
Taxonomy-Superimposed Graph Mining
Ali Cakmak and Gultekin Ozsoyoglu

Department of Electrical Engineering and Computer Science
Case Western Reserve University

Cleveland, OH 44106
{cakmak, tekin} @case.edu

ABSTRACT

New graph structures where node labels are members of

hierarchically organized ontologies or taxonomies have become

commonplace in different domains, e.g., life sciences. It is a

challenging task to mine for frequent patterns in this new graph

model which we call taxonomy-superimposed graphs, as there may

be many patterns that are implied by the

generalization/specialization hierarchy of the associated node label

taxonomy. Hence, standard graph mining techniques are not

directly applicable.

In this paper, we present Taxogram, a taxonomy-superimposed

graph mining algorithm that can efficiently discover frequent

graph structures in a database of taxonomy-superimposed graphs.

Taxogram has two advantages: (i) It performs a subgraph

isomorphism test once per class of patterns which are structurally

isomorphic, but have different labels, and (ii) it reconciles

standard graph mining methods with taxonomy-based graph

mining and takes advantage of well-studied methods in the

literature. Taxogram has three stages: (a) relabeling nodes in the

input database, (b) mining pattern classes/families and

constructing associated occurrence indices, and (c) computing

patterns and eliminating useless (i.e., over-generalized) patterns

by post-processing occurrence indices. Experimental results show

that Taxogram is significantly more efficient and more scalable

compared to other alternative approaches.

1. INTRODUCTION
Graph databases are prevalent in various fields [1, 15] to represent

and query complex relationships between objects. Mining

frequent structures in graph databases has recently drawn

considerable research attention [6, 7, 10, 11, 20, 22]. Traditional

general-purpose graph mining approaches have focused on

extracting frequent graph structures that explicitly appear in a

graph database. Recently, in various fields, new graph structures

have emerged, where vertex labels are members of a taxonomy

defined by is-a or part-of relationships between a set of labels in a

hierarchical manner. In this paper, we refer to this type of graphs

as taxonomy-superimposed graphs. As one example, biological

pathways are graphs of interacting proteins, and proteins are

usually annotated with functionality concepts from Gene

Ontology [4], which is a taxonomy containing around 20,000

concepts organized in a hierarchical manner. In such an

environment, mining for frequent pathway annotation structures

across organisms is important to understand common pathway

functionality structures in different organisms as well as to predict

pathways [2] in newly sequenced organisms, and categorize

existing pathways into groups [3].

A major implication of the taxonomy-superimposed graph model

is that, now, we are interested in discovering frequent graph

structures which do not necessarily appear explicitly in a graph

database, but can be discovered only when employing the

hierarchical relationships defined in the associated taxonomy. In

such a model, the traditional general-purpose graph mining

algorithms are not directly applicable to mine implicitly occurring

patterns. We give an example.

Example 1.1. Consider a sample “pathway annotation” graph

database in Figure 1.2 where node labels are from a subgraph of

Gene Ontology (GO) shown in Figure 1.1. Assume that we would

like to mine pathway annotation patterns that appear in all graphs

in the database. Traditional general-purpose graph mining

algorithms do not return any patterns as there are no graph

patterns that explicitly appear in Pathway1 and Pathway2 at the

same time. However, taking advantage of the associated GO

taxonomy in Figure 1.1, and using the generalization-

specialization relationships between functionality concepts, it is

possible to discover the implicitly-occurring patterns of P1 and P2

in Figure 1.3.

Protein

Carrier
Cation

Transp.

Transporter

Molecular Function

DNA

Helicase

Helicase

Catalytic

Activity

Figure 1.1: A subgraph of GO

Protein

Carrier

Cation

Transp.
DNA

Helicase

Helicase
DNA

Helicase

Helicase

Pathway 1 Pathway 2

Figure 1.2: A Pathway Annotation Graph Database

Helicase

TransporterHelicaseTransporter
Catalytic

Activity

Helicase

Pattern P1 Pattern P2

Figure 1.3 Sample Patterns

There are two major challenges that are unique to taxonomy-

superimposed graph mining in comparison with traditional graph

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

EDBT’08, March 25-30, 2008, Nantes, France.

Copyright 2008 ACM 978-1-59593-926-5/08/0003...$5.00.

217

mining. First, the number of patterns that can be extracted using a

taxonomy of labels is enormous as any node in a pattern P can be

replaced by any of its ancestors in the associated taxonomy to

create a generalized pattern of P. Thus, efficiently enumerating

possible candidates and calculating their support values is

challenging. Second, not all extracted patterns are useful. For

instance, the pattern P2 is over-generalized with respect to P1,

since (a) it is a generalization (i.e., a generalized pattern) of P1,

and (b) P1 appears in all the graphs that P2 appears in the

database. Hence, efficiently detecting and eliminating over-

generalized patterns is the second challenge.

Traditional graph mining has two major steps: (i) enumerating

candidates, and (ii) computing the occurrence count (i.e., support)

of each candidate in the database. Support computation consumes

the majority of the processing time [19], mostly due to the fact

that this step involves solving an NP-hard problem, namely, the

subgraph isomorphism test. Taxonomy-superimposed graph

mining involves generalized subgraph isomorphism test which

extends the traditional subgraph isomorphism: given two graphs

G1 and G2 to be tested for isomorphism, a node in G1 with label l

may match to any node of G2 labeled by either l or any ancestor of

l, as defined in the associated taxonomy. It can easily be shown by

reduction that the generalized subgraph isomorphism problem is

at least as hard as the subgraph isomorphism problem.

Furthermore, pattern generalization and specialization based on a

taxonomy make things worse computationally.

Many successful techniques have been developed for general-

purpose graph mining. A desirable solution to taxonomy-

superimposed graph mining should take advantage of the existing

candidate enumeration techniques, and over-generalized patterns

should be eliminated with low computational effort.

An obvious approach to the problem, which we call the baseline

approach, is to directly use the existing general-purpose graph

mining techniques by replacing the traditional subgraph

isomorphism test with the generalized subgraph isomorphism test.

In this baseline approach, first, all possible patterns are computed,

and then over-generalized patterns are eliminated via a post-

processing step. The downside of this approach is that, during the

mining procedure, considerable amount of processing time is

spent for computing the support values of over-generalized

patterns that are then not included in the final pattern set.

Alternatively, a possible bottom-up approach would be to detect

and eliminate over-generalized patterns at early stages of

candidate generation so that such patterns would not be

propagated to later iterations as seeds to generate larger patterns

[9]. A major drawback of this approach is that, for a pattern and

for each one of its generalized patterns that is not over-

generalized, the support computation is performed independently

resulting in high-time complexity. More specifically, since a

pattern P and its generalized versions share common occurrences

in a graph database, the same occurrence of P is counted more

than once. And, each counting involves a separate subgraph

isomorphism test. In fact, for a pattern P with n nodes, and a

taxonomy T, the same occurrence of P in a taxonomy-

superimposed graph is counted as many times as the number of

generalized patterns of P, which is O(dn), where d is the average

number of ancestors for the vertex labels of P in taxonomy T.

Even though the bottom-up approach is more efficient than the

baseline approach [9], it eventually suffers from the enormous

increase in the total number of subgraph isomorphism tests during

support computation. We give an example.

Example 1.2. Figure 1.4 shows a small database D = {G1, G2,

G3} to be mined for frequent graph structures, where vertex labels

are from the sample taxonomy of Figure 2.1. Figure 1.5 shows

two non-over-generalized graph patterns in D along with their

support values. Pattern P1.1 appears in all three graphs in D and

has 4 implicit occurrences (1.1, 2.1, 2.2, 3.1) which are marked

with dashed borders on the graph accompanied with occurrence

numbers in the form of (graph# .occurrence#). Note that two of

these occurrences (1.1, 2.1) are also shared by the pattern P1.2.

However, in a level-wise bottom-up approach, since the patterns

are processed independently, in the support counting stage, 6

generalized subgraph isomorphism tests (namely, between P1.1

and each of its occurrences labeled with 1.1, 2.1, 2.2, 3.1, and

between P1.2 and each of its occurrences labeled with 1.1 and 2.1)

are performed although 4 would be sufficient (as 2 of the

occurrences, namely, 1.1 and 2.1, are shared among the patterns).

