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ABSTRACT 

New graph structures where node labels are members of 

hierarchically organized ontologies or taxonomies have become 

commonplace in different domains, e.g., life sciences. It is a 

challenging task to mine for frequent patterns in this new graph 

model which we call taxonomy-superimposed graphs, as there may 

be many patterns that are implied by the 

generalization/specialization hierarchy of the associated node label 

taxonomy. Hence, standard graph mining techniques are not 

directly applicable. 

In this paper, we present Taxogram, a taxonomy-superimposed 

graph mining algorithm that can efficiently discover frequent 

graph structures in a database of taxonomy-superimposed graphs. 

Taxogram has two advantages: (i) It performs a subgraph 

isomorphism test once per class of patterns which are structurally 

isomorphic, but have different labels, and (ii) it reconciles 

standard graph mining methods with taxonomy-based graph 

mining and takes advantage of well-studied methods in the 

literature. Taxogram has three stages: (a) relabeling nodes in the 

input database, (b) mining pattern classes/families and 

constructing associated occurrence indices, and (c) computing 

patterns and eliminating useless (i.e., over-generalized) patterns 

by post-processing occurrence indices. Experimental results show 

that Taxogram is significantly more efficient and more scalable 

compared to other alternative approaches.   

1. INTRODUCTION 
Graph databases are prevalent in various fields [1, 15] to represent 

and query complex relationships between objects. Mining 

frequent structures in graph databases has recently drawn 

considerable research attention [6, 7, 10, 11, 20, 22]. Traditional 

general-purpose graph mining approaches have focused on 

extracting frequent graph structures that explicitly appear in a 

graph database. Recently, in various fields, new graph structures 

have emerged, where vertex labels are members of a taxonomy 

defined by is-a or part-of relationships between a set of labels in a 

hierarchical manner. In this paper, we refer to this type of graphs 

as taxonomy-superimposed graphs. As one example, biological 

pathways are graphs of interacting proteins, and proteins are 

usually annotated with functionality concepts from Gene 

Ontology [4], which is a taxonomy containing around 20,000 

concepts organized in a hierarchical manner. In such an 

environment, mining for frequent pathway annotation structures 

across organisms is important to understand common pathway 

functionality structures in different organisms as well as to predict 

pathways [2] in newly sequenced organisms, and categorize 

existing pathways into groups [3].   

A major implication of the taxonomy-superimposed graph model 

is that, now, we are interested in discovering frequent graph 

structures which do not necessarily appear explicitly in a graph 

database, but can be discovered only when employing the 

hierarchical relationships defined in the associated taxonomy. In 

such a model, the traditional general-purpose graph mining 

algorithms are not directly applicable to mine implicitly occurring 

patterns. We give an example. 

Example 1.1. Consider a sample “pathway annotation” graph 

database in Figure 1.2 where node labels are from a subgraph of 

Gene Ontology (GO) shown in Figure 1.1. Assume that we would 

like to mine pathway annotation patterns that appear in all graphs 

in the database. Traditional general-purpose graph mining 

algorithms do not return any patterns as there are no graph 

patterns that explicitly appear in Pathway1 and Pathway2 at the 

same time. However, taking advantage of the associated GO 

taxonomy in Figure 1.1, and using the generalization-

specialization relationships between functionality concepts, it is 

possible to discover the implicitly-occurring patterns of P1 and P2 

in Figure 1.3. 
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Figure 1.1: A subgraph of GO 
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Figure 1.2: A Pathway Annotation Graph Database 
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Figure 1.3 Sample Patterns  

There are two major challenges that are unique to taxonomy-

superimposed graph mining in comparison with traditional graph 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that copies 

bear this notice and the full citation on the first page. To copy otherwise, 
to republish, to post on servers or to redistribute to lists, requires prior 

specific permission and/or a fee.  

EDBT’08, March 25-30, 2008, Nantes, France.  

Copyright 2008 ACM 978-1-59593-926-5/08/0003...$5.00. 

217



mining. First, the number of patterns that can be extracted using a 

taxonomy of labels is enormous as any node in a pattern P can be 

replaced by any of its ancestors in the associated taxonomy to 

create a generalized pattern of P. Thus, efficiently enumerating 

possible candidates and calculating their support values is 

challenging. Second, not all extracted patterns are useful. For 

instance, the pattern P2 is over-generalized with respect to P1, 

since (a) it is a generalization (i.e., a generalized pattern) of P1, 

and (b) P1 appears in all the graphs that P2 appears in the 

database. Hence, efficiently detecting and eliminating over-

generalized patterns is the second challenge. 

Traditional graph mining has two major steps: (i) enumerating 

candidates, and (ii) computing the occurrence count (i.e., support) 

of each candidate in the database. Support computation consumes 

the majority of the processing time [19], mostly due to the fact 

that this step involves solving an NP-hard problem, namely, the 

subgraph isomorphism test. Taxonomy-superimposed graph 

mining involves generalized subgraph isomorphism test which 

extends the traditional subgraph isomorphism: given two graphs 

G1 and G2 to be tested for isomorphism, a node in G1 with label l 

may match to any node of G2 labeled by either l or any ancestor of 

l, as defined in the associated taxonomy. It can easily be shown by 

reduction that the generalized subgraph isomorphism problem is 

at least as hard as the subgraph isomorphism problem. 

Furthermore, pattern generalization and specialization based on a 

taxonomy make things worse computationally.  

Many successful techniques have been developed for general-

purpose graph mining. A desirable solution to taxonomy-

superimposed graph mining should take advantage of the existing 

candidate enumeration techniques, and over-generalized patterns 

should be eliminated with low computational effort.  

An obvious approach to the problem, which we call the baseline 

approach, is to directly use the existing general-purpose graph 

mining techniques by replacing the traditional subgraph 

isomorphism test with the generalized subgraph isomorphism test. 

In this baseline approach, first, all possible patterns are computed, 

and then over-generalized patterns are eliminated via a post-

processing step. The downside of this approach is that, during the 

mining procedure, considerable amount of processing time is 

spent for computing the support values of over-generalized 

patterns that are then not included in the final pattern set.  

Alternatively, a possible bottom-up approach would be to detect 

and eliminate over-generalized patterns at early stages of 

candidate generation so that such patterns would not be 

propagated to later iterations as seeds to generate larger patterns 

[9]. A major drawback of this approach is that, for a pattern and 

for each one of its generalized patterns that is not over-

generalized, the support computation is performed independently 

resulting in high-time complexity. More specifically, since a 

pattern P and its generalized versions share common occurrences 

in a graph database, the same occurrence of P is counted more 

than once. And, each counting involves a separate subgraph 

isomorphism test. In fact, for a pattern P with n nodes, and a 

taxonomy T, the same occurrence of P in a taxonomy-

superimposed graph is counted as many times as the number of 

generalized patterns of P, which is O(dn), where d is the average 

number of ancestors for the vertex labels of P in taxonomy T. 

Even though the bottom-up approach is more efficient than the 

baseline approach [9], it eventually suffers from the enormous 

increase in the total number of subgraph isomorphism tests during 

support computation. We give an example. 

Example 1.2. Figure 1.4 shows a small database D = {G1, G2, 

G3} to be mined for frequent graph structures, where vertex labels 

are from the sample taxonomy of Figure 2.1. Figure 1.5 shows 

two non-over-generalized graph patterns in D along with their 

support values. Pattern P1.1 appears in all three graphs in D and 

has 4 implicit occurrences (1.1, 2.1, 2.2, 3.1) which are marked 

with dashed borders on the graph accompanied with occurrence 

numbers in the form of (graph# .occurrence#). Note that two of 

these occurrences (1.1, 2.1) are also shared by the pattern P1.2. 

