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ABSTRACT
Sensor networks have been widely used to collect data about
the environment. When analyzing data from these systems,
people tend to ask exploratory questions—they want to find
subsets of data, namely signal, reflecting some characteris-
tics of the environment. In this paper, we study the problem
of searching for drops in sensor data. Specifically, the search
is to find periods in history when a certain amount of drop
over a threshold occurs in data within a time span. We
propose a framework, SegDiff, for extracting features, com-
pressing them, and transforming the search into standard
database queries. Approximate results are returned from
the framework with the guarantee that no true events are
missed and false positives are within a user specified toler-
ance. The framework efficiently utilizes space and provides
fast response to users’ search. Experimental results with
real world data demonstrate the efficiency of our framework
with respect to feature size and search time.

1. INTRODUCTION
Networks of wireless sensors can record detailed obser-

vations about their surroundings. In the context of envi-
ronmental monitoring, these systems produce rich spatio-
temporal data sets. At James Reserve in the San Jacinto
mountains, a network of twenty-five wireless sensors, ar-
ranged in two parallel lines across a canyon, records air
temperature every five minutes. The network is designed
to collect data to help studying of the occurrences of so-
called Cold Air Drainage (CAD) events. A CAD event in-
volves a sharp drop in temperature in early mornings. The
cold air movements can affect plants and animals that may
be frost-sensitive or humidity-sensitive, affect the spread of
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disease, and set micro-geographic limits on plant distribu-
tion. Therefore, it is very important for biologists to study
this type of transient atmospheric events.

Biologists would like to search for CAD events in a large
collection of recorded data at James Reserve, in particular
searching for periods that experience a certain amount of
drop in temperature within a time span. When we started
our collaboration, we were told that a CAD event involves a
drop of no less than 3 degree Celsius within 1 hour. As our
interactions developed, it became clear that the biologists
needed an exploratory tool, allowing them to pose queries
with different drops and time spans. Note that these queries
are one time ad-hoc queries to historical data instead of
continuous queries; users issue these queries and expect fast
response for interaction and exploration purpose rather than
for monitoring.

The problem identified above can be formulated as follows:
Users want to search for periods in history when data (1
dimensional time series) reflect the event of no less than V
units change over T time units. The change V and time
span T are both specified by users. Figure 1 (a) shows a
day of data from the CAD transect.
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Figure 1: (a) Data; (b) segments: piecewise linear
approximation of data; (c) a search result overlaid
with segments

A naive approach for solving this problem would be taking
the difference between any two observation values within T
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time units and comparing the differences with V on the fly.
Unfortunately, this approach would take several hours for a
reasonably large data set to complete a single search. It is
too expensive. It is not hard to notice that we can store the
differences ∆v between any two values between which the
time span ∆t is within w time units so that a standard range
query on ∆v and ∆t can return the search results much
faster than the naive approach as long as T ≤ w. We call
this method the exhaustive search Exh. This approach has
very large space requirements. It is problematic when the
data volume accumulated in history is large. Furthermore,
the response time will be degraded by the increasingly large
space consumption.

In this paper, we propose the following framework to tackle
the search problem: Data are first segmented into a piece-
wise linear approximation, and then features based on this
representation are extracted and stored in a relational data-
base, and finally standard database queries on features are
issued to return search results. Figure 1 (b) shows the piece-
wise linear approximation of the data in (a). Figure 1 (c)
shows a search result from our framework. The search result
is a tuple of four time stamps indicated by four vertical lines:
(from left to right) The first two indicate a drop starting in
the period between these two time stamps, and the last two
mark the period in which the drop ends. The first two time
stamps are two ends of a segment and so are the last two.
Once the periods indicated by ends of a pair of segments
are found, biologists can further explore the characteristics
of data collected in these periods.

The proposed framework, which we refer to as SegDiff,
efficiently utilizes space and provides fast response to users’
search, allowing for exploratory data analysis. Search re-
sults are returned with the guarantee that all true events
are included and false positives are within a user specified
tolerance. Although the application context of our problem
is temperature data collected by sensors, the problem state-
ment in Section 2 is generalized to time series data and the
framework can work in other contexts.

The paper is organized as follows. In Section 2, we pro-
vide the problem statement. In Section 3, we describe the
intuitive idea of the proposed framework. In Section 4, we
formulate each component of the framework. In Section 5,
we present the analysis about quality of results and com-
pression rate. In Section 6, experimental results about per-
formance are presented. In Section 7, we review the related
work. We conclude our work in Section 8.

2. DATA GENERATING MODEL AND PRO-
BLEM STATEMENT

In real-world applications, time series always come in at
a certain sampling rate. The higher the sampling rate, the
more values generated by nature are collected. Since an
event (a drop) can happen at the time when no data is being
sampled, we need to define a data generating model so that
an event is well-defined and reflected by the sampled data.

Definition 1. Data Generating Model G: Let (ti, vi) and
(ti+1, vi+1) be two consecutive sampled observations in time
series, the observation generated by nature is (t, v) where v
is defined as follows:

• v = vi if t = ti;
• v = vi +

vi−vi+1
ti−ti+1

(t− ti) if ti < t < ti+1;

• v = vi+1 if t = ti+1.

In this definition, we assume that the data missing be-
tween two sampled observations is produced by the linear
interpolation of those two observations. We note that this
model is assumed for simplicity of our discussion. In fact,
our proposed framework will find all correct events under
more general models, as long as the true value from the
general model lies within a user-specified error range from
the piecewise linear approximation. The exact meaning of
this error range will be clarified when we present Lemma 1
in Section 4.1.
Problem Statement Given any two observations (t′, v′)
and (t′′, v′′) generated by Data Generating Model G, an
event identified by the time stamps (t′, t′′) is defined as (∆t,
∆v) where ∆t = t′′ − t′ and ∆v = v′′ − v′. Given user-
specified thresholds T and V , the problem is to search for
all events that satisfy the following two constraints for drop
search: 0 < ∆t ≤ T and ∆v ≤ V < 0. The two constraints
for jump search are: 0 < ∆t ≤ T and ∆v ≥ V > 0. An
event satisfying these constraints is a true event. We note
that any of the two observations (t′, v′) and (t′′, v′′) for an
event can be either a sampled observation or an observa-
tion that is not sampled but produced by Data Generating
Model G.

3. OVERVIEW OF THE FRAMEWORK
In this section, we describe the intuitive idea of our frame-

work.
Feature space Let us start by reviewing the search prob-

lem. An event that users are searching for consists of two
factors: One is a change ∆v and the other is a time span of
the change ∆t. We can map an event into a two-dimensional
space shown in Figure 2 (left) with one dimension measur-
ing ∆v and the other measuring ∆t. Any point in this space
is associated with two factors (∆t, ∆v), denoting a poten-
tial event. All events reflected in data can be found in this
space. We call this space feature space.

A query region Next let us review the search condi-
tions. A user’s search involves two conditions: One is the
threshold for change V so that |∆v| ≥ V and the other is
the threshold for time span of the change T so that ∆t ≤ T .
In feature space, a user’s search can be easily mapped into a
region satisfying above two conditions as shown in Figure 2
(middle) when the search is about drops. We call this kind
of region a query region. The search problem can be reduced
to find periods involving at least one event with its mapped
point in feature space falling into a query region.

t0 00 !! !