Hence, taking advantage of shared occurrences does provide

performance gains for taxonomy-superimposed graph mining.

2.2

d f

g

b

c

w

c

1.1 2.1 3.1

G1 G2 G3

Figure 1.4: A graph database D

a

c

Support: 1

Pattern P1.1

b

c

Pattern P1.2

Support: 2/3

Figure 1.5: Size-2 patterns in D

In this paper, we propose and evaluate the Taxogram algorithm, a

top-down support computation approach, which (i) takes

advantage of the existing efficient techniques developed for

general-purpose graph mining, and (ii) aims to perform the

subgraph isomorphism test on each occurrence of a pattern P only

once, and contribute the result of that isomorphism test to the

support computation of not only P, but also all generalized

patterns of P. The Taxogram algorithm consists of three stages. In

the first step, vertices in the input graph database are relabeled

with the most general ancestor of their label in the associated label

taxonomy. The second step extends general-purpose graph mining

approaches with taxonomy-projected “occurrence indices”, and

performs traditional graph mining on the relabeled database to

mine classes of patterns. Finally, in the last step, new members are

enumerated for each pattern class, and their support values are

computed using the occurrence indices.

Contributions of this paper are as follows:

 The traditional graph mining is reconciled with taxonomy-

superimposed graph mining via relabeling the input database,

and mining for pattern classes using the existing approaches,

before directly mining for actual patterns.

218

 Taxonomy-projected pattern occurrence indices are

developed to capture the shared occurrences of patterns so

that a single isomorphism test is performed per occurrence

rather than per occurrence-pattern pair, and the result of the

isomorphism test is shared by multiple patterns.

 An efficient specialized pattern enumeration algorithm is

developed by taking advantage of hierarchically organized

occurrence indices.

 Over-generalized patterns are eliminated without requiring

expensive pairwise subgraph isomorphism tests among the

extracted patterns.

 The proposed approach is experimentally evaluated in terms

of its performance for different datasets.

This paper is organized as follows. In Section 2, we formally

define the taxonomy-superimposed graph mining problem, and

list its properties. In Section 3, we present the Taxogram

algorithm, and its efficiency enhancements. Section 4 discusses

the experimental setup and results. Section 5 gives an overview of

the related work, and Section 6 concludes.

2. PROBLEM DEFINITION
Def’n (Labeled Graph): A labeled graph G(VG, EG, LG, G)

consists of a set of edges EG, and a set of vertices VG where each

vertex υ in VG is assigned a label l, lLG, by a labeling function

G:VGLG such that LG={ G(υ) | υ  VG} (i.e., G() is total).

Optionally, edges of a graph may also be labeled, but to keep our

definitions simple, we omit edge labels in our definitions without

loss of generality.

Def’n (Taxonomy): Taxonomy T(VT, ET, LT, T) is a labeled

directed acyclic graph where (a) an edge from vertex u to vertex v

represents an is-a relationship such that v is an ancestor of u, and

u is a descendant of v, and (b) T() is one-to-one and onto.

A taxonomy T(VT, ET, LT, T) defines a specialization-

generalization hierarchy for the set of labels LT. Let Anc(l)

represent the set of all ancestors of l, and Desc(l) represent the set

of all descendants of l in T. Then, the following properties hold

for ancestor/descendant relationships in T.

 If u is an ancestor (descendant) of v, and v is an ancestor

(descendant) of w then u is an ancestor (descendant) of w.

(Transitivity)

 l  LT, l is an ancestor of itself.

Example 2.1. Figure 2.1 depicts a sample taxonomy T, and Figure

2.2 lists a set of labeled graphs.

From now on, the phrase “graph G over taxonomy T” means that

LG  LT. Similarly, the phrase “graph database D over taxonomy

T” means that, for each graph G in D, LG  LT.

Def’n (Generalized Graph Isomorphism): Given labeled graphs

G1(V1, E1, L1, 1) and G2(V2, E2, L2, 2) over taxonomy T, G1 is

generalized isomorphic to G2, denoted as G1IS_GEN_ISOG2, if

there exists a one-to-one and onto mapping function :V1 V2

such that (i) υ  V1, 1(υ) = 2((υ)) or 1(υ)Anc(2((υ))),

and (ii) (υi, υj)  E1, ((υi), (υj))  E2. Furthermore, G1 is called

a generalized graph of G2. Conversely, G2 is called a specialized

graph of G1.

Example 2.2. In Figure 2.2, GC is generalized isomorphic to GA.

Also note that GB is not generalized isomorphic to GA.

Remark 2.1. <IS_GEN_ISO> (a) is not commutative, (b)

transitive, and (b) does not distribute over , but it does over .

Def’n (Generalized Subgraph Isomorphism): Given labeled

graphs GS(VS, ES, LS, S) and G(V, E, L, ) over taxonomy T, G is

generalized subgraph isomorphic to GS if there exists a subgraph

GS' of GS such that GIS_GEN_ISOGS'.

Example 2.3. In Figure 2.2, GB is generalized subgraph

isomorphic to GA.

Remark 2.2. Generalized subgraph isomorphism is (a) not

commutative, (b) transitive, and (c) does not distribute over , but

it does over .

a

mlk

h

on

ji

gfzd

cb

qp

r

uts

w

x

y

Figure 2.1: A sample taxonomy T

GA:
g

d

h Specialized graph of Gc

sup(GA) = 0.75

GB: ah

Generalized subgraph isomorphic to GA

sup(GB) = 1

GC:

c

b

d

Generalized subgraph of GA

GC<IS_GEN_ISO>GA

sup(GC) = 1

GD:

dh

sup(GD) = 1

 GE:

c

d

h

Over-generalized

pattern

sup(GE) = 0.75

Figure 2.2: Some graphs with their support in DB of Fig. 2.3

Def’n (Support): Given a graph database D over taxonomy T, and

a graph G in D, let GenSet(G) = {Gi | Gi  D and G is generalized

subgraph isomorphic to Gi}. Then, the support of G, denoted as

sup(G), in D with respect to T is sup(G) = |GenSet (G)|/|D|.

Note that the support definition does not count the actual

occurrences of G in graphs of D, but the number of graphs in D

where G occurs at least once.

Example 2.4. In the database D of Figure 2.3 over taxonomy T of

Figure 2.1, the support of GA in Figure 2.1 is 0.75 (GA is a

generalization of the dark-colored subgraphs in G1, G3, and G4).

Def’n (Pattern): Given a graph database D over taxonomy T, and

a support threshold , 0   1, a labeled connected graph G is

called a pattern if sup(G) in D is at least , and G contains at least

one edge.

219

A pattern together with all of its generalized and specialized

graphs as patterns represents a pattern class.

Def’n (Pattern Class): Given a pattern P over taxonomy T, P‟s

pattern class contains all possible patterns that can be obtained by

relabeling any node  in P with any ancestor or descendant of ‟s

label in T.

Example 2.5. GA and GC (Figure 2.2) are in the same pattern

class. Similarly, GB and GD are in the same pattern class.

Def’n (Over-generalized Pattern): A graph pattern PO is an over-

generalized pattern if there exists another pattern PS such that (i)

POIS_GEN_ISOPS, (ii) sup(PO) = sup(PS), and (iii) POPS.

Example 2.6. In Figure 2.2, graph pattern GB with support 1 is

over-generalized as there is a more specialized pattern GD with the

same support within the graph database D of Figure 2.3.

Def’n (Taxonomy-Superimposed Graph Mining Problem): Given

(i) a taxonomy T, (ii) a graph database D over T, and (iii) a

support threshold , the taxonomy-superimposed graph mining

problem is to locate the set H of graph patterns such that (a) Pi 

H, sup(Pi)  , (b) H does not contain any over-generalized

patterns (minimality), and (c) H contains all non-over-generalized

patterns in D with support   (completeness).

 Figure 2.3: A Graph Database

G1:
o

d

i mh

x

G2: p

fn

y

G3:

s

u d

l

i

k

G4: t

j

h

m

ga b

bh

gh g

b

h

P1

P2

P3

P4

Figure 2.4: Generalized Graph Patterns with Support = 1

Example 2.7. Given the database D in Figure 2.3, let the support

threshold  = 1. Figure 2.4 shows all generalized patterns which

have support 1 in D, minimal (i.e., no over-generalized patterns),

and complete (i.e., has all non-over-generalized patterns).