However, in a level-wise bottom-up approach, since the patterns 

are processed independently, in the support counting stage, 6 

generalized subgraph isomorphism tests (namely, between P1.1 

and each of its occurrences labeled with 1.1, 2.1, 2.2, 3.1, and 

between P1.2 and each of its occurrences labeled with 1.1 and 2.1) 

are performed although 4 would be sufficient (as 2 of the 

occurrences, namely, 1.1 and 2.1, are shared among the patterns). 

Hence, taking advantage of shared occurrences does provide 

performance gains for taxonomy-superimposed graph mining. 
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Figure 1.4: A graph database D 
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Figure 1.5: Size-2 patterns in D 

In this paper, we propose and evaluate the Taxogram algorithm, a 

top-down support computation approach, which (i) takes 

advantage of the existing efficient techniques developed for 

general-purpose graph mining, and (ii) aims to perform the 

subgraph isomorphism test on each occurrence of a pattern P only 

once, and contribute the result of that isomorphism test to the 

support computation of not only P, but also all generalized 

patterns of P. The Taxogram algorithm consists of three stages. In 

the first step, vertices in the input graph database are relabeled 

with the most general ancestor of their label in the associated label 

taxonomy. The second step extends general-purpose graph mining 

approaches with taxonomy-projected “occurrence indices”, and 

performs traditional graph mining on the relabeled database to 

mine classes of patterns. Finally, in the last step, new members are 

enumerated for each pattern class, and their support values are 

computed using the occurrence indices. 

Contributions of this paper are as follows: 

 The traditional graph mining is reconciled with taxonomy-

superimposed graph mining via relabeling the input database, 

and mining for pattern classes using the existing approaches, 

before directly mining for actual patterns. 

218



 Taxonomy-projected pattern occurrence indices are 

developed to capture the shared occurrences of patterns so 

that a single isomorphism test is performed per occurrence 

rather than per occurrence-pattern pair, and the result of the 

isomorphism test is shared by multiple patterns. 

 An efficient specialized pattern enumeration algorithm is 

developed by taking advantage of hierarchically organized 

occurrence indices. 

 Over-generalized patterns are eliminated without requiring 

expensive pairwise subgraph isomorphism tests among the 

extracted patterns. 

 The proposed approach is experimentally evaluated in terms 

of its performance for different datasets. 

This paper is organized as follows. In Section 2, we formally 

define the taxonomy-superimposed graph mining problem, and 

list its properties. In Section 3, we present the Taxogram 

algorithm, and its efficiency enhancements. Section 4 discusses 

the experimental setup and results. Section 5 gives an overview of 

the related work, and Section 6 concludes. 

2. PROBLEM DEFINITION 
Def’n (Labeled Graph): A labeled graph G(VG, EG, LG, G) 

consists of a set of edges EG, and a set of vertices VG where each 

vertex υ in VG is assigned a label l, lLG, by a labeling function 

G:VGLG such that LG={ G(υ) | υ  VG} (i.e., G() is total).  

Optionally, edges of a graph may also be labeled, but to keep our 

definitions simple, we omit edge labels in our definitions without 

loss of generality. 

Def’n (Taxonomy): Taxonomy T(VT, ET, LT, T) is a labeled 

directed acyclic graph where (a) an edge from vertex u to vertex v 

represents an is-a relationship such that v is an ancestor of u, and 

u is a descendant of v, and (b) T() is one-to-one and onto. 

A taxonomy T(VT, ET, LT, T) defines a specialization-

generalization hierarchy for the set of labels LT. Let Anc(l) 

represent the set of all ancestors of l, and Desc(l) represent the set 

of all descendants of l in T. Then, the following properties hold 

for ancestor/descendant relationships in T. 

 If u is an ancestor (descendant) of v, and v is an ancestor 

(descendant) of w then u is an ancestor (descendant) of w. 

(Transitivity) 

 l  LT, l is an ancestor of itself. 

Example 2.1. Figure 2.1 depicts a sample taxonomy T, and Figure 

2.2 lists a set of labeled graphs. 

From now on, the phrase “graph G over taxonomy T” means that 

LG  LT. Similarly, the phrase “graph database D over taxonomy 

T” means that, for each graph G in D, LG  LT. 

Def’n (Generalized Graph Isomorphism): Given labeled graphs 

G1(V1, E1, L1, 1) and G2(V2, E2, L2, 2) over taxonomy T, G1 is 

generalized isomorphic to G2, denoted as G1IS_GEN_ISOG2, if 

there exists a one-to-one and onto mapping function :V1 V2 

such that (i) υ  V1,  1(υ) = 2((υ)) or 1(υ)Anc(2((υ))), 

and (ii) (υi, υj)  E1, ((υi), (υj))  E2. Furthermore, G1 is called 

a generalized graph of G2. Conversely, G2 is called a specialized 

graph of G1. 

Example 2.2. In Figure 2.2, GC is generalized isomorphic to GA. 

Also note that GB is not generalized isomorphic to GA.  

Remark 2.1.  <IS_GEN_ISO> (a) is not commutative, (b) 

transitive, and (b) does not distribute over , but it does over . 

Def’n (Generalized Subgraph Isomorphism): Given labeled 

graphs GS(VS, ES, LS, S) and G(V, E, L, ) over taxonomy T, G is 

generalized subgraph isomorphic to GS if there exists a subgraph 

GS' of GS such that GIS_GEN_ISOGS'. 

Example 2.3. In Figure 2.2, GB is generalized subgraph 

isomorphic to GA.  

Remark 2.2. Generalized subgraph isomorphism is (a) not 

commutative, (b) transitive, and (c) does not distribute over , but 

it does over . 
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Figure 2.1: A sample taxonomy T  
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Figure 2.2: Some graphs with their support in DB of Fig. 2.3 

Def’n (Support): Given a graph database D over taxonomy T, and 

a graph G in D, let GenSet(G) = {Gi | Gi  D and G is generalized 

subgraph isomorphic to Gi}. Then, the support of G, denoted as 

sup(G), in D with respect to T is sup(G) = |GenSet (G)|/|D|. 

Note that the support definition does not count the actual 

occurrences of G in graphs of D, but the number of graphs in D 

where G occurs at least once.  

Example 2.4. In the database D of Figure 2.3 over taxonomy T of 

Figure 2.1, the support of GA in Figure 2.1 is 0.75 (GA is a 

generalization of the dark-colored subgraphs in G1, G3, and G4). 

Def’n (Pattern): Given a graph database D over taxonomy T, and 

a support threshold , 0   1, a labeled connected graph G is 

called a pattern if sup(G) in D is at least , and G contains at least 

one edge.   
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A pattern together with all of its generalized and specialized 

graphs as patterns represents a pattern class.  

Def’n (Pattern Class): Given a pattern P over taxonomy T, P‟s 

pattern class contains all possible patterns that can be obtained by 

relabeling any node  in P with any ancestor or descendant of ‟s 

label in T. 

Example 2.5. GA and GC (Figure 2.2) are in the same pattern 

class. Similarly, GB and GD are in the same pattern class. 

Def’n (Over-generalized Pattern): A graph pattern PO is an over-

generalized pattern if there exists another pattern PS such that (i) 

POIS_GEN_ISOPS, (ii) sup(PO) = sup(PS), and (iii) POPS. 

Example 2.6. In Figure 2.2, graph pattern GB with support 1 is 

over-generalized as there is a more specialized pattern GD with the 

same support within the graph database D of Figure 2.3. 

Def’n (Taxonomy-Superimposed  Graph Mining Problem): Given 

(i) a taxonomy T, (ii) a graph database D over T, and (iii) a 

support threshold , the taxonomy-superimposed  graph mining 

problem is to locate the set H of graph patterns such that (a) Pi  

H, sup(Pi)  , (b) H does not contain any over-generalized 

patterns (minimality), and (c) H contains all non-over-generalized 

patterns in D with support   (completeness). 