! ! !

TT

V V

v v v

t t

Figure 2: Feature space (left); a query region (mid-
dle); intersection between a query region and a par-
allelogram(right)

Piecewise linear approximation of data With the
reduced problem in mind, we need to find an efficient repre-
sentation of points in feature space so that the detection of
points falling into a query region can be quickly answered
without considering all potential points reflected by data.

571



The essence of change ∆v and time span ∆t naturally leads
to linear approximation of data: Each small continuous part
of data can be locally approximated by a line segment. Data
can thus be approximated by many segments (Figure 1 (b)).
A segment characterizes the regularity of change ∆v and
time span ∆t in its corresponding part of data.

Parallelogram representation of features Although
a segment is a good summary of points in feature space
for the part it represents, it is impossible to summarize a
point that corresponds to an event occurring across two
non-overlapping parts of the data. Figure 3 illustrates this
problem. It shows two disjoint parts of the data AB and
CD and their corresponding linear approximation—two seg-
ments. Point B′ is a point in AB and point C′ is a point
in CD. Suppose that both the drop from C′ to B′ and its
corresponding time span satisfy the search conditions. Then
the event featured by such drop and time span is denoted
by a point in feature space falling into the query region. A
single segment either AB or CD is incapable of characteriz-
ing events of this kind (with features reflected by two points
on two different segments) simply because information from
the other segment is missing. This leads to the motivation
of our key representation of features—parallelograms. Fig-
ure 4 shows the two segments the same as the ones in Figure
3 and a parallelogram in feature space. This parallelogram
is constructed from the two segments by linearly connecting
four points in feature space: The point associated with B
and C, the point associated with B and D, the point as-
sociated with A and D, and the point associated with A
and C. The idea is to use events among four ends from two
segments to capture all events occurring across these two
segments. For example, the event happening at B and C
and the event happening at B and D can be used to capture
all events occurring at B and any point in CD—the slope
of CD is a fixed number. Similar situations exist for other
combinations of points. Such a parallelogram is capable of
summarizing any point whose associated event occurs across
two non-overlapping parts of data (Lemma 3 provides details
about this later). In addition, when two segments are from
the same part of data, their parallelogram degenerates to
a segment, representing any point associated with an event
occurring within the part of data.

B

C’

B’ A

C

D
B

C’

B’ A

C

D

Figure 3: Two disjoint parts (left) and the corre-
sponding segments (right)

Intersection between a parallelogram and a query
region With parallelograms summarizing all events in data,
we just need to detect intersection between a query region
and all parallelograms in feature space. Figure 2 (right)
shows an intersection. A returned parallelogram contains
at least one point falling into the query region. Therefore,
the periods associated with the two segments experience at
least one event satisfying the search conditions.

Corner point reduction and range queries for in-

tersection detection Although four corner points uniquely
identify the position of a parallelogram, not all four corner
points are necessary for intersection detection. As shown in
Figure 2 (right), it is sufficient to record two corner points
associated with the lower left boundary of the parallelogram
to detect the intersection between the query region and the
parallelogram for this case. Then simple standard range
queries on the coordinates of two corner points can be used
to detect intersection. In this way, our framework success-
fully solves the search problem.

Quality guarantee Since parallelograms are generated
from piecewise linear approximation of data, results simply
from the above presentation can miss some true events and
can include false positives. However, true events can all
be discovered by moving parallelograms in feature space,
and moreover false positives involved are guaranteed to be
within a user specified tolerance . The details are provided
by Lemma 4 in Section 4.3.1 and Lemma 5 in Section 5.1.

4. THE FRAMEWORK
In this section, we first formally define the goal of our

proposed framework and then present each component of
the framework. Our framework provides an approximate
solution for the search problem defined in Section 2. Since
the approximation involves piecewise linear segmentation of
the input time series data, we need to define a metric to
measure the quality of the approximation.

Definition 2. Piecewise Linear Approximation: Given da-
ta (t, v) generated by Data Generating model G and a user
specified error tolerance ε where ε ≥ 0, the piecewise linear
approximation of the data is a piecewise linear function f
satisfying |f(t)− v| < ε/2.

This definition says that a value on a segment from piece-
wise linear approximation of a time series is bounded within
a certain range of the original value.

The goal of our framework is to return any period asso-
ciated with a pair of segments that experiences at least one
drop (or jump) within a certain error tolerance. Specifi-
cally, all true events should be found, and all returned false
positives should be within a certain error tolerance.

Definition 3. Goal: Given (1) data (t′, v′) and (t′′, v′′)
generated by Data Generating Model G, (2) a user-specified
error tolerance ε where ε ≥ 0, (3) its piecewise linear ap-
proximation f , and (4) user-specified thresholds T and V ,
let tC and tD be time stamps of two ends of a segment CD
from f , and let tA and tB be time stamps of two ends of
another segment AB from f , the goal of our framework is
to identify all tuples ((tD, tC), (tB , tA)) satisfying the fol-
lowing condition: There exists a pair of time stamps (t′, t′′)
so that (1) tD ≤ t′ ≤ tC and tB ≤ t′′ ≤ tA; (2) 0 < ∆t ≤ T
and ∆v ≤ V + 2ε (0 < ∆t ≤ T and ∆v ≥ V − 2ε) for
drop search (for jump search) where ∆t = t′′ − t′ and
∆v = v′′ − v′.

It is clear that all true events for drop search with ∆v ≤ V
will satisfy ∆v ≤ V +2ε and thus should be found if the goal
is achieved by our framework. Any returned false positive is
within 2ε error tolerance. We note that in our framework an
event is not returned by its time stamps (t′, t′′) but returned
in the form of the time stamps of the ends of two segments
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involving that event. A returned tuple ((tD, tC), (tB , tA))
can involve multiple true events.

Users need to provide an additional fact: What is the
longest time span or time window they would be interested
in? This fact is pre-defined by users through a constant w.
Any T ≤ w is supported by our framework. For example, w
can be 24 hours if users do not care about any event whose
time span is longer than one day. Figure 6 shows a time
window in our framework.

With the notations summarized in Table 1, we describe
our framework in the following sub-sections.

Notation Description

T Threshold for time span
V Threshold for drop (jump)
ti Time stamp of an observation i
vi Value at time stamp ti

∆vij ∆vij = vi - vj where ti ≥ tj

∆tij ∆tij = ti - tj where ti ≥ tj

ε Error tolerance
w w time units, the width of a time window
r Compression rate of segmentation
n Total number of observations

Table 1: Summary of notations used in the paper

4.1 Segmentation and piecewise linear approx-
imation

Since our feature representation is based on piecewise lin-
ear approximation of data, we need a segmentation algo-
rithm to achieve the approximation defined in Definition 2.
There are many existing algorithms for segmentation. A
good review is provided by [5]. We choose one of them for
our purpose: The generic online sliding window algorithm is
described in Section 2.1 of [5] and linear interpolation is used
for approximation. The maximum error for segmentation is
ε/2 where ε is specified by users. That is, the absolute differ-
ence between any value of a segment and its corresponding
original value of the series should be no greater than ε/2.
Given a time series (t0, v0), (t1, v1), . . . where ti < tj if
i < j and a user-defined error tolerance ε, the output of
segmentation is piecewise linear approximation of the input
series. Readers interested in the details of segmentation can
refer to [5].