2.1 Properties of Taxonomy-Superimposed Graph

Mining
In this section, we present three properties that are unique to

taxonomy-superimposed graph mining. Proofs are omitted for the

lack of space.

Lemma 1. Given a pattern P over taxonomy T, let n be the

number of nodes in P. Then, the number of generalized patterns of

P is O(dn) in the worst case, where d is the average number of

ancestors of P’s vertex labels in T.

Lemma 2. Given a pattern P, and the support set SS(P) of all

graphs G in a database over taxonomy T, where P is generalized

isomorphic to G, for any generalized pattern Pg of P, SS(P) 

SS(Pg).

Therefore, a pattern P is not frequent (i.e., sup(P)  ) if one of its

generalized patterns is found to be infrequent.

Lemma 3. If P is an over-generalized pattern, there may exist a

generalized pattern Pg of P which is not over-generalized.

Example 2.8. Consider the pattern GE in Figure 2.2. GE has a

support of 0.75 in the graph database of Figure 2.3, and it is over-

generalized as GA (Figure 2.2) is a specialized pattern of GE with

the same support. However, GE has a generalized pattern GC

(Figure 2.2) which is not over-generalized as its support, 1, is

higher than its specialized patterns.

In other words, downward closure property does not hold on the

axis of generalization/specialization of patterns. Therefore,

locating an over-generalized pattern Pg is not sufficient to prune

out all of Pg„s generalized patterns from the search space.

3. TAXOGRAM ALGORITHM
In this section, we present the details of the Taxogram algorithm.

Given a graph database D over taxonomy T, and a support

threshold , we propose a three-step mining procedure. First, all

vertex labels in graphs of D are replaced by their most general

ancestors in T to create a “most-generalized” database Dmg (while

also retaining the original labels of vertices). Second, we employ

existing efficient candidate enumeration and support counting

techniques developed for general-purpose graph mining to mine

all frequent graphs in Dmg. Third, discovered patterns are post-

processed to derive their specialized versions while eliminating

over-generalized patterns so that the final pattern set is complete

and minimal.

The three-step mining procedure has four features:

i. By relabeling vertices with the most general ancestor of their

labels, each class of patterns is collapsed into a single pattern

which is the most general pattern of that class. Hence, the

total number of patterns to be extracted at the initial stage

decreases, which in turn decreases the total number of

database accesses and isomorphism tests.

ii. We employ one of the existing general-purpose graph mining

techniques once at the beginning of second step of the

framework, reducing the number of graph isomorphism tests.

iii. We reuse shared pattern occurrences among patterns of the

same class. This reduces the number of costly graph

isomorphism tests further.

iv. We use taxonomy-projected “occurrence indices” in the post-

processing stage, to eliminate over-generalized patterns---

without requiring an isomorphism test between each pair of

created patterns, which further reduces the total number of

graph isomorphism tests to be performed.

Next, we discuss each step of the algorithm in detail.

Step 1. Relabeling Input Graph Database

In the first step of the Taxogram algorithm, for each vertex label l

in the graph database D, the most general ancestor lg of l is located

in label taxonomy T. Next, all vertices labeled with l are relabeled

with lg. Each vertex also internally stores its original label l to be

used in later stages. We give an example.

220

Example 3.1. Consider the graph database D in Figure 1.4. After

relabeling vertices in D with the most general ancestor of their

original labels, the modified database Dmg is shown in Figure 3.1.

Note that the original labels of vertices are kept (shown in

parenthesis) to be used in later stages.

a (d) a (f)

a (g)

a (b)

a (c)

a (w)

a (c)

Figure 3.1: Graph database Dmg after relabeling D

This step is not redundant as the associated taxonomy may have

multiple roots. When the taxonomy T has multiple roots and the

roots have a common child node, in some cases, a label l may

have a set Ancs(l) of most general ancestors. In such cases, an

artificial node with a unique label lr is introduced as the common

ancestor of nodes in Ancs(l).

Time & Space Complexity of Step 1: This step processes all

graphs in the database once to relabel them. Therefore, time

complexity of this step, in the worst case, is O(|D||Gmax|) where |D|

is the number of graphs in the database, and |Gmax| is the size of

the largest graph. Since the original labels are also retained during

the relabeling process, the space requirement for extra label

storage is also O(|D||Gmax|).

Step 2. Mining for Pattern Classes

In the second step, extended general-purpose graph mining is

performed on the relabeled graph database Dmg. The output of this

step is the most general patterns in each pattern class of the final

pattern set. There are several efficient general-purpose graph

mining approaches, e.g., FSG [11], gSpan [22], FFSM [6], etc.

Any of these approaches can be extended for mining pattern

classes on relabeled input graph. In this study, we choose to

extend gSpan because its depth-first-search style candidate

enumeration requires less memory, and its running time

performance is better than or at least comparable to the other

alternatives [19].

Remark 3.1. [21] gSpan has time complexity of O(kFS + rF)

where k is the number of occurrences of a frequent subgraph in a

graph in the database, F is the number of frequent subgraphs, S is

the database size, and r is the maximum number of duplicate

codes (canonical representation scheme of gSpan) of a frequent

subgraph that grow from other minimum codes.

Our extension involves the creation of a (taxonomy-projected)

occurrence index (OI) for each produced pattern. Given a pattern

P, all of its occurrences in Dmg are stored together with the

original labels of the vertices. For efficient enumeration of

specialized patterns in the next step, occurrences of P are stored in

subtaxonomies (subgraphs) of taxonomy T. A subgraph of T is

created for each node in a pattern. Each occurrence is numbered in

the form of (graph# . occurrence#). Lastly, the set of occurrences

for the whole pattern is also stored in an ordered list. We give an

example.

Example 3.2.Consider the relabeled graph database Dmg in Figure

3.1, and let the support threshold be 2/3. In this step, traditional

general-purpose graph mining (i.e., gSpan in this paper) extended

with taxonomy-projected occurrence index creation is applied on

database Dmg, which results in two patterns, P1 and P2, shown in

Figure 3.2 together with their occurrence indexes (OI).

Occurrence indexes are shown in dashed-bordered-regions. Each

occurrence is represented by its id.

Def’n (Occurrence of pattern): Given a graph G and a pattern P in

the database, a subgraph GS of G is called an occurrence of P in G

if PIS_GEN_ISOGS.

One may argue that replacing node labels with their most general

ancestor may dramatically increase the number of graph

isomorphism tests. However, as we emphasize in Example 1.2, for

completeness, the most general pattern always needs to be

considered for support computation, even if we do not relabel the

nodes. Hence, this is not an aspect that is caused by relabeling of

nodes.

Def’n (Taxonomy label covered by pattern): Pattern P covers

label a of taxonomy T when there exists an occurrence G(V, E, L,

) of pattern P in database D with a  (v), v  V.

Example 3.3. In database D of Figure 1.5, the label c of taxonomy

T (Figure 2.1) is covered by pattern P1 of Figure 3.2 since c is in

the graph occurrence G3.1 (in Figure 1.5) of P1.

a [G1.1,G2.1,G2.2,G3.1]

 b

[G1.1, G2.1]

c

[G2.2]

a [G1.1,G2.1,G2.2,G3.1]

b[] c

[G1.1, G2.1,

G2.2, G3.1]

a

a

P1

OI(P1)

Occurrence Index for P1

 b

[G1.1,G2.1]

c [G1.2,G2.2,

G2.3,G3.2]

a [G1.1,G1.2,G2.1,

G2.2,G2.3,G3.1]

OI(P2)

Occurrence Index for P2

a

P2

OIE(Tn1)

OIE(Tn2)

n1

n2

n3

OIE(Tn3)

Figure 3.2: Patterns from Dmg with their occurrence indexes

projected on a subgraph of T

Def’n (Occurrence index of pattern, occurrence index entry):

Given a pattern P (V, E, L, ) and an input database D over

taxonomy T, the occurrence index OI(P) of P is a set S(Ti) of

taxonomies such that S(Ti) = { Ti | Ti is a subtaxonomy of T,

root(Ti)=root(T), 1  i  |V|, Ti contains only those labels of T

covered by pattern P}. Ti is called an occurrence index entry

(OIE), and is assigned to node υiV of pattern P through a

mapping function : υiV  S(Ti), i.e., (υi) = Ti.