                                  Figure 2.3: A Graph Database  
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Figure 2.4: Generalized Graph Patterns with Support = 1 

Example 2.7. Given the database D in Figure 2.3, let the support 

threshold  = 1. Figure 2.4 shows all generalized patterns which 

have support 1 in D, minimal (i.e., no over-generalized patterns), 

and complete (i.e., has all non-over-generalized patterns). 

2.1 Properties of Taxonomy-Superimposed Graph 

Mining 
In this section, we present three properties that are unique to 

taxonomy-superimposed graph mining. Proofs are omitted for the 

lack of space. 

Lemma 1. Given a pattern P over taxonomy T, let n be the 

number of nodes in P. Then, the number of generalized patterns of 

P is O(dn) in the worst case, where d is the average number of 

ancestors of P’s vertex labels in T. 

Lemma 2. Given a pattern P, and the support set SS(P) of all 

graphs G in a database over taxonomy T, where P is generalized 

isomorphic to G, for any generalized pattern Pg of P, SS(P)  

SS(Pg).  

Therefore, a pattern P is not frequent (i.e., sup(P)  ) if one of its 

generalized patterns is found to be infrequent. 

Lemma 3. If P is an over-generalized pattern, there may exist a 

generalized pattern Pg of P which is not over-generalized.  

Example 2.8. Consider the pattern GE in Figure 2.2. GE has a 

support of 0.75 in the graph database of Figure 2.3, and it is over-

generalized as GA (Figure 2.2) is a specialized pattern of GE with 

the same support. However, GE has a generalized pattern GC 

(Figure 2.2) which is not over-generalized as its support, 1, is 

higher than its specialized patterns.  

In other words, downward closure property does not hold on the 

axis of generalization/specialization of patterns. Therefore, 

locating an over-generalized pattern Pg is not sufficient to prune 

out all of Pg„s generalized patterns from the search space. 

3. TAXOGRAM ALGORITHM 
In this section, we present the details of the Taxogram algorithm. 

Given a graph database D over taxonomy T, and a support 

threshold , we propose a three-step mining procedure. First, all 

vertex labels in graphs of D are replaced by their most general 

ancestors in T to create a “most-generalized” database Dmg (while 

also retaining the original labels of vertices). Second, we employ 

existing efficient candidate enumeration and support counting 

techniques developed for general-purpose graph mining to mine 

all frequent graphs in Dmg. Third, discovered patterns are post-

processed to derive their specialized versions while eliminating 

over-generalized patterns so that the final pattern set is complete 

and minimal.  

The three-step mining procedure has four features:  

i. By relabeling vertices with the most general ancestor of their 

labels, each class of patterns is collapsed into a single pattern 

which is the most general pattern of that class. Hence, the 

total number of patterns to be extracted at the initial stage 

decreases, which in turn decreases the total number of 

database accesses and isomorphism tests. 

ii. We employ one of the existing general-purpose graph mining 

techniques once at the beginning of second step of the 

framework, reducing the number of graph isomorphism tests. 

iii. We reuse shared pattern occurrences among patterns of the 

same class. This reduces the number of costly graph 

isomorphism tests further. 

iv. We use taxonomy-projected “occurrence indices” in the post-

processing stage, to eliminate over-generalized patterns---

without requiring an isomorphism test between each pair of 

created patterns, which further reduces the total number of 

graph isomorphism tests to be performed.  

Next, we discuss each step of the algorithm in detail. 

Step 1. Relabeling Input Graph Database 

In the first step of the Taxogram algorithm, for each vertex label l 

in the graph database D, the most general ancestor lg of l is located 

in label taxonomy T. Next, all vertices labeled with l are relabeled 

with lg. Each vertex also internally stores its original label l to be 

used in later stages. We give an example. 
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Example 3.1. Consider the graph database D in Figure 1.4. After 

relabeling vertices in D with the most general ancestor of their 

original labels, the modified database Dmg is shown in Figure 3.1. 

Note that the original labels of vertices are kept (shown in 

parenthesis) to be used in later stages. 

a (d) a (f)

a (g)

a (b)

a (c)

a (w)

a (c)

 

Figure 3.1: Graph database Dmg after relabeling D 

This step is not redundant as the associated taxonomy may have 

multiple roots. When the taxonomy T has multiple roots and the 

roots have a common child node, in some cases, a label l may 

have a set Ancs(l) of most general ancestors. In such cases, an 

artificial node with a unique label lr is introduced as the common 

ancestor of nodes in Ancs(l). 

Time & Space Complexity of Step 1: This step processes all 

graphs in the database once to relabel them. Therefore, time 

complexity of this step, in the worst case, is O(|D||Gmax|) where |D| 

is the number of graphs in the database, and |Gmax| is the size of 

the largest graph. Since the original labels are also retained during 

the relabeling process, the space requirement for extra label 

storage is also O(|D||Gmax|). 

Step 2. Mining for Pattern Classes 

In the second step, extended general-purpose graph mining is 

performed on the relabeled graph database Dmg. The output of this 

step is the most general patterns in each pattern class of the final 

pattern set. There are several efficient general-purpose graph 

mining approaches, e.g., FSG [11], gSpan [22], FFSM [6], etc. 

Any of these approaches can be extended for mining pattern 

classes on relabeled input graph. In this study, we choose to 

extend gSpan because its depth-first-search style candidate 

enumeration requires less memory, and its running time 

performance is better  than or at least comparable to the other 

alternatives [19].  

Remark 3.1. [21] gSpan has time complexity of O(kFS + rF) 

where k is the number of occurrences of a frequent subgraph in a 

graph in the database, F is the number of frequent subgraphs, S is 

the database size, and r is the maximum number of duplicate 

codes (canonical representation scheme of gSpan) of a frequent 

subgraph that grow from other minimum codes. 

Our extension involves the creation of a (taxonomy-projected) 

occurrence index (OI) for each produced pattern. Given a pattern 

P, all of its occurrences in Dmg are stored together with the 

original labels of the vertices. For efficient enumeration of 

specialized patterns in the next step, occurrences of P are stored in 

subtaxonomies (subgraphs) of taxonomy T. A subgraph of T is 

created for each node in a pattern. Each occurrence is numbered in 

the form of (graph# . occurrence#). Lastly, the set of occurrences 

for the whole pattern is also stored in an ordered list. We give an 

example. 

Example 3.2.Consider the relabeled graph database Dmg in Figure 

3.1, and let the support threshold be 2/3. In this step, traditional 

general-purpose graph mining (i.e., gSpan in this paper) extended 

with taxonomy-projected occurrence index creation is applied on  

database Dmg, which results in two patterns, P1 and P2, shown in 

Figure 3.2 together with their occurrence indexes (OI). 

Occurrence indexes are shown in dashed-bordered-regions. Each 

occurrence is represented by its id. 

Def’n (Occurrence of pattern): Given a graph G and a pattern P in 

the database, a subgraph GS of G is called an occurrence of P in G 

if PIS_GEN_ISOGS.  

One may argue that replacing node labels with their most general 

ancestor may dramatically increase the number of graph 

isomorphism tests. However, as we emphasize in Example 1.2, for 

completeness, the most general pattern always needs to be 

considered for support computation, even if we do not relabel the 

nodes. Hence, this is not an aspect that is caused by relabeling of 

nodes.  

Def’n (Taxonomy label covered by pattern): Pattern P covers 

label a of taxonomy T when there exists an occurrence G(V, E, L, 

) of pattern P in database D with a  (v), v  V. 

