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ABSTRACT

XML access control policies involving updates may contain
security flaws, here called inconsistencies, in which a forbid-
den operation may be simulated by performing a sequence
of allowed operations. ACCOn implements i) consistency
checking algorithms that examine whether a write-access
control policy defined over a DTD is inconsistent and %) re-
pair algorithms that propose repairs to an inconsistent policy
to obtain a consistent one.

1. MOTIVATION

XML access control has received much attention over the
last years as the amount of sensitive XML data exchanged
between applications is increasing. Access control techniques
for XML data have been considered extensively for read-only
queries [4, 8, 9, 11, 12, 13]. However, the problem of con-
trolling write access is relatively new and has not received
much attention. An important problem in this context is
the presence of a certain type of vulnerabilities, here called
inconsistencies, that allow one explicitly forbidden update
operation to be simulated by a sequence of allowed ones.

In general, an XML write-access control policy specifies
the update actions a user can perform based on the syntax
of the update and not its actual behavior. Thus, it is possible
that a single update request which is explicitly forbidden by
the policy can nevertheless be simulated by a sequence of
more than one allowed update requests.

Consider for example the XML DTD in Fig. 1 that de-
scribes patient data. A patient has a name and is associated
with zero or more treatments. A treatment consists of a drug
that was prescribed to the patient and that can be one of
placebo, presDrug (prescription) and OTC (off-the-counter)
drug, a diagnosis and the date of a patient’s visit. The XML
document shown in Fig. 2(a) is an instance of the hospital
DTD shown in Fig. 1. The document can be updated and
queried by different users, e.g., doctors, nurses, administra-
tors. A user is allowed to perform certain updates or access
only part of the data. For example, a nurse is allowed to
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Figure 1: Hospital DTD Graph

insert and delete patients, but she cannot modify a patient’s
diagnosis or change a prescription drug to an off-the-counter
drug. It is easy to see that the diagnosis of a patient can
be changed by deleting a patient record and then insert-
ing it back again with a modified value of diagnosis. Thus,
a forbidden update request can be achieved by a sequence
of allowed ones. We call an access control policy with this
characteristic inconsistent.

It is important to be able to detect inconsistencies and
suggest possible ways of repairing policies in order to en-
sure their consistency. We addressed this problem in [5]
for a particular class of inconsistencies in XML write-access
control policies, where we: i) provided a formal definition
of consistency ) showed that checking consistency for the
studied type of access policies is in PTIME i) developed a
polynomial time algorithm for checking consistency and iv)
suggested repair algorithms for fixing the detected inconsis-
tencies.

In this demo, we will present ACCOn, a system that
implements the consistency checking and repair algorithms
proposed in [5] and [6].

The outline of this demonstration proposal is the follow-
ing: in Section 2 we introduce some basic concepts about
XML write-access control. In Section 3 we explain when an
access control policy is inconsistent and using the ongoing
example we present alternative algorithms to find possible
repairs. Finally, in Section 4 we describe the demonstra-
tion’s objectives.

2. PRELIMINARIES

DTDs and XML Documents. We consider structured
XML DTDs as discussed in [9]. Although not all DTDs are
syntactically representable in this form, one can (as argued
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by [9]) represent more general DTDs by introducing new
element types.

A DTD D consists of a finite set of element types Ele,
a distinguished type rt in Ele called the root type and a
function Rg that maps a given element type A to a regu-
lar expression of the form Rg(A) :=str | € | Bi,..., By |
Bi+ ...+ B, | Bi*. The B; € Ele are distinct, “”, “4”
and “x” stand for concatenation, disjunction and Kleene star
respectively, € for the EMPTY element content and str for
text values. A DTD can be represented as a directed acyclic
graph that we call DTD graph. In it, conjunctions and dis-
junctions are represented by solid and dashed lines respec-
tively.

We call A — Rg(A) the production rule for A. An element
type B; that appears in the production rule of an element
type A is called the subelement type of A. The production
rules for the DTD graph shown in Fig. 1 are:

hospital — patientx
patient — name,treatments

placebo — ¢
presDrug — str

treatments — treatmentsx OTC — str
treatment — drug,diagnosis,date diagnosis — str
drug — placebo|presDrug|OTC  date — str

name — str

We model an XML document ¢ as a rooted tree. An XML
document is said to be walid w.r.t an XML DTD D, if it
conforms to the constraints (i.e., production rules) defined
by D. It is easy to see that the XML document shown in
Fig. 2(a) is valid w.r.t the DTD of Fig. 1.