Example 3.4. In Figure 3.2, each of the patterns P1 and P2 has

one occurrence index, namely, OI(P1) and OI(P2). Each node of

each pattern is associated with one Occurrence Index Entry (OIE),

which is a subtaxonomy of T. For instance, pattern P1 consists of

single directed edge (a, a), and OI(P1), the occurrence index of

P1, has two occurrence index entries, namely, OIE(top node of P1

with label a), and OIE(bottom node of P1 with label a).

Def’n (OIE node label and occurrence set): Each node of OIE Ti

is (a) labeled with a taxonomy label, say l, covered by P, and (b)

assigned an occurrence set OcS(l) containing the id‟s of

occurrences of P, identified by graph#.occurrence# in database D.

Example 3.5. In Figure 3.2, consider the top OIE T1 of OI(P1).

Each node label l in T1 is a taxonomy label “covered” by P. As an

example, label c is covered by P and the occurrence set OcS(c) of

c is {G2.2} where G2.2 is illustrated in Figure 1.5.

Note that, in the above example, occurrence set for taxonomy

label a in P1‟s occurrence index is different than the taxonomy

label a in P2‟s occurrence index, mainly, due to the fact that the

221

P1 and P2 are two distinct pattern classes and their occurrences in

the input database are not identical.

Space Complexity for Step 2: In the worst case, for each pattern

node n, the associated occurrence index OI(n) contains as many

nodes as the number of labels in taxonomy T. Since the traditional

graph mining algorithm, gSpan, that we employ in this step

enumerates patterns in depth-first manner, at any moment in step

2, there exists only one pattern and its associated occurrence index

in the memory. Thus, regardless of the number of patterns in the

final produced pattern set, in the worst case, the space requirement

for occurrence indexes equals to |Pmax||T| where |Pmax| is the

number of nodes in the largest pattern Pmax among all patterns,

and |T| is the number of labels (concepts) in the label taxonomy T.

|Pmax| is bounded by |Gmax| where Gmax is the largest graph in the

input database D. Hence, space complexity for occurrence indexes

is O(Gmax* |T|).

Given a graph G in the input database D over taxonomy T, and a

pattern P, the maximum number of occurrences of P in G is
 G !

 G − P !
 . Hence, the size of occurrence set for each taxonomy

label i in an occurrence index is
 G !

 G − P !
 𝐺∈𝐷 . Since, in the

worst case there are |T| labels per occurrence index node, and

there is one occurrence index node per pattern node, the space

requirement for occurrence sets is |𝑃||𝑇|
 G !

 G − P !
 𝐺∈𝐷 .

Lemma 4. The space complexity for the step 2 of the Taxogram

algorithm is 𝑂(|𝑃||𝑇|
 G !

 G − P !
) 𝐺∈𝐷 where |P| is the number of

nodes in the largest pattern, and |T| is the number of labels in the

associated taxonomy.

In order to minimize storage requirements, and allow for efficient

set intersection in the next step, Taxogram implements occurrence

sets as bit sets where each occurrence id is mapped to an integer

value, and if an occurrence set contains a particular occurrence id,

the corresponding bit is set to 1, and it is set to 0, otherwise.

Time complexity for step 2: The time complexity for mining

pattern classes is bounded by the complexity of traditional pattern

mining algorithms. More specifically, gSpan has time complexity

of O(kFS + rF) (Remark 1). During occurrence index

construction, for each occurrence Oi of a pattern P, occurrence

sets of pattern node labels in each occurrence index node are

updated by adding id of Oi. Each update operation per label l in an

occurrence index node also involves updating the occurrence sets

of ancestor labels of l. In the worst case, average number of

ancestors per label in a taxonomy is (𝑇 − 1)/2. Then, for each

occurrence of P, 𝑃  (𝑇 − 1)/2 updates are performed. Since

the maximum number for a pattern P is
 G !

 G − P !
) 𝐺∈𝐷 , the

number of required update operations during the occurrence index

construction for a pattern in step 2 is (𝑃  (𝑇 − 1)/

2)
 G !

 G − P !
 𝐺∈𝐷 .

Lemma 5. The time complexity for the step 2 of the Taxogram

algorithm is 𝑂(𝑁 (𝑃  (𝑇 − 1)2)
 G !

 G − P !
) 𝐺∈𝐷 where N is

the number of patterns, |P| is the number of nodes in the largest

pattern, and |T| is the number of labels in the associated

taxonomy.

Given a pattern P, a pattern node n  P, and the occurrence index

node OI(n) associated with n, in order to minimize the space

requirements further, we take two actions: (i) OI(n) contains only

the labels (and their ancestors) that appear in at least one

occurrence of P in the position of node n, and (ii) labels that do

not appear in at least |D| distinct graphs in D, where |D| is the

number of graphs in D, are not considered during the construction

of OI(n).

Next, we show that the extended approach produces the same

pattern class counts with taxonomy-superimposed graph mining.

Lemma 6. Given a graph database D over taxonomy T, and the

relabeled copy Dmg, and support threshold , 0    1, let Cmg be

the set of all pattern classes that have at least one member in the

pattern set Hmg discovered by performing a general-purpose

graph mining on Dmg, and let C be the set of distinct pattern

classes that have at least one member in the pattern set H

produced by applying taxonomy-superimposed graph mining on

D. Then, C=Cmg.

Thus, the pattern class counts in D and Dmg are the same.

Step 3. Enumerating Specialized Patterns from

Pattern Classes

This step has two main goals: (i) enumerate specialized patterns

from pattern classes produced in the previous step, and (ii)

eliminate/prevent over-generalized patterns from the final pattern

set. Step (i) together with Lemma 6 guarantees completeness. In

order to carry out these two tasks in an efficient manner, we

utilize taxonomy-projected occurrence indices.

Definition (Occurrence Set of a Pattern): Given a pattern P(V, E,

L, ) which is a member of a pattern class PC with the occurrence

index OI, occurrence set OcS(P) of P is the intersection of

occurrence sets corresponding to each node label in OI(P), that is,

OcS(P) = {OcS(l) | l  Ti, Ti = (υi), and l = 1(υi) where υiV}.

Given a pattern P accompanied with its occurrence index OI, each

node υi of the pattern is attempted to be replaced by one of its

children from the corresponding subtaxonomy Ti in OI, where

(υi) = Ti. Each replacement leads to a new specialized pattern Ps

of P. Using the associated occurrence sets of each taxonomy label

in the occurrence index, the support of Ps is obtained by

computing the intersection of occurrence set of P with that of the

taxonomy label which replaces its parent and leads to creation of

Ps. We give an example.

Example 3.6. Consider the general pattern P1 (representing a

pattern class) and its occurrence index OI which is derived in the

previous step (Figure 3.2). Figure 3.3 shows creation of a

specialized pattern P2 of P1 by replacing label “a” of node n1 with

its child label “b” from (n1) = Tn1 in OI. The occurrence set

OcS(P2) of newly created pattern P2 is obtained by computing

intersection of the occurrence set for pattern P1 with that of

taxonomy label “b” in occurrence index node Tn1, that is, OcS(P2)

= OcS(P1)  OcS(Tn1(b)) = {G1.1, G2.1, G2.2, G3}  {G1.1,

G2.1} = {G1.1, G2.1}. Then, computing the support sup(P2) of

P2 is counting the distinct graph ids in OcS(P2) (i.e., 2), and

dividing it by the database size (i.e., 3), which results in sup(P2) =

2/3.

Lemma 7. Given a pattern P, its occurrence index OI, and

specialized pattern Ps of P where Ps is created by replacing label

222

of node ni P with one of its child labels lc from the

corresponding OI node of Tni = (ni), then the occurrence set of

Ps is OcS(Ps) = OcS(P)  OcS(Tni(lc)). And, sup(Ps) equals to

number of distinct graph ids in OcS(Ps).