We next show that the segmentation process achieves the
approximation in Definition 2.

Lemma 1. Let f be the function of piecewise linear ap-
proximation output by the segmentation process, (t, v) be
the data generated by Data Generating Model G. Then we
have

|f(t)− v| ≤ ε/2

Proof. The proof is trivial for the case when (t, v) is a
sampled observation (ti, vi) in the input time series which
is ensured by the segmentation process. We next show that
the lemma holds when (t, v) is not a sampled observation.
Suppose (t, v) is in between two consecutive sampled obser-
vations (ti, vi) and (ti+1, vi+1) whose corresponding points
on a segment are (ti, f(ti)) and (ti+1, f(ti+1)) . Then we
have ti < t < ti+1. We conduct the proof by contradiction.
Assume that |f(t) − v| > ε/2. Let us consider the case of
v − f(t) > ε/2.

v − f(t) > ε/2.⇒
vi +

vi+1−vi

ti+1−ti
(t − ti)− (f(ti) +

f(ti+1)−f(ti)

ti+1−ti
(t − ti)) > ε/2

because (1) point (t, v) is on the line interpolated by points
(ti, vi) and (ti+1, vi+1) and (2) point (t, f(t)) is on the
segment which contains points (ti, f(ti)) and (ti+1, f(ti+1)).
⇒

Equivalently,

vi − f(ti) +
(vi+1−f(ti+1))−(vi−f(ti))

ti+1−ti
(t− ti) > ε/2. ⇒

Case 1 : If (vi+1 - f(ti+1)) > (vi - f(ti)),
vi − f(ti) + (vi+1 − f(ti+1))− (vi − f(ti)) >

vi − f(ti) +
(vi+1−f(ti+1))−(vi−f(ti))

ti+1−ti
(t− ti) > ε/2

since t−ti
ti+1−ti

< 1.

⇒ vi+1 − f(ti+1) > ε/2. Contradiction achieved.
Case 2 : If (vi+1 - f(ti+1)) ≤ (vi - f(ti)),
vi − f(ti) ≥
vi − f(ti) +

(vi+1−f(ti+1))−(vi−f(ti))

ti+1−ti
(t− ti) > ε/2

since t−ti
ti+1−ti

> 0.

⇒ vi − f(ti) > ε/2. Contradiction achieved.
With similar derivation, we can achieve contradiction for

v − f(t) < −ε/2. Therefore, the lemma is true.

We note that our framework proposed in the next few
sections depends on Lemma 1, which states that the true
value from the Data Generating Model G can be different
from the piecewise linear approximation at most by ε/2. The
results from our framework, therefore, is valid even when the
Data Generating Model is different from what we assumed
here, as long as the true value from the Model differs from
the piecewise linear approximation at most by ε/2.

Compared to the difference between any two observation
values, the difference between two corresponding values on
segments is at most off by the user-defined error tolerance
ε. Lemma 2 formulates this claim.

Lemma 2. Let f be the function of piecewise linear ap-
proximation output by the segmentation process, (t′, v′) and
(t′′, v′′) be the data generated by Data Generating Model G.

v′ − v′′ − ε ≤ f(t′)− f(t′′) ≤ v′ − v′′ + ε

Proof. By Lemma 1, v′ − ε/2 ≤ f(t′) ≤ v′ + ε/2 and
−v′′ − ε/2 ≤ −f(t′′) ≤ −v′′ + ε/2. The addition of the two
inequalities produces the result of Lemma 2.

4.2 Feature Representation
In order to present our feature representation scheme, we

first define the following concepts. Feature space is a space
with two orthogonal dimensions: One dimension measures
difference ∆vij = (vi − vj) and the other measures time
span ∆tij = (ti − tj). An event (∆tij , ∆vij) for two points
(ti, vi) and (tj , vj) is associated with a point in feature
space. Such a point is called a feature point and is denoted
by IJ . A segment that linearly connects two feature points
IJ (∆tij , ∆vij) and I ′J ′ (∆ti′j′ , ∆vi′j′) in feature space is
called a feature segment and is denoted by (IJ , I ′J ′). A
query region is a region in feature space defined by the search
thresholds T and V so that ∆vij ≤ V < 0 (∆vij ≥ V > 0)
and 0 < ∆tij ≤ T for drop search (for jump search). To
differentiate a feature segment and a segment output by the
segmentation process, we call the latter as a data segment.
A data segment ES is defined by ((ts, vs), (te, ve)) where
(ts, vs) is the start observation represented by that segment
and (te, ve) the end observation.
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We design feature parallelograms to represent feature poi-
nts used for search. A feature parallelogram essentially sum-
marizes feature points that could be produced by taking dif-
ferences between any two points on two data segments.

t
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Figure 4: Two data segments (left) and the corre-
sponding parallelogram in feature space (right)

Lemma 3. Given two data segments CD ((tD, vD), (tC ,-
vC)) and AB ((tB , vB), (tA, vA)) output by the segmentation
process where tB ≥ tC , (1) the quadrangle formed by lin-
early connecting the four feature points BC (∆tBC , ∆vBC),
BD (∆tBD, ∆vBD), AD (∆tAD, ∆vAD), and AC (∆tAC ,
∆vAC) in feature space is a parallelogram and (2) the region
of this parallelogram (BC, BD, AD, AC) captures all feature
points associated with any two points with one point on data
segment AB and the other on data segment CD.

Proof. We first prove that the quadrangle (BC, BD, AD,-
AC) is a parallelogram. Then we consider points on bound-
aries of a parallelogram and describe the properties of fea-
ture segments inside a parallelogram. Finally we use these
results to prove the second part of Lemma 3.

Figure 4 shows two data segments and their corresponding
feature parallelogram in feature space. In this figure, the
order vA < vB < vD < vC is irrelevant to the following
derivations but is included here for descriptive purpose.

A parallelogram Feature segment (BC, BD) has the

slope ∆vBD−∆vBC
∆tBD−∆tBC

where the numerator is (vB−vD)−(vB−
vC) = vC−vD and the denominator is (tB−tD)−(tB−tC) =
tC − tD. This shows that feature segment (BC, BD) has
the same time span and the same slope as data segment CD
in the left. By following the same derivation, we can show
that feature segment (AC, AD) has the same time span and
the same slope as data segment CD. Similarly, we can show
that feature segments (BC, AC) and (BD, AD) have the
same time span and the same slope as data segment AB
in the left. Therefore, feature segments (BC, BD), (AC,
AD), (BC, AC) and (BD, AD) form a parallelogram in
feature space. We use (BC, BD, AD, AC) to denote the
parallelogram.

Points on boundaries of a parallelogram We examine
a point C′ on data segment CD in the left of Figure 4 and
its related feature points in the right.