Example 3.3. In database D of Figure 1.5, the label c of taxonomy 

T (Figure 2.1) is covered by pattern P1 of Figure 3.2 since c is in 

the graph occurrence G3.1 (in Figure 1.5) of P1. 

a [G1.1,G2.1,G2.2,G3.1]

       b

[G1.1, G2.1]

c

[G2.2]

a [G1.1,G2.1,G2.2,G3.1]

b[ ] c

[G1.1, G2.1,

G2.2, G3.1]

a

a

P1

OI(P1)

Occurrence Index for P1

     b

[G1.1,G2.1]

c [G1.2,G2.2,

G2.3,G3.2]

a [G1.1,G1.2,G2.1,

G2.2,G2.3,G3.1]

OI(P2)

Occurrence Index for P2

a

P2

OIE(Tn1)

OIE(Tn2)

n1

n2

n3

OIE(Tn3)

Figure 3.2: Patterns from Dmg with their occurrence indexes 

projected on a subgraph of T  

Def’n (Occurrence index of pattern, occurrence index entry): 

Given a pattern P (V, E, L, ) and an input database D over 

taxonomy T, the occurrence index OI(P) of P is a set S(Ti) of 

taxonomies such that S(Ti) = { Ti | Ti is a subtaxonomy of T, 

root(Ti)=root(T), 1  i  |V|, Ti contains only those labels of T 

covered by pattern P}. Ti is called an occurrence index entry 

(OIE), and is assigned to node υiV of pattern P through a 

mapping function : υiV  S(Ti), i.e., ( υi) = Ti.  

Example 3.4. In Figure 3.2, each of the patterns P1 and P2 has 

one occurrence index, namely, OI(P1) and OI(P2). Each node of 

each pattern is associated with one Occurrence Index Entry (OIE), 

which is a subtaxonomy of T. For instance, pattern P1 consists of 

single directed edge (a, a), and OI(P1), the occurrence index of 

P1, has two occurrence index entries, namely, OIE(top node of P1 

with label a), and OIE(bottom node of P1 with label a). 

Def’n (OIE node label and occurrence set): Each node of OIE Ti 

is (a) labeled with a taxonomy label, say l, covered by P, and (b) 

assigned an occurrence set OcS(l) containing the id‟s of 

occurrences of P, identified by graph#.occurrence# in database D. 

Example 3.5. In Figure 3.2, consider the top OIE T1 of OI(P1). 

Each node label l in T1 is a taxonomy label “covered” by P. As an 

example, label c is covered by P and the occurrence set OcS(c) of 

c is {G2.2} where G2.2 is illustrated in Figure 1.5.  

Note that, in the above example, occurrence set for taxonomy 

label a in P1‟s occurrence index is different than the taxonomy 

label a in P2‟s occurrence index, mainly, due to the fact that the 
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P1 and P2 are two distinct pattern classes and their occurrences in 

the input database are not identical. 

Space Complexity for Step 2: In the worst case, for each pattern 

node n, the associated occurrence index OI(n) contains as many 

nodes as the number of labels in taxonomy T. Since the traditional 

graph mining algorithm, gSpan, that we employ in this step 

enumerates patterns in depth-first manner, at any moment in step 

2, there exists only one pattern and its associated occurrence index 

in the memory. Thus, regardless of the number of patterns in the 

final produced pattern set, in the worst case, the space requirement 

for occurrence indexes equals to |Pmax||T| where |Pmax| is the 

number of nodes in the largest pattern Pmax among all patterns, 

and |T| is the number of labels (concepts) in the label taxonomy T. 

|Pmax| is bounded by |Gmax| where Gmax is the largest graph in the 

input database D. Hence, space complexity for occurrence indexes 

is O(Gmax* |T|). 

Given a graph G in the input database D over taxonomy T, and a 

pattern P, the maximum number of occurrences of P in G is 
 G !

  G − P  !
 . Hence, the size of occurrence set for each taxonomy 

label i in an occurrence index is  
 G !

  G − P  !
 𝐺∈𝐷 . Since, in the 

worst case there are |T| labels per occurrence index node, and 

there is one occurrence index node per pattern node, the space 

requirement for occurrence sets is |𝑃||𝑇| 
 G !

  G − P  !
 𝐺∈𝐷 .  

Lemma 4. The space complexity for the step 2 of the Taxogram 

algorithm is 𝑂(|𝑃||𝑇| 
 G !

  G − P  !
) 𝐺∈𝐷  where |P| is the number of 

nodes in the largest pattern, and |T| is the number of labels in the 

associated taxonomy. 

In order to minimize storage requirements, and allow for efficient 

set intersection in the next step, Taxogram implements occurrence 

sets as bit sets where each occurrence id is mapped to an integer 

value, and if an occurrence set contains a particular occurrence id, 

the corresponding bit is set to 1, and it is set to 0, otherwise.  

Time complexity for step 2: The time complexity for mining 

pattern classes is bounded by the complexity of traditional pattern 

mining algorithms. More specifically, gSpan has time complexity 

of O(kFS + rF) (Remark 1).  During occurrence index 

construction, for each occurrence Oi of a pattern P, occurrence 

sets of pattern node labels in each occurrence index node are 

updated by adding id of Oi. Each update operation per label l in an 

occurrence index node also involves updating the occurrence sets 

of ancestor labels of l. In the worst case, average number of 

ancestors per label in a taxonomy is ( 𝑇 −  1)/2. Then, for each 

occurrence of P,  𝑃  ( 𝑇 −  1)/2 updates are performed. Since 

the maximum number for a pattern P is  
 G !

  G − P  !
) 𝐺∈𝐷 , the 

number of required update operations during the occurrence index 

construction for a pattern in step 2 is ( 𝑃  ( 𝑇 −  1)/

2) 
 G !

  G − P  !
 𝐺∈𝐷 .  

Lemma 5. The time complexity for the step 2 of the Taxogram 

algorithm is 𝑂(𝑁 ( 𝑃  ( 𝑇 −  1)2) 
 G !

  G − P  !
) 𝐺∈𝐷  where N is 

the number of patterns, |P| is the number of nodes in the largest 

pattern, and |T| is the number of labels in the associated 

taxonomy. 

Given a pattern P, a pattern node n  P, and the occurrence index 

node OI(n) associated with n, in order to minimize the space 

requirements further, we take two actions: (i) OI(n) contains only 

the labels (and their ancestors) that appear in at least one 

occurrence of P in the position of node n, and (ii) labels that do 

not appear in at least |D| distinct graphs in D, where |D| is the 

number of graphs in D, are not considered during the construction 

of OI(n). 

Next, we show that the extended approach produces the same 

pattern class counts with taxonomy-superimposed graph mining. 

Lemma 6. Given a graph database D over taxonomy T, and the 

relabeled copy Dmg, and support threshold , 0    1, let Cmg be 

the set of all pattern classes that have at least one member in the 

pattern set Hmg discovered by performing a general-purpose 

graph mining on Dmg, and let C be the set of distinct pattern 

classes that have at least one member in the pattern set H 

produced by applying taxonomy-superimposed graph mining on 

D. Then, C=Cmg. 

Thus, the pattern class counts in D and Dmg are the same. 

Step 3. Enumerating Specialized Patterns from 

Pattern Classes 

This step has two main goals: (i) enumerate specialized patterns 

from pattern classes produced in the previous step, and (ii) 

eliminate/prevent over-generalized patterns from the final pattern 

set. Step (i) together with Lemma 6 guarantees completeness. In 

order to carry out these two tasks in an efficient manner, we 

utilize taxonomy-projected occurrence indices. 

Definition (Occurrence Set of a Pattern): Given a pattern P(V, E, 

L, ) which is a member of a pattern class PC with the occurrence 

index OI, occurrence set OcS(P) of P is the intersection of 

occurrence sets corresponding to each node label in OI(P), that is, 

OcS(P) = {OcS(l) | l  Ti, Ti = (υi), and l = 1(υi) where υiV}. 