Thus, no database scan or isomorphism test is required during the

support computation of more specialized patterns due to the use of

the occurrence indices associated with pattern classes. If sup(Ps)

equals to sup(P), then P is an over-generalized pattern, and P is

eliminated from the final output set. The creation of more

specialized patterns by replacement of a parent with one of its

children from the occurrence index is performed on each newly

created pattern until no specialized node with sufficient support

can be created. Note, however, this procedure may lead to

duplicate patterns due to different orders of node label

replacements as shown in the following example.

Occurrence Index for pattern

class that contains P1 and P2

a [G1.1,G2.1,G2.2,G3.1]

 b

[G1.1, G2.1]

c

[G2.2]

a [G1.1,G2.1,G2.2,G3.1]

b[] c

[G1.1, G2.1,

G2.2, G3.1]

a

a

P1

n1

n2

OcS(P1) = {G1.1, G2.1,

G2.2, G3.1}

 Support = 1

b

a

P2

OcS(P1) = {G1.1, G2.1}

Support = 2/3

Figure 3.3 Support computation for specialized patterns

Example 3.7. Consider the pattern P1 and its occurrence index

OI(P1) (Figure 3.3). Figure 3.4 shows a sample specialized pattern

derivation procedure. For the sake of simplicity, we ignore

support threshold considerations in this example (please ignore

the sets associated with symbol “PNS” for this example). In the

first step, label of node n1 is replaced by its child label b to create

pattern P2. Then, in the second step label of node n2 is replaced by

its child label “c”, which results in pattern P3. P3 cannot lead to

more specialized patterns as taxonomy labels “b” or “c” does not

have a child in the occurrence index for this set of patterns. And,

assume P2 also cannot be turned into other more specialized

patterns. Next, we turn back to P1. In step 3, label of node n2 in

P1 is replaced with its child label “c” to create pattern P4. And, in

step 4, label of node n1 in P4 is replaced with its child label “b” to

create pattern P5 which is the same as P3. Although P2 and P4 are

different patterns, their specialization leads to the same pattern.

In order to eliminate such duplicates, at each enumeration branch,

ids of pattern nodes whose labels have been replaced with one of

their children labels are kept in a set called processed-nodes set

(PNS) (see Figure 3.4 as an example where step 4 will not take

place when PNS is employed as node n1 is already included in

PNS before step 4). Furthermore, within a single occurrence

index, taxonomy labels may share a child n due to that DAG

structure. In order to make sure that only one of n‟s parents

utilizes n for a new specialized pattern creation, visited vertex

labels within an occurrence index are also marked.

Employing PNS eliminates duplicates, but may lead to erroneous

inclusion of some over-generalized patterns in the final pattern

set. Such cases may occur if PNS is not empty when a pattern P is

first created from a more generalized pattern (e.g., P4 in Figure

3.4), since the enumeration procedure stops before creating all

possible specialized patterns of P, and there may be more

specialized patterns of P that were created in other branches

during enumeration, and have the same support as P. We give an

example.

Example 3.8. Consider the specialized pattern enumeration in

Figure 3.4. Suppose P4 and P5 have the same support. Since P5

will not be created when PNS is checked before taking step 4, we

may erroneously conclude that P4 is a valid pattern as no

specialized pattern was derived from P4.

In order to prevent such hidden over-generalized patterns

produced as a side effect of employing PNSs, occurrence set for

the labels of each node in PNS is inspected to see if the

replacement of any processed node‟s label with one of its children

label would lead to a more specialized pattern with the same

support. If no such node exists in PNS, then P is added into the

final pattern set.

a

a

P1

b

a

P2

b

c

P3

a

c

P4

b

c

P5

n1

n2

step 1

step 2

step 3

step 4

PNS= { }

PNS= {n1}

PNS= {n1}
PNS= {n1, n2}

Figure 3.4 Creation of Duplicates during Pattern

Enumeration

Since the Taxogram algorithm initiates the creation of a new

pattern Pi from P through the replacement of any node label with

any of its children, and compares the support of Pi against that of

P, it is guaranteed that it will detect any possible case where

sup(Pi) = sup(P), and mark such patterns as over-generalized. If P

is over-generalized, then there must be a node υiP with label l

such that replacing l with a child label lc of l should lead to a new

pattern Ps with the same support as P. Then there are two possible

cases: (i) If υiPNS, then Taxogram will create a more

specialized pattern Ps of P by replacing l with lc for node υi and P

will be marked as over-generalized as illustrated in . (ii) If

υiPNS, then a follow-up procedure (described above) attempts to

replace label of each node in PNS with their children labels, and

computes support values after each replacement to see if the new

support value will be the same as that of P, in which case P is

marked as over-generalized. Thus, we have

Lemma 8. The final pattern set H produced by the Taxogram

algorithm is minimal in the sense that H contains no over-

generalized patterns.

In addition, by Lemma 6, all possible pattern classes are included

in H‟ which is the pattern set produced in the second step of the

algorithm. Moreover, due to the relabeling of each node with its

most general ancestor, each pattern class in H‟ is represented by

the most general member of the class. Hence, all the other patterns

can be obtained from the most general member of each class by

performing node replacements with the descendants of the label

assigned to each corresponding pattern node. In order for the

algorithm to miss a pattern P, at least one descendant of a vertex‟s

label in a most general pattern should be left out from

223

consideration during specialized pattern enumeration. However,

the Taxogram algorithm considers replacements with all

descendants which have enough support in the input database D.

Finally, there is no need to consider replacements with

descendants which have insufficient support in D since all

subgraphs of a frequent graph pattern should be sufficiently

frequent [10] (by Apriori property). Thus, we have

Lemma 9. The final pattern set H produced by the Taxogram

algorithm is complete in the sense that H contains all possible

non-over-generalized patterns.

Space & Time Complexity for Step 3: Enumerating specialized

patterns from each pattern class, in the worst case, corresponds to

replacing each node label with one of the labels in the associated

label taxonomy, and computing support value after each label

replacement. Since occurrence sets are implemented as Bit sets,

cost of computing support of a newly created pattern P equals

performing bitwise and operation between the occurrence bit set

of the pattern that leads to P, and the occurrence set of the child

label that replaced its parent label in P. The cost of bitwise “and”

operation is bounded by the maximum number of occurrences for

a pattern, which is computed as 𝑃𝑟⁡(𝐺 , |𝑃|)𝐺∈𝐷 in the previous

step for an input database D and a pattern P.

Then, for a given pattern class P(V1, E1, L1, 1), the number of

specialized patterns is 𝑇 = |𝑇|υiV1
|𝑉1|

 .

Additional Efficiency Enhancements and Pruning Methods:

We employ additional techniques to enhance the performance of

the Taxogram algorithm:

a. During specialized pattern enumeration, if replacement of a

node label n with one of its child label c leads to a pattern with

insufficient support, then there is no need to check patterns

created via replacement of n with any descendant of c.

b. In order to minimize the size of occurrence indices, the

taxonomy nodes whose labels are not frequent (i.e., when

tested with generalized graph isomorphism for size-1 graphs)

are removed from the taxonomy. Since a child cannot be

frequent without having all of its parents frequent, the

resulting taxonomy subgraph after the node removals is

guaranteed to be a connected DAG.

c. Given a generalized pattern produced by the second step of the

algorithm, before starting enumeration of specialized patterns

in the third step, we pre-process the occurrence index of the

pattern to see, for any node n in the pattern, if it is possible to

replace n‟s label l with one of its descendants which has the

same occurrence set as l. After performing all such

replacements for every node, enumeration of specialized

patterns is started on this modified set of patterns so that

several over-generalized patterns can be eliminated before

they are propagated to more specialized patterns created from

the original pattern.

d. In taxonomy T, given a node n and one of its child node c, if

n‟s occurrence set is the same as c‟s occurrence set, then n is

removed from the taxonomy and a direct connection is created

between c and each parent of n. This change preserves the

minimality and completeness of the Taxogram, because any

pattern P that has n as one of its node labels would be over-

generalized since it is always possible to create a more

specialized pattern of P by replacing c with n, and the support

of the new pattern would be the same as P as the occurrence

sets of c and n are the same.

4. EXPERIMENTS
In this section, we present an experimental evaluation of the

Taxogram algorithm, and compare different approaches on both

synthetic and real data. We first describe the experimental setting,

and then, we discuss the experimental results and observations.