XML Updates. There have been several XML update
language proposals [3, 7, 15, 16, 17]. In ACCOn, we consider
the delete, replace and insert update operations proposed in
the XQuery Update Facility document [7]. In our context,
an update operation is applied to a set of nodes specified
by an XPath target expression. In a delete operation, target
specifies the XML nodes to be deleted together with their
descendants. The insert and replace operations have an ad-
ditional component called source that is an XML tree or a
text value. For the insert operation, target determines the
node to which source will be inserted as a child node. Fi-
nally in the case of replace operations target specifies the
node whose subtree will be replaced by source.

Examples of the update operations on the XML tree shown
in Fig. 2(a) are shown below. The resulting XML document
is shown in Fig. 2(b).
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1. delete //treatment[date = “12/06/07”]

2. insert
<patient>
<name>Ms. Empis</name>
<treatments/>
</patient> into [hospital
3. replace //name[. = “Mr.Liu”] with

<name>Mrs. Liu</name>

For the purpose of our work, we abstract from the syntax
of the XQuery operations and we consider atomic update op-
erations. These operate on the XML nodes obtained by eval-
uating the target expression of an update operation on the
document in question. A delete(n) operation deletes node n
and all its descendants. A replace(n,t) operation will replace
the subtree with root n by the tree t. A replace(n, s) opera-
tion will replace the text value of node n with string s. There
are several types of insert operations, but since we consider
unordered XML trees, we deal only with insert into(n,t)
(for readability purposes, we are going to write insert(n,t))
which inserts the root of ¢ as child of n. We also con-
sider update sequences opi;...;op, with the standard se-
mantics: [op1;...;opn](t1) = [opn]([opn—1](: - - [op1](t1)))
where [op;](t) is the document obtained by evaluating op;
on tree t.

XML Write-Access Policies An access control policy
consists of a set of rules or authorizations that determine
whether a user is allowed to perform some action on the
data. These rules can be either XPath-based or annotation-
based. In this work we use update access types that are
similar to the latter. We have based our access types on
the XAcU*""*" language discussed in [10]. The language
follows the idea of security annotations introduced in [9] to
specify the access authorizations for XML documents in the
presence of a DTD.

Given a DTD D, an update access type (UAT) defined over
D is of the form %) (A,insert(B1)), i) (A, replace(Bi, B2)),
111) (A, replace(str, str)) or iv) (A, delete(B1)) where A is an
element type in D, and B; and B are distinct subelement
types of A.

For our XML DTD shown in Fig. 1 and for the update
privileges of nurses that were discussed in the motivating
example, we can write the following update access types:

(hospital, insert (patient)) (drug,replace (presDrug,OTC'))

(hospital, delete (patient)) (diagnosis, replace (str,str))

Intuitively, an UAT represents a set of atomic update op-
erations. For example, the UAT (hospital, insert(patient))



Set of Allowed UATs A

A1 :(treatments, insert(treatment)) As:(OTC, replace(str, str))
Asz:(drug, replace(OTC, presDrug)) Ag:(date, replace(str, str))
Asz:(drug, replace(presDrug, OTC)) Az:(hospital, insert(patient))
Ay:(drug, replace(placebo, OTC)) Asg:(hospital, delete(patient))

Set of Forbidden UATs F
Fi:(treatments, delete(treatment))  Fs:(name, replace(str, str))
Fa:(drug, replace(presDrug, placebo)) Fe:(diagnosis, replace(str, str))
Fs:(drug, replace(placebo, presDrug)) Fr:(presDrug, replace(str, str))
Fa:(drug, replace(OTC, placebo))

Table 1: Total policy P

= (A, F)

consists of the set of updates that insert a tree with root
patient as a child of node hospital. On the other hand,
the update access type (drug, replace(presDrug, OTC')) rep-
resents the set of updates that replace a child of drug of type
presDrug by a new node of type OTC.