Given a pattern P accompanied with its occurrence index OI, each 

node υi of the pattern is attempted to be replaced by one of its 

children from the corresponding subtaxonomy Ti in OI, where 

(υi) = Ti. Each replacement leads to a new specialized pattern Ps 

of P. Using the associated occurrence sets of each taxonomy label 

in the occurrence index, the support of  Ps is obtained by 

computing the intersection of occurrence set of P with that of the 

taxonomy label which replaces its parent and leads to creation of 

Ps. We give an example. 

Example 3.6. Consider the general pattern P1 (representing a 

pattern class) and its occurrence index OI which is derived in the 

previous step (Figure 3.2). Figure 3.3 shows creation of a 

specialized pattern P2 of P1 by replacing label “a” of node n1 with 

its child label “b” from (n1) = Tn1 in OI. The occurrence set 

OcS(P2) of newly created pattern P2 is obtained by computing 

intersection of the occurrence set for pattern P1 with that of 

taxonomy label “b” in occurrence index node Tn1, that is, OcS(P2) 

= OcS(P1)  OcS(Tn1(b)) = {G1.1, G2.1, G2.2, G3}  {G1.1, 

G2.1} = {G1.1, G2.1}. Then, computing the support sup(P2) of 

P2 is counting the distinct graph ids in OcS(P2) (i.e., 2), and 

dividing it by the database size (i.e., 3), which results in sup(P2) = 

2/3.  

Lemma 7. Given a pattern P, its occurrence index OI, and 

specialized pattern Ps of P where Ps is created by replacing label 
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of node ni P with one of its child labels lc from the 

corresponding OI node of  Tni = (ni), then the occurrence set of 

Ps is OcS(Ps) = OcS(P)  OcS(Tni(lc)). And, sup(Ps) equals to 

number of distinct graph ids in OcS(Ps). 

Thus, no database scan or isomorphism test is required during the 

support computation of more specialized patterns due to the use of 

the occurrence indices associated with pattern classes. If sup(Ps) 

equals to sup(P), then P is an over-generalized pattern, and P is 

eliminated from the final output set. The creation of more 

specialized patterns by replacement of a parent with one of its 

children from the occurrence index is performed on each newly 

created pattern until no specialized node with sufficient support 

can be created. Note, however, this procedure may lead to 

duplicate patterns due to different orders of node label 

replacements as shown in the following example. 

Occurrence Index for pattern

class that contains P1 and P2

a [G1.1,G2.1,G2.2,G3.1]

       b

[G1.1, G2.1]

c

[G2.2]

a [G1.1,G2.1,G2.2,G3.1]

b[ ] c

[G1.1, G2.1,

G2.2, G3.1]

a

a

P1

n1

n2

OcS(P1) = {G1.1, G2.1,

G2.2, G3.1}

     Support = 1

b

a

P2

OcS(P1) = {G1.1, G2.1}

Support = 2/3

Figure 3.3 Support computation for specialized patterns 

Example 3.7. Consider the pattern P1 and its occurrence index 

OI(P1) (Figure 3.3). Figure 3.4 shows a sample specialized pattern 

derivation procedure. For the sake of simplicity, we ignore 

support threshold considerations in this example (please ignore 

the sets associated with symbol “PNS” for this example). In the 

first step, label of node n1 is replaced by its child label b to create 

pattern P2. Then, in the second step label of node n2 is replaced by 

its child label “c”, which results in pattern P3. P3 cannot lead to 

more specialized patterns as taxonomy labels “b” or “c” does not 

have a child in the occurrence index for this set of patterns. And, 

assume P2 also cannot be turned into other more specialized 

patterns. Next, we turn back to P1. In step 3, label of node n2 in 

P1 is replaced with its child label “c” to create pattern P4. And, in 

step 4, label of node n1 in P4 is replaced with its child label “b” to 

create pattern P5 which is the same as P3. Although P2 and P4 are 

different patterns, their specialization leads to the same pattern. 

In order to eliminate such duplicates, at each enumeration branch, 

ids of pattern nodes whose labels have been replaced with one of 

their children labels are kept in a set called processed-nodes set 

(PNS) (see Figure 3.4 as an example where step 4 will not take 

place when PNS is employed as node n1 is already included in 

PNS before step 4). Furthermore, within a single occurrence 

index, taxonomy labels may share a child n due to that DAG 

structure. In order to make sure that only one of n‟s parents 

utilizes n for a new specialized pattern creation, visited vertex 

labels within an occurrence index are also marked. 

Employing PNS eliminates duplicates, but may lead to erroneous 

inclusion of some over-generalized patterns in the final pattern 

set. Such cases may occur if PNS is not empty when a pattern P is 

first created from a more generalized pattern (e.g., P4 in Figure 

3.4), since the enumeration procedure stops before creating all 

possible specialized patterns of P, and there may be more 

specialized patterns of P that were created in other branches 

during enumeration, and have the same support as P. We give an 

example. 

Example 3.8. Consider the specialized pattern enumeration in 

Figure 3.4. Suppose P4 and P5 have the same support. Since P5 

will not be created when PNS is checked before taking step 4, we 

may erroneously conclude that P4 is a valid pattern as no 

specialized pattern was derived from P4.  

In order to prevent such hidden over-generalized patterns 

produced as a side effect of employing PNSs, occurrence set for 

the labels of each node in PNS is inspected to see if the 

replacement of any processed node‟s label with one of its children 

label would lead to a more specialized pattern with the same 

support. If no such node exists in PNS, then P is added into the 

final pattern set.  

a

a

P1

b

a

P2

b

c

P3

a

c

P4

b

c

P5

n1

n2

step 1

step 2

step 3

step 4

PNS= { }

PNS= {n1}

PNS= {n1}
PNS= {n1, n2}

 

Figure 3.4 Creation of Duplicates during Pattern 

Enumeration 

Since the Taxogram algorithm initiates the creation of a new 

pattern Pi from P through the replacement of any node label with 

any of its children, and compares the support of Pi against that of 

P, it is guaranteed that it will detect any possible case where  

sup(Pi) = sup(P), and mark such patterns as over-generalized. If P 

is over-generalized, then there must be a node υiP with label l 

such that replacing l with a child label lc of l should lead to a new 

pattern Ps with the same support as P. Then there are two possible 

cases: (i) If υiPNS, then Taxogram will create a more 

specialized pattern Ps of P by replacing l with lc for node υi and P 

will be marked as over-generalized as illustrated in . (ii) If 

υiPNS, then a follow-up procedure (described above) attempts to 

replace label of each node in PNS with their children labels, and 

computes support values after each replacement to see if the new 

support value will be the same as that of P, in which case P is 

marked as over-generalized. Thus, we have 

Lemma 8. The final pattern set H produced by the Taxogram 

algorithm is minimal in the sense that H contains no over-

generalized patterns. 

In addition, by Lemma 6, all possible pattern classes are included 

in H‟ which is the pattern set produced in the second step of the 

algorithm. Moreover, due to the relabeling of each node with its 

most general ancestor, each pattern class in H‟ is represented by 

the most general member of the class. Hence, all the other patterns 

can be obtained from the most general member of each class by 

performing node replacements with the descendants of the label 

assigned to each corresponding pattern node. In order for the 

algorithm to miss a pattern P, at least one descendant of a vertex‟s 

label in a most general pattern should be left out from 
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consideration during specialized pattern enumeration. However, 

the Taxogram algorithm considers replacements with all 

descendants which have enough support in the input database D. 