4.1 Experimental Setting
The experiments are performed on a PC with Pentium Dual Core

(3.2 GHz) processor and 4 GB main memory. We have

implemented Taxogram in Java 1.6, and compared its

performance against the bottom-up approach (discussed in Section

1) which is represented by modified AcGM as proposed in [9],

and called TAcGM in this paper. In addition, we have

implemented a baseline algorithm which is the same as Taxogram

except that the baseline algorithm does not utilize efficiency

enhancements (e.g., removing taxonomy concepts with

insufficient support) discussed at the end of section 3. The source

code or executable files for TAcGM were not publicly available.

Hence, we have implemented it ourselves in Java, and provided

results from our implementation. We have built the

implementation of Taxogram on gSpan implementation of ParMol

package [19] which is publicly available.

Table 1. Properties of Experimental Data Sets

DB Id
DB Size
(Graphs)

Avg. Graph
Size (Node)

Avg. Graph
Size (Edge)

Dist. Label
Count

Avg. Edge
Density

D1000 1000 9.3 10.9 5391 0.27

D2000 2000 9.4 10.9 7071 0.26

D3000 3000 9.4 11.1 7610 0.27

D4000 4000 9.4 11.1 7810 0.26

D5000 5000 9.4 11.0 7855 0.27

NC10 4000 6.3 6.1 7450 0.32

NC20 4000 9.2 10.7 7782 0.27

NC30 4000 12.3 15.9 7857 0.23

NC40 4000 15.4 21.2 7876 0.20

ED06 3000 14.1 6.5 7800 0.06

ED09 3000 13.0 8.6 7817 0.09

ED10 3000 12.9 9.2 7833 0.10

ED11 3000 12.9 10.3 7831 0.11

TD5 4000 15.1 20.9 1000 0.20

TD6 4000 15.0 20.6 1000 0.21

TD7 4000 15.2 21.0 1000 0.20

TD8 4000 15.3 21.2 1000 0.21

TD9 4000 15.2 21.1 1000 0.20

TD10 4000 15.3 21.1 1000 0.20

TD11 4000 15.4 21.3 1000 0.20

TD12 4000 15.0 20.7 1000 0.21

TD13 4000 15.2 20.9 1000 0.21

TD14 4000 15.0 20.6 1000 0.21

TD15 4000 15.1 20.8 1000 0.21

TS25 4000 15.3 21.1 25 0.21

TS50 4000 15.2 20.8 50 0.21

TS100 4000 15.0 20.7 100 0.21

TS200 4000 14.9 20.6 200 0.21

TS400 4000 15.1 20.9 400 0.21

TS800 4000 15.1 21.0 800 0.21

TS1600 4000 15.2 21.0 1600 0.21

TS3200 4000 15.3 21.1 3200 0.20

PTE 416 22.6 23.0 24 0.12

The experiments are performed on both synthetic and real data.

We developed a synthetic graph generator, and a synthetic

taxonomy generator, which provide the capability to create

datasets with different characteristics. The synthetic graph

generator expects a label taxonomy, maximum node and edge

224

counts for graphs. The edges are created based on an edge density

parameter. We have employed same definition of edge density

that was also used by Worlein et al. [19] for the evaluation of

different data mining algorithms, where edge density is defined as

2* #edges/(#nodes)2. The synthetic taxonomy generator expects

taxonomy size which is characterized by both the number of

concepts and relationships among concepts, taxonomy depth

which defines the number of levels in the taxonomy. Table 1

summarizes the properties of data sets used in the experiments.

Taxogram can handle both directed and undirected graphs, but

since the current implementation is built upon gSpan‟s

implementation and gSpan does not support directed graphs, all

the experimental data sets consists of undirected graphs.

As real data, we have carried out evaluation on two distinct data

sets from chemistry and biology domains. The first data set comes

from the metabolic pathways [13] domain where nodes are

functional annotations of enzymes catalyzing each reaction in a

pathway, and the edges are created through shared

substrate/products between the corresponding enzymes for each

node. The node labels which are functional annotations come

from the molecular function subontology of Gene Ontology,

which contains over 7,800 concepts organized into a 14-level

hierarchy. Figure 1.1 illustrates a small excerpt from the

molecular function subontology of Gene Ontology. The pathways

data involves 25 metabolic pathways from 30 prokaryotic

organisms (downloaded in May 2007 from KEGG [13].

The second real data set is the molecular structure of carcinogenic

compounds where atoms constitute nodes, and the bonds among

atoms are edges between nodes. This data was made available

within US National Toxicology Program (NTP) for The Predictive

Toxicology Challenge (PTC) [14]. This data set contains 416

molecular structures where atoms are organized hierarchically as

illustrated in Figure 4.1 where leaf level letters are atom labels

while the labels in upper levels are logical groupings of atoms

based on their similarity. Small-case letters represent aromatic

atoms while upper-case letters stand for non-aromatic atoms.

Figure 4.1 A taxonomy of atoms for PTE data

4.2 Results
Scalability against Database & Data Size:

In this section, we perform a number of experiments to test the

scalability of Taxogram on data with different characteristics. As

discussed in section 5.1, we generate synthetic data sets with

varying database size (i.e., the number of graphs in a graph

database). We also carry out measurements by changing

properties of the graphs such as edge density, the average size of

individual graphs. Then, we measure the running time on each

data set and compare the results from Taxogram, TAcGM, and the

baseline approach. We employ Gene Ontology molecular function

subontology as the label taxonomy for the synthetic graphs.

In the first experiment of this section, we measure the

performance of the algorithms against varying database size. To

this end, we create five different synthetic databases with sizes

ranging from 1,000 to 5,000 graphs. (See DBs whose ids start

with “D” in Table 1). The support threshold is set to 0.2 (i.e.,

20%), and the graph objects in the databases are allowed to have

maximum of 20 edges. The number of distinct edge labels is set to

10. Figure 4.2 shows the running time performance of the three

approaches, namely, baseline approach, TAcGM, and Taxogram.

Figure 4.2 Running time performance for different DB size

Observation: The running time of Taxogram stays almost constant

with slight increase as the database and individual graph objects

become larger.

Figure 4.3 Performance Comparison while Changing Graph

Size

As the database and graph sizes get larger, the number of

occurrences that the graph miners need to deal with also increases.

Since Taxogram first mines for pattern classes and keeps

occurrences for the pattern classes rather than for individual

patterns, the effect of increase in data and database size on

Taxogram performance is considerably lower than that for the

case of TAcGM.

Next, we study the scalability of Taxogram and the other

approaches as the size of graph objects in a database increases.

We keep the database size fixed as 4000, which is the maximum

database size that TAcGM could return results without causing

“out-of-memory” error in the previous experiment. The other

parameters are also the same as the previous experiment (Support:

20%, distinct edge label count: 10, taxonomy: GO). Then, we

create four different data sets by gradually increasing the max

graph size (in terms of edge counts) in a database from 10 to 40.

(See DBs whose ids start with “NC” in Table 1). Figure 4.3

presents the resulting running time performances.

Observation: Taxogram is more scalable than TAcGM as

TAcGM causes “out-of-memory” error when the maximum graph

size becomes larger than 20 (Figure 4.3) or the database size is

larger than 4,000 (Figure 4.2)

Observation: Consistent with the observed performance against

changing the database size, the rate of running time increase for

Taxogram is less than the rate of increase for TAcGM.

0

20000

40000

60000

80000

100000

120000

140000

160000

1000 2000 3000 4000 5000

R
u

n
n

in
g

Ti
m

e
(m

se
c)

Database Size (Graph Count)

Taxogram

TAcGM

Baseline

0

20000

40000

60000

80000

100000

120000

140000

10 20 30 40

R
u

n
n

in
g

Ti
m

e
(m

se
c)

Max Graph Size (Edge Count)

Taxogram

TAcGM

Baseline

225

Scalability is mostly related to the difference between pattern

enumeration strategies of Taxogram and TAcgM. Since TAcGM

generates patterns level by level, which is not memory efficient

when the data gets somewhat larger, it uses the memory less

efficiently, whereas Taxogram processes one pattern class at a

time in depth-first-search manner.