Feature segment (BC, BC′) has the same slope as feature
segment (BC, BD) because (1)
∆vBC′−∆vBC

∆tBC′−∆tBC
=

(vB−vC′ )−(vB−vC)

(tB−tC′ )−(tB−tC)
=

vC−vC′
tC−tC′

= vC−vD
tC−tD

where the last quantity is the slope of data segment CD and
(2) data segment CD has the same slope as feature segment
(BC, BD). The last equality in (1) holds since segment CC′

has the same slope as data segment CD.
Since (1) feature segment (BC, BC′) has the same slope

as feature segment (BC, BD) and (2) tD ≤ tC′ ≤ tC (C′

is on data segment CD) and ∆tBC ≤ ∆tBC′ ≤ ∆tBD, fea-
ture point BC′ representing (∆tBC′ , ∆vBC′) is on feature

segment (BC, BD). As C′ is an arbitrary point on data
segment CD, feature segment (BC, BD) summarizes the
feature point (∆tBC′ , ∆vBC′) associated with point B and
an arbitrary point C′ on data segment CD.

Similarly, feature point B′C is on feature segment (BC,
AC) where point B′ is on data segment AB. Feature seg-
ment (BC, AC) summarizes the feature point associated
with point C and an arbitrary point B′ on data segment
AB.

Feature segments inside the parallelogram We claim
that feature segment (B′C, B′D) must summarize feature
points associated with point B′ and an arbitrary point on
data segment CD. Let us consider the situation where data
segment AB is scaled (or shrunk) to AB′ with the same
slope. In this case, feature segment (BC, BD) is moved
to feature segment (B′C, B′D) and the parallelogram (BC,
BD, AD, AC) is scaled (or shrunk) to the parallelogram
(B′C, B′D, AD, AC). As we have shown above that feature
segment (BC, BD) summarizes the feature point associated
with point B and an arbitrary point C′ on data segment CD,
feature segment (B′C, B′D) summarizes the feature point
associated with point B′ and an arbitrary point C′ on data
segment CD. Thus, the claim is true.

Let us next think about the above situation inversely: If
segment AB′ is continuously scaled from segment AA (of
zero length) to data segment AB, feature segment (B′C, B′D)
moves from feature segment (AC, AD) to feature segment
(BC, BD) and it summarizes the feature point associated
with an arbitrary point B′ on data segment AB and an
arbitrary point C′ on data segment CD. The region of par-
allelogram (BC, BD, AD, AC) is swept by feature segment
(B′C, B′D) in this movement. Therefore, the second part
of Lemma 3 is true.

We note that a parallelogram degenerates to a feature
segment in feature space if the two data segments for its
construction are the same, that is, they are from the same
part of data. The degenerated parallelogram in feature space
summarizes any point whose associated event occurs within
the part of data. Therefore, a parallelogram can be used to
summarize any event occurs either across two data segments
or within a data segment.

4.3 Feature Extraction

4.3.1 Feature Reduction of Parallelograms
If four corner points are collected for a feature parallelo-

gram, they uniquely define the parallelogram and thus they
can be used to detect whether a parallelogram intersects
a query region. But some corner points are redundant for
detecting intersection because of the shapes of the query re-
gions and the parallelograms. Since a parallelogram’s shape
is determined by the slopes of its two corresponding data
segments, we enumerate all possible cases of two slopes to
find necessary corners for detecting intersection. Essentially,
a query region of drop (jump) search must intersect
the lower (upper) left boundary of a feature paral-
lelogram if it intersects the parallelogram. Suppose
AB and CD are two data segments output by the segmenta-
tion process and their slopes are kAB and kCD. All possible
cases are listed in Table 2. Let us examine the drop search
in case 1.

Since data segment AB and data segment CD can denote
different absolute values (say, temperature), the parallelo-
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Case Slopes Type Corners

1 kCD ≥ 0, drop BC, AC
kAB ≤ 0 jump BC, BD

2 kCD ≥ 0, drop BC
kAB ≥ kCD jump I BC, AC,AD

jump II AD, AC
3 kCD ≥ 0, drop BC

0 < kAB < kCD jump I BC, BD, AD
jump II AD, BD

4 kCD < 0, drop BC, BD
kAB ≥ 0 jump BC, AC

5 kCD < 0, drop I BC, AC, AD
kAB ≥ kCD drop II AC, AD

jump BC
6 kCD < 0, drop I BC, BD, AD

kCD < kAB < 0 drop II BD, AD
jump BC

Table 2: Necessary corners of a parallelogram con-
structed from data segments AB and CD for detect-
ing intersection

gram can move around in feature space with varying size.
But as long as the two slopes satisfy the condition of this
case, the relative positions of four boundaries of a paral-
lelogram hold as demonstrated in Figure 5 by its construc-
tion in Lemma 3. Specifically, feature segment (BC, AC)
and feature segment (BD, AD) cannot exchange their po-
sitions since (1) ∆tBC ≤ ∆tBD and (2) kCD ≥ 0 and (3)
∆vBC ≤ ∆vBD. Similarly, feature segment (AC, AD) and
feature segment (BC, BD) cannot exchange their positions.
Therefore, feature segment (BC, AC) is always the lower
left boundary of the parallelogram.
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Figure 5: Boundary conditions
of case 1
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Figure 6: A time
window

As shown in Figure 5, if a query region intersects a paral-
lelogram with this kind of shape, one of the following three
sub-cases must hold: Feature point BC falls into the region;
feature point AC falls into the region; part of feature seg-
ment (BC, AC) is inside the region but neither feature point
BC nor feature point AC is in the region. Feature segment
(BC, AC) is the lower left boundary of the parallelogram.
Therefore, we only need to record the features associated
with feature points BC and AC to represent that bound-
ary and detect intersection. The solid circles in Figure 5
mark the two points for each parallelogram. Similarly, the
broken-line circles in Figure 5 mark the two feature points
BC and BD, the corners of the upper left boundary of each
parallelogram to support jump search. The corners in the
remaining five cases can be founded in the same manner.
The details are provided in the Appendix.

The case analysis in Table 2 determines the corner points
whose features should be collected according to different

slopes of two data segments for detecting intersection be-
tween a query region and a parallelogram. But due to seg-
mentation errors, some true events in data may be missed
by the above detection. The difference between two points
on data segments is at most ε off from the difference between
their corresponding original values by Lemma 2. Since the
differences captured by a parallelogram are for two points
on data segments, they are at most ε off from the original
values. Lemma 4 provides the solution for capturing all true
events.

Lemma 4. If all feature parallelograms are shifted down
(up) by ε in feature space, intersection regions between a
query region for drop (jump) search and all parallelograms
capture all true events.

Proof. Suppose (∆t, ∆v′) is a feature point in a paral-
lelogram and its corresponding original feature is (∆t, ∆v).
Suppose ∆v ≤ V < 0 and ∆t ≤ T . Then for drop search,
this feature indicates a true event. By the condition ∆v ≤
V , we have ∆v + ε ≤ V + ε. By Lemma 2, ∆v′ ≤ ∆v + ε.
Then, we have ∆v′ ≤ V + ε and equivalently ∆v′ − ε ≤ V .
By shifting a parallelogram down by ε, the feature point
(∆t, ∆v′) is shifted to (∆t, ∆v′′) where ∆v′′ = ∆v′ − ε.
From the above derivation, ∆v′′ ≤ V . Therefore, for drop
search, a true event is never outside intersection region be-
tween a query region and all shifted parallelograms. By
symmetry, the same conclusion can be achieved for jump
search by shifting all parallelograms up by ε. The lemma is
proved.