We assume that the evaluation of an update operation
on a tree that conforms to a DTD D results in a tree that
conforms to D. Therefore, each update access type only
makes sense for specific element types. For our example
DTD, any valid XML document would contain a placebo, a
presDrug or an OTC as a child node of a drug node, thus, an
update that inserts an OTC node as a child of a drug node
would result in a document that is not valid w.r.t the DTD.
Hence, the UATSs (drug, insert (OTC)), (drug,delete (OTC))
(patient,replace (name,treatments)) are not relevant for the
hospital DTD. On the other hand, UATs (treatments , delete
(treatment)) and (name, replace(str,str)) are relevant. We
say that a UAT is valid w.r.t a DTD D if one of the following
holds:

o (A,insert(B)) and A — B”

e (A, delete(B)) and A — B*

o (A,replace(B;, Bj)), A — B1+ -+ By, 4,j € [1,n]
and ¢ # J

e (A, replace(str,str)) and A — str

The set of valid UATs for a DTD D is denoted by valid(D).

A security policy P is defined by a set of allowed A and
forbidden F valid update access types, where ANF =
(no UAT can be allowed and forbidden at the same time)
and AU F = valid(D). Intuitively, an update is allowed
by a policy P = (A, F) if the update access type uat that
represents the update is allowed in the policy, this is, if uat €
A.

Table 1 shows the set of allowed and forbidden UATs for
policy Pi = (A, F) for the hospital DTD. The update re-
place //druglOTC = “Aspirin”| with <drug><placebo/>
</drug>)) is not allowed by P; since the update is repre-
sented by Fu.

3. CONSISTENCY AND REPAIRS

3.1 Consistency

A policy defined over a DTD D is said to be consistent
if for every XML document that conforms to D it is impos-
sible to simulate a forbidden update through a sequence of
allowed updates.

Policy Py = (A, F) shown in Table 1 is inconsistent for
several reasons:

Z:: Even though it is forbidden to change the value of a
name node, child of a patient node (Fs), one can delete the
latter and then insert a patient node (allowed by Ag and A7
resp.) with a changed value for the name node.

Z>: It is possible to change the value of presDrug node (for-
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bidden by F7), by replacing the presDrug node with an OTC
node, and then this with a presDrug node with a changed
value (allowed by A3 and A resp.).

T3: Finally, one can replace a placebo with a presDrug node
(forbidden by F3) by replacing a placebo with an OTC node
(allowed by A4) and then this with a presDrug node (allowed
by As2).

Inconsistency Z; is an insert/delete inconsistency. Zo and
I3 are called replace inconsistencies. The first kind of in-
consistencies arise when the policy allows one to insert and
delete nodes of some element type A whilst forbidding some
operation in a descendant element type of A. It is evident
that in this case, the forbidden operation can be simulated
by first deleting a node, instance of element type A and then
inserting a new node, instance of A after having done the
necessary modifications (see Fig. 3).

The replace inconsistencies arise in presence of replace op-
erations for an element type A whose production rule is of
the form A — By 4+ --- + B,. There are two kinds of in-
consistencies: the forbidden-transitivity and megative-cycle.
The former happens in the case in which we are allowed to
replace B; by B; and B; by By but not B; by Bi. Then
one can simulate the latter operation by a sequence of the
first two (inconsistency Z3). The latter occurs when we are
allowed to replace some element type B; with an element
type B; and vice versa. If some operation in the subtree of
either B; or Bj is forbidden, then it is evident that one can
simulate the forbidden operation by a sequence of allowed
operations, leading to an inconsistency (inconsistency Zs).

To check whether a policy contains insert/delete inconsis-
tencies we build the marked graph of the XML DTD. In this
graph a node A is marked either with “+” if no operation is
forbidden for any descendant element type below A or with
“—7if that is not the case. Also, if for nodes A and B in the
DTD, both (A,insert(B)) and (A,delete(B)) are in A, and
node A is marked with “—”, then we also mark it with “1”.
This marked graph can be obtained by traversing the DTD
graph starting from the nodes with out-degree 0.

Fig. 4 shows the marked DTD for policy P, in Table 1.
The element type hospital is marked with both “—” and “L”
since (a) one can delete and insert patients (As and A7) but
(b) one cannot delete a treatment of a patient (F).