Finally, there is no need to consider replacements with 

descendants which have insufficient support in D since all 

subgraphs of a frequent graph pattern should be sufficiently 

frequent [10] (by Apriori property). Thus, we have 

Lemma 9. The final pattern set H produced by the Taxogram 

algorithm is complete in the sense that H contains all possible 

non-over-generalized patterns. 

Space & Time Complexity for Step 3: Enumerating specialized 

patterns from each pattern class, in the worst case, corresponds to 

replacing each node label with one of the labels in the associated 

label taxonomy, and computing support value after each label 

replacement. Since occurrence sets are implemented as Bit sets, 

cost of computing support of a newly created pattern P equals 

performing bitwise and operation between the occurrence bit set 

of the pattern that leads to P, and the occurrence set of the child 

label that replaced its parent label in P. The cost of bitwise “and” 

operation is bounded by the maximum number of occurrences for 

a pattern, which is computed as  𝑃𝑟⁡( 𝐺 , |𝑃|)𝐺∈𝐷  in the previous 

step for an input database D and a pattern P. 

Then, for a given pattern class P(V1, E1, L1, 1), the number of 

specialized patterns is   𝑇 = |𝑇|υiV1
|𝑉1|

 .  

Additional Efficiency Enhancements and Pruning Methods: 

We employ additional techniques to enhance the performance of 

the Taxogram algorithm:  

a. During specialized pattern enumeration, if replacement of a 

node label n with one of its child label c leads to a pattern with 

insufficient support, then there is no need to check patterns 

created via replacement of n with any descendant of c. 

b. In order to minimize the size of occurrence indices, the 

taxonomy nodes whose labels are not frequent (i.e., when 

tested with generalized graph isomorphism for size-1 graphs) 

are removed from the taxonomy. Since a child cannot be 

frequent without having all of its parents frequent, the 

resulting taxonomy subgraph after the node removals is 

guaranteed to be a connected DAG. 

c. Given a generalized pattern produced by the second step of the 

algorithm, before starting enumeration of specialized patterns 

in the third step, we pre-process the occurrence index of the 

pattern to see, for any node n in the pattern, if it is possible to 

replace n‟s label l with one of its descendants which has the 

same occurrence set as l. After performing all such 

replacements for every node, enumeration of specialized 

patterns is started on this modified set of patterns so that 

several over-generalized patterns can be eliminated before 

they are propagated to more specialized patterns created from 

the original pattern. 

d. In taxonomy T, given a node n and one of its child node c, if 

n‟s occurrence set is the same as c‟s occurrence set, then n is 

removed from the taxonomy and a direct connection is created 

between c and each parent of n. This change preserves the 

minimality and completeness of the Taxogram, because any 

pattern P that has n as one of its node labels would be over-

generalized since it is always possible to create a more 

specialized pattern of P by replacing c with n, and the support 

of the new pattern would be the same as P as the occurrence 

sets of c and n are the same. 

4. EXPERIMENTS 
In this section, we present an experimental evaluation of the 

Taxogram algorithm, and compare different approaches on both 

synthetic and real data. We first describe the experimental setting, 

and then, we discuss the experimental results and observations. 

4.1 Experimental Setting 
The experiments are performed on a PC with Pentium Dual Core 

(3.2 GHz) processor and 4 GB main memory. We have 

implemented Taxogram in Java 1.6, and compared its 

performance against the bottom-up approach (discussed in Section 

1) which is represented by modified AcGM as proposed in [9], 

and called TAcGM in this paper. In addition, we have 

implemented a baseline algorithm which is the same as Taxogram 

except that the baseline algorithm does not utilize efficiency 

enhancements (e.g., removing taxonomy concepts with 

insufficient support) discussed at the end of section 3. The source 

code or executable files for TAcGM were not publicly available. 

Hence, we have implemented it ourselves in Java, and provided 

results from our implementation. We have built the 

implementation of Taxogram on gSpan implementation of ParMol 

package [19] which is publicly available. 

Table 1. Properties of Experimental Data Sets 

DB Id 
DB Size 
(Graphs) 

Avg. Graph 
Size (Node) 

Avg. Graph 
Size (Edge) 

Dist. Label 
Count 

Avg.  Edge 
Density 

D1000 1000 9.3 10.9 5391 0.27 

D2000 2000 9.4 10.9 7071 0.26 

D3000 3000 9.4 11.1 7610 0.27 

D4000 4000 9.4 11.1 7810 0.26 

D5000 5000 9.4 11.0 7855 0.27 

NC10 4000 6.3 6.1 7450 0.32 

NC20 4000 9.2 10.7 7782 0.27 

NC30 4000 12.3 15.9 7857 0.23 

NC40 4000 15.4 21.2 7876 0.20 

ED06 3000 14.1 6.5 7800 0.06 

ED09 3000 13.0 8.6 7817 0.09 

ED10 3000 12.9 9.2 7833 0.10 

ED11 3000 12.9 10.3 7831 0.11 

TD5 4000 15.1 20.9 1000 0.20 

TD6 4000 15.0 20.6 1000 0.21 

TD7 4000 15.2 21.0 1000 0.20 

TD8 4000 15.3 21.2 1000 0.21 

TD9 4000 15.2 21.1 1000 0.20 

TD10 4000 15.3 21.1 1000 0.20 

TD11 4000 15.4 21.3 1000 0.20 

TD12 4000 15.0 20.7 1000 0.21 

TD13 4000 15.2 20.9 1000 0.21 

TD14 4000 15.0 20.6 1000 0.21 

TD15 4000 15.1 20.8 1000 0.21 

TS25 4000 15.3 21.1 25 0.21 

TS50 4000 15.2 20.8 50 0.21 

TS100 4000 15.0 20.7 100 0.21 

TS200 4000 14.9 20.6 200 0.21 

TS400 4000 15.1 20.9 400 0.21 

TS800 4000 15.1 21.0 800 0.21 

TS1600 4000 15.2 21.0 1600 0.21 

TS3200 4000 15.3 21.1 3200 0.20 

PTE 416 22.6 23.0 24 0.12 

The experiments are performed on both synthetic and real data. 

We developed a synthetic graph generator, and a synthetic 

taxonomy generator, which provide the capability to create 

datasets with different characteristics. The synthetic graph 

generator expects a label taxonomy, maximum node and edge 
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counts for graphs. The edges are created based on an edge density 

parameter. We have employed same definition of edge density 

that was also used by Worlein et al. [19] for the evaluation of 

different data mining algorithms, where edge density is defined as 

2* #edges/(#nodes)2. The synthetic taxonomy generator expects 

taxonomy size which is characterized by both the number of 

concepts and relationships among concepts, taxonomy depth 

which defines the number of levels in the taxonomy. Table 1 

summarizes the properties of data sets used in the experiments. 

Taxogram can handle both directed and undirected graphs, but 

since the current implementation is built upon gSpan‟s 

implementation and gSpan does not support directed graphs, all 

the experimental data sets consists of undirected graphs. 

As real data, we have carried out evaluation on two distinct data 

sets from chemistry and biology domains. The first data set comes 

from the metabolic pathways [13] domain where nodes are 

functional annotations of enzymes catalyzing each reaction in a 

pathway, and the edges are created through shared 

substrate/products between the corresponding enzymes for each 

node. The node labels which are functional annotations come 

from the molecular function subontology of Gene Ontology, 

which contains over 7,800 concepts organized into a 14-level 

hierarchy. Figure 1.1 illustrates a small excerpt from the 

molecular function subontology of Gene Ontology. The pathways 

data involves 25 metabolic pathways from 30 prokaryotic 

organisms (downloaded in May 2007 from KEGG [13].  