We are ready to state specific features to be collected for
case 1 in Table 2. To guarantee that no event in data is
missed due to segmentation errors, SegDiff collects features
as follows: If ∆vAC − ε ≤ 0, the features (∆tBC , ∆vBC − ε)
and (∆tAC , ∆vAC − ε) are collected; if ∆vBD + ε > 0, the
features (∆tBC , ∆vBC + ε) and (∆tBD, ∆vBD + ε) are col-
lected. The first condition checks whether a parallelogram
contains any drop; the second checks whether a parallelo-
gram contains any jump. By Lemma 2 and Lemma 4, the
conditions consider the worst scenario: The difference be-
tween two points on the data segments is ε off from the
difference in an original event, and thus parallelograms are
shifted down (up) by ε for drop (jump) search to capture
this kind of events. We notice that the above scheme will
bring false positives. We can, however, guarantee that one
returned drop (jump) is always within 2ε of drop (jump) in
true events. The analysis is presented in Section 5. Specific
features to be collected for other cases can be given in the
same manner as above.

In the case analysis shown by Table 2, we notice that at
most three corner points are needed (for example, in the case
of jump search of case 2), and in some case only one corner
point is enough (for example, in the case of drop search of
case 2). The expected number of corner points depends on
the case distribution in data segments.

4.3.2 The Procedure
Algorithm 1 describes how SegDiff extracts features in

an online manner. For each newly generated data segment,
the features between this data segment and other data seg-
ments in a time window are computed. Figure 6 shows a
time window. When the start time tD of data segment
CD is earlier than win.start, the data segment is trun-
cated at the time win.start (line 4) and is treated to start
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Algorithm 1 FeatureExtraction
Input Data segments ((ts, vs), (te, ve)) . . . output by the
segmentation process where the data segments are in tempo-
ral order, that is, the end point of a previous input data seg-
ment is always the start point of the current input data seg-
ment; a user-defined error tolerance ε; a user-defined width
of a time window w
Output Database tables containing features to support
search
1: while a data segment ((ts, vs), (te, ve)) newly generated

from the segmentation process do
2: tB ← ts; vB ← vs; tA ← te; vtA ← ve

3: the end time of a time window win.end← tA

4: the start time of a time window win.start ←
win.end− (tA − tB)− w

5: for each previous data segment CD ((tD,
vD), (tC , vC)) within the window defined by
(win.start, win.end) do

6: according to the description in Section 4.3.1, fea-
tures are collected for intersection detection with
the input parameters of data segment CD and data
segment AB as (tD, vD), (tC , vC), (tB , vB), (tA, vA)

7: end for
8: end while

from win.start (line 5). The window with the newly defined
width (win.end−win.start) includes all data segments CD’s
which represent points whose time stamps are within w of
the time stamp of any point on data segment AB. There-
fore, all possible events with end time between tA and tB

and time span no greater than w are captured by parallel-
ograms constructed from data segment AB and every data
segment CD within the window.

Both the segmentation process and Algorithm 1 are on-
line processing on their inputs. The features can thus be
extracted as soon as data are being collected or uploaded.
The benefit is that there is no considerable delay for users
to search new data in terms of feature extraction process.

4.4 Queries
We can use two simple range queries to retrieve boundary

time points ((tD, tC), (tB , tA)) for two data segments CD
and AB containing at least one event by checking intersec-
tion between a query region and extracted features. The in-
tersection falls into two types: One is for detecting whether
a feature point is in a query region; the other is for detecting
whether a feature segment (a boundary of a parallelogram)
with its two ends outside the region intersects a query re-
gion. We call the first type point query and the second type
line query. For example, to perform drop search for case 1
in Figure 5, SegDiff only needs the union of the results of
two point queries and one line query: One point query is for
checking feature point BC, the other is for checking feature
point AC and the line query is for checking feature segment
(BC, AC). We list these two types of queries in the context
of drop search.
Point query Given a feature point (∆t, ∆v), the following
conditions are used to detect whether it is in the query re-
gion: ∆t ≤ T and ∆v ≤ V . B-tree index can be built on
the concatenation of ∆t and ∆v.
Line query Given a feature segment ((∆t′,∆v′), (∆t′′,∆v′′))
where ∆t′ ≤ ∆t′′, the following conditions are used to detect

whether its two ends are outside the region and whether
it intersects a query region: ∆t′ ≤ T and ∆v′ > V and

∆t′′ > T and ∆v′′ < V and ∆v′ + ∆v′′−∆v′

∆t′′−∆t′ (T −∆t′) ≤ V .

B-tree index can be built on the concatenation of ∆t′, ∆v′,
∆t′′, and ∆v′′.

5. ANALYSIS

5.1 Approximation
A false positive can be at most 2ε different from the orig-

inal event. One ε is from errors in segmentation and the
other is from shifting parallelograms.

Lemma 5. A pair of data segments returned by SegDiff
contains at least one event with drop ∆v ≤ V + 2ε (jump
∆v ≥ V − 2ε) and time span 0 < ∆t ≤ T where V and T
are user-specified thresholds for drop (jump) search.

Proof. By the queries specified by in Section 4.4, the
parallelogram of a pair of data segments returned for drop
search at least contains a feature point (∆t, ∆v′′) so that
0 < ∆t ≤ T and ∆v′′ ≤ V . Suppose its original feature is
(∆t, ∆v′) before a parallelogram is shifted. Since the par-
allelogram is shifted down ε to exclude all false negatives,
∆v′ = ∆v′′ + ε. Suppose the original event in the data has
feature (∆t, ∆v), ∆v ≤ ∆v′+ε by Lemma 2. Combining the
equality ∆v′ = ∆v′′ + ε and two inequalities ∆v ≤ ∆v′ + ε
and ∆v′′ ≤ V , we have ∆v ≤ ∆v′′ + 2ε ≤ V + 2ε.

Theorem 1 states the search quality guarantee of SegDiff.

Theorem 1. No true event is missed by SegDiff; false
positives have the property of drop ∆v ≤ V +2ε (jump ∆v ≥
V −2ε) and time span 0 < ∆t ≤ T where V and T are user-
specified thresholds for drop (jump) search.

Proof. Since SegDiff records the features associated with
parallelograms that are shifted down (up) by ε for drop
(jump) search, the condition of Lemma 4 is satisfied. By
that lemma, intersection between a query region and par-
allelograms captures all true events. The queries specified
in Section 4.4 for detecting above intersection are issued to
get any pair of data segments whose feature parallelogram
intersects a query region. Therefore, the first part of the
theorem is true. The second part of the theorem is true by
Lemma 5.

We note that given the data of Data Generating Model
G in Definition 1, it is impossible for the exhaustive search
Exh to find all true events because it only considers the
differences between the sampled observations. As we men-
tioned, a drop can happen when no data is being sampled.
Exh cannot capture events of this type. Since all proofs in
our framework hold for any data generated by G, the search
performed in our framework does not differentiate sampled
observations and unobserved ones, and thus can always re-
turn all true events reflected by G.