To find replace inconsistencies we build the replace graph
for each element type with a production rule A — B; +
...+ By. The graph contains an edge between B; and Bj if
(A, replace(B;, Bj)) € A. It is easy to see that node A has
no replace inconsistencies if 7) the replace graph is transitive
and i) none of the elements involved in cycles in the replace
graph is marked with “—”. The replace graph for drug is
shown in Fig. 5 and confirms that P; is inconsistent since
the graph is not transitive and presDrug is in a cycle but the
update access type (presDrug, replace(str, str)) is forbidden
(F7).
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It is easy to see that we can check whether a policy has no
insert/delete and replace inconsistencies in PTIME [5] using
standard graph algorithms.

3.2 Repairs

If a policy is inconsistent, we would like to suggest possible
minimal ways of modifying it in order to restore consistency.
In other words, we would like to find a repair that is as close
as possible to the inconsistent policy. More specifically, we
want to obtain repairs by changing a minimal number of
UATs from allowed to forbidden. We believe such repairs
are a useful special case, since the repairs are guaranteed to
be more restrictive than the original policy.

A possible repair for the policy P shown in Table 1 con-
sists in forbidding the UATs (hospital, delete (patient)) and
(drug, replace (OTC, presDrug)).

Repair Algorithms: The problem of deciding whether
it exists a repair that removes less than k UATs from the
allowed operations is NP-complete. Thus, in order to find
repairs, we will need to use approximation algorithms that
will return a repair which is not necessarily minimal.

In this demonstration we will present the repair algo-
rithms proposed in [5] and [6].

The algorithm to compute a repair of a policy relies on
the independence between insert/delete and replace incon-
sistencies. In fact, a local repair of an inconsistency w.r.t.
insert/delete operations will never solve nor create an incon-
sistency with respect to a replace operation and vice-versa.

In the case of insert/delete inconsistencies the algorithm
for finding the repairs is straightforward: we iterate over all
nodes in the marked DTD, and if a node A (A — B*) is
marked with both “—” and “1” then we delete one of the
(A,insert (B)) and (A, delete (B)) from the set of allowed
UATs.

Finding the minimal repairs for replace inconsistencies is
an NP-complete problem, and unless P = NP, there is no
polynomial time algorithm to compute a minimal repair to
the replace-inconsistencies. Therefore our algorithms run in
polynomial time but compute a repair that is not necessarily
minimal. We have developed two alternative algorithms to
solve the replace inconsistencies.
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The first is the naive algorithm that does not find a min-
imal repair. It takes as input the replace graph for a node
A and runs a modified version of the Floyd-Warshall algo-
rithm.

A possible execution of the naive algorithm over the pol-
icy P1 of the hospital DTD, constructs the replace graph
for element type drug (see Fig. 5). Then, since there are
edges from placebo to OTC and from OTC to presDrug but
there is no edge from placebo to presDrug, the algorithm ran-
domly chooses one of the edges to be deleted. Say, for exam-
ple, that it deletes the edge (placebo,OTC). The algorithm
continues and detects that there is a cycle between OTC
and presDrug, and that presDrug is labeled with “—” in the
marked DTD graph (see Fig. 4). Thus, one of the edges is
randomly chosen to be deleted, say edge (OTC, presDrug).
This implies that by removing (drug, replace(placebo, OTC))
and (drug, replace(OTC, presDrug)) the policy has no re-
place inconsistencies. Notice that this is not a minimal re-
pair, since deleting (drug, replace(OTC, presDrug)) in the
first step would have solved all replace inconsistencies.

Set Cover algorithm An alternative to the naive algo-
rithm is an algorithm based on set cover. This algorithm
computes, using the Floyd-Warshall algorithm, the transi-
tive closure of the replace graph G4 and labels each newly
constructed edge e with a set of justifications J. Each jus-
tification contains the sets of edges of G4 that were used
to add e in the transitive graph. Also, if a node is found
to be part of a negative-cycle, it is labeled with the jus-
tifications J of the edges in each cycle that contains the
node. To avoid the potentially exponential number of jus-
tifications, the algorithm assigns at most J justifications to
each edge or node, where J is a fixed number. This new
labeled graph is then used to construct an instance of the
minimum set cover problem (MSCP) [14]. The solution to
this MSCP can be used to determine the set of edges to
remove from G4 to invalidate all of the justifications of in-
consistencies. Because of the upper bound J on the number
of justifications, it might be the case that the graph still has
forbidden-transitivity or negative-cycles. Thus, the justifi-
cations have to be recomputed and the set cover run again
until there are no more replace inconsistencies.