The second real data set is the molecular structure of carcinogenic 

compounds where atoms constitute nodes, and the bonds among 

atoms are edges between nodes. This data was made available 

within US National Toxicology Program (NTP) for The Predictive 

Toxicology Challenge (PTC) [14]. This data set contains 416 

molecular structures where atoms are organized hierarchically as 

illustrated in Figure 4.1 where leaf level letters are atom labels 

while the labels in upper levels are logical groupings of atoms 

based on their similarity. Small-case letters represent aromatic 

atoms while upper-case letters stand for non-aromatic atoms.  

 

Figure 4.1 A taxonomy of atoms for PTE data 

4.2 Results 
Scalability against Database & Data Size: 

In this section, we perform a number of experiments to test the 

scalability of Taxogram on data with different characteristics. As 

discussed in section 5.1, we generate synthetic data sets with 

varying database size (i.e., the number of graphs in a graph 

database). We also carry out measurements by changing 

properties of the graphs such as edge density, the average size of 

individual graphs. Then, we measure the running time on each 

data set and compare the results from Taxogram, TAcGM, and the 

baseline approach. We employ Gene Ontology molecular function 

subontology as the label taxonomy for the synthetic graphs.  

In the first experiment of this section, we measure the 

performance of the algorithms against varying database size. To 

this end, we create five different synthetic databases with sizes 

ranging from 1,000 to 5,000 graphs. (See DBs whose ids start 

with “D” in Table 1). The support threshold is set to 0.2 (i.e., 

20%), and the graph objects in the databases are allowed to have 

maximum of 20 edges. The number of distinct edge labels is set to 

10. Figure 4.2 shows the running time performance of the three 

approaches, namely, baseline approach, TAcGM, and Taxogram.  

 

Figure 4.2 Running time performance for different DB size 

Observation: The running time of Taxogram stays almost constant 

with slight increase as the database and individual graph objects 

become larger. 

 

Figure 4.3 Performance Comparison while Changing Graph 

Size 

As the database and graph sizes get larger, the number of 

occurrences that the graph miners need to deal with also increases. 

Since Taxogram first mines for pattern classes and keeps 

occurrences for the pattern classes rather than for individual 

patterns, the effect of increase in data and database size on 

Taxogram performance is considerably lower than that for the 

case of TAcGM. 

Next, we study the scalability of Taxogram and the other 

approaches as the size of graph objects in a database increases. 

We keep the database size fixed as 4000, which is the maximum 

database size that TAcGM could return results without causing 

“out-of-memory” error in the previous experiment. The other 

parameters are also the same as the previous experiment (Support: 

20%, distinct edge label count: 10, taxonomy: GO). Then, we 

create four different data sets by gradually increasing the max 

graph size (in terms of edge counts) in a database from 10 to 40. 

(See DBs whose ids start with “NC” in Table 1). Figure 4.3 

presents the resulting running time performances.  

Observation: Taxogram is more scalable than TAcGM  as 

TAcGM causes “out-of-memory” error when the maximum graph 

size becomes larger than 20 (Figure 4.3) or the database size is 

larger than 4,000 (Figure 4.2) 

Observation: Consistent with the observed performance against 

changing the database size, the rate of running time increase for 

Taxogram is less than the rate of increase for TAcGM. 
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Scalability is mostly related to the difference between pattern 

enumeration strategies of Taxogram and TAcgM. Since TAcGM 

generates patterns level by level, which is not memory efficient 

when the data gets somewhat larger, it uses the memory less 

efficiently, whereas Taxogram processes one pattern class at a 

time in depth-first-search manner. 

Final experiment of this section aims to evaluate the performance 

of alternative approaches against varying edge density of the input 

database (See DBs whose ids start with “ED” in Table 1). Figure 

4.4 shows the running time performance of the Taxogram and the 

number of produced patterns under different edge density values. 

Observation: Taxogram scales linearly against the edge density 

increase until the edge density value becomes greater than 0.10. 

Edge density has a direct impact on the number of possible pattern 

occurrences per graph. Therefore, high edge density significantly 

increases the size of occurrence indices and occurrence sets, and it 

takes more time to enumerate specialized patterns using such 

larger occurrence sets. In addition, as the graphs become highly 

connected the number of patterns also increases considerable 

leading to additional increase in running time. 

 

Figure 4.4 Running Time/Pattern Count at Different Edge 

Density Values 

Scalability against Taxonomy Size: 

In this experiment, we evaluate the performance of AcGM for 

different sizes of taxonomies. We consider taxonomy size along 

two distinct dimensions: (i) Depth and (ii) Concept Count of a 

taxonomy. In order to measure the effect of each dimension on the 

performance of Taxogram, we experiment with two synthetic sets 

of taxonomies. For the first data set, we keep the number of 

concepts fixed, and create different taxonomies with varying 

depths while the second data set consists of different taxonomies 

of the same depth but varying concept/relationship count.  depicts 

running time performance and the number of discovered patterns 

of Taxogram for synthetic taxonomies with maximum depth 

ranging from 5 to 15. Each taxonomy is set to consist of 1000 

concepts and 2000 relationships. Next, using each taxonomy, we 

created synthetic graph datasets of size of size 4000, and 

maximum graph size 40 with 10 distinct edge labels (See DBs 

whose ids start with “TD” in Table 1). Node labels for the 

database graphs are selected from each level of taxonomy with 

equal probability.  does not present any results for TAcGM as it 

leads to “out-of-memory” error for all the datasets in this 

experiment. 

Observation: The running time of Taxogram stays almost constant 

for taxonomies where depth is less than 13. 

The main factor that influences the performance of Taxogram is 

the total number of patterns that can be extracted from a database. 

As the depth of a taxonomy reaches to higher values the number 

of patterns may increase dramatically. Hence, starting at max  

depth 13, as parallel to the number of patterns, the running time of 

Taxogram increases exponentially. Considering that most of the 

real life ontologies has less than 15 levels, (e.g., GO, the most 

popular annotation ontology in biology has 14 levels), the 

performance level of Taxogram is sufficiently practical to be used 

for real data.  

 

Figure 4.5 Performance for taxonomies of different depths 

Finally, we study the effect of concept/relationship count of 

taxonomies on the performance. We create 8 different taxonomies 

where the size of the taxonomy (concept/relationship count) is 

doubled as each taxonomy is created. Similarly, for each 

taxonomy, we create synthetic graph datasets of size 4000, and 

maximum graph size of 40 with 10 distinct edge labels (See DBs 

whose ids start with “TS” in Table 1). Figure 4.6 illustrates the 

performance of Taxogram as the input taxonomy size changes. 

Once again, TAcGM does not run for the data sets used in this 

experiment. Hence, we only present the results for Taxogram. 

 

Figure 4.6 Performance for taxonomies of different size  

Observation: In general, running time decreases as the taxonomy 

size increases (while keeping the taxonomy depth fixed).  

This is mainly due to the fact that, for the synthetic datasets 

created based on these taxonomies, increase in concept count 

means that the number of distinct node labels increases which 

decreases the total number of patterns, hence, improves the 

running time.  

A close inspection of pattern count (which completely depends on 

the input database) reveals the reasoning behind the unexpected 

peak in runtime at taxonomy size 100. The running time is closely 

related to the pattern set size which peaks for the data set where 

the taxonomy size is 100.  

Effect of Support Threshold on Performance and the Number of 

Patterns: 

Next, we assess the impact of support threshold on both the 

running time of Taxogram and the number of produced patterns. 

In order to get some results from TAcGM for comparison 

purposes, from the first experiment, we have selected the largest 
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data set (DBId: D4000 in Table 1) that TAcGM provides some 

results before leading to out-of-memory error. Similarly, Gene 

Ontology molecular function subontology is used as the 

taxonomy. Figure 4.7 presents the running time measurements for 

Taxogram and AcGM. 

Observation: Taxogram can handle lower support thresholds in 

comparison to TAcGM. 

