic interaction (was obtained by decomposing a SR inter-
action) and the Shipping is a send atomic interaction. Hence
the system will add a granularity cost to the total distance
between the two graphs. There is not a corresponding node
for the Shipment (R) into the target graph. On the other
side, the interactions for purchasing and for shipping are ex-
ecuted in different order in the two models, therefore the
system will add to the total distance the costs of necessary

Decomposed
query graph

Decomposed

Target graph
target graph

Query graph

<<Receive>> <<ReceiveSend>>

Login
In: LoginRQ

In: LgnRQ
Out: ValidLgnRS
Out: InvalidLgnRS

<<Send>>

Login

In: LoginRQ
Out: ValidLoginRS
out: InvalidLoginRS

<<Send>>
Login

Out: ValidLoginRS

Out: InvalidLoginRS

Out: ValidLgnRS

Out: InvalidLgnRS [ValidLgnRS]

Shipment

<<Receive>>
In: ShipmentPreferencesRQ
0

Shipment

<<ReceiveSend >>
Purchase
In: PurchaseRQ

<<Receive>>
Purchase
In: PurchaseRQ

Out: OutsideZone

out
out: InvalidPaymentRS
Out: OutOfStockRS

<Send>> (ShipmenfAcceptedRS]

Shipment

[}\
\
<<Send >>
Purchase
Out: PurchaseAcceptedRS
Out: InvalidPaymentRS
Out: OutOfStockRS

>
Out: OutsideZone Buy

PurchaseAcceptedRS|
[PurchaseAcceptedRS] In: BuyRQ

Out:
out: InvalidPaymentRS
Out: OutOfStockRS

[OutStockRS]

<<Send>>
Shipping

Out:

<<Send>>

hippin
Qut: Shippinglnformation,

Out: BuyAcceptedRS
Out: InvalidPaymentRS
Out: OutOfStockRS

Figure 4: WSCL Example

edit operations for reordering them.

3.3 Scenariofor manual evaluation of services
similarity

After logging in the evaluation tool, the user selects the
services to compare in the interface presented in figure 5. In
this demo scenario the user selects the services of figure 4.
Then he assigns a similarity score (between 1 and 5) for the
two services corresponding to the comparison criteria that
he finds relevant.

3 ertinence evaluation tool - Mozilla Firefox

Pertinence evaluation
tool

Comparisons suggestions log out

admin>Comparation

Select the Model BPEL Process
260-echoStr

Select the Input BPEL Process
|258-echostring

| [Update] | [Update]

[Name |echoSting Name echoStr

Description |basic echo process Description basic process

1627 - EchoReply
Activities ||
;628 - EchoReceive

E

631 - ReplyEcho
Activities
632 - ReceiveEcho

structure | E

\
da

Structure

e}

Compare process | - [Compare Aciitivities

ght © 2005 hittp://www.prism.uvsq.fr/ - All Rights Reserved. Des

d by PRISM - Laboratoire dinformatique

Figure 5: A screenshot of the evaluation tool

The proposed similarity criteria are: service name, service
description, activities set and service structure. For the ana-
lyzed example the user selects the service description as the
most important criteria given that the two services describe
hotel reservation processes. On the other side, suppose that

[linvalidPaymentRS |

[OutsideZone]

699

user selects as criteria the activities set. In this case the
tool allows to analyze each service branch and to compare
their interactions. Thus the user can identify a similarity
between: ReservationRequest interaction on the target ser-
vice and ReservationR() interaction on the query service;
then between RequestCatalog and Catalog interaction, and
finally between CheckAvailability and Awailability interac-
tion. Finally, the tool creates a ranking for each query ser-
vice analyzed according with the comparison criteria. This
list is a T'op n (1<n<10) ranking, where the first service is
the most similar one.

4. ACKNOWLEDGEMENTS

Juan Carlos Corrales is supported by the Program Alban,
the European Union Program of High Level Scholarships for
Latin America, scholarship No. (E04D042012CO). (http:

//wuw.programalban.org).

5. REFERENCES

[1] M. Saboua and J. Panb. Towards semantically
enhanced web service repositories. Web Semantics:
Science, Services and Agents on the World Wide Web,
2007.

E. Stroulia and Y. Wang. Structural and semantic
matching for assessing web-service similarity. Int. J.
Cooperative Inf. Syst., 2005.

N. Kokash, W. van den Heuvel, and V. D’Andrea.
Leveraging web services discovery with customizable
hybrid matching. In Proc. of ICSOC, 2006.

L. C. Chiat, L. Huang, and J. Xie. Matchmaking for
semantic web services. In Proc of SCC, 2004.

M. Paolucci, T. Kawamura, T. R. Payne, and

K. Sycara. Semantic matching of web services
capabilities. In Proc. of ISWC, 2002.

B. Benatallah, M.S. Hacid, C. Rey, and F. Toumani.
Semantic reasoning for web services discovery. In Proc.
of ESSW, 2003.

Z. Shen and J. Su. Web services discovery based on
behavior signatures. In Proc. of IEEE SCC, 2005.

B. Mahleko and A. Wombacher. Indexing business
processes based on annotated finite state automata. In
Proc. of The ICWS, 2006.

Li Kuang, Ying Li, Shuiguang Deng, Jian Wu, Wei
Shi, and Zhaohui Wu. Expressing service and query
behavior using pi-calculus for matchmaking. In Proc
of WI, 2006.

Hong-Hai Do and E. Rahm. Coma - a system for
flexible combination of schema matching approaches.
In Proc of VLDB, 2002.

L. Dong, A. Halevy, J. Madhavan, E. Nemes, , and

J. Zhang. Similarity search for web services. In Proc.
of VLDB, 2004.

J.C. Corrales, D. Grigori, and M. Bouzeghoub. Bpel
processes matchmaking for service discovery. In Proc.
of CooplS, 2006.

D. Grigori, J.C. Corrales, and M. Bouzeghoub.
Behavioral matchmaking for service retrieval. In Proc.
of ICWS, 2006.

J. Vanhatalo, J. Koehler, and F. Leymann. Repository
for business processes and arbitrary associated
metadata. In Proc of BPM, 2006.