The first computation of justifications for J = 1 over pol-
icy P and element type drug results in the graph in Fig. 6
where the dashed edges are the ones needed for transitivity.
The justifications for edges and nodes are: J(es) = {{e1,
e2}} and J(presDrug) = {{e2, es}}. Each justification rep-
resents violations of transitivity or negative-cycles. If we
want to remove the inconsistencies, it is enough to delete
one edge from each set in 7. The problem of removing one
edge per justification in such a way that the total number
of edges removed is minimal, can be reduced to the MSCP.

An instance of the MSCP consists of a universe U and a
set S of subsets of U. A subset C of S is a set cover if the
union of the elements in it is U. A solution of the MSCP is
a set cover with the minimum number of elements.

The set cover instance used to repair the policy is obtained



from the justifications. Intuitively, each element in U is a
justification, and each set in S contains the justifications
solved by removing a specific edge from the replace graph.
The MSCP associated to the justifications for element type
drug and policy P; is given in Table 2, where each column
corresponds to a set in & and each row to an element in
U. Values 1 and 0 in the table represent membership and
non-membership respectively. The table shows, for exam-
ple, that if edge e2 is deleted, then all the justifications are
solved. In fact, the minimal set cover contains only the set
associated to ez, namely {1,1}. Thus, the solution obtained
from the set cover algorithm shows that the replace incon-
sistencies can be solved by removing (drug, replace(OTC,
presDrug)) from the allowed operations of P;.

S

U el €2 es
{61, 62} 1 1 0
{62, 63} O 1 1

Table 2: Set cover instance

By putting together the changes suggested to solve insert/
delete and replace inconsistencies, a possible repair is ob-
tained by changing from allowed to forbidden the following
UATs: (hospital, delete (patient)) and (drug, replace(OTC,
presDrug)) from allowed to forbidden.

The set cover problem is MAXSNP-hard [14], but its solu-
tion can be approximated in polynomial time using a greedy-
algorithm that can achieve an approximation factor of log(n)
where n is the size of U. In our ongoing example, the greedy
approximation algorithm would return the minimal solu-
tion.

4. DEMONSTRATION

Through the demo we are going to present the problem of
checking the consistency of XML write-access control poli-
cies and show how one can repair such policies to obtain con-
sistent ones. We believe that the development and demon-
stration of ACCOn is a promising step towards the study of
the above problems that are still in their infancy.

In ACCOn the user will be able to choose from a set
of possible XML DTDs and their associated XML write-
access control policies. Amongst the DTDs that we will use
are DBPL, Sigmod Record Data modified to fit our frame-
work and other DTDs for different applications. During the
demonstration i) we will show the DTD graph that marks
possible inconsistencies and i) propose changes to the pol-
icy. The user will then be able to select amongst the sug-
gested changes, and ACCOn will apply the changes to the
policy and check whether consistency is achieved. In the
case in which the policy is not consistent, the process will
be repeated until no more inconsistencies are found.

S. RELATED WORK

Many different consistency problems have been studied in
the context of relational databases and XML. Minimal re-
pairs are also used in the problem of returning consistent
answers from inconsistent databases [1]. Also, consistency
of XML Schemas, i.e. the existence of an XML document
that conforms to a DTD and satisfies a set of constraints has
been studied in [2]. However, we are aware of no previous
work on consistency and repair for XML security policies.
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Consistency is not an issue in security views [9] because se-
curity views consider only queries, not updates.

Our previous work [5] and [6] was the first to define and
study semantic consistency properties of XML update ac-
cess control policies. Since consistency checking and repair
algorithms run at the schema level, scalability and hetero-
geneity at data level are not an immediate concern for our
approach. ACCOn implements the algorithms presented in
that work and allows users detect and repairing inconsistent
security policies, thereby eliminating some security vulner-
abilities that could lead to loss or damage to critical data.
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