5.2 Compression
SegDiff uses less space than Exh for the following two rea-

sons. (1) In each time window, SegDiff computes features
between each newly generated data segment and all data
segments in a time window, so the number of features in
a time window is proportional to the number of data seg-
ments in that window. The number of features in a win-
dow for Exh, however, is proportional to the number of data
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points in that window. (2) The number of time windows for
SegDiff’s feature extraction is proportional to the total num-
ber of data segments while the number of windows for Exh’s
is proportional to the total number of data points. The first
gain is denoted by the term nw

mw
where nw is the number

of data points in a time window of width w and mw is the
number of data segments in a time window with the width
defined in Section 4.3.2. The second gain is denoted by the
compression rate of segmentation r which is defined as the
number of observations represented by one data segment on
average. These two gains are achieved by piecewise linear
approximation of data and parallelogram representation of
features.

In addition, SegDiff does not record all four corner points
for each feature parallelogram but only necessary ones. The
term c1

c2
is used to denote this reduction where c1 is the

number of columns for a database table in Exh and c2 is the
one in SegDiff. c1 = 3 since one row has time span, differ-
ence, and an absolute time stamp for uniquely identifying
an event. 5 ≤ c2 ≤ 7 and the exact value is case-dependent.
In the cases of one corner point, c2 = 5 with two columns
as time span and difference, and three columns as absolute
time stamps for uniquely identifying two data segments (the
fourth absolute time stamp can be computed on the fly). In
the cases of two corner points, c2 = 6. In the cases of three
corner points, c2 = 7.

The space saving in feature size by using SegDiff in com-
parison with Exh is ( c1

c2

nw
mw

r). That is, Exh uses ( c1
c2

nw
mw

r)
times space as much as SegDiff does.

We note that mw is not a constant by its definition, and
r is a simple estimate of the number of observations repre-
sented by one data segment. Therefore, although the above
analysis sheds lights on the space saving of SegDiff in com-
parison with Exh, it is important to evaluate their empirical
performance.

6. EXPERIMENTS
We investigate the performance of our approach SegDiff

and the exhaustive search Exh in different settings with the
data collected by the Cold Air Drainage Transect from De-
cember, 2005 to November, 2006. The data are preprocessed
by a smoothing method with robust weights so that anoma-
lies are removed. A subset of data is used in Section 6.1, 6.2,
and 6.4 for experimentation efficiency. All data are used in
Section 6.3.

All experiments are conducted on a dedicated computer
with an Intel Core Duo 2.0 GHz processor, 2 gigabyte 667
DDR2 SDRAM, and a 100GB 1.5Gps SATA disk. The op-
erating system is Mac OS X 10.4.9. MySQL 5.0.37 database
implementation is used for feature storage. Standard SQL
queries are used for retrieval. Each experiment is repeated
10 times and average values are reported. The default pa-
rameter settings are ε = 0.2, w = 8 hours, T = 1 hours and
V = −3 degree Celsius if not explicitly mentioned. In Sec-
tion 6.1, 6.2 and 6.3, operating system cache is flushed before
every query. The situation where system cache is available
is studied in Section 6.4. In that situation, indexes and pre-
viously hit disk blocks can remain in memory. Query cache
and key cache in database are turned off for all experiments.

We use feature size and disk size to measure space usage.
Disk size is the sum of feature size and index size. Query
execution time by sequential scan and query execution time
using indexes are used to measure time efficiency.

6.1 Performance with different tolerances
Compression rates with different tolerances Table 3 sum-

marizes different compression rates under different error tol-
erances. The range of drops in this data set is from 0 to -35
degree Celsius. Therefore, ε = 1 degree Celsius is a reason-
ably tight tolerance. For the query 3 degree drop within 1
hour, ε = 0.2 may be good enough for users since it provides
the guarantee that a pair of returned data segments contains
at least one event with at least 2.6 degree drop within 1 hour
and no true event is missed. From Table 3, we can see that
when the tolerance becomes larger, which leads to less data
segments produced, the compression rate becomes higher.

ε 0.1 0.2 0.4 0.8 1.0

r 4.73 7.03 10.52 16.10 18.55

Table 3: Compression rate r under different segmen-
tation error tolerances

Feature size with different compression rates We next ex-
amine how much space SegDiff uses with different degrees
of approximation. Figure 8 shows that the feature size is re-
duced when the compression rate r increases and the curve
has the shape of r−1. This follows our analysis in Section
5.2: The number of data segments is inversely proportional
to r and so is the total number of windows. The features
generated by Exh is about 383 megabytes, 12 times larger
than the size (about 32 megabytes) of features generated by
SegDiff for ε = 0.2 and r = 7.03.
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Figure 7: Ratio of feature sizes with different r’s

Figure 7 shows that SegDiff gains one order of magnitude
of space saving with the compression rate r greater than 7.
If a query involves a larger magnitude of drop, a larger ε is
admissible and orders of magnitude of space saving can be
achieved by SegDiff.

Disk size with different compression rates Figure 9 shows a
similar trend to the one in Figure 8. Comparing the numbers
on these two figures, we can see that the overhead of B-tree
indexes for SegDiff is non-trivial, about 1.1 times as large
as feature size. This overhead comes from B-tree indexes on
multiple columns. Following the way described in Section
4.4, some columns are repeatedly involved in index building
process. This makes index size larger than feature size. The
size of B-tree indexes for Exh is about half of feature size.
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Figure 8: Feature
sizes with different
r’s (Exh’s feature size:
383 megabytes)
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Corner cases Table 4 reports corner case distributions un-
der different error tolerances. For example, when ε = 0.2,
19.83% cases need only one corner to support queries. By
taking the average 1× 19.83% + 2× 46.79% + 3× 33.37% =
2.13, we effectively have two corner points cases. It means
that the case analysis from Section 4.3.1 effectively reduces
the storage of parallelograms’ corners by half. This is true
for all other ε’s.

ε 0.1 0.2 0.4 0.8 1.0

one corner 17.05 19.83 22.67 25.88 26.90
two corners 46.43 46.79 47.09 47.25 47.10
three corners 36.52 33.37 30.24 26.87 26.00

Table 4: The percentage of different corner cases
under different error tolerances

Query execution time with different compression rates Fig-
ure 10 shows the sequential scan time decreases when com-
pression rate increases in the same manner as that in Figure
8. Figure 11 shows the similar situation for execution time
using indexes. We see that indexes do not help in the case
of the query of 3 degrees drop within 1 hour in both ap-
proaches: The execution time using indexes is much slower
than the sequential scan time. As we will see later in Section
6.4, this specific query falls into a hard region for both ap-
proaches in feature space where it retrieves a large number
of tuples, making the indexing access inefficient.
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Figure 10: Sequential
scan time with different
r’s (Exh’s time: 6.44 sec-
onds)
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Figure 11: Execution
time using indexes with
different r’s (Exh’s time:
386.77 seconds)

Ratio of execution time Table 5 lists space saving rf and
the time gain rst for sequential scan. Table 6 shows the
situation when indexing is used. With indexes, the perfor-
mance difference in time becomes even larger. For ε = 0.2,
Exh’s query execution time is 6.69 times as long as SegDiff’s
for sequential scan but the former is 21.35 times as long
as the latter by using index. Since the number of features
from Exh can be an order of magnitude larger than the one
from SegDiff, B-tree indexes can be much taller than the
ones for SegDiff and thus Exh becomes even slower. This,
again, demonstrates the strength of the compression design
in SegDiff.