Consistent with the previous experiments, Taxogram‟s running 

time increases linearly until the support threshold of 2 where the 

pattern set size increases dramatically. On the other hand, the 

running time of AcGM increases exponentially as the support 

threshold comes down below 30, and for the support thresholds 

less than 20, TAcGM does not complete as it leads to out-of-

memory error. The reason is that, TAcGM joins size-k-1 frequent 

graphs to obtain size-k frequent graph candidates, and, at low 

thresholds, the number of patterns to be joined increases 

significantly. 

 

Figure 4.7 Taxogram vs TAcGM at Different Support 

Thresholds 

Performance on Real Biological and Chemical Data Sets: 

In this section, we carry out performance assessment on real data. 

First, we perform a small scale comparative genomics study, and 

employ Taxogram to mine for conserved pathway fragments 

among 30 prokaryotic (bacteria) organisms similar to our recent 

study in [2]. Given a pathway P, each organism has a different 

version of the pathway in terms of the structure as well as the 

genomic entities (i.e., proteins and genes) that involve in the 

catalysis of reactions.  For 25 metabolic pathways, we collected 

the organism specific versions for 30 prokaryotic organisms from 

KEGG [13], constructed their pathway functionality templates [2], 

and run Taxogram to discover patterns that are common among 

organisms. The support threshold is set to 0.2. Table 2 shows the 

results for this experiment as well as the characteristics of each 

pathway data set. 

The number of extracted patterns for each pathway can be used as 

a measure for the degree of conservation among organisms for 

that particular pathway. The higher the number of patterns, more 

conserved the pathway is through the lineage of the prokaryotic 

organisms. 

Observation: Nitrogen metabolism and Biosynthesis of Stereoids 

are the top most conserved pathways for bacterial organisms. 

Indeed, Nitrogen is a vital substance for almost all the organisms, 

but only bacteria can convert Nitrogen gas (N2) into the form that 

other living organisms can use [12]. Conservation of such a 

significant pathway is expected for the continuity of the life. 

Observation: The running time of Taxogram increases either in 

case of high conservation among organisms (e.g., beta-Alanine 

metabolism) or when the graph sizes gets larger in the input 

graph database (e.g., Pantothenate and CoA biosynthesis). 

This observation can be explained with the results presented in the 

scalability experiments section.  

Table 2. Results on Pathways Data Set 

Pathway Name 
Time 

(msec) 
Pattern 
Count 

Avg. 
Graph 

Size 
(Node) 

Avg. 
Graph 

Size 
(Edge) 

Vitamin B6 metabolism 119 2 7.03 4.03 

Inositol phosphate 
metabolism 140 7 4.33 3.33 

Sulfur metabolism 156 7 5.17 3.23 

Benzoate degradation via 
hydroxylation 206 60 7.60 5.30 

Riboflavin metabolism 210 12 7.63 4.73 

Nicotinate and nicotinamide 
metabolism 216 36 6.67 4.40 

Thiamine metabolism 259 23 4.57 3.60 

Lysine biosynthesis 314 61 8.73 7.67 

Pentose and glucuronate 
interconversions 323 56 10.83 6.70 

Synthesis and degradation of 
ketone bodies 353 31 4.97 4.10 

Histidine metabolism 361 79 8.83 6.60 

Tyrosine metabolism 529 57 7.93 6.13 

Phenylalanine metabolism 613 32 5.80 4.40 

Nucleotide sugars 
metabolism 693 106 7.57 6.30 

Aminosugars metabolism 808 168 8.20 6.60 

Citrate cycle (TCA cycle) 1011 174 10.80 8.63 

Glyoxylate and dicarboxylate 
metabolism 1036 233 9.10 7.53 

Selenoamino acid 
metabolism 1046 152 6.90 6.50 

Valine, leucine and 
isoleucine biosynthesis 1069 75 5.23 4.70 

Butanoate metabolism 1789 287 10.57 8.80 

beta-Alanine metabolism 3562 661 5.10 5.60 

Glycerolipid metabolism 6872 219 8.10 7.23 

Biosynthesis of steroids 10609 830 7.97 8.87 

Nitrogen metabolism 62777 1486 7.20 7.27 

Pantothenate and CoA 
biosynthesis 215047 142 10.43 9.53 

 

Figure 4.8 Performance on PTE Data 

As a second real data set, we experiment with molecular 

structures of chemical data. This data set contains 416 graphs 

representing molecular structure of carcinogenic compounds [14]. 

Properties of this data set is listed in Table 1 (DBId: PTE) Figure 

4.8 shows the performance on PTE data. 

Observation: Both the running time and the number of patterns 

quickly increases even at relatively high support thresholds (at 

support 30, 10,000 patterns are produced out of a database of 419 

graphs).  
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Due to the fact that most of the compounds are highly consist of 

three atoms, namely, C, H, and O, final pattern set sizes quickly 

increases. 

5. RELATED WORK 
Taxonomy-based data mining is first considered in the context of  

association rule mining in market-basket data [18] where each 

item in a transaction (i.e., itemset) is a member of is-a hierarchy 

of product categories. An interest measure based on expected 

support of itemsets is employed to prune out redundant patterns. 

In addition, Srikant and Agrawal [17] propose another algorithm 

for mining sequential patterns of itemsets where each item is a 

member of a is-a hierarchy. Although these algorithms are 

efficient and scalable, they are specifically designed for mining 

frequent itemsets, and are not directly applicable to taxonomy-

superimposed graph mining. 

Most work in graph mining [6, 7, 11, 20, 22] focus on extracting 

the exact frequent patterns. Canonical forms are utilized [11] to 

test whether two graphs are isomorphic. However, many of the 

existing frequent subgraph mining methods do not consider the 

graph structures where nodes are part of a well-defined hierarchy. 

Inokuchi extended AcGM [9] to mine generalized substructures 

from labeled graphs. AcGM is a level-based graph mining 

algorithm [8]. More specifically, size-k graphs are created by 

joining size k-1 graphs where graphs are represented as adjacency 

matrices, and associated with canonical forms to identify the 

isomorphic graphs. The extension to AcGM involves replacing 

standard graph isomorphism test with the generalized 

isomorphism test which takes advantage of the is-a hierarchies 

provided by the associated taxonomy. And, over-generalized 

patterns  are pruned if there is a more specific pattern with the 

same embedding set. However, AcGM suffers from two major 

issues: (a) it is a breadth-first level-wise algorithm, hence, cannot 

scale to large taxonomies or graphs, (b) it handles a pattern and its 

generalizes/specific versions independently, which causes 

repetitive isomorphism test for occurrences that are shared by a 

class of patterns that have the same structure with different 

specificity. Taxogram addresses these shortcomings of extended 

AcGM via (a) storing the shared occurrences of patterns that are 

members of the same pattern class, (b) enumerating specialized 

patterns in depth-first manner which enables mining under lower 

support thresholds, or larger size taxonomies in comparison with 

AcGM. 

6. CONCLUSION AND FUTURE WORK 
We explored the properties of taxonomy-superimposed graph 

mining, and propose an efficient and scalable algorithm, 

Taxogram, to mine frequent taxonomy-superimposed graph 

structures. Taxogram first relabels the input database, then mines 

for frequent pattern classes while constructing occurrence indices, 

and finally enumerates members of each pattern class using the 

constructed occurrence indices. We extensively evaluated our 

approach along with both synthetic and real data, and showed that 

Taxogram can handle a diverse set of graph databases associated 

with different taxonomies. 

As shown with a discussion on space and time complexity, 

taxonomy-superimposed graph mining is costly, and requires 

enormous amount of computational resources. As future work, we 

plan to develop disk-based algorithms for taxonomy-based graph 

mining. 
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