Final experiment of this section aims to evaluate the performance

of alternative approaches against varying edge density of the input

database (See DBs whose ids start with “ED” in Table 1). Figure

4.4 shows the running time performance of the Taxogram and the

number of produced patterns under different edge density values.

Observation: Taxogram scales linearly against the edge density

increase until the edge density value becomes greater than 0.10.

Edge density has a direct impact on the number of possible pattern

occurrences per graph. Therefore, high edge density significantly

increases the size of occurrence indices and occurrence sets, and it

takes more time to enumerate specialized patterns using such

larger occurrence sets. In addition, as the graphs become highly

connected the number of patterns also increases considerable

leading to additional increase in running time.

Figure 4.4 Running Time/Pattern Count at Different Edge

Density Values

Scalability against Taxonomy Size:

In this experiment, we evaluate the performance of AcGM for

different sizes of taxonomies. We consider taxonomy size along

two distinct dimensions: (i) Depth and (ii) Concept Count of a

taxonomy. In order to measure the effect of each dimension on the

performance of Taxogram, we experiment with two synthetic sets

of taxonomies. For the first data set, we keep the number of

concepts fixed, and create different taxonomies with varying

depths while the second data set consists of different taxonomies

of the same depth but varying concept/relationship count. depicts

running time performance and the number of discovered patterns

of Taxogram for synthetic taxonomies with maximum depth

ranging from 5 to 15. Each taxonomy is set to consist of 1000

concepts and 2000 relationships. Next, using each taxonomy, we

created synthetic graph datasets of size of size 4000, and

maximum graph size 40 with 10 distinct edge labels (See DBs

whose ids start with “TD” in Table 1). Node labels for the

database graphs are selected from each level of taxonomy with

equal probability. does not present any results for TAcGM as it

leads to “out-of-memory” error for all the datasets in this

experiment.

Observation: The running time of Taxogram stays almost constant

for taxonomies where depth is less than 13.

The main factor that influences the performance of Taxogram is

the total number of patterns that can be extracted from a database.

As the depth of a taxonomy reaches to higher values the number

of patterns may increase dramatically. Hence, starting at max

depth 13, as parallel to the number of patterns, the running time of

Taxogram increases exponentially. Considering that most of the

real life ontologies has less than 15 levels, (e.g., GO, the most

popular annotation ontology in biology has 14 levels), the

performance level of Taxogram is sufficiently practical to be used

for real data.

Figure 4.5 Performance for taxonomies of different depths

Finally, we study the effect of concept/relationship count of

taxonomies on the performance. We create 8 different taxonomies

where the size of the taxonomy (concept/relationship count) is

doubled as each taxonomy is created. Similarly, for each

taxonomy, we create synthetic graph datasets of size 4000, and

maximum graph size of 40 with 10 distinct edge labels (See DBs

whose ids start with “TS” in Table 1). Figure 4.6 illustrates the

performance of Taxogram as the input taxonomy size changes.

Once again, TAcGM does not run for the data sets used in this

experiment. Hence, we only present the results for Taxogram.

Figure 4.6 Performance for taxonomies of different size

Observation: In general, running time decreases as the taxonomy

size increases (while keeping the taxonomy depth fixed).

This is mainly due to the fact that, for the synthetic datasets

created based on these taxonomies, increase in concept count

means that the number of distinct node labels increases which

decreases the total number of patterns, hence, improves the

running time.

A close inspection of pattern count (which completely depends on

the input database) reveals the reasoning behind the unexpected

peak in runtime at taxonomy size 100. The running time is closely

related to the pattern set size which peaks for the data set where

the taxonomy size is 100.

Effect of Support Threshold on Performance and the Number of

Patterns:

Next, we assess the impact of support threshold on both the

running time of Taxogram and the number of produced patterns.

In order to get some results from TAcGM for comparison

purposes, from the first experiment, we have selected the largest

0

2000

4000

6000

8000

10000

12000

14000

0

500000

1000000

1500000

2000000

2500000

0.06 0.09 0.10 0.11

N
U

m
b

er
 o

f
P

a
tt

er
n

s

R
u

n
n

in
g

Ti
m

e
(m

se
c)

Edge Density

Running Time

of Patterns

0

10000

20000

30000

40000

50000

60000

70000

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

5 6 7 8 9 10 11 12 13 14 15

P
a

tt
er

n
 C

o
u

n
t

R
u

n
n

in
g

Ti
m

e
(m

se
c)

Max Taxonomy Depth

Running Time

Pattern Count

0

10000

20000

30000

40000

50000

60000

70000

0

100000

200000

300000

400000

500000

600000

700000

25 50 100 200 400 800 1600 3200

P
a

tt
er

n
 C

o
u

n
t

R
u

n
n

in
g

Ti
m

e
(m

se
c)

Taxonomy Size (Concept Count)

Taxogram

Pattern Count

226

data set (DBId: D4000 in Table 1) that TAcGM provides some

results before leading to out-of-memory error. Similarly, Gene

Ontology molecular function subontology is used as the

taxonomy. Figure 4.7 presents the running time measurements for

Taxogram and AcGM.

Observation: Taxogram can handle lower support thresholds in

comparison to TAcGM.

Consistent with the previous experiments, Taxogram‟s running

time increases linearly until the support threshold of 2 where the

pattern set size increases dramatically. On the other hand, the

running time of AcGM increases exponentially as the support

threshold comes down below 30, and for the support thresholds

less than 20, TAcGM does not complete as it leads to out-of-

memory error. The reason is that, TAcGM joins size-k-1 frequent

graphs to obtain size-k frequent graph candidates, and, at low

thresholds, the number of patterns to be joined increases

significantly.

Figure 4.7 Taxogram vs TAcGM at Different Support

Thresholds

Performance on Real Biological and Chemical Data Sets:

In this section, we carry out performance assessment on real data.

First, we perform a small scale comparative genomics study, and

employ Taxogram to mine for conserved pathway fragments

among 30 prokaryotic (bacteria) organisms similar to our recent

study in [2]. Given a pathway P, each organism has a different

version of the pathway in terms of the structure as well as the

genomic entities (i.e., proteins and genes) that involve in the

catalysis of reactions. For 25 metabolic pathways, we collected

the organism specific versions for 30 prokaryotic organisms from

KEGG [13], constructed their pathway functionality templates [2],

and run Taxogram to discover patterns that are common among

organisms. The support threshold is set to 0.2. Table 2 shows the

results for this experiment as well as the characteristics of each

pathway data set.

The number of extracted patterns for each pathway can be used as

a measure for the degree of conservation among organisms for

that particular pathway. The higher the number of patterns, more

conserved the pathway is through the lineage of the prokaryotic

organisms.

Observation: Nitrogen metabolism and Biosynthesis of Stereoids

are the top most conserved pathways for bacterial organisms.

Indeed, Nitrogen is a vital substance for almost all the organisms,

but only bacteria can convert Nitrogen gas (N2) into the form that

other living organisms can use [12]. Conservation of such a

significant pathway is expected for the continuity of the life.

Observation: The running time of Taxogram increases either in

case of high conservation among organisms (e.g., beta-Alanine

metabolism) or when the graph sizes gets larger in the input

graph database (e.g., Pantothenate and CoA biosynthesis).

This observation can be explained with the results presented in the

scalability experiments section.

Table 2. Results on Pathways Data Set

Pathway Name
Time

(msec)
Pattern
Count

Avg.
Graph

Size
(Node)

Avg.
Graph

Size
(Edge)

Vitamin B6 metabolism 119 2 7.03 4.03

Inositol phosphate
metabolism 140 7 4.33 3.33

Sulfur metabolism 156 7 5.17 3.23

Benzoate degradation via
hydroxylation 206 60 7.60 5.30

Riboflavin metabolism 210 12 7.63 4.73

Nicotinate and nicotinamide
metabolism 216 36 6.67 4.40

Thiamine metabolism 259 23 4.57 3.60

Lysine biosynthesis 314 61 8.73 7.67

Pentose and glucuronate
interconversions 323 56 10.83 6.70

Synthesis and degradation of
ketone bodies 353 31 4.97 4.10

Histidine metabolism 361 79 8.83 6.60

Tyrosine metabolism 529 57 7.93 6.13

Phenylalanine metabolism 613 32 5.80 4.40

Nucleotide sugars
metabolism 693 106 7.57 6.30

Aminosugars metabolism 808 168 8.20 6.60

Citrate cycle (TCA cycle) 1011 174 10.80 8.63

Glyoxylate and dicarboxylate
metabolism 1036 233 9.10 7.53

Selenoamino acid
metabolism 1046 152 6.90 6.50

Valine, leucine and
isoleucine biosynthesis 1069 75 5.23 4.70

Butanoate metabolism 1789 287 10.57 8.80

beta-Alanine metabolism 3562 661 5.10 5.60

Glycerolipid metabolism 6872 219 8.10 7.23

Biosynthesis of steroids 10609 830 7.97 8.87

Nitrogen metabolism 62777 1486 7.20 7.27

Pantothenate and CoA
biosynthesis 215047 142 10.43 9.53

Figure 4.8 Performance on PTE Data

As a second real data set, we experiment with molecular

structures of chemical data. This data set contains 416 graphs

representing molecular structure of carcinogenic compounds [14].