ε 0.1 0.2 0.4 0.8 1.0

rf 5.88 11.95 23.96 48.57 61.71
rst 3.19 6.69 11.20 17.65 19.22

Table 5: Ratio of feature sizes rf and ratio of se-
quential scan time rst with ε varied

6.2 Performance with different window sizes

ε 0.1 0.2 0.4 0.8 1.0

rd 4.26 8.66 17.37 35.33 44.42
rit 5.88 21.35 85.93 217.00 279.34

Table 6: Ratio of disk sizes rd and ratio of execution
time using indexes rit with ε varied
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Figure 13: Sequential
scan time with w varied

We fix ε = 0.2 to evaluate the impact of window sizes w
on performance of SegDiff and Exh. Figure 12 shows that
feature sizes of both approaches appear to grow linearly with
w. However, Table 7 shows the ratio of feature sizes rf ac-
tually increases with w. There is an order of magnitude
difference when w is 8 hours. This is because the number of
observations in a window nw increases almost linearly as w
increases, but the number of data segments in a time window
mw does not necessarily grow linearly as w increases—linear
growth is the worst case when every two consecutive points
are connected by a data segment. The similar situation ex-
ists for disk sizes in Table 7. In this case, when users want a
system to support queries with larger time spans, SegDiff’s
advantage becomes more significant. Figure 13 shows the
trend of the sequential scan time for the query follows the
same pattern as shown in Figure 12.

w 1 4 8 12 16

rf 5.89 9.98 11.97 13.14 13.94
rd 4.51 7.30 8.66 9.53 10.18

Table 7: Ratio of feature sizes rf and ratio of disk
sizes rd with w varied

6.3 Performance with the increasing number
of observations

Sensors often continuously collect data for a long period
of time and accumulate a large volume of data. It is impor-
tant to examine the scalability of SegDiff with the increasing
number of observations. We split data into 5 groups. Stor-
age and query execution time is checked after one group of
data’s features are incrementally inserted into the database.
It would take too much time to complete Exh’s experiments
so we abort them after the second groups’ features are in-
serted into the database. But the results still show us how
two approaches behave when the number of observations n
goes large. Figure 14 shows that the feature size of SegDiff
grows almost linearly with n. This is reasonable: The num-
ber of windows is the total number of observations n divided
by the compression rate r, and r is assumed to be about the
same when the error tolerance ε is fixed.

Space usage For the first two groups with complete exper-
iments, the space saving rf is 12.26: With 108 megabytes,
SegDiff can handle these two groups while Exh needs 1,328
megabytes. With one quarter of 1,328 megabytes, SegDiff
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Figure 14: Feature size
with n increased
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scan time with n in-
creased

can handle all groups’ data while the estimate of Exh’s fea-
ture size is about 3,416 megabytes. The estimates of Exh’s
feature size are marked by the dotted line in Figure 14. The
analysis in Section 5.2 shows that Exh’s feature size should
grow linearly with n when window size is fixed, and thus we
can get estimates by extrapolating the line of two observed
results in Figure 14. The disk size of Exh is an order of
magnitude larger than SegDiff’s disk size for handling two
groups.

Execution time Figure 15 shows that sequential scan time
grows almost linearly with n and SegDiff can return results
for all sensors within 10 seconds. As for execution time using
indexes, Exh is 18 times slower than SegDiff for handling two
groups.

6.4 Performance with different query regions
We investigate the query time of SegDiff and Exh with

random queries. Figure 16 shows the coverage of these ran-
dom queries. We first examine the situation where system
cache is available. This presents the case where both previ-
ously hit disk blocks and indexes can remain in memory.
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Figure 16: The coverage of random queries

Sequential scan with cache available Figure 17 and Figure
18 share a similar pattern in sequential scan time and the
horizontal lines mark boundaries for hard queries in both
figures. Among them, the ones that are hard for both ap-
proaches are denoted by solid dots in Figure 16. As we
can see, the hard area is at the top right triangular region.
This is what we expected: The larger a query region is,
the more results it retrieved; both approaches have to take
longer time.

Indexing with cache available Figure 19 and Figure 20
show execution time using indexes. Again, a similar pattern
exists in these two figures but with SegDiff’s time shifting
to a much lower level.

Since SegDiff compresses events into efficient parallelo-
gram representation and returns data segments, which sum-
marize results, it has much faster response time. Figure 21
and Figure 22 suggest that SegDiff is about 9 times faster
than Exh with sequential scan and is about 10 times faster
using indexes.

Ratio of execution time without caching Figure 23 and
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Figure 17: Exh’s se-
quential scan time with
cache
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Figure 18: SegDiff’s se-
quential scan time with
cache
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Figure 19: Exh’s execu-
tion time using indexes
with cache
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Figure 20: SegDiff’s ex-
ecution time using in-
dexes with cache

Figure 24 show the performance gain when system cache
is not available: SegDiff is about 9 times faster than Exh
but is about 20 times faster than Exh using indexes. This
illustrates that large indexes hurt the performance when Exh
accumulates too many features.

7. RELATED WORK
Compared to many existing work on similarity search in

time series database like [1, 12, 4] (readers can refer to [3]
for a comprehensive review) that require users to specify a
query series, the generic conditions for drop search are more
appropriate for users who do not have a precise specification
about shape and absolute magnitude of series they are look-
ing for, since numerous series satisfying the conditions can
have very different shapes and absolute magnitudes. For
similarity search, the studies like [1, 4, 7] map data into
boxes and use spatial access method like R*-tree index on
these boxes to speed up queries. Our framework uses a dif-
ferent idea of boxing: SegDiff compresses all features, which
otherwise have to be enumerated, into parallelograms and
stores necessary corner points to support search.

As commented in [5], piecewise linear approximation may
be the most frequently used representation of time series
data. It is utilized in a variety of settings such as clustering,
classification, characterizing movement patterns and shape-
search [6, 9, 13, 14]. But to our best knowledge, no existing
work uses such representation to construct parallelograms
for compressing signal features as we do. We invent a novel
usage of piecewise linear approximation.

There has been a growing interest in burst, novelty, or
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Figure 24: Ratio of
execution time without
cache

change detection in time series. Zhu and Shasha [15] con-
sider online burst detection problem as discovering summa-
tion of time series in a sliding window with each known size
greater than each corresponding known threshold. They fo-
cus on improving detection time in an online monitoring
setting. Drops targeted by our framework are differences in
time series and time span of occurrences is not fixed. Al-
though features are collected by online procedures in order
to support timely update in database, our application con-
text is one time search. Ma and Perkins [8] employ support
vector regression to predict future values’ confidence inter-
val and a change occurs when it falls outside the interval.
Reznik et al. [10] study unforeseen change in sensor data
signaling malfunctioning or malicious altering. They utilize
a neural network prediction function to measure the dis-
crepancy between sensor outputs and the known model of
normality. It is clear that the domain-specific changes in
the above two studies are different from the change in ours.
Sharifzadeh et al. [11] use wavelet coefficients to capture
discontinuities of any degree in data and they consider the
notion of degree of change as the degree of the changing
derivatives at the change point. The definition of change in
our problem involves two points. The concept of disconti-
nuity does not apply; a legitimate drop or jump can happen
on smooth curves.