Properties of this data set is listed in Table 1 (DBId: PTE) Figure

4.8 shows the performance on PTE data.

Observation: Both the running time and the number of patterns

quickly increases even at relatively high support thresholds (at

support 30, 10,000 patterns are produced out of a database of 419

graphs).

0

50

100

150

0.6 0.5 0.4 0.3 0.2 0.1 0.05 0.02

R
u

n
n

in
g

Ti
m

e
 (

se
c)

Support Threshold

Taxogram

TAcGM

0

2000

4000

6000

8000

10000

12000

0

100,000

200,000

300,000

400,000

500,000

30 50 60

P
a

tt
e

rn
 C

o
u

n
t

R
u

n
n

in
g

Ti
m

e
(m

se
c)

Support * 100

Running Time

Pattern Count

227

Due to the fact that most of the compounds are highly consist of

three atoms, namely, C, H, and O, final pattern set sizes quickly

increases.

5. RELATED WORK
Taxonomy-based data mining is first considered in the context of

association rule mining in market-basket data [18] where each

item in a transaction (i.e., itemset) is a member of is-a hierarchy

of product categories. An interest measure based on expected

support of itemsets is employed to prune out redundant patterns.

In addition, Srikant and Agrawal [17] propose another algorithm

for mining sequential patterns of itemsets where each item is a

member of a is-a hierarchy. Although these algorithms are

efficient and scalable, they are specifically designed for mining

frequent itemsets, and are not directly applicable to taxonomy-

superimposed graph mining.

Most work in graph mining [6, 7, 11, 20, 22] focus on extracting

the exact frequent patterns. Canonical forms are utilized [11] to

test whether two graphs are isomorphic. However, many of the

existing frequent subgraph mining methods do not consider the

graph structures where nodes are part of a well-defined hierarchy.

Inokuchi extended AcGM [9] to mine generalized substructures

from labeled graphs. AcGM is a level-based graph mining

algorithm [8]. More specifically, size-k graphs are created by

joining size k-1 graphs where graphs are represented as adjacency

matrices, and associated with canonical forms to identify the

isomorphic graphs. The extension to AcGM involves replacing

standard graph isomorphism test with the generalized

isomorphism test which takes advantage of the is-a hierarchies

provided by the associated taxonomy. And, over-generalized

patterns are pruned if there is a more specific pattern with the

same embedding set. However, AcGM suffers from two major

issues: (a) it is a breadth-first level-wise algorithm, hence, cannot

scale to large taxonomies or graphs, (b) it handles a pattern and its

generalizes/specific versions independently, which causes

repetitive isomorphism test for occurrences that are shared by a

class of patterns that have the same structure with different

specificity. Taxogram addresses these shortcomings of extended

AcGM via (a) storing the shared occurrences of patterns that are

members of the same pattern class, (b) enumerating specialized

patterns in depth-first manner which enables mining under lower

support thresholds, or larger size taxonomies in comparison with

AcGM.

6. CONCLUSION AND FUTURE WORK
We explored the properties of taxonomy-superimposed graph

mining, and propose an efficient and scalable algorithm,

Taxogram, to mine frequent taxonomy-superimposed graph

structures. Taxogram first relabels the input database, then mines

for frequent pattern classes while constructing occurrence indices,

and finally enumerates members of each pattern class using the

constructed occurrence indices. We extensively evaluated our

approach along with both synthetic and real data, and showed that

Taxogram can handle a diverse set of graph databases associated

with different taxonomies.

As shown with a discussion on space and time complexity,

taxonomy-superimposed graph mining is costly, and requires

enormous amount of computational resources. As future work, we

plan to develop disk-based algorithms for taxonomy-based graph

mining.

References

[1] Greg Butler, Guang Wang, Yue Wang, and Liqian Zou. "A graph

database with visual queries for genomics." In Proceedings of APBC,
2005.

[2] Ali Cakmak and Gultekin Ozsoyoglu. "Mining Biological Networks

for Unknown Pathways." Bioinformatics 23:20 (2007): 2775 - 2783.

[3] Ali Cakmak, Mustafa Kirac, Marc Reynolds, Meral Ozsoyoglu, and

Gultekin Ozsoyoglu. "Gene Ontology-Based Annotation Analysis

and Categorization of Metabolic Pathways." In Proceedings of
SSDBM, 2007.

[4] Gene Ontology Consortium. "The GO database and informatics

resource." Nucleic Acids Res, 2004: 32.

[5] Thomas Cover and Joy A. Thomas. Elements of Information Theory.

New York: Wiley-Interscience, 2006.

[6] Jun Huan, Wei Wang, and Jan Prins. "Efficient Mining of Frequent
Subgraphs in the Presence of Isomorphism." In Proceedings of

ICDM, 2003. 549-552.

[7] Jun Huan, Wei Wang, Jan Prins, and Jiong Yang. "SPIN: Mining
Maximal Frequent Subgraphs from Graph Databases." In

Proceedings of SIGKDD, 2004. 581-586.

[8] Akihiro Inokuchi, T. Washio, Y. Nishimura, and H. Motoda. A Fast
Algorithm for Mining Frequent Connected Graphs. IBM Research

Report, Feb. 2002.

[9] Akihiro Inokuchi. "Mining Generalized Substructures from a Set of
Labeled Graphs." In Proceedings of ICDM, 2004. 415-418.

[10] Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda. "An
Apriori-Based Algorithm for Mining Frequent Substructures from

Graph Data." In Proceedings of PKDD, 2000. 13-23.

[11] Michihiro Kuramochi and George Karypis. "Frequent Subgraph
Discovery." In Proceedings of ICDM, 2001. 313-320.

[12] Nitrogen metabolism entry at Wikipedia.

http://en.wikipedia.org/wiki/Category:Nitrogen_metabolism.

[13] Kyoto Encyclopedia of Genes and Genomes

http://www.genome.jp/kegg/.

[14] Predictive Toxicology Challenge Web Site. http://www.predictive-
toxicology.org/ptc/.

[15] Sriram Raghavan and Hector Garcia Molina. "Representing Web

Graphs." In Proceedings of ICDE, 2003.

[16] Philip Resnik. "Using Information Content to Evaluate Semantic

Similarity in a Taxonomy." In Prooceedings of IJCAI, 1995.

[17] Ramakrishnan Srikant and Rakesh Agrawal. "Mining Sequential
Patterns: Generalizations and Performance Improvements." In

Proceedings of EDBT, 1996.

[18] Ramakrishnan Srikant and Rakesh Agrawal. "Mining Generalized
Association Rules." In Procedings of VLDB, 1995.

[19] Marc Worlein et al. "A Quantitative Comparison of the Subgraph

Miners MoFa, gSpan, FFSM, and Gaston." In Proceedings of
PKDD, 2005. 392-403.

[20] Xifeng Yan and Jiawei Han. "CloseGraph: mining closed frequent

graph patterns." In Proceedings of SIGKDD, 2003. 286-295.

[21] Xifeng Yan and Jiawei Han. gSpan, Expanded Version. Urbana-

Champaign: UIUC Technical Report, 2002.

[22] Xifeng Yan and Jiawei Han. "gSpan: Graph-Based Substructure
Pattern Mining." In Proceedings of ICDM, 2002. 721-724.

228