The most similar work to our search problem is [2], where
a timebox is used to specify constraints on time and values
of time series data. A constraint is like (12:00, 13:00, 1,
5) defining a box with an absolute time range from 12:00
to 13:00 and an absolute value range from 1 to 5. Any
series with a sub-series’ time stamps from 12:00 to 13:00 with
values within the range 1 to 5 is returned as query results.
In our problem, none of these two kinds of ranges is specified
in users’ search. This makes the problem much harder and
requires a careful treatment of feature compression: A single
search in our problem can be corresponding to a number of
timeboxes’ time ranges and value ranges, which are difficult
for users to specify if not impossible. The extension of a
timebox in [2] replaces the value range with an angle envelop
(φmin, φmax) where −π

2
≤ φmin ≤ π

2
and −π

2
≤ φmax ≤

π
2
. This new constraint requires slopes of all segments (by

connecting two consecutive points) whose time stamps are in
an absolute time range to be in the range (φmin, φmax). This
constraint is unable to capture a drop in our search since a
legitimate drop can involve data segments with arbitrary
slopes in the middle.

There are many alternatives for approximation of time
series such as splines, high order polynomials, and wavelets.
But it is very difficult to define our problem whose potential
solutions involving arbitrary combination of time spans and
drops in any of the above transformed spaces. The piecewise
linear approximation is naturally suggested by the problem

and leads to intuitive and effective feature representation.

8. CONCLUSION
In this paper, we study the problem of searching for drops

in sensor data. The problem is motivated by a real-world
situation where users have no idea about the shape and ab-
solute magnitude of data they are looking for but instead
they specify their search by certain threshold conditions on
relative change in values. The exhaustive search for this
problem consumes too much space, which considerably slows
down responses. Indexes in the exhaustive search are expen-
sive and cannot improve its performance. In the proposed
framework, we design a novel feature space that visualizes
target events and the search conditions, invent parallelo-
gram feature representation which is capable of substan-
tially compressing features needed for search, identify the
necessary corner points of a parallelogram to support the
mapping from search to standard database range queries,
and prove the guarantee that no true events are missed in
returned results and any false positive returned is within
a user-specified error tolerance. Extensive experimental re-
sults demonstrate the efficiency of the framework with re-
spect to feature size and search time.
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APPENDIX
Corner cases
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Figure 25: Boundary
conditions of case 2
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Figure 26: Boundary
conditions of case 3

Case 2 kCD ≥ 0 and kAB ≥ kCD. Figure 25 shows this
case.
Drop Feature point BC is the (degenerated) lower left bound-
ary. If any drop event occurs in the query region, the feature
associated with BC must be in the region. So it is sufficient
to record the feature associated with this point. The solid
circles in Figure 25 mark this point for each parallelogram.
Jump I As shown in Figure 25, feature segments (BC, AC)
and (AC, AD) are the upper left boundary. There are at
most five sub-cases for a query region to intersect a parallel-
ogram when AC denotes a jump, which is shown by top two
parallelograms in the figure: Feature point BC falls into the
region; AC falls into the region; AD falls into the region;
part of feature segment (BC, AC) is inside the region but
neither feature point BC nor feature point AC is in the re-
gion; part of (AC, AD) inside the region but neither AC
nor AD is in the region.
Jump II In the case of the second-to-last bottom parallel-
ogram where feature point AC denotes a drop and feature
point AD denotes a jump in Figure 25, feature segment
(AC, AD) is the upper left boundary. If a query region of
jump search intersects a parallelogram in this case, one of
the following two sub-cases must be true: feature point AD
is in the region; part of feature segment (AC, AD) is in the
region but feature point AD is not.
Features to be collected If ∆vBC − ε ≤ 0, the feature (∆tBC ,
∆vBC− ε) is collected; If ∆vAC + ε ≥ 0, the features (∆tBC ,
∆vBC + ε), (∆tAC , ∆vAC + ε) and (∆tAD, ∆vAD + ε) are
collected; if ∆vAC + ε < 0 and ∆vAD + ε > 0, (∆tAC ,

∆vAC + ε) and (∆tAD, ∆vAD + ε) are collected.
Case 3 kCD ≥ 0 and 0 < kAB < kCD. Figure 26 shows
this case. It is the same as case 2 except that AC and BD
exchange their positions in feature space.
Features to be collected The conditions and the correspond-
ing features from case 2 apply here with changing ∆tAC to
∆tBD and changing ∆vAC to ∆vBD.

The first three cases consider kCD ≥ 0. The next three
cases consider kCD < 0. The descriptions are similar. It is
sufficient to understand these three cases with the notational
convention that broken-line circles label upper left boundary
corner points for jump search and solid ones mark lower left
boundary corner points. Case 4 is corresponding to case 1.
Case 5 is corresponding to case 2. Case 6 is corresponding
to case 3.
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Figure 27: Boundary conditions of case 4

Case 4 kCD < 0 and kAB ≥ 0. Figure 27 shows this case.
Drop Feature segment (BC, BD) is the lower left boundary
for drop search.
Jump Feature segment (BC, AC) is the upper left boundary
for jump search.
Features to be collected If ∆vBD−ε ≤ 0, the features (∆tBC ,
∆vBC−ε) and (∆tBD, ∆vBD−ε) are collected; if ∆vAC+ε >
0, the features (∆tBC , ∆vBC +ε) and (∆tAC , ∆vAC +ε) are
collected.
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Figure 28: Boundary
conditions of case 5
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Figure 29: Boundary
conditions of case 6

Case 5 kCD < 0 and kAB ≤ kCD. Figure 28 shows this
case.
Drop I When AC denotes a drop, feature segments (BC,
AC) and (AC, AD) are the lower left boundary.
Drop II When AC denotes a jump and AD denotes a drop,
feature segment (AC, AD) is the lower left boundary.
Jump Feature point BC is the (degenerated) upper left
boundary.
Features to be collected if ∆vAC−ε ≤ 0, the features (∆tBC ,
∆vBC − ε), (∆tAC , ∆vAC − ε) and (∆tAD, ∆vAD − ε) are
collected; if ∆vAC − ε > 0 and ∆vAD − ε ≤ 0, the features
(∆tAC , ∆vAC − ε) and (∆tAD, ∆vAD − ε) are collected; if
∆vBC + ε > 0, the feature (∆tBC , ∆vBC + ε) is collected.
Case 6 kCD < 0 and kCD < kAB < 0. As shown in Figure
29, this case is the same as case 5 except that AC and BD
exchange their positions.
Features to be collected The conditions and the correspond-
ing features from case 5 apply here with changing ∆tAC to
∆tBD and changing ∆vAC to ∆vBD.